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Abstract. Khuller and Raghavachari [J. Algorithms, 21 (1996), pp. 434–450] present an approx-
imation algorithm (the KR algorithm) for finding the smallest k-edge connected spanning subgraph
(k-ECSS) of an undirected multigraph. They prove the KR algorithm has an approximation ratio

< 1.85. We improve this bound to ≤ 1 +
√

1/e < 1.61 (for odd k we modify the base case of

the KR algorithm). This is the best-known performance bound for a combinatorial approximation
algorithm for the smallest k-ECSS problem for arbitrary k. Our analysis also gives the best-known
combinatorial performance bound for any fixed value of k ≥ 3, e.g., for even k the approximation
ratio is ≤ 1 + (1 − 1

k
)k/2. Our analysis is based on a laminar family of sets (similar to families

used in related contexts) which gives a better accounting of edges added in previous iterations of the
algorithm. We also present a polynomial time implementation of the KR algorithm on multigraphs,
running in the time for O(nm) maximum flow computations, where n (m) is the number of vertices
(edges, not counting parallel copies), respectively. This complements the implementation of Khuller
and Raghavachari [J. Algorithms, 21 (1996), pp. 434–450] which uses time O((kn)2) and is efficient
for small k.
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1. Introduction. Given a k-edge connected graph G, we seek a spanning sub-
graph with the fewest possible number of edges that is still k-edge connected. This
is a natural problem in network design, e.g., the case k = 1 asks for a spanning tree.
The problem is MAX SNP-hard for any fixed k ≥ 2 [4, 7]. A number of approximation
algorithms have been proposed. This paper achieves the best-known approximation
guarantee for a combinatorial algorithm when G is an undirected multigraph. We do
this by improving the analysis of the algorithm of Khuller and Raghavachari [14]. For
the rest of the paper we refer to Khuller and Raghavachari’s algorithm as the KR
algorithm. k-ECSS stands for k-edge connected spanning subgraph. n and m denote
the number of vertices and edges of the given graph, respectively.

Previous work. The problem of finding a smallest 2-ECSS has been widely inves-
tigated [15, 2, 17]. The best-known approximation ratio is 5/4, achieved by Jothi,
Raghavachari, and Varadarajan [11] building on the approach of Vempala and Vetta
[22]. For 2-ECSS parallel edges pose no problem and can essentially be ignored. How-
ever this is not the case for any higher connectivity k ≥ 3. Gabow [6] gives a 3/2
approximation for the smallest 3-ECSS of a multigraph. Most of these 2- and 3-ECSS
algorithms are based on depth-first search.
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Cheriyan and Thurimella [3] present an elegant 1 + 2/(k + 1) approximation
algorithm for the smallest k-ECSS that is valid for arbitrary k under the assumption
that the given graph is simple. Their approach is based on an analogue of a theorem of
Mader on k-node connected graphs. This analogue holds for simple graphs. In section
A.1 of the appendix, we show that on multigraphs the algorithm of [3] has performance
ratio exactly 2. (More precisely, 2 is an upper bound on the approximation ratio, and
for any fixed k ≥ 2 there are arbitrarily large graphs where the ratio is arbitrarily
close to 2.)

Several algorithms based on linear programming have been presented. Karger
[12] uses randomized rounding to get a smallest k-ECSS algorithm for multigraphs
with performance ratio 1 + O(

√
(log n)/k). This bound is of interest when k >>

log n. Goemans, Tardos, and Williamson [10] proposed rounding up an extreme point.
Recently this was shown to achieve performance ratio 1 + 2/k [8]. This performance
bound is more accurate than the bound achieved in this paper. However, the approach
requires solving a large linear program, leading to a high running time. Therefore,
fast combinatorial algorithms for k-ECSS are still attractive [21, p. 102].

The simplest known way to approximate the smallest k-ECSS is by a collection
of k maximal spanning forests. This algorithm achieves performance ratio 2 on any
multigraph. Nagamochi and Ibaraki [18] show how to find the desired forests in time
O(n(m + n log n)) on multigraphs.

Khuller and Raghavachari [14] gave the first algorithm for smallest k-ECSS that
achieves approximation ratio better than 2. The KR algorithm is based on depth-
first search. They prove the approximation ratio is strictly less than 1.85 on any
multigraph. Their implementation uses time O((kn)2). Fernandes [4] improves the
analysis of the KR algorithm on simple graphs, showing the approximation ratio is
at most 1.75, and at most 1.7 for large enough k. The proofs of both bounds use the
assumption of simplicity in crucial ways [4, see Facts 3.3 and 4.4].

Our contribution. This paper improves the analysis of the KR algorithm. We
show the approximation ratio is at most 1 +

√
1/e < 1.61 for arbitrary multigraphs.

This is the best-known ratio for the smallest k-ECSS for any combinatorial algorithm.
For every fixed connectivity k > 1 the ratio is better, specifically, 1 + (1− 1

k )k/2 for k

even and 1 + (1 − 1
k )(k−3)/2(1 − 3/2

k ) for k odd. These are the best-known ratios for
combinatorial algorithms for every fixed k ≥ 3.

Our approach uses a laminar family of sets introduced in [1, 5] and also used in
Cheriyan and Thurimella’s analysis [3]. This enables more accurate accounting than
[14, 4]. Specifically, our estimate of the number of edges added in a given step of the
KR algorithm takes every previously added edge into account.

To achieve the desired performance bound for odd k we use the recent 3-ECSS
algorithm of [6]. The 1 +

√
1/e upper bound is proved using a simple bound from

[6]. Our best bound for fixed odd k depends on extending the analysis of the 3-ECSS
algorithm. Since this extension involves detailed knowledge of the algorithm it has
been added as an appendix to [6].

Our upper bound 1+
√

1/e < 1.61 can be compared to a 1.5 lower bound: Section
A.2 of the appendix gives an example adopted from [15] that shows for every even k
the approximation ratio can be arbitrarily close to 3/2. The appendix gives a similar
example for odd k > 1, although for simplicity we only consider the original KR
algorithm and not our modified version.

We also provide a polynomial-time implementation of the KR algorithm for
weighted graphs, i.e., multigraphs where each edge has an integral value specifying
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its multiplicity. The running time is dominated by O(nm) max flow computations,
specifically time

O(min{(nm)2 log b n, μnm2 log(n2/m) log k}),

where b = m/(n log n) + 2, μ = min{m1/2, n2/3}. The analysis uses a potential
function to show the number of “distinct” iterations of the KR algorithm is polynomial
regardless of k.

Organization of the paper. Section 2 is devoted to a recurrence that arises in our
analysis. Section 3 reviews the KR algorithm and presents our analysis. Section 4
gives the polynomial-time implementation for multigraphs. The appendix gives the
lower bound examples for the algorithm of Cheriyan and Thurimella and the KR
algorithm. This section closes with terminology and notation.

Terminology. We often denote a singleton set {x} by x. A family of sets is laminar
if every two sets in the family are either disjoint or one contains the other.

All graphs are undirected. Multiple edges are always allowed in a graph (but not
self-loops). We often denote an edge by juxtaposing its two vertices, as in vw. For
multigraphs this notation need not designate a unique edge but this will not cause
any confusion. We do not distinguish between a subset of edges and the spanning
subgraph induced by those edges. For a simple graph G and an integer c, c ·G denotes
the multigraph constructed from G by giving every edge multiplicity c.

Take a (multi)graph G = (V,E). Let X be a set of vertices. An edge with exactly
one vertex in X leaves X. d(X) denotes the number of edges leaving X. In this
notation every edge is counted according to its multiplicity. For distinct vertices x, y,
λ(x, y) denotes the smallest number of edges whose removal disconnects x and y. If
S is a set of edges, then appending S as the last argument to d or λ means the graph
of interest is the spanning subgraph with edge set S, e.g., d(X,S), λ(x, y;S).

Graph G is k-edge connected if λ(x, y) ≥ k for all x �= y. For a given G and k
with G k-edge connected, OPT is a smallest set of edges forming a k-ECSS of G.

Given a spanning tree, a nontree edge covers every edge in its fundamental cycle,
while a tree edge covers itself. A (maximal) dfs forest consists of a depth-first spanning
tree of each connected component. It is sometimes convenient to assume back edges
are directed upwards, i.e., from the deeper end to the shallower end.

2. A recurrence. For arbitrary real numbers α, a, b and for c �= 1, consider the
recurrence

R1 = α,
Ri+1 = a + bi + cRi for all i ≥ 1.

(1)

The solution is

Ri = ci−1α + a
1 − ci−1

1 − c
+

b

1 − c

(
i− 1 − ci

1 − c

)
.

This solution can be derived using the identities for j ≥ 1,
∑j−1

i=0 ci = 1−cj

1−c , and∑j−1
i=0 (j − i)ci = (j + 1 − 1−cj+1

1−c )/(1 − c). Alternatively it can be verified by an easy
induction.

We are interested in the case

a =
1

k
+

ε

k2
for ε ∈ {0, 2}, b =

2

k2
, c = 1 − 1

k
.(2)
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Using 1/(1 − c) = k and some algebra we get for this case

Ri = ci−1

(
1 + α− 2 + ε

k

)
+

2i + ε

k
− 1.(3)

Equation (4) below gives 3 particular values of Ri. (4a) is for k even and (4b)–(4c)
are for k odd. We are still assuming (2), as well as k > 1. The values (4) all follow
from (3) by simple algebra:

Ri =

⎧⎪⎨
⎪⎩

(1 − 1
k )k/2, i = k/2 a = α = 1/k, (4a)

(1 − 1
k )(k−1)/2 − 1

k , i = (k − 1)/2 a = α = 1/k, (4b)

(1 − 1
k )(k−3)/2

(
1 + α− 4

k

)
+ 1

k , i = (k − 1)/2 a = 1/k + 2/k2. (4c)
(4)
Now assume we have α = r/k for some constant r ≤ 8/3. This includes all the values
we are interested in. Then all 3 quantities of (4) satisfy limk→∞ Ri =

√
1/e ≈ 0.606+.

The quantity of (4a) increases with k. For (4b) and (4c) we will be interested in those
quantities ignoring the last term ±1/k. The numerical values in the next section
(Table 1) will show that for k ≥ 3, the (4b) quantity (without 1/k) decreases with
k while the (4c) quantity (without 1/k) increases with k. Our theorem requires a
proof of this last relation for (4c). The proof is omitted since the numerical evidence
is convincing and more meaningful. The interested reader can supply the argument,
using logarithmic differentiation and Taylor series to show the computed derivative
(w.r.t. k) is positive for k ≥ 3 (and r ≤ 8/3).

3. Analysis of the KR algorithm. We begin this section by reviewing the
KR algorithm. Section A.2 of the appendix illustrates the algorithm on an example.
The input to the KR algorithm is a k-edge connected multigraph G = (V,E). The
output is a k-ECSS having a small number of edges.

We call the basic operation of the KR algorithm a 2-step. The purpose of a 2-step
is to increase the edge-connectivity of the current solution graph by 2. More precisely
a 2-step starts with an h-ECSS H and adds a set of edges F ∪ B to get an (h + 2)-
ECSS H ∪F ∪B. F is a maximal dfs forest of G−H. It is easy to see that F ∪H is
(h+1)-edge connected. B is a set of back edges of the depth-first search. B is formed
by traversing the forest F bottom-up and adding edges according to the following
rule: When we go from a vertex v to its parent p, check if λ(v, p;H ∪ F ∪B) < h+ 2
(here B refers to the current set B). If so, add to B a back edge that goes from a
descendant of v to a vertex closest to the root of the current tree.

It is proven in [14] that such a back edge always exists, and furthermore H∪F ∪B
is (h + 2)-edge connected at the end of the 2-step.

The overall KR algorithm starts with a spanning subgraph of no edges and per-
forms �k/2	 2-steps. If k is odd, then an additional spanning forest is added at the
end.

As just described, every 2-step in the KR algorithm starts with h even. However,
the analysis of [14] remains valid if h is odd, and we shall use 2-steps that start with
h odd. Also, it is important to bear in mind that in general F will not be a spanning
tree but rather a forest. Certainly in the first iteration F is a spanning tree, but even
in the second iteration F may consist of a large number of trees.

The analysis of [14] uses a property similar to the idea of “tree carvings” that was
introduced in [15] for approximating the 2-ECSS problem. To state it, in any 2-step,
let F ∗ be the set of edges vp of F that force a back edge e to be added to B (i.e., v
and p are only (h + 1)-edge connected when vp is traversed).
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Lemma 1 (Khuller and Raghavachari). In any 2-step, every edge of G−H covers
at most one edge of F ∗.

Proof. This follows from the fact that each edge of B is chosen to be directed to
the shallowest possible vertex. For details see [14, proof of Lemma 3.6].

Our analysis, like previous ones, centers around estimating the number of back
edges added by each 2-step. We use a laminar family of sets that covers every edge
of F ∗. A similar family is used in [3] but our family enjoys additional structural
properties. For the following lemma fix an arbitrary 2-step. See Figure 1 for an
example.

Lemma 2. There is a laminar family of vertex sets X = {Xf : f ∈ F ∗} such that
(a) each edge f ∈ F ∗ leaves Xf and d(Xf , H ∪ F ) = h + 1,
(b) each edge of G−H leaves at most one set of X ,
(c) f is the unique edge of F leaving Xf ; the edge of B that covers f leaves Xf

and no other set of X .
Proof. We start by invoking a well-known fact discovered by Cai [1] and, inde-

pendently in more general form, Frank [5]: Every k-edge connected (multi)graph has
a laminar family L of vertex sets such that every set X ∈ L has d(X) = k and every
edge xy with λ(x, y) = k leaves at least one set of L. (This is proved by first applying
an uncrossing argument and then converting the cross-free family to laminar.) Apply
the fact to the (h + 1)-edge connected graph H ∪ F . Take any edge f = xy ∈ F ∗.
It is easy to check that λ(x, y;H ∪ F ) = h + 1. Hence f leaves some set Xf ∈ L.
(If f leaves more than one set of L choose one of them arbitrarily to be Xf .) Define
X = {Xf : f ∈ F ∗}. This laminar family satisfies (a).

Consider any edge f ∈ F ∗. Since H is h-edge connected, it is easy to see that
d(Xf , H) = h and f is the only edge of F leaving Xf . (This gives the first part
of (c).) Since F is a maximal spanning forest of G − H, an edge of G − H leaves
Xf if and only if it covers f . Now (b) follows from Lemma 1. The rest of (c) also
follows.

We introduce some more notation concerning a 2-step. An edge of H is external if
it leaves some set of X and internal if it does not (see Figure 1). EXT (INT ) denotes
the set of external (internal) edges of H. Note that an external edge can leave an
arbitrary number of sets of X .

Lemma 3. |OPT | ≥ (k − h)|B| + |EXT |.
Proof. Consider any set Xf ∈ X . OPT contains ≥ k − h edges of G − H that

leave Xf (since Lemma 2(a) implies d(Xf , H) = h). Choose exactly k− h such edges
and add them to a set O. Doing this for every f ∈ F ∗ makes O a subset of OPT with
|O| = (k−h)|B| and d(Xf , O∪H) = k. This follows since an edge added for Xf does
not leave any other set Xg (Lemma 2(b)). Furthermore |F ∗| = |B|.

Initialize a set J to EXT . Observe that

d(X,O ∪ J) = k for every X ∈ X .(5)

We will now repeatedly remove 1 edge from J and add ≥ 1 new edge of OPT to O.
Doing this for every edge of J will enlarge O to a subset of ≥ (k − h)|B| + |EXT |
distinct edges of OPT . Clearly this implies the inequality of the lemma. In order to
accomplish this we will maintain two invariants throughout the procedure, (5) and

OPT ⊆ O ∪ J ∪ EXT.(6)

Condition (6) obviously holds when J is initialized to EXT .
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c
b

a

Fig. 1. A laminar family X with 6 sets. Let Tx denote a tree rooted at x. The depth-first
forest F contains trees Ta and Tb. F ∗ contains the 6 heavy edges and B contains the corresponding
6 dashed edges. H contains many edges, including another copy of Ta and Tb, and the tree Tc with
a corresponding back edge. These 3 trees of H have 3, 1, and 2 internal edges, respectively. Tc has
2 external edges, and its back edge is external too.

Consider an external edge e remaining in J . If e ∈ OPT simply transfer e from
J to O. This does not change O ∪ J so (5)–(6) continue to hold.

Now assume e /∈ OPT . e leaves one or more sets X ∈ X . For each such X choose
one edge d ∈ OPT − (O ∪ J) that leaves X. Such a d exists by (5) and the fact that
OPT is k-edge connected. Let D be the set of all chosen edges d. We will change O
and J to O′ = O ∪D and J ′ = J − e, respectively.

Clearly |O′| > |O| as promised. O′ and J ′ satisfy (6) since e /∈ OPT . We must
check that O′ ∪ J ′ satisfies (5). It is obvious that any X ∈ X has d(X,O′ ∪ J ′) ≥ k
but we must check that equality holds, i.e., each d ∈ D leaves exactly one set of X .
Equation (6) shows that d /∈ EXT . Since d leaves a set of X it belongs to G − H.
Now Lemma 2(b) shows that d leaves exactly one set of X .

The rest of this section looks at the 2-steps that built up the current h-ECSS
H. If h is even let Fj and Bj , j = 1, . . . , h/2, denote the sets of edges F and B

that were added in the jth 2-step, respectively. So H =
⋃h/2

j=1 Fj ∪ Bj . As already
mentioned, when k is odd we will discuss variants of the algorithm that make h odd.
For these odd h we sometimes use the preceding definition of Fj and Bj . But in the
main variant for k odd we make a small change in the definition of Fj and Bj (see
the discussion after Lemma 7). Note also that, regardless of the parity of h, we will
continue to refer to sets of the current iteration (e.g., F ∗, B, INT ) without affixing
a subscript (by rights B would be referred to as Bh/2+1 etc.).

The notation c(K) denotes the number of connected components of the graph K.
By convention if K is a set of edges of G we consider K to be a spanning subgraph
of G in the notation c(K), and each isolated vertex contributes one to c(K).

Observe that Bj is a forest. This follows from a simple fact about dfs trees.

Proposition 4. A set of back edges of a dfs tree is a forest if it contains ≤ 1
back edge directed from each vertex.
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Proof. We prove the contrapositive. Let x be a vertex of greatest depth in a cycle
of back edges. Both cycle edges incident to x are back edges directed from x.

In the statement of the next two results, j ranges over all possibilities j =
1, . . . , h/2. Recall that our notational convention implies the sets Fj and Bj were
constructed in an iteration prior to the current iteration, which constructs sets F and
B. Note also that we will use a slightly stronger version of the next lemma when we
treat odd values of k: Specifically, the lemma holds even if A is any acyclic set of back
edges of Fj .

Lemma 5. For A an acyclic subset of Fj ∪Bj, c(A ∩ INT ) ≥ |B| + c(Fj).
Example. In Figure 1 let Fj consist of copies of Ta, Tb, and Tc; as before, F

consists of Ta and Tb. The right-hand side of the lemma is |B|+c(Fj) = 6+3 = 9. Ta

and Tb contain 8 and 4 vertices, respectively. For A = Tc, c(A∩INT ) = 8+4+3 = 15.
For A = Fj , c(A ∩ INT ) = 5 + 3 + 3 = 11.

Proof. Consider the set of edges S = (A∩ INT )∪F ∗. We first show S is a forest.
By way of contradiction assume S contains a cycle C. Since A is acyclic, C contains
an edge of F ∗, say f . f is the unique edge of C leaving Xf (Lemma 2(c)). But this
contradicts the fact that any cycle leaves Xf an even number of times.

Next we claim that every edge of S joins two vertices in the same tree of Fj . This
holds by definition for A. For an edge f = xy ∈ F ∗, x and y are in the same tree of
F . Since Fj is chosen as a maximal spanning forest, x and y must also be in the same
tree of Fj .

The claim implies that c(S) ≥ c(Fj). Thus c(A ∩ INT ) ≥ |F ∗| + c(Fj), and the
lemma follows.

Corollary 6. (a) |Bj ∩ INT | + |B| + c(Fj) ≤ n. (b) |Fj ∩ EXT | ≥ |B|.
Proof. Recall that any acyclic set of edges R has |R| + c(R) = n.
(a) The initial observation and Lemma 5 give

n = |Bj ∩ INT | + c(Bj ∩ INT ) ≥ |Bj ∩ INT | + |B| + c(Fj)

as desired.
(b) The initial observation and Lemma 5 give

|Fj | + c(Fj) = n = |Fj ∩ INT | + c(Fj ∩ INT ) ≥ |Fj ∩ INT | + |B| + c(Fj).

(b) follows since Fj is partitioned into Fj ∩ EXT and Fj ∩ INT .
Lemma 7. If k is even the KR algorithm achieves approximation ratio 1 + (1 −

1
k )k/2.

Proof. Let Si be the total number of back edges added in the first i 2-steps (i.e.,
the steps that achieve 2i connectivity). We shall prove the recurrence

S1 ≤ 1
k |OPT |,

Si+1 ≤
(

1
k + 2i

k2

)
|OPT | + k−1

k Si for all k/2 > i ≥ 1.
(7)

It is easy to see that (7) implies Si/|OPT | is upper-bounded by the quantity Ri of
recurrence (1) with the values (2) and ε = 0, α = 1/k. So (4a) shows the total number
of back edges added by the algorithm is Sk/2 ≤ (1− 1

k )k/2|OPT |. Besides these back
edges the algorithm adds k/2 dfs forests. The degree lower bound |OPT | ≥ kn/2
implies the forests have total size at most |OPT |. The lemma follows.

It remains to prove (7). The base case S1 = |B1| ≤ |OPT |/k is the carving lower
bound [13, Theorem 6.2]. Alternatively, the base case follows by taking H = ∅ in
Lemma 1 and concluding that OPT contains ≥ k|B1| edges.
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Table 1

Values of our approximation ratio for selected k.

k 2 4 6 8 10 20 100 1000 10000
ratio 1.5 1.562+ 1.578+ 1.586+ 1.590+ 1.598+ 1.605+ 1.6063+ 1.6065+

k 3 5 7 9 11 21 101 1001 10001
KR 1.666+ 1.64 1.629+ 1.624+ 1.620+ 1.613+ 1.608+ 1.6066+ 1.6065+

KRs 1.555+ 1.586+ 1.594+ 1.598+ 1.600+ 1.603+ 1.606+ 1.6064+ 1.6065+

KR3 1.5 1.56 1.577+ 1.585+ 1.589+ 1.598+ 1.604+ 1.6063+ 1.6065+

Next we prove the upper bound on Si+1. We will apply our analysis of the 2-step
that enlarges H from an h-ECSS to an (h + 2)-ECSS. Take h = 2i. Just as before
we have sets B1, . . . , Bi and the current set B, as well as the current sets INT and
EXT . By definition

Si =

i∑
j=1

|Bj |,(8a)

Si+1 = Si + |B|.(8b)

The degree lower bound shows |OPT | ≥ kn/2. Combining this with Corollary
6(a) shows

|Bj ∩ INT | + |B| + c(Fj) ≤ 2|OPT |/k, j = 1, . . . , i.(9)

We will discard the term c(Fj).
Lemma 3 shows |OPT | ≥ (k − 2i)|B| + |EXT |. To lower bound the right-hand

side note that EXT is partitioned into sets Fj ∩ EXT and Bj ∩ EXT , j = 1, . . . , i.
Using Corollary 6(b) to lower bound the sizes of the first group of sets gives

(k − 2i)|B| +
i∑

j=1

(|B| + |Bj ∩ EXT |) ≤ |OPT |.(10)

Add the i + 1 inequalities (9)–(10) and use the fact that Bj is partitioned into sets
Bj ∩ INT and Bj ∩ EXT to get

k|B| +
i∑

j=1

|Bj | ≤ (1 + 2i/k)|OPT |.

The sum on the left-hand side equals Si by (8a). Adding (k − 1)Si to both sides and
using (8b) gives

kSi+1 ≤ (1 + 2i/k)|OPT | + (k − 1)Si.

This is equivalent to the desired relation of (7).
The bound of Lemma 7 increases monotonically with k and is always < 1+

√
1/e =

1.60653+. Selected values are given in the first 2 rows of Table 1.
We turn to odd values of k. The original KR algorithm for odd k executes the

same 2-steps as the algorithm for k−1, after which it adds a spanning forest to achieve
connectivity k. The analysis of Lemma 7 shows the number of back edges Si satisfies
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recurrence (7), so the total number of back edges is |OPT | times (4b). There are
(k + 1)/2 dfs forests, contributing a total of ≤ (1 + 1/k)|OPT | edges. We conclude
the approximation ratio is 1 + (1 − 1

k )(k−1)/2. This quantity is illustrated in the row

labelled “KR” of Table 1. It approaches 1 +
√

1/e from above.

To achieve an approximation ratio that is always below 1 +
√

1/e we use the
following version of the KR algorithm: Initialize the solution subgraph to a “good”
3-ECSS. Then execute (k − 3)/2 2-steps. It remains to choose the base 3-ECSS.

The simplest choice is to use the KR algorithm: Initialize H to a dfs tree of G.
Then do a 2-step to enlarge H to a 3-ECSS. Our analysis of this variant leads to the
same bound as the original KR algorithm. The analysis hinges on the fact that the
first 2-step adds ≤ |OPT |/k back edges. The total number of back edges remains
|OPT | times (4b). Further details are left to the reader.

To improve the bound we use the algorithm of [6], which we refer to as the ear
algorithm. This algorithm finds a 3-ECSS A of a multigraph, achieving approximation
ratio 3/2. The algorithm works in three phases which we now describe.

Phase I initializes A to a dfs tree, which we denote as F for consistency with a
2-step. Phase II begins by making A 2-edge connected by adding a set of back edges
B′. To do this it first uses the 2-step procedure to construct B and the forcing edges
F ∗. It chooses the set B′ in a top-down pass that guarantees each edge of B′ covers
a distinct edge of F ∗. The edges of B′ are called long ear edges. To describe the
rest of Phase II we recall that the algorithm maintains a partition of V into sets of
vertices that are known to be 3-edge connected in A, called “t-sets.” The second part
of Phase II adds edges called short ears. Each short ear merges at least 3 t-sets into
1. Phase III makes A 3-edge connected by adding a spanning forest of the t-sets.

For our analysis we partition the final 3-ECSS A into the spanning tree F plus 2
forests: B0 contains the long ear edges. It is acyclic, by Proposition 4 and Lemma 1.
B1 consists of the short ears plus the spanning forest of Phase III. It is acyclic, since
each edge merged ≥ 2 distinct t-sets. Take a value α such that |B0|+ |B1| ≤ α|OPT |.

Let KR3 denote the k-ECSS approximation algorithm with the ear algorithm
used for initialization. For i ≥ 1 let Si be the total number of back edges added in
the first i steps of the algorithm (i.e., the initialization step and the first i−1 2-steps;
these steps achieve 2i + 1 connectivity). These quantities satisfy the recurrence

S1 ≤ α|OPT |,
Si+1 ≤

(
1
k + 2i+2

k2

)
|OPT | + k−1

k Si for all (k − 1)/2 > i ≥ 1.
(11)

This is proved by essentially the same argument as Lemma 7. The differences stem
from the fact that the first i steps add a total of i dfs forests and i+ 1 forests of back
edges to the solution graph. In more detail, for j ≤ i let the jth step add forest Fj

and back edges Bj for j > 1, and forest F1 and back edges B0 and B1 for j = 1.
Lemma 5 and Corollary 6(a) remain valid for B0 and B1. (10) becomes

(k − 2i− 1)|B| + |B0 ∩ EXT | +
i∑

j=1

(|B| + |Bj ∩ EXT |) ≤ |OPT |.

Finally, in the last two displayed equations the term 2i becomes (2i + 2).
It remains to determine α, i.e., we must bound the number of back edges in A in

terms of |OPT | (the size of the smallest k-ECSS). We will derive the main theorem
using a simple bound for α: [6] gives a short proof that the ear algorithm achieves a
14/9 approximation ratio. We extend that proof as follows.
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Lemma 8. The 3-ECSS A contains ≤ 8
3k |OPT | back edges.

Proof. The proof of the 14/9 approximation ratio is based on three lower bounds
for the size of the smallest 3-ECSS: the degree lower bound, the carving lower bound,
and the component lower bound. All three of these are actually lower bounds on the
size of the smallest k-ECSS, which the argument of [6] specializes to k = 3. Thus
the same argument upper bounds the number of back edges of A in terms of |OPT |,
the size of the smallest k-ECSS. The modified argument gives the lemma—the only
changes are in the algebra of [6, Lemma 4.5].

Now use (4c) to solve (11) with α = 8/(3k), ε = 2. This gives an upper bound on
the number of back edges added by KR3. In addition KR3 adds (k− 1)/2 dfs forests.
The degree lower bound shows they contain a total of ≤ k−1

k |OPT | edges. Summing
the two bounds shows the size of KR3’s subgraph is at most(

1 +

(
1 − 1

k

)(k−3)/2 (
1 − 4/3

k

))
|OPT |.

This upper bound is illustrated in the row labelled “KRs” in Table 1. As can be seen,
the upper bound is less than 1 +

√
1/e (section 2 describes a proof).

Theorem 9. The KR algorithm has approximation ratio ≤ 1 +
√

1/e on multi-
graphs with k > 1. �

The bound for odd k displayed above can be improved, for any fixed k, to the row
labelled “KR3” in Table 1. This is done by extending the proof of the 3/2 performance
ratio for the ear algorithm to show we can take α = 5

2k in (11). The extended proof
depends on detailed knowledge of [6] and so has been added as an appendix to [6].
Assuming that result we get the following corollary. Note the corollary’s bound for
k = 3 is 3/2 as expected.

Corollary 10. For k > 1 the KR algorithm has an approximation ratio at most{
1 + (1 − 1

k )k/2 k even;

1 + (1 − 1
k )(k−3)/2(1 − 3/2

k ) k odd.

4. Efficient implementation. When the desired connectivity k is small the
implementation of [14] in time O((kn)2) is efficient. Note that this time bound also
applies to our modified version of the algorithm for odd k: That version begins by
using the ear algorithm to find a 3-ECSS. The ear algorithm runs in time O(mα(m,n))
[6]. Since O(mα(m,n)) = O(n2) this does not increase the O((kn)2) time bound. The
time bound for the rest of the algorithm is proved exactly as in [14].

The rest of this section concentrates on implementing the KR algorithm effi-
ciently for graphs with large multiplicities. Specifically we assume a weighted graph
representation, where each edge is given with an (arbitrarily large) integer multiplic-
ity. We implement the KR algorithm in time dominated by O(nm) maximum flow
computations.

The algorithm begins with the initialization just mentioned: If k is odd, the
solution graph H is initialized to the 3-ECSS of the ear algorithm; if k is even, H is ∅.
Again the O(mα(m,n)) time for the ear algorithm is dominated by the desired time
bound. For the rest of the section the parity of k is irrelevant.

The implementation is organized into “phases.” Each phase simulates a number
of 2-steps, until either the current solution graph H becomes k-edge connected or the
multiplicity of one or more edges of G−H decreases to 0 or 1. This implies there are
≤ 2m + 1 phases.
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Each phase simulates a sequence of consecutive 2-steps that use the same forest F .
The phase consists of a number of “multisteps.” A multistep simulates the execution
of as many consecutive 2-steps as possible that each add a copy of the same set F ∪B.

Fix a 2-step with current graph H and dfs forest F . An edge xy ∈ F is critical if
λ(x, y;H ∪ F ) = h + 1. We shall see that the critical edges determine the set B. To
implement a multistep we need to know when an edge becomes critical. The following
lemma answers this question. It also implies several other facts that we need about
critical edges.

Take an edge xy ∈ F . The graph HFxy is constructed by starting with H and
contracting every connected component of F − xy. We use the term “node” to refer
to a vertex of HFxy, and node x (node y) refers to the node of HFxy that contains
vertex x (vertex y) of G. For a set of edges S, cov(xy, S) denotes the number of edges
of S that cover xy. We count each edge according to its multiplicity in S.

To state the lemma, suppose we are executing the KR algorithm (not our im-
plementation). Let H be an h-ECSS of the k-edge connected graph G. Let F be a
maximal spanning forest of G−H. Take any c ≥ 0 so h+ 2c ≤ k− 2. Suppose that c
consecutive 2-steps enlarge H to the (h+ 2c)-ECSS K = H ∪ (c ·F )∪Bc. (In general
Bc is a union of a number of different B sets.)

Lemma 11. Suppose a (c+ 1)-st 2-step is to be done, adding a (c+ 1)-st copy of
F . The critical edges in this 2-step are the edges xy ∈ F satisfying

λ(x, y;HFxy) + cov(xy,Bc) = h + c.

Proof. Edge xy ∈ F is critical for the next 2-step if λ(x, y;K ∪ F ) = h + 2c + 1.
This means there is a set S of vertices containing x but not y such that

d(S,K ∪ F ) = h + 2c + 1.

If d(S, F ) ≥ 2, then d(S,K ∪ F ) ≥ d(S,H) + (c + 1)d(S, F ) ≥ h + 2c + 2. Hence we
can assume d(S, F ) ≤ 1. Since xy leaves S, we can assume d(S, F ) = 1 and xy is the
unique edge of F leaving S.

Now we have d(S,K ∪ F ) = d(S,H) + (c + 1) + d(S,Bc). So the condition for
criticality becomes

d(S,H) + d(S,Bc) = h + c.(12)

Since every edge of Bc joins vertices in the same tree of F , an edge of Bc leaves S
if and only if it covers xy, i.e., d(S,Bc) = cov(xy,Bc). So if S satisfies (12) it must
minimize d(S,H). (It is easy to see that any S satisfies (12) with ≥, by tracing back
to the original criticality condition.) Since xy is the unique edge of F leaving S, S
corresponds to a set of nodes in HFxy, and S contains node x but not node y. So (12)
is equivalent to the equation of the lemma.

The special case of the lemma with c = 0, Bc = ∅ is of interest. For instance,
consider the following fact.

Fact 1. Suppose an edge xy is critical at the start of a 2-step. During the bottom-
up traversal of the 2-step the quantity λ(x, y;H ∪F ∪B) changes from h+ 1 to h+ 2
precisely when the first edge covering xy gets added to B.

To prove Fact 1 use the special case of the lemma. Observe that the first paragraph
of the proof of Lemma 11 shows λ(x, y;H ∪ F ∪B) remains equal to h+ 1 as long as
there is a set S containing x but not y such that xy is the unique edge of F leaving
S and no edge of B covers xy.
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Fact 1 implies that the set of critical edges C at the start of a 2-step determines
the set of back edges B that get added in the 2-step. So we use the notation B(C).
The set of “forcing edges” F ∗ is also determined by C, and we use the notation F ∗(C).
Note from the bottom-up procedure of a 2-step that B(C) = B(C ′) for any set C ′

satisfying F ∗ ⊆ C ′ ⊆ C.

We need two more facts about critical edges. Consider 2 consecutive 2-steps,
where the first 2-step is done for critical edges C and the second 2-step uses the same
forest F as the first.

Fact 2. An edge of C covered by exactly one edge of B(C) is critical for the
second 2-step.

Fact 3. An edge of F −C that is critical for the second 2-step is not covered by
any edge of B(C).

Facts 2–3 follow from the Lemma 11 by first taking c = 0, Bc = ∅ and then c = 1,
Bc = B(C).

We can now give the stopping criterion for a multistep. Recall that a multistep
simulates the execution of as many consecutive 2-steps as possible that each add a
copy of the same set F ∪B. In greater detail it simulates 2-steps until either

(a) the number of available copies of some edge of F or B drops to 0, or

(b) some edge of F changes from noncritical to critical.

Let us prove that as long as (a) and (b) do not occur, each 2-step adds the same
set B(C). Let F ∗ = F ∗(C). Each edge of F ∗ is covered by exactly 1 edge of B. Fact
2 shows the set C ′ of edges that are critical in the next 2-step includes F ∗. Assuming
(b) does not occur C ′ ⊆ C. This implies B(C) = B(C ′) as desired.

If (a) occurs the phase ends. (Note that we have described a phase as ending
when the number of available copies of some edge drops to 0 or 1, which seems slightly
different from (a). The difference is due to the situation where the multiplicity of an
edge in F ∩B drops to 1.)

For (b) to occur the new critical edge e must not be covered by B (Fact 3). Now
it is easy to see that in the next 2-step the deepest such e enters the set F ∗ and causes
the set B to change.

This justifies the following detailed statement of a multistep: The multistep begins
with its set of critical edges C. It determines the set B = B(C). Then it adds the
greatest number of copies of F ∪B to H until (a) or (b) occurs. Lemma 11 is used to
determine when (b) will occur.

It is not hard to see this gives a polynomial time implementation of a multistep.
(Implementation details are given below.) It remains to bound the number of multi-
steps in a phase. This is nontrivial because in a sequence of consecutive 2-steps with
the same forest F , a given edge of F can change from critical to noncritical and back
again many times.

It is convenient to extend some tree terminology from vertices to tree edges. An
edge-ancestor of a vertex v is a tree edge whose deeper vertex is an ancestor of v. An
edge-ancestor of a tree edge e is an edge-ancestor of the deeper vertex of e. If e is a
tree edge then depth(e) is the depth of the deeper vertex of e. We start by describing
how F ∗ changes when a new edge becomes critical.

Lemma 12. Let C be a set of critical edges. Let c be a tree edge that is not
covered by B(C) but is covered by some back edge. Then for some edge f covering c
either

(a) F ∗(C ∪ c) = F ∗(C) + c and B(C ∪ c) = B(C) + f , or
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(b) for some set D ⊆ C ∪ c, some proper edge-ancestor a of c, and some edge e
covering a, F ∗(D) = F ∗(C) − a + c and B(D) = B(C) − e + f .

Proof. Let f be a back edge that covers c and is directed to the shallowest possible
vertex, say w. Let a be the deepest edge-ancestor of c belonging to F ∗(C), if such
exists. We will show that (b) holds if a exists and (a) holds if it does not. If a exists
let e ∈ B(C) be the edge covering a and let v be the head of e. Since a is an edge-
ancestor of c, v is an ancestor of w. Let Pwv consist of all edges on the tree path from
w to v. If v does not exist then take v = w and Pwv = ∅. Let

D = C − Pvw + c.

Note that D = C ∪ c if a does not exist.
We will execute the bottom-up procedure to construct both B(C) and B(D). The

desired relations (a)–(b) result from the fact that the two executions differ only in 1
step.

Let F− consist of all edges of F except the edge-ancestors of c. Clearly C ∩F− =
D∩F−. Hence the bottom-up procedure works the same for C and D on F−, placing
the same edges of F− into both F ∗(C) and F ∗(D) and the same back edges into B(C)
and B(D).

The next step of the bottom-up procedure adds f to B(D) and c to F ∗(D). If
a does not exist then both procedures are done, and part (a) of the lemma holds.
Suppose a exists. The bottom-up procedure adds e to B(C) and a to F ∗(C).

The remaining steps of both executions are exactly the same. This follows since
the remaining uncovered edges of C are edge-ancestors of v, by definition. The re-
maining uncovered edges of D are edge-ancestors of w, and since D ∩ Pwv = ∅, they
are edge-ancestors of v. C and D contain exactly the same edge-ancestors of v. So
the remaining steps of both executions are the same, and we have verified (b) of the
lemma.

Consider the potential function

Φ =
∑

{depth(e) : e ∈ F ∗}.

For Φ we compute depths in the forest F . We will prove that every multistep in a
phase except possibly the last increases Φ by at least 1. Since Φ ≤ n2, this implies
that a phase has O(n2) multisteps.

If C is a set of critical edges, let Φ(C) denote the above expression with F ∗ =
F ∗(C). When we apply Lemma 12 it is convenient to unify the two cases by taking
D to be C ∪ c in case (a). Observe that Φ(D) > Φ(C) for both cases (a) and (b) of
Lemma 12 (since Φ(D) = Φ(C) + depth(c) − depth(a), where we take depth(a) = 0
in (a)).

Lemma 13. Every multistep in a phase except the first or last increases Φ.
Proof. Consider a multistep that is not the first or last of its phase. Let C0 be

the set of edges that were critical in the previous multistep and remain critical at the
start of the current multistep. Let C1 be the set of edges that have changed from
noncritical to critical. Fact 2 implies that B of the previous multistep equals B(C0).
Fact 3 implies no edge of C1 is covered by B(C0).

We will construct sets Di ⊆ C0 ∪ C1, i = 0, . . . , I for some I ≥ 1, with Φ(Di) >
Φ(Di−1), D0 = C0, and DI = C0 ∪ C1. Clearly this implies the lemma. We will also
have each Di maximal in the sense that Di contains every edge of C0 ∪ C1 that is
covered by B(Di). Clearly D0 is maximal.
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Supposing Di−1 has been constructed, construct Di as follows. Take an edge
c ∈ C0 ∪ C1 − Di−1 that has maximum possible depth. (For i = 1, C1 − C0 �= ∅
since this is not the last multistep of the phase.) By maximality c is not covered by
B(Di−1). Apply Lemma 12 to C ≡ Di−1 and c. The lemma gives set D ≡ Di with
Di ⊆ C ∪ c ⊆ C0 ∪ C1 and Φ(Di) > Φ(Di−1). We can enlarge Di so it contains all
edges of C0∪C1 that are covered by B(Di), without changing F ∗(Di) or B(Di). (For
edge f this depends on the choice of c to have maximum depth. For other edges,
which belong to Di−1, this depends on the maximality of Di−1.) Now Di is maximal.
If now Di = C0 ∪ C1 then take I ≡ i and we are done. This eventually occurs since
Φ always increases.

It is easy to see that the lemma guarantees each phase runs in polynomial time and
we have a polynomial-time algorithm. We now show the time for a phase is dominated
by O(n) maximum flow computations. We first assume flows are computed by the
algorithm of [16] which uses time O(nm log b n) for b = m/(n log n) + 2.

A phase starts by doing a dfs to determine F . It then computes two sets of values
that remain constant during the phase: first, the values λ(x, y;HFxy), xy ∈ F . These
values do not change since F does not change. The values are computed using O(n)
flow computations, each on a graph of ≤ n vertices and ≤ m edges.

The second set of values are the lowpoint values of the vertices of F [14, 19]. These
values do not change since the set of nontree edges does not change. The lowpoint
values are computed in O(m) time. This enables each multistep to determine the new
set B in a bottom-up traversal of F in O(n) time.

The phase also maintains the values cov(xy,Bc) for each xy ∈ F . Here Bc is the
set of nontree edges added so far in the phase. Initially all cov values are 0.

Now we show that each multistep can be executed in O(n) time. Use Lemma 11
to determine the set of critical edges C for this multistep. All quantities needed have
already been computed, so this takes O(n) time. Compute B = B(C) in O(n) time
using lowpoint values.

Determine the greatest number of 2-steps that can be executed, as follows. Com-
pute the values cov(xy,B) for xy ∈ F and the new B in time O(n). Edges with
cov(xy,B) = 0 are candidates for becoming critical. For each such xy the equation of
Lemma 11 gives the value of c at which xy becomes critical. Let c0 be the least such
value (if it exists).

Let the current solution graph have edge connectivity h + 2c. Let a be the
fewest number of available copies of an edge of F or B. The multistep adds d =
min{c0, a, (k− (h+2c))/2} copies of F ∪B. Finally the multistep increases each value
cov(xy,Bc) by d× cov(xy,B).

Lemma 13 shows the total time for all multisteps in a phase is O(n3). This is
within the time bound for a phase.

Theorem 14. The KR algorithm can be implemented on multigraphs in time
O((nm)2 log b n) for b = m/(n log n) + 2.

Now we assume that maximum flows are computed by the algorithm of [9]. If
all capacities are integers ≤ k this algorithm runs in time O(μm log(n2/m) log k) for
μ = min{m1/2, n2/3}.

A phase starts as before, computing F , the values λ(x, y;HFxy) for xy ∈ F , and
all lowpoint values. In the flow computations we can assume all capacities in HFxy

are integers ≤ k, since flow values larger than k are irrelevant. Hence the desired time
bound for computing a flow applies.

We must speed up the implementation of a multistep. We achieve total time
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O((n log n)2) for all multisteps in a phase. Since this quantity is O(μnm) it suffices
for our desired time bound. The approach is based on a stronger version of Lemma
13. Recall that Lemma 12 shows how to make a new edge c critical, by adding an
edge to both F ∗ and B and perhaps dropping an edge from both of these sets. Call
this change to F ∗ and B an edge swap. The proof of Lemma 13 shows how to update
the set B from one multistep to the next, using a total of O(n2) edge swaps in the
entire phase. Our algorithm updates B using this procedure. We will show that each
edge swap can be done in time O(log2 n). We sketch the implementation, leaving
some details to the interested reader.

We first describe the mechanism for determining critical edges. For xy ∈ F define
t(xy) = min{λ(x, y;HFxy)+cov(xy,Bc), k}. Lemma 11 shows that if xy is not covered
by the current B set, t(xy) < k, and every following 2-step adds the current B, then
xy becomes critical after step t(xy) − h, where we have indexed the 2-steps of the
current phase starting at 1.

Define a key T (xy) for each xy ∈ F by

T (xy) = K2cov(xy,B) + Kt′(xy) + (n− depth(xy)).

Here K = max{k, n}. B denotes the current set B (even in the middle of the bottom-
up procedure). t′(xy) is the quantity t(xy) excluding the contribution of all current
edges B to cov(xy,Bc). Observe that an edge xy that is not covered by B has
T (xy) = Kt(xy)+(n−depth(xy)). So it is easy to see that the edge xy with smallest
key T (xy) is the next edge to turn critical, and if there is a tie for this edge, xy is
as deep as possible. (The latter is needed since we follow the proof of Lemma 13 to
update B.)

Our data structure is based on the heavy path decomposition [20] of the forest
F . Recall this notion gives a partition of the edges of F into “heavy paths.” Each
edge of a given heavy path has, to within a factor of 2, the same number of vertex
descendants in F . The path from any vertex to the root of its tree in F intersects at
most log n heavy paths.

The edges of each heavy path are stored in a binary search tree, where symmetric
order is the same as order in the heavy path. Each node of the search tree keeps track
of the smallest key T (xy) in its subtree, and each node has a displacement quantity
that is added to all the keys in its subtree. (This enables all keys in a subtree to be
increased by the same value in time O(1).) There is a priority queue Q that contains
the edge of smallest key from each heavy path. Finally, each edge of F ∗ is marked
in the heavy path decomposition, so that the deepest edge-ancestor in F ∗ of a given
tree edge can be found in O(log2 n) time.

At the start of a multistep we find the next new critical edge using the queue Q in
time O(log n). We update the set B by following the procedure of Lemma 13. Each
swap is done in O(log2 n) time. The number of 2-steps to be simulated is computed
as before. We achieve time O((n log n)2) for a phase as desired.

Corollary 15. The KR algorithm can be implemented on multigraphs in time
O(μnm2 log(n2/m) log k) for μ = min{m1/2, n2/3}.

Appendix. Lower bound examples.

A.1. The Cheriyan–Thurimella algorithm on multigraphs. Throughout
this section take any fixed k ≥ 2. The algorithm of Cheriyan and Thurimella [3]
consists of two steps: First take M to be a minimum cardinality set of edges in which
every vertex has degree ≥ k. Next take C to be a minimal set of edges that makes
M ∪ C k-edge connected. Return the k-ECSS M ∪ C.
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We will exhibit multigraphs that have |M ∪ C| ≥ (2 − ε)|OPT |, for any ε > 0.
On the other hand we will prove the approximation ratio is always ≤ 2. This upper
bound holds even for the weaker version of the algorithm where M is chosen to be
a minimal set rather than a minimum cardinality set. Cheriyan and Thurimella [3]
prove much stronger upper bounds when the graph is restricted to be simple.

To prove the upper bound suppose that the edges of M ∪ C can be partitioned
into k forests. Then using the degree lower bound we get |M ∪C| ≤ k(n− 1) < kn ≤
2|OPT | as desired. Hence our upper bound follows from this lemma.

Lemma 16. The edges of M ∪ C can be partitioned into k spanning forests.
Proof. We first partition M into spanning forests F1, . . . , Fk. To do so repeatedly

remove a maximal spanning forest from M until k forests are obtained. Let N =
∪k
i=1Fi. We claim N = M . If not take an edge xy ∈ M −N . Vertices x and y are in

the same tree in each forest Fi, by maximality. Hence d(x,N), d(y,N) ≥ k. But now
edge xy contradicts the minimality of M .

Next, take each edge e ∈ C and add it to a forest Fi where it joins 2 different trees.
We claim this is always possible. If not suppose e = xy ∈ C cannot be added to any
forest. Thus each forest Fi contains an xy-path. This implies λ(x, y;M ∪C − e) ≥ k.
But this contradicts the minimality of C.

We turn to the example graphs. Let Cn denote the cycle on n vertices. Index its
vertices from 0 to n− 1 in cyclic order.

First, suppose k is even. Let G = k · Cn. For simplicity assume n is even (a
similar construction works if n is odd). k

2 · Cn is a k-ECSS of G with exactly kn/2
edges. Since this matches the degree lower bound this graph can be taken as OPT .

Execute the approximation algorithm on G as follows. In the first step choose
M = k · {(2i, 2i+ 1) : i = 0, . . . , n/2− 1}. (This is valid since every vertex has degree
exactly k.) In the second step choose C = k · {(2i − 1, 2i) : i = 1, . . . , n/2 − 1}.
(This is valid since it makes M ∪ C a minimal k-edge connected graph.) We have
|M ∪ C| = kn/2 + k(n/2 − 1) = k(n− 1). Thus |M ∪ C|/|OPT | = 2(n− 1)/n which
approaches 2 as n → ∞.

A similar example works if k is odd and ≥ 3. The graph is k ·Cn plus the matching

A = {(2i, 2i + 3) : i = 0, . . . , n/2 − 1}.

Here we assume n is even and ≥ 4, and addition is modulo n. It is easy to see that
for k = 1 this graph is 3-edge connected. Gabow ([6] also uses this 3-edge connected
graph.) The subgraph k−1

2 · Cn ∪ A is k-edge connected (since Cn ∪ A is 3-edge

connected and k−3
2 · Cn is k − 3-edge connected). Each vertex has degree k so again

we get |OPT | = kn/2. The approximation algorithm can choose exactly the same
sets M , C as before, so again the approximation ratio approaches 2.

A.2. The KR algorithm. Khuller and Vishkin give an example showing their
algorithm for approximating the smallest 2-ECSS can have performance ratio ap-
proaching 3/2 [15]. The example is robust—it remains valid even when we add a
postprocessing step that ensures the algorithm returns a minimal k-ECSS. We adapt
this example to show the same performance characteristics for the KR algorithm.

First, assume k is even. The graph G consists of two spanning subgraphs, the
first being OPT and the second being the subgraph returned by KR, say ALG. OPT
is k

2 ·Cn, where as before the vertices are indexed from 0 to n− 1 in cyclic order and
n is even for convenience. Notice that no two vertices of the same parity are adjacent
in OPT . (We identify a vertex and its index.) We will maintain this property for the
odd vertices.
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The KR algorithm operates in k
2 2-steps. Each 2-step will add the same set of

edges, specifically a dfs tree T and a set of back edges B. So ALG = k
2 · (T ∪ B).

The tree T consists of a path spanning the even vertices and leading to leaves that
are the odd vertices. More precisely T has root 0, the path is 0, 2, 4, . . . , 2n − 2 and
for i = 1, . . . , n/2 the leaf 2i− 1 is on the edge (2i− 1, 2n− 2). The set B contains a
back edge from each leaf to the root, i.e., (2i− 1, 0), i = 1, . . . , n/2. Observe that as
mentioned, G = OPT ∪ALG does not have any edge joining two odd vertices.

Let us verify that the KR algorithm actually returns the subgraph ALG of G.
Suppose inductively that the algorithm has constructed the h-ECSS H = h

2 · (T ∪B)
and we execute a 2-step. T is a valid dfs tree of G − H because each leaf 2i − 1 is
only adjacent to even vertices, which occur as ancestors of 2i− 1 in T . Each leaf has
degree exactly h + 1 in H ∪ T . Hence it is easy to see that for each leaf 2i − 1 the
algorithm adds the back edge (2i−1, 0) to B. Since T ∪B is 2-edge connected, adding
it increases the connectivity to h + 2 as desired.

Finally, note that |T ∪ B| = (n − 1) + n/2 = 3n/2 − 1. Hence |ALG|/|OPT | =
(k/2)(3n/2 − 1)/(kn/2) = 3/2 − 1/n which approaches 3/2 as n → ∞. Furthermore,
ALG is a minimal k-ECSS. This follows from the fact that every vertex except 0 and
2n− 2 has degree exactly k.

A similar example gives the same performance ratio for the original KR algorithm
when k is odd. We can take OPT = k−1

2 · Cn ∪ A for the matching A defined in the
previous section. Again |OPT | = kn/2, and no edge joins two odd vertices. Take
ALG = k−1

2 · (T ∪B) ∪ T . The KR algorithm constructs the (k − 1)-edge connected

graph k−1
2 · (T ∪ B) just as before. Then it adds T to achieve k-edge connectivity.

Since |ALG| = k+1
2 (n−1)+ k−1

2
n
2 ≥ k

2 (3n/2−1), the approximation ratio approaches
a quantity ≥ 3/2 as before.

Acknowledgment. We are indebted to an anonymous referee for pointing out
the linear programming approach of reference [10].
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BIMODALITY AND PHASE TRANSITIONS IN THE PROFILE
VARIANCE OF RANDOM BINARY SEARCH TREES∗
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Abstract. We show that the variances of the profile (number of nodes at each level) of random
binary search trees undergoes asymptotically four phase transitions and exhibits a bimodal or “two-
humped” behavior, in contrast to the unimodality of the expected value of the profiles. Precise
asymptotic approximations are derived. The same types of phenomena also hold for the profile of
random recursive trees.

Key words. binary search trees, asymptotic bimodality, profile, Bessel functions, Stirling num-
bers of the first kind, singularity analysis, saddle-point method
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1. Introduction. Profile (sequence of numbers of nodes having the same dis-
tance to the root) is an informative shape characteristic of trees. It is directly related
to the total path length (the sum of the distances of all nodes to the root) and depth
(the distance of a random node to the root) on the one hand, and can be used to derive
effective bounds for the height and width on the other hand. In terms of branching
process language, profiles correspond to the number of descendants in each genera-
tion; they also have more concrete algorithmic interpretations such as breadth-first
search and applications; see Devroye and Robson (1995), Louchard and Szpankowski
(1995), Chern and Hwang (2001). In this paper we study the variance of the profile
in random binary search trees (abbreviated as BSTs). Part of our aim is to clarify
Figure 1.1 by more precise mathematical terms.

Binary search trees. A BST T is a binary tree constructed from a given sequence
of keys, say A := {a1, . . . , an}, as follows. If n = 0, then T is empty and, for
convenience, we regard T as consisting of only a node called external node. If n ≥ 1,
then the first key a1 is placed at the root (called an internal node). The remaining keys
are compared successively to the root key and are directed to the left (or right) branch
if they are smaller (or larger), and keys directed to the same branch are constructed
recursively as a BST. By construction, a query operation like “x ∈ T ?” can be easily
carried out in BSTs, thus the name.

BSTs are one of the simplest and widely used data structures in computer algo-
rithms. They also appeared, under different guises, in other contexts such as branching
processes, population genetics, diffusion models, and evolutionary trees; see Aldous
and Shields (1988), Aldous (1996), Barlow, Pemantle, and Perkins (1997), Majum-
dar and Krapivsky (2003). The large number of diverse extensions and variants add
significantly to their importance in practice, algorithm design, and theory.
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Fig. 1.1. Profiles of BSTs: spline curves for the exact mean (the unimodel curve) and the exact
variance (the bimodal curve) of the number X1000,k of external nodes at level k in random binary
search trees of 1000 nodes.

Random BSTs. Assume that the given input is a finite sequence of independent
and identically distributed random variables with a common continuous distribution.
The BST constructed from this random sequence is called a random BST. Since only
the rank and the order of the keys are relevant, an equivalent model is to assume
that the input is a random permutation when all n! permutations of n elements are
equally likely.

Many properties of random BSTs have been studied in the literature; see Gonnet
and Baeza-Yates (1990), Mahmoud (1992), Knuth (1998), Devroye (2003), Hwang
and Neininger (2002), Chauvin, Drmota, and Jabbour-Hattab (2001), Chauvin et al.
(2005), Chauvin and Rouault (2004), and Fuchs, Hwang, and Neininger (2004) for
more information.

Profiles of random BSTs. We are concerned with the random variables Xn,k,
defined to be the number of external nodes at level k (the root being at level 0) in a
random BST of n nodes. It is known that

E(Xn,k) =
2k

n!
s(n, k) (0 ≤ k ≤ n),(1.1)

where the s(n, k)’s denote the signless Stirling numbers of the first kind,∑
0≤k≤n

s(n, k)wk = wn (n ≥ 0),

with wn denoting the rising factorial wn :=
∏

0≤j<n(w + j); see Lynch (1965),
Knuth (1998), Brown and Shubert (1984), Mahmoud and Pittel (1984), Pittel (1984),
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Louchard (1987), Devroye (1988). Thus the asymptotic behaviors of E(Xn,k) can be
derived from known results for Stirling numbers s(n, k); see Hwang (1995), Temme
(1993).

In particular, the asymptotic behaviors of E(Xn,k) for varying k are well approx-
imated by a normal distribution, with mode near k ≈ 2 log n; see Jabbour-Hattab
(2001) and Chauvin et al. (2005) for more precise properties. Thus the profile of
random BSTs is generally described by the fig-like shape . Note that the sequence
{E(Xn,k)}k for fixed n is unimodal, by the simple fact that the generating polynomial∑

k E(Xn,k)w
k has only real zeros; see Comtet (1974), Hammersley (1951).

Known results beyond mean. Almost sure convergence of Xn,k/E(Xn,k) and other
type of results are derived in Chauvin, Drmota, and Jabbour-Hattab (2001), Jabbour-
Hattab (2001); see also the recent papers by Chauvin et al. (2003), Chauvin and
Rouault (2004). Pittel (1984) derived the expression

E(X2
n,k) =

2k

n!

∑
1≤t≤n

1

(2πi)2

∮∮
(
√

8x/y − 1)t−1(x2 + t)n−t

yx2k−1
√

1 − y2
dxdy,

and then showed that

E(X2
n,k) = O((log n)3/2n2(α−α log(α/2)−1)) (2 −

√
2 ≤ α ≤ 2 +

√
2),

where, here and throughout this paper, α := k/ log n.
Global description of the phase transitions. The aim of this paper is to derive more

precise asymptotic approximations to the variance V(Xn,k) for all ranges of interest.
We show that the asymptotic behavior of V(Xn,k) exhibits phase transitions at the
four points α = 3± 2

√
2 and α = 2±

√
2 (not viewable from Figure 1.1 though). The

rough picture of V(Xn,k) is as follows; see Theorem 2 for a more precise statement.
– When α is small or large, more precisely, 0 ≤ α ≤ 3− 2

√
2− ε or α ≥ 3 + 2

√
2 + ε,

then the variance is of the same order as the mean

V(Xn,k) ∼ E(X2
n,k) � E(Xn,k),

where an � bn if both an = O(bn) and bn = O(an) hold.
– When α lies in the middle range, namely, 2 −

√
2 + ε ≤ α ≤ 2 +

√
2 − ε, then the

variance is of the order of (E(Xn,k))
2,

V(Xn,k) ∼ ϕ(α)(E(Xn,k))
2,(1.2)

where

ϕ(α) :=
Γ(α)2α2(2α− 1)

Γ(2α)(4α− α2 − 2)
− 1,(1.3)

Γ being the gamma function.
– When α lies in the two intermediate ranges 3 − 2

√
2 + ε ≤ α ≤ 2 −

√
2 − ε and

2 +
√

2 + ε ≤ α ≤ 3 + 2
√

2 − ε, then the variance is larger in order than the
mean and the mean square:

E(Xn,k), (E(Xn,k))
2 	 V(Xn,k) ∼ E(X2

n,k).

Note that E(Xn,k) = o(1) for α < α− and α > α+, where α− ≈ 0.37336 . . .
and α+ ≈ 4.31107 . . . are the two zeros of the equation e(z−1)/z = z/2 (some-
times called the binary search tree constants; see Finch (2003, section 5.13)).
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To bridge the asymptotic estimates in neighboring ranges, we need more uniform
estimates. We show that the transition is well dictated by a parabolic cylinder function
when α crosses 3 ± 2

√
2 and by a normal distribution function when α crosses the

other two transitional points.
The valley. The approximation (1.2) in the middle range is insufficient for de-

scribing the behaviors of the variance when α ≈ 2 since ϕ(2) = ϕ′(2) = 0. More
precise approximations are thus needed, and we derive an asymptotic expansion for
V(Xn,k) in the middle range. In particular, the visible valley in Figure 1.1 is roughly
due to the estimates

V(Xn,�2 log n+O(1)�) �
n2

(log n)3
,

V

(
Xn,
2 log n±

√
2 log n�

)
� n2

(log n)2
.

Indeed, we show that

max
k≥0

V(Xn,k) ∼
21 − 2π2

24πe
· n2

(log n)2
.

See section 5 for a more precise description of the valley, including an explanation of
why the left “hump” is higher than the right one.

Numerically, the first valley for V(Xn,k) appears at n = 357.
A “false valley.” While the valley near 2 logn may be quite expected (see Chau-

vin, Drmota, and Jabbour-Hattab (2001) and Chauvin et al. (2005)), the function
ϕ(α) also satisfies ϕ(1) = ϕ′(1) = 0, suggesting that there may be a second valley
near α ∼ 1. We show that this is indeed a “false valley” since the decrease of the
variance in the logarithmic term is well “smoothed out” by other larger factors; see
Corollary 5.

Why the valley? Structurally, the valley for the variance near k = 2 log n +
O(

√
log n) indicates that there is a better concentration of external nodes near these

levels, and indeed almost all external nodes lie at these levels, each level having about
n/

√
log n nodes; see also Chauvin, Drmota, and Jabbour-Hattab (2001). Similarly,

the “false valley” near k = log n + O(
√

log n) may be ascribable to the structural
change of number of internal nodes near there.

Methodology. Our approach is mostly analytic and relies on integral representa-
tions for the second moments. The basic idea is to consider the bivariate generating
function, say F2(z, w) of E(Xn,k(Xn,k − 1)), which satisfies a differential equation of
the first order. Solving the differential equation yields an integral representation for
F2, from which we apply Cauchy’s integral expression and complex-analytic tools, in-
cluding singularity analysis, saddlepoint method, and some uniform asymptotic meth-
ods (for handling the coalescence of a saddlepoint and an algebraic singularity). The
approach is of some generality and may be applied to other log-class of trees (of which
BST is a prototype); see Bergeron, Flajolet, and Salvy (1992), Devroye (1999). For a
different, elementary approach, see Fuchs, Hwang, and Neininger (2004).

Universality? The above interesting phenomena naturally suggest the question:
Are the phase transitions and bimodality unique for BSTs? Or is there some sort of
universality for such phenomena? We will briefly examine recursive trees in section 7,
and show that the profile variance also exhibits a bimodality near logn and two phase
transitions. Similar behaviors are expected for other classes of trees like m-ary search
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trees, fringe-balanced BSTs (see Devroye (1999)), but the precise description and
general prediction are expected to be more involved.

Limit distribution. It is known that (see Chauvin et al. (2005))

Xn,k

E(Xn,k)
→ Xᾱ/2 (α− < α < α+),

almost surely, where ᾱ := limn k/ log n, Xz
d
= zU2z−1Xz + z(1 − U)2z−1X ′

z, U be-

ing uniformly distributed in the unit interval and X ′
z

d
= Xz; see also Jabbour-

Hattab (2001). Note that X1/2 = X1 = 1. The limit distributions of (Xn,k −
E(Xn,k))/

√
V(Xn,k) in the two special cases α ∼ 1, 2 were recently derived in Fuchs,

Hwang, and Neininger (2004), as well as the somewhat unexpected result that (Xn,k−
E(Xn,k))/

√
V(Xn,k) does not converge to a fixed limit law when k = 2 log n + O(1).

Profiles of another class of trees (which we may roughly term as “
√
n-class,” in

contrast to our “logn-class” of trees) have received much recent interests and are now
well clarified (see Aldous (1991), Drmota and Gittenberger (1997), Pitman (1999),
Kersting (1998)), but many properties of the profiles for the logn-class of trees remain
very challenging; see our recent progress in Fuchs, Hwang, and Neininger (2004).

Outline of the paper. This paper is organized as follows. We first derive the basic
recurrence for the profiles in the next section, and then the solution to the generating
function of mth moments. In particular, an exact solution for the second factorial
moment is given. We then state our main results on phase transitions and bimodality
in section 3. Proofs are given in later sections, and recursive trees are briefly examined
in section 7.

2. Generating functions and integral representations. We give here a self-
contained approach to computing the moments of Xn,k. Define the bivariate gener-
ating function

Pk(z, y) :=
∑
n≥0

E(yXn,k)zn (k ≥ 0).

Then, by the recursive construction,

Xn,k
d
= XIn,k−1 + X∗

n−In−1,k−1,

where In is uniformly distributed in {0, 1, . . . , n−1}, (In), (Xn,k), (X
∗
n,k) are indepen-

dent, and X∗
n,k

d
= Xn,k. Thus Pk can be computed recursively by

⎧⎪⎨
⎪⎩

P0(z, y) = y +
z

1 − z
,

Pk+1(z, y) = 1 +

∫ z

0

P 2
k (t, y) dt (k ≥ 0).

(2.1)

Explicit solutions (beyond the iterative integral forms) for this system of equations
for all k seem intractable; we consider instead the moments of Xn,k by expanding Pk

as follows.

Pk(z, y) :=
∑
m≥0

Mm,k(z)

m!
(y − 1)m,
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so that Mm,k(z) =
∑

n E(Xn,k(Xn,k − 1) · · · (Xn,k − m + 1))zn and they satisfy, by
(2.1),

M ′
m,k+1(z) =

2

1 − z
Mm,k(z) +

∑
1≤j<m

(
m

j

)
Mj,k(z)Mm−j,k(z)(2.2)

for k ≥ 0 and m ≥ 1, with M0,k(z) = 1/(1 − z) and Mm,k(0) = 0 (k ≥ 1).

More explicit representations for the Mm,k’s can be derived by considering the
generating function

Fm(z, w) :=
∑
k≥0

Mm,k(z)w
k,

which satisfies, by (2.2), Fm(0, w) = 0 and

∂

∂z
Fm(z, w) =

2w

1 − z
Fm(z, w) +

∑
1≤j<m

(
m

j

)∑
k≥0

Mj,k(z)Mm−j,k(z)w
k+1.

Solving this first-order differential equation yields

F1(z, w) = (1 − z)−2w,(2.3)

and for m ≥ 2

Fm(z, w) =
∑

1≤j<m

(
m

j

)
(1 − z)−2w

∫ z

0

(1 − t)2w
∑
k≥0

Mj,k(t)Mm−j,k(t)w
k+1 dt.(2.4)

From (2.3), it follows that

M1,k(z) =
2k

k!
logk

1

1 − z
(k ≥ 0),

which implies (1.1), and then, by (2.4),

F2(z, w) = 2w(1 − z)−2w

∫ z

0

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt,(2.5)

where

I0(z) =
∑
k≥0

z2k

k!k!4k

is the modified Bessel function of order zero (see Abramowitz and Stegun (1965,
section 9.6)).

Before going further, we derive an explicit formula for E(Xn,k(Xn,k − 1)).

Lemma 1. The second factorial moments of Xn,k can be computed by

E(Xn,k(Xn,k − 1)) =
2k

n!

∑
0≤j<k

(
2j

j

)
2j

∑
k+j−1≤m<n

s(n− 1,m)

(
m− 2j − 1

k − j − 1

)
.(2.6)
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Proof. First observe that

∫ 1

0

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt =

∑
j≥0

4j

j!j!
wj

∫ 1

0

y2w log2j(1/y) dy

=
∑
j≥0

(
2j

j

)
(4w)j

(2w + 1)2j+1

= (4w2 − 12w + 1)−1/2,(2.7)

provided that | 16w
(2w+1)2 | < 1. Assume for the moment that w lies in that region. Then,

similarly as above,

(1 − z)−2w

∫ 1

z

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt

= (1 − z)
∑
k≥0

(2k)!

k!k!
(4w)k

∑
0≤j≤2k

(− log(1 − z))j

j!
· 1

(2w + 1)2k+1−j

=
∑
k≥0

(
2k

k

)
(4w)k

1

2πi

∮
|t|=c<|2w+1|

t−2k−1(1 − z)1−t

2w + 1 − t
dt.

But the residue of the integrand at t = 2w + 1 equals (2w + 1)−2j−1(1 − z)−2w. It
follows that

F2(z, w) =
2w

2πi

∮
|t|=c

(1 − z)1−t

(t− 2w − 1)
√
t2 − 16w

dt (c > |2w + 1|)

=
2w

2πi

∮
|y|=c

(1 − z)1−1/y

(1 − (2w + 1)y)
√

1 − 16wy2
dy (c < ε)

for properly chosen integration contours. The restriction for w can now be dropped.

By Cauchy’s integral representation

E(Xn,k(Xn,k − 1)) =
2k

(2πi)2

∮∮
w−k

(
n−2+1/y

n

)
(1 − (w + 1)y)

√
1 − 8wy2

dy dw.

Thus we have

E(Xn,k(Xn,k − 1)) = 2k
∑

0≤�<k

(
2�

�

)
2�

2πi

∮
|z|=c>1

(
n+z−2

n

)
z2�+1(z − 1)k−�

dz,(2.8)

from which (2.6) follows.

3. Phase transitions and bimodality. Notation. For convenience, we use the
symbol [[a, b]] to denote the interval [a + K/

√
log n, b − K/

√
log n] for a sufficiently

large K; The one-sided conventions [a, b]] and [[a, b] stand for [a, b − K/
√

log n] and
[a + K/

√
log n, b], respectively. The generic symbols K and ε always represent any

large and small, respectively, numbers (independent of n and k) whose values may
vary from one occurrence to another. Throughout this paper, α = αn,k = k/ log n.
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3.1. Asymptotics of E(Xn,k). For completeness, we first state two known
expansions for E(Xn,k) that will be needed.

Theorem 1. Uniformly for 1 ≤ k ≤ K log n,

E(Xn,k) =
(2 log n)k

nk!Γ(α)

(
1 + O

(
(log n)−1

))
;(3.1)

and uniformly for k → ∞, k ≤ K log n,

E(Xn,k) ∼
nα−α log(α/2)−1

√
2πk Γ(α)

∑
j≥0

cjk
−j(3.2)

for some coefficients cj.
Proof (sketch). The proof of both approximations starts from (1.1) and then uses

the uniform approximation

∑
k

E(Xn,k)w
k =

(
n + 2w − 1

n

)
=

n2w−1

Γ(2w)

(
1 + O(n−1)

)

uniformly for |w| ≤ K (by the singularity analysis of Flajolet and Odlyzko (1990)).
Then

E(Xn,k) =
2k

2πi

∮
|w|=α

w−k−1n
w−1

Γ(w)

(
1 + O(n−1)

)
dw,

and (3.1) follows by expanding 1/Γ(w) at w = α = k/ log n, and by estimating the
error terms properly; see Hwang (1995) for details. The proof for (3.2) uses the usual
saddlepoint method and is similar.

From (3.1), we see that the asymptotics of E(Xn,k)/n is roughly dictated by a
Poisson distribution with mean 2 logn. Also we can derive from (3.1) the local limit
theorem for the depth and the upper bound α + log n − α′ log log n + O(1) for the
expected height, where α′ = α+/(2α+ − 2); see Devroye (1987).

3.2. Asymptotics of E(X2
n,k). For the second moment and the variance, the

situation becomes completely different. We give our first approximations to E(X2
n,k)

by splitting the range [0,K] into five nonoverlapping intervals.
Global silhouette. For simplicity of presentation, we drop the error terms in the

following estimates and define two constants,

C± :=

√
2 ± 1

2
√
π
√

2 Γ(3 ± 2
√

2)
.

Theorem 2. (I) If α ∈ [0, 3 − 2
√

2]], then

E(X2
n,k) ∼ E(Xn,k)

(
1 +

α√
α2 − 6α + 1

)
;(3.3)

(II) if α ∈ [[3 − 2
√

2, 2 −
√

2]], then

E(X2
n,k) ∼ C−

2kn2−2
√

2
(
3 − 2

√
2
)−k√

k − (3 − 2
√

2) log n
;(3.4)
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–2
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1
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1 2 3 4 5 6

Fig. 3.1. A plot of the limiting curve for log E(X2
n,k)/ logn (upper curve) and for

log E(Xn,k)/ logn (lower curve) for α in each interval (horizontal coordinate). The intervals are
also explicitly depicted by vertical lines.

(III) if α ∈ [[2 −
√

2, 2 +
√

2]], then

E(X2
n,k) ∼ (EXn,k)

2 Γ(α)2α2(2α− 1)

Γ(2α)(4α− α2 − 2)
;(3.5)

(IV) if α ∈ [[2 +
√

2, 3 + 2
√

2]], then

E(X2
n,k) ∼ C+

2kn2+2
√

2
(
3 + 2

√
2
)−k√

(3 + 2
√

2) log n− k
;(3.6)

(V) finally, if α ∈ [[3 + 2
√

2,K], then

E(X2
n,k) ∼ E(Xn,k)

(
1 +

α√
α2 − 6α + 1

)
.(3.7)

A more transparent approximation is as follows; see Figure 3.1 for a plot.
Corollary 1 (phase transitions). Let ᾱ := limn k/ log n. The growth order of

E(X2
n,k) satisfies

log E(X2
n,k)

log n
→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ᾱ− ᾱ log(ᾱ/2) − 1 if ᾱ ∈ [0, 3 − 2
√

2],

2 − 2
√

2 − 2ᾱ log(1 − 2−1/2) if ᾱ ∈ [3 − 2
√

2, 2 −
√

2],

2(ᾱ− ᾱ log(ᾱ/2) − 1) if ᾱ ∈ [2 −
√

2, 2 +
√

2],

2 + 2
√

2 − 2ᾱ log(1 + 2−1/2) if ᾱ ∈ [2 +
√

2, 3 + 2
√

2],

ᾱ− ᾱ log(ᾱ/2) − 1 if ᾱ ∈ [3 + 2
√

2,K].

By continuity, the (almost) open boundaries [[ and ]] in all cases are replaced by
the closed ones [ and ], respectively, as will become clear.
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Transitional behaviors. These quick (and rough) estimates leave open the asymp-
totics of the second moment in the transitional ranges k = (3±2

√
2) log n+O(

√
log n)

and k = (2±
√

2) log n+O(
√

log n), which will be handled by more uniform asymptotic
tools.

Let D−ν(x) denote the parabolic cylinder function (see Abramowitz and Stegun
(1965, Ch. 19)), which can be defined by

D−ν(x) =
e−x2/4

Γ(ν)

∫ ∞

0

uν−1e−xu−u2/2 du (ν > 0),(3.8)

and let Φ(x) denote the standard normal distribution function. Note that Φ(x) is
itself a special case of the parabolic cylinder functions

D−1(x) =
√

2π ex
2/4Φ(−x).

Theorem 3. All asymptotic estimates below hold uniformly for t = o((log n)1/6).
(i) If α = 3 − 2

√
2 + (

√
2 − 1)t/

√
log n, then

E(X2
n,k) ∼ 2−1/2C−e

t2/4D−1/2(−t)k−1/4 n2−2
√

2−2α log(1−1/
√

2);(3.9)

(ii) if α = 2 −
√

2 +
√

1 − 2−1/2t/
√

log n, then

E(X2
n,k) ∼ 21/4C−Φ(−t)k−1/2n2−2

√
2−2α log(1−1/

√
2);(3.10)

(iii) if α = 2 +
√

2 +
√

1 + 2−1/2t/
√

log n, then

E(X2
n,k) ∼ 21/4C+Φ(t)k−1/2n2+2

√
2−2α log(1+1/

√
2);

(iv) finally, if α = 3 + 2
√

2 + (
√

2 + 1)t/
√

log n, then

E(X2
n,k) ∼ 2−1/2C+e

t2/4D−1/2(t)k
−1/4 n2+2

√
2−2α log(1+1/

√
2).

In all cases, the dropped error terms are of the form

1 + O

(
1 + |t|3√

log n

)
.

These estimates complete the gaps left open in Theorem 2; furthermore, one
can easily check that in the overlapping ranges (K ≤ |t| = o((log n)1/6)) the ap-
proximations in both theorems coincide by the following asymptotic estimates (see
Abramowitz and Stegun (1965, section 19.7)):⎧⎨

⎩
D−ν(x) ∼ x−νe−x2/4 (x → ∞),

D−ν(−x) ∼
√

2π

Γ(ν)
xν−1ex

2/4 (x → ∞).
(3.11)

Bimodality. Everything up to now is only unimodal. Bimodality of the variance
appears in the middle range α ∈ [[2 −

√
2, 2 +

√
2]].

First, from Theorem 2, we readily obtain the following estimate.
Corollary 2. The variance of Xn,k satisfies

V(Xn,k) ∼ ϕ(α)(EXn,k)
2
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for α ∈ [[2−
√

2, 2 +
√

2]], where ϕ is defined in (1.3), and V(Xn,k) ∼ E(X2
n,k) for all

other ranges.
Observe that

ϕ(1) = ϕ(2) = ϕ′(1) = ϕ′(2) = 0;(3.12)

thus the estimate (1.3) is insufficient for an asymptotic equivalent for the variance
in the central range k = (2 + o(1)) logn and in the somewhat unexpected range
k = (1 + o(1)) logn. We need stronger approximations.

Theorem 4. If α ∈ [[2 −
√

2, 2 +
√

2]], then

V(Xn,k) ∼ n2(α−α log(α/2)−1)
∑
j≥1

υj(α)

(log n)j
(3.13)

for some coefficients υj(α); see (5.1) and (5.3) below.
In particular, υ1(α) = ϕ(α)/(2παΓ(α)2) also satisfies property (3.12), and υ2(α)

satisfies υ2(1) = υ2(2) = 0.
Corollary 3. If α = 2 + t/ log n, where t = o(log n), then

V(Xn,k) =
p1(t)

720π
· n

2(α−α log(α/2)−1)

(log n)3

(
1 + O

(
1 + |t|
log n

))

uniformly in t, where p1(t) is a quadratic polynomial defined by

p1(t) := 15(21 − 2π2)t2 − 30
(
4π2(1 − γ) + 24ζ(3) + 42γ − 69

)
t

− 2π4 − 30
(
4γ2 − 8γ + 11

)
π2 + 180

(
7γ2 − 23γ + 29

)
− 1440ζ(3)(1 − γ),

where γ denotes Euler’s constant and ζ(3) :=
∑

j≥1 j
−3.

The reason of writing the corollary in its form is that the variation of the order of
V(Xn,k) when k = (2+o(1)) logn becomes more transparent. Thus, if α = 2+t/ log n,
where t = o((log n)3/2), then

V(Xn,k) ∼
p1(t)

720π
· n2

(log n)3
exp

(
− t2

2 log n

)

uniformly in t. From this we can derive approximations to the scale of the two
“humps” and the valley shown in Figure 1.1.

Corollary 4. The largest value of V(Xn,k) is asymptotically achieved at k =⌊
2 log n±

√
2 log n

⌋
, and

max
k≥0

V(Xn,k) ∼
21 − 2π2

48πe
· n2

(log n)2
;

on the other hand,

min
|k−2 log n|=O(

√
logn)

V(Xn,k) ≥ (C + o(1))
n2

(log n)3
,(3.14)

where

C =
4π6 + 378π4 − 9090π2 − 38205 − 8640ζ(3)2 + 19440ζ(3) − 38205

720π(21 − 2π2)
.
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The smallest value of V(Xn,k), for k = 2 log n+O(
√

log n), is asymptotically achieved
only for the subsequence of n for which {2 log n} → 1 − t0, where

t0 = −2(1 − γ) +
3(8ζ(3) − 9)

21 − 2π2
≈ 0.62126 . . .

satisfies p′1(t0) = 0.
Thus the variance can vary from n2/(log n)2 to n2/(log n)3 when k = 2 log n +

O(
√

log n), and these are precisely the orders of the peak and the valley, respectively,
as shown in Figure 1.1.

Our analysis here says that the two peaks are asymptotically of the same order,
although Figure 1.1 may lead one to guess that the left peak is higher. We will see
that this is indeed true by further examining the sign of the next order term; see
section 5 for more details.

A “false valley.”
Corollary 5. If α = 1 + t/ log n, where t = o((log n)2/3), then

V(Xn,k) ∼
4t�(t)

720π
· n2 log 2

(log n)3
e−t2/ logn,

uniformly in t, where �(t) is defined by

�(t) := 60(12 − π2)t2 + 120
(
π2γ − 12γ − 6ζ(3) + 12

)
t

− π4 − 60
(
γ2 + 2

)
π2 + 720

(
γ2 − 2γ + ζ(3)γ + 3

)
.

One sees that although the order of the variance can reach that of E(X2
n,k)/(log n)2

(when k = log n + O(1)) as in the case k = 2 log n + O(1), there is no new “valley”
generated when k = log n + O(

√
log n) since the logarithmically smaller terms are

“smoothed out” by an exponentially larger factor 4t.

4. Phase transitions: Proof of Theorem 2. For more methodological in-
terest and shedding more light on how the different ranges arise, we give in this
section two proofs of Theorem 2. The first relies essentially on the exact expression
(2.6), which has some elementary flavor, although the main estimate needed relies
on saddlepoint method. The error estimates obtained by this approach are, however,
insufficient for describing the bimodal behavior of the variance. The second proof uses
(2.5) and is analytic in nature; it is needed to complete the transitional behaviors of
Theorem 3 and can be easily extended to derive asymptotic expansions. In particular,
it gives the precise description of the valley and the required error bounds in all cases.

4.1. A direct approach. We give in this section the sketch of an approach to
proving Theorem 2 using (2.6). The basic idea is first to find a good uniform estimate
for the sum

Sn,k,j :=
∑

k+j−1≤m<n

s(n− 1,m)

n!

(
m− 2j − 1

k − j − 2

)
(0 ≤ j < k);

then we evaluate the sum

E(Xn,k(Xn,k − 1)) = 2k
∑

0≤j<k

(
2j

j

)
2jSn,k,j ,

by different means according to the range of α.
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In this subsection, we always write α = k/ log n and λ = j/ log n.
Lemma 2. Define

f(z) = f(α, λ; z) := z − 2λ log z − (α− λ) log(z − 1),

and

z0 = z0(α, λ) :=
α + λ + 1

2
+

√(
α + λ + 1

2

)2

− 2λ.

If 1 + ε ≤ z0 ≤ K, then

Sn,k,j ∼
nf(z0)−2

z0Γ(z0 − 1)
√

2πf ′′(z0) log n
,

uniformly in k and j.
Proof. We start from the integral representation (see (2.8))

Sn,k,j =
1

2πi

∮
|z|=z0

(
n+z−2

n

)
z2j+1(z − 1)k−j

dz

=
1

2πi

∮
|z|=z0

nz−2

Γ(z − 1)z2j+1(z − 1)k−j

(
1 + O(n−1)

)
dz

by singularity analysis. Observe that z0 is the saddlepoint for which f ′(z0) = 0, and
that the second derivative of f ,

f ′′(z) =
2λ

z2
+

α− λ

(z − 1)2
,

remains strictly positive in the range of interest. The required result follows from
applying the saddlepoint method to the integral

1

2πi

∮
|z|=z0

elognf(z)

zΓ(z − 1)
dz.

Middle range. Consider first case (III): α ∈ [[2 −
√

2, 2 +
√

2]]. In this case terms
with large j’s are dominant. Thus, we set r := k− j ≥ 1. By applying Lemma 2 with
λ = α− r/ log n,

z0 = 2α− 2r(α− 1)

(2α− 1) log n
+ O

(
(log n)−2

)
,

and

f(α, λ; z0) = 2α + r
2 log(2α) − log(2α− 1)

log n
+ O

(
(log n)−2

)
,

we get

Sn,k,j ∼
(

4α2

2α− 1

)r
nf(α,α;z0)−2

z0Γ(z0 − 1)
√

2π log n/(2α)
;
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also

2j
(

2j

j

)
∼ 8k−r√

(k − r)π
.

These estimates lead to

E(Xn,k(Xn,k − 1)) ∼ 16k√
kπ

∑
r≥1

(
4α2

8(2α− 1)

)r
nf(α,α;2α)−2

z0Γ(z0 − 1)
√

2π log n/(2α)

=
α2

Γ(2α− 1)(4α− α2 − 2)
· 4ke2k(log n)2k

2πkn2k2k

∼ α2(2α− 1)

Γ(2α)(4α− α2 − 2)
·
(

(2 log n)k

nk!

)2

.

Intermediate ranges. For case (IV), α ∈ [[2 +
√

2, 3 + 2
√

2]], no terms are asymp-
totically negligible; we then sum all terms up and obtain

E(Xn,k(Xn,k − 1)) ∼ 2k√
2πn2 log n

∑
1≤j<k

nF (λ)

√
λz0Γ(z0 − 1)

√
f ′′(z0)

,

where F (λ) := λ log 8 + f(α, λ; z0(α, λ)). Since f ′(α, λ, z0(α, λ)) = 0, we get F ′(λ) =
log 8 − 2 log z + log(z − 1); and, consequently, F ′(λ0) = 0 for z0(α, λ0) = 2(2 +

√
2),

which implies that λ0 =
√

2(3+2
√

2−α). It follows that F (λ0) = 4+2
√

2−α log(3+
2
√

2), F ′′(λ0) = −
√

2/(5 + 4
√

2 + α), and

f ′′(α, λ0; 2(2 +
√

2)) =
1

4
(17

√
2 − 24)(5 + 4

√
2 + α);

we obtain, by standard application of the saddlepoint method,

E(Xn,k(Xn,k − 1)) ∼ 2k√
2z0Γ(z0 − 1)πn2 log n

√
2π log n

−λ0F ′′(λ0)f ′′(z0)
nF (λ0)

=
2kn2+2

√
2(3 + 2

√
2)−k

√
2π log n(2 −

√
2)Γ(3 + 2

√
2)
√√

2(3 + 2
√

2 − α)
.

This proves (3.6). The proof for case (II) is similar.

Extremal ranges. Case (V): α ∈ [[3 + 2
√

2,K]. In this case, the terms with small
j are dominant. For every finite j ≥ 0, we have (z0 = α + 1)

Sn,k,j ∼
1

2πi

∮
|z|=z0

nz−2

Γ(z − 1)z2k+1

(
z − 1

z2

)j

dz

∼
(

α

(α + 1)2

)j
nα−1−α logα

(α + 1)Γ(α)
√

2π log n/α

∼
(

α

(α + 1)2

)j
α(log n)k

(α + 1)Γ(α)nk!
.
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Consequently,

E(Xn,k(Xn,k − 1)) ∼ (2 log n)kα

nk! (α + 1)Γ(α)

∑
j≥0

(
2j

j

)(
2α

(α + 1)2

)j

=
α(2 log n)k

(α + 1)Γ(α)nk!

(
1 − 8α

(α + 1)2

)−1/2

=
α(2 log n)k

Γ(α)
√
α2 − 6α + 1nk!

.

Case (I) is similar.

4.2. An analytic approach. This approach relies on (2.5), and the convergence
or divergence of the integral∫ 1

0

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt(4.1)

plays a crucial rôle in determining the different ranges.
We first give the main idea of this approach using mostly heuristic reasoning; the

technical justification and detailed estimates of the error terms will be provided later.
A sketch of proof. We need the asymptotics of the modified Bessel function (see

Abramowitz and Stegun (1965, section 9.6)):

I0(z) =
ez√
2πz

(
1 + O(|z|−1)

)
,(4.2)

the O-term being uniform for |z| → ∞ in the region −π/2 < arg(z) ≤ π/2.
Small or large α. First, if the integral (4.1) is convergent, then (see (2.7))

F2(z, w) ∼ 2w(1 − z)−2w

∫ 1

0

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt

=
2w√

4w2 − 12w + 1
(1 − z)−2w;(4.3)

so we expect that (by singularity analysis and then by the saddlepoint method)

E(Xn,k(Xn,k − 1)) = [wkzn]F2(z, w)

∼ [wk]
2wn2w−1

√
4w2 − 12w + 1 Γ(2w)

∼ α√
α2 − 6α + 1 Γ(α)

· (2 log n)k

nk!
,

where α > 0 has to satisfy α2 − 6α + 1 > 0. This gives rise to the first two ranges
α ∈ [0, 3 − 2

√
2) and α ∈ (3 + 2

√
2,K], and the estimates (3.3) and (3.7).

Middle range. On the other hand, if the integral (4.1) diverges, then by (4.2)

F2(z, w) ∼ 2w(1 − z)−2w

∫ z

0

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt

∼ 2w(1 − z)−2w√
8π

√
w

∫ z

0

(
log

1

1 − t

)−1/2

(1 − t)2w−4
√
w dt

∼ w√
2π

√
w(4

√
w − 2w − 1)

(
log

1

1 − z

)−1/2

(1 − z)−4
√
w+1.(4.4)
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Thus we expect that (again by singularity analysis and then by the saddlepoint
method)

E(Xn,k(Xn,k − 1)) ∼ [wk]
wn4

√
w−2(log n)−1/2√

2π
√
w(4

√
w − 2w − 1)Γ(4

√
w − 1)

∼ α2

(4α− α2 − 2)Γ(2α− 1)
· (2 log n)2k

n2(k!)2
,

which yields the second pairs of transitional points since

4α− α2 − 2 > 0 iff α ∈ (2 −
√

2, 2 +
√

2).

Intermediate ranges. Observe that the error term in (4.3) is of the form (by (4.2))

(1 − z)−2�(w)

∫ 1

z

(1 − t)2wI0

(
4
√
w log

1

1 − t

)
dt

= O

(
(1 − z)−4

√
w+1

|4
√
w − 2w − 1|

(
log

1

1 − z

)−1/2
)

(see also (4.4)), whose contribution to E(Xn,k(Xn,k − 1)) is roughly of the order

[wk]
n4

√
w−2

4
√
w − 2w − 1

(log n)−1/2 = O

(
(2 log n)2k

n2k!2

)
,

essentially of the same order as (E(Xn,k))
2.

Thus we can use the estimate (4.3) when k lies in the intervals of cases (II) and
(IV); but instead of applying the saddlepoint method as in cases (I) and (V), we use
again singularity analysis since the singularities at w = 3

2 ±
√

2 in (4.3) is dominating.

Consider case (II). Let β := 3/2 −
√

2. We have, by (4.3),

E(Xn,k(Xn,k − 1)) ∼ [wk]
2w√

4w2 − 12w + 1
· n

2w−1

Γ(2w)

∼ 2βn2β−1√
8
√

2β Γ(2β)
[wk]

n2(w−β)√
1 − w/β

∼ n2−2
√

2√
2π

√
2 Γ(3 − 2

√
2)

(
3

2
−
√

2

)−k+1/2

(k − 2β log n)−1/2,

which, in view of (3.1), implies (3.4).
Case (IV) is similar.

4.3. Technical justification and error estimates. We start from deriving a
different integral representation for F2 suitable for all ranges.

Lemma 3.

F2(z, w) =
2w

π

∫ 1

−1

(1 − z)−2w − (1 − z)−4
√
wv+1

√
1 − v2(2w + 1 − 4

√
wv)

dv.(4.5)

Note that this representation is well-defined for all w (including at the zeros of
the factors in the denominator).
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Proof. By the integral representation for I0(z) (see Abramowitz and Stegun (1965,
p. 376))

I0(z) =
1

π

∫ π

0

ez cos t dt,

and by (2.5), we have

F2(z, w) =
2w

π
(1 − z)−2w

∫ z

0

(1 − t)2w
∫ π

0

(1 − t)−4
√
w cos y dy dt

=
2w

π
(1 − z)−2w

∫ 1

−1

1√
1 − v2

∫ z

0

(1 − t)2w−4
√
wv dtdv,

which yields (4.5).
Note that when w �∈ [3/2−

√
2, 3/2+

√
2] we can split the integral (4.5) and obtain

F2(z, w) =
2w

π
(1 − z)−2w

∫ 1

−1

dv√
1 − v2(2w + 1 − 4

√
wv)

+
2w

π

∫ 1

−1

(1 − z)−4
√
wv+1

√
1 − v2(4

√
wv − 2w − 1)

dv

=
2w(1 − z)−2w

√
4w2 − 12w + 1

+
2w

π

∫ 1

−1

(1 − z)−4
√
wv+1

√
1 − v2(4

√
wv − 2w − 1)

dv.

Roughly, when k lies in the middle range, the main contribution comes from the
second integral, which becomes asymptotically negligible for k outside that range.

Proposition 1. Uniformly for α ≤ K,

[wkzn]F2(z, w) =[wk]
2w

π

∫ 1

−1

1√
1 − v2(2w + 1 − 4

√
wv)

(
n2w−1

Γ(2w)
− n4

√
wv−2

Γ(4
√
wv − 1)

)
dv

+ T1,(4.6)

where

T1 = O

(
(2 log n)k

n2k!

√
k log n +

(2 log n)2k

n3k!2
k log n

)
.

Proof. By singularity analysis (see Flajolet and Odlyzko (1990)), we have

[zn](1 − z)−ω =
nω−1

Γ(ω)

(
1 +

ω(ω − 1)

2n
+ O

(
n−2
))

uniformly for |ω| ≤ K. Note that if 4
√
wv ∼ 2w + 1, then

[zn]
(1 − z)−2w − (1 − z)−4

√
wv+1

2w + 1 − 4
√
wv

= O
(
n2�(w)−1 log n

)
.

Thus

[zn]F2(z, w) =
2w

π

∫ 1

−1

1√
1 − v2(2w + 1 − 4

√
wv)

(
n2w−1

Γ(2w)
− n4

√
wv−2

Γ(4
√
wv − 1)

)
dv + T2,
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where

T2 = O
(
n2�(w)−2 log n + n4�(

√
w)−3 log n

)
.

Now by Cauchy’s integral formula

[wk]T2 = O
(
r−k
1 n2r1−2 log n + r−k

2 n4
√
r−3 log n

)
= O

(
nα−α log(α/2)−2 log n + n2(α−α log(α/2)−1)−2 log n

)
by taking r1 = α/2 and r2 = (α/2)2. Thus (4.6) follows.

Cases (I) and (V). Consider first case (I). With the uniform estimate (4.6) at
hand, we obtain the leading term in (3.3) by expanding the factor

H(w) :=
2w√

4w2 − 12w + 1 Γ(2w)

at w = α/2 and then use the saddlepoint method; see Hwang (1995) for similar details.
It remains to show, again by (4.6), that the integral

T3 :=
2

π
· 1

2πi

∮
|w|=r

w−k

∫ 1

−1

n4
√
wv−2

√
1 − v2(2w + 1 − 4

√
wv)Γ(4

√
wv − 1)

dv dw,

where r := (α/2)2, satisfies

T3 = O

(
(2 log n)2k

n2k!2|α2 − 4α + 2|

)
(4.7)

uniformly for α ∈ [0, 3 − 2
√

2]]. Indeed, we prove that this estimate holds uniformly
for |α− (2 ±

√
2)| ≥ K/

√
log n.

By the elementary inequality 1 − cos t ≥ 2t2/π2 for |t| ≤ π, we have

n4�(
√
w)v = n4

√
rv cos(t/2) ≤ n2αv−αvt2/π2

= e2kv−kvt2/π2

(|t| ≤ π),

so that the major contribution to T3 comes from the ranges

1 − ε ≤ v ≤ 1 and {w = reit : |t| ≤ ε},

the integrals over the remaining ranges being bounded above by

O
(
n2(α−α log(α/2)−1)−ε

)
.

Thus when |2r + 1 − 4
√
r| = |α2 − 4α + 2|/2 ≥ ε

T3 = O

(
(α/2)−2kn−2

|α2 − 4α + 2|

∫
|t|≤ε

e2k−kt2/π2

∫ (log n)−3/5

0

u−1/2e−2ku du dt

)

= O

(
(α/2)−2ke2kn−2

|α2 − 4α + 2|k

)
,

from which we obtain (4.7). By examining further the second order terms (see (5.2)
below), we can take ε = K/

√
log n. This proves (3.3).
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β

C

Hβ

1/k

wα/2

w �→ β(1 − v
k )

v

H0
0

Fig. 4.1. The Hankel type contours used for proving the estimate in case (II).

The estimate (3.7) is similar.
Cases (II) and (IV). Consider first case (II). Since there is a singularity at

w = β := 3/2 −
√

2, we apply again singularity analysis to the integral

T4 :=
1

2πi

∮
|w|=r

H(w)w−k−1n2w−1 dw

=
1

2πi

∮
|w|=r

h(w)√
β − w

w−kn2w−1 dw,(4.8)

where 0 < r < β and

h(w) :=
2

Γ(2w)

√
β − w

4w2 − 12w + 1
,

the principal branch being taken so that h(w) > 0 for 0 < w < β. The integration
circle is then deformed into the one shown in Figure 4.1, where the smaller circle (left)
is described by |w − β| = 1/k.

The contribution to T4 from the outer circle C is easily seen to be of order

O

(
nα−α log(α/1)−1√

(2β − α) log n

)
.

For the integral along the contour Hβ , we make the change of variables w �→ β(1−v/k),
so that Hβ is transformed into H0 (also shown in Figure 4.1). Then

T4 = k−1/2β−k+1/2n2β−1 · 1

2πi

∫
H0

h (β (1 − v/k)) v−1/2ev(1−2β/α)
(
1 + O(|v|2k−1)

)
dv

+ O

(
nα−α log(α/2)−1√

(2β − α) log n

)

=
h(β)√

π(1 − 2β/α)
k−1/2β−k+1/2n2β−1

(
1 + O

(
1

(α− 2β)2k

))
,
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from which (3.4) follows since β1/2 = 1− 2−1/2 and h(β) = 2−3/4/Γ(2β); see Flajolet
and Odlyzko (1990) for similar details. The error term yields exactly the left boundary
α ≥ (3 − 2

√
2) log n + K

√
log n; the right boundary (2 −

√
2) log n−K

√
log n comes

from (4.6).
For the estimate (3.6), the proof is similar. Note that since H(w) has a singularity

at w = β, we have to start from (4.6) and then proceed similarly.
Middle range. We use again (4.6). The same observation that the major con-

tribution comes from v ∼ 1 and w near the positive real line is still needed since
there may be removable singularity for some v. The integrals are estimated similar
to the method above, and we need only a more precise approximation to T3. Since
an asymptotic expansion for T3 is derived in the next section, we drop the details for
deriving (3.5) here to avoid repetition.

5. An asymptotic expansion for V(Xn,k) in the middle range. We first
prove in this section the following expansion for E(X2

n,k).

Lemma 4. If α ∈ [[2 −
√

2, 2 +
√

2]], then

E(X2
n,k) ∼ n2(α−α log(α/2)−1)

∑
j≥1

ηj(α)

(log n)j
,(5.1)

for some coefficients ηj(α).
Proof. Since

E(X2
n,k) = E(Xn,k(Xn,k − 1)) + O(E(Xn,k)),

and by the estimate (3.1) and the analysis in the last section, we need to evaluate the
integral

T5 :=
1

2πi

∫
|w|=(α/2)2

| arg(w)|≤ε

w−k−1n4
√
w−2

∫ ε

0

G(w, u)u−1/2n−4
√
wu du dw,

where

G(w, u) :=
2w

π
√

2 − u(4
√
w(1 − u) − 2w − 1)Γ(4

√
w(1 − u) − 1)

.

By applying Laplace’s method (or Watson’s lemma; see Wong (1989)) for the inner
integral, we obtain

T5 ∼
∑
j≥0

Γ(j + 1/2)

(4 log n)j+1/2
· 1

2πi

∫
|w|=(α/2)2

| arg(w)|≤ε

gj(w)w−k−j/2−5/4n4
√
w−2 dw,

where (κ(w) := 4
√
w − 2w − 1)

gj(w) := [uj ]G(w, u)

=

√
2w

πΓ(4
√
w − 1)

∑
0≤m≤j

(4
√
w)j−m

κ(w)j−m+1

∑
0≤�≤m

(
2�

�

)
8−�[um−�]

Γ(4
√
w − 1)

Γ(4
√
w − 1 − 4

√
wu)

.

Then a straightforward application of the saddlepoint method leads to (5.1). Note
that

ηj(α) = O
(
|4α− α2 − 2|−2j−1

)
,(5.2)
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when α → 2 ±
√

2 (from inside the interval (2 −
√

2, 2 +
√

2)), implying that the
asymptotic expansion (5.1) is meaningful in the region [[2 −

√
2, 2 +

√
2]].

Note that the asymptotic expansion (5.1) can also be derived in a more straight-
forward way by starting from (2.5) and applying the expansion for the modified Bessel
function (see Abramowitz and Stegun (1965, section 9.7)).

Proof of Theorem 4. From the asymptotic expansion (3.2), we obtain

(E(Xn,k))
2 ∼ n2(α−α log(α/2)−1)

∑
j≥1

ξj(α)

(log n)j
(5.3)

for some coefficients ξj(α). Then combining (5.3) and (5.1) leads to (3.13) with
υj(α) = ηj(α) − ξj(α).

Calculations of the coefficients. The coefficients in the expansions (5.1) and (5.3)
can be easily computed with the assistance of any symbolic softwares, but are very
challenging by hand. For example, when α = 2 + t/ log n, we can rewrite (3.13) as

V(Xn,k) ∼ n2(α−α log(α/2)−1)
∑
j≥1

pj(t)

(log n)j+2
,(5.4)

where pj(t) is a polynomial of degree j+1 given by pj(t) :=
∑

0≤�≤j+1 υ
(�)
j+2−�(2)t�/�!.

Since the coefficients of (log n)−1 and (logn)−2 are both zero in the expansion, we
need explicit coefficients of υj(α) for j = 1, 2, 3 in order to get the form for p1(t).

In particular, writing q(x) := −x2 + 4x− 2 and ᾱ := 2α− 1, we have

η1(α) =
α

2πq(α)Γ(ᾱ)
,

η2(α) =
−1

12πq(α)3Γ(ᾱ)

(
−6α2q(α)2ψ′(ᾱ) + 6α2q(α)2ψ(ᾱ)2

−24α(α− 1)q(α)ψ(ᾱ) + α4 + 16α3 − 52α2 + 32α + 4
)
,

η3(α) =

⎛
⎜⎜⎜⎜⎝

36α4q(α)4ψ(ᾱ)4 + 48α3q(α)3q1(α)ψ(ᾱ)3

−12α2q(α)2
[
18α2q(α)2ψ′(ᾱ) − q2(α)

]
ψ(ᾱ)2

+48αq(α)
[
3α3q(α)3ψ′′(ᾱ) − 3α2q1(α)q(α)2ψ′(ᾱ) − q3(α)

]
ψ(ᾱ)

−36α4q(α)4ψ′′′(ᾱ) + 48α3q(α)3q1(α)ψ′′(ᾱ)
−12α2q(α)2q2(α)ψ′(ᾱ) + 108α4q(α)4ψ′(ᾱ)2 + q4(α)

⎞
⎟⎟⎟⎟⎠

144παq(α)5Γ(ᾱ)
,

where ψ is the logarithmic derivative of the Gamma function and

q1(α) = α2 − 10α + 8,

q2(α) = α4 + 16α3 + 32α2 − 112α + 76,

q3(α) = 7α5 + 3α4 − 68α3 + 108α2 − 52α− 4,

q4(α) = α8 + 320α7 − 856α6 − 1600α5 + 8920α4 + 11264α3 + 4640α2 + 256α + 16.

The first three ξj(α)’s are given by (see (3.2))

ξ1(α) =
1

2παΓ(α)2
, ξ2(α) = −6α2ψ′(α) − 6α2ψ(α)2 − 1

12πα2Γ(α)2
,

ξ3(α) =

⎛
⎝ −18α4ψ′′′(α) + 24α3(3αψ(α) − 2)ψ′′(α)

+72α4ψ′(α)2 − 12α(12α2ψ(α)2 − 12αψ(α) + 1)ψ′(α)
+36α4ψ(α)4 − 48α3ψ(α)3 + 12α2ψ(α)2 + 1

⎞
⎠

144πα3Γ(α)2
.
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Fig. 5.1. A plot of the two functions υ1(α) (smaller amplitude) and υ2(α). There are additional
zeros for the latter besides 1 and 2, but they are minor.

The exact forms of ξj and ηj are less important; the special property we need is
that (see Figure 5.1)

υ1(i) = υ′
1(i) = υ2(i) = 0 (i = 1, 2).

Order of the two “humps.” By the expansions (5.4) and

2(α− α log(α/2) − 1) = 2 +
∑
j≥2

(−1)j−1tj

j(j − 1)2j−2(log n)j
,

when α = 2 + t/ log n, we have, when t = o((log n)2/3),

V(Xn,k) ∼
n2

720π(log n)3
e−t2/(2 log n)

(
p1(t) +

p2(t)

log n
+ · · ·

)
.

Since p1(t) is a quadratic polynomial, the asymptotic maximum of the right-hand side
is easily seen to be reached at t = ±

√
2 log n + O(1), and

V(Xn,k) = e−1 n2

(log n)3

(
21 − 2π2

24π
log n∓

√
2(21 − 2π2)

72π

√
log n + O(1)

)
,

for t = ±
√

2 log n + O(1). This roughly explains why the left “hump” is higher than
the right “hump.”

Expansions for α = 1 + o(1) are similar.
The valley. When k = 
2 log n�, we have

V(Xn,k) ∼
p1({2 log n})

720π
· n2

(log n)3
.
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Since p1(t) is concave upward, the minimum of p1({2 log n}) is asymptotically achieved
at the subsequence of n for which {2 log n} → 1 − t0.

Note that the range in (3.14) where V(Xn,k) ≥ (C + o(1))n2/(log n)3 can be

extended from O(
√

log n) to tn, where tn → ∞ is given by t2ne
−t2n/(2 log n) = C, which

(expressible in terms of Lambert’s W -function) asymptotically satisfies

tn =
√

2 log n log log n

(
1 +

log log log n + O(1)

log log n

)
.

6. Transitional behaviors. We prove Theorem 3 in this section. By analogy,
we prove only the first two estimates (3.9) and (3.10).

The first phase transition at 3 − 2
√

2. Recall that Dν(z) denotes the parabolic
cylinder functions (see (3.8) and Chapter 19 in Abramowitz and Stegun (1965)).
Define β = 3/2−

√
2. To describe the transitional behavior (3.9) of E(X2

n,k) near the

point α = 3 − 2
√

2, it suffices to evaluate the integral T4 defined in (4.8) and prove
the following estimate.

Lemma 5. If α = 2β +
√

2βt/
√

log n, then

T4 =
h(β)

√
β√

2π
et

2/4D−1/2(−t)k−1/4 (α/2)−knα−1

(
1 + O

(
|t| + |t|3√

k

))
(6.1)

uniformly for t = o((log n)1/6).
Estimates uniformly valid in a wider interval of α can be derived by standard

tools for handling coalescence of algebraic singularities and saddlepoints; see Bleistein
and Handelsman (1975). We content ourselves here with the above estimates using
the following simpler method of proof.

Proof. Assume first that α < 2β. By the change of variables w �→ α(1+iv/
√
k)/2,

we deduce that

T4 = h(α/2)(α/2)−k+1/2nα−1k−1/4 · 1

2π

∫ ε
√
k

−ε
√
k

�
e−v2/2√
Δ
√
k − iv

(
1 + O

(
|v| + |v|3√

k

))
dv

+ O
(
(α/2)−knα−1−ε

)
,

where Δ := 2β/α − 1 and
∫
� means that an indentation (upward) of the integration

path is needed if Δ = 0. For the integral on the right-hand side, we use the integral
representation (see Abramowitz and Stegun (1965, p. 688))

1

2π

∫ ∞

−∞
�

e−v2/2

√
x− iv

dv =
ex

2/4

√
2π

D−1/2(x) (x ∈ R)

and the estimates (3.11). The estimate (6.1) then follows by the expansion

Δ
√
k = −t + O

(
t2(log n)−1/2

)
.

The second phase transition at α = 2 −
√

2. From the proof of (5.1), we have

T5 =
1

2πi

∫
|w|=(α/2)2

| arg(w)|≤ε

w−k−1n4
√
w−2 g0(w)

√
π√

4
√
w log n

(
1 + O

(
1

|κ(w)| log n

))
dw

=
n−2

√
log n

· 1

2πi

∫
|u|=α/2

| arg(u)|≤ε

g(u)

u− (1 − 2−1/2)
u−2kn4u

(
1 + O

(
1

|4u− 2u2 − 1| log n

))
du,
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where

g(u) :=

√
2u(u− (1 − 2−1/2))√

π(4u− 2u2 − 1)Γ(4u− 1)
.

We need to prove the following estimate, which implies (3.10).

Lemma 6. If α = 2 −
√

2 +
√

1 − 2−1/2t/
√

log n, then

T5 = g(α/2)et
2/2Φ(−t)(log n)−1/2n2−α−2α log(α/2)

(
1 + O

(
1 + |t|3√

log n

))

uniformly for t = o((log n)1/6).
Proof. The proof follows, mutatis mutandis, the same pattern as for (6.1), starting

with the change of variables v = α(1 + iv/
√

2k)/2. The main difference is that

1

2π

∫ ∞

−∞
�

e−v2/2

iv − x
dv = ex

2/2Φ(−x) (x ∈ R),

where the integration path has to be indented suitably downward when x = 0. Note
that

g(1 − 2−1/2) =

√
2 −

√
2

2
√

2πΓ(3 − 2
√

2)
.

7. Profile of recursive trees. We briefly discuss the profile of random recursive
trees in this section.

One way of constructing a random recursive tree of n nodes is as follows. One
starts from a root node holding the key 1; at stage i (i = 2, . . . , n) a new node holding
i is attached uniformly at random to one of the previous nodes. The process stops
after node n is inserted. By construction, the values of the nodes along any path
from the root to a node forms an increasing sequence. For a survey on probabilistic
properties of recursive trees, see Smythe and Mahmoud (1995).

Let Yn,k denote the number of internal nodes at level k in a random recursive
tree of n nodes. Then (see van der Hofstad, Hooghiemstra, and van Mieghem (2002)

Yn,k
d
= YI′

n,k−1 + X∗
n−I′

n,k
,

where (I ′n), (Yn,k), (Y
∗
n,k) are independent, Y ∗

n,k is a copy of Yn,k, and I ′n takes any of
the values in {1, . . . , n− 1} with equal probability 1/(n− 1).

From this recursive decomposition, we deduce that⎧⎪⎨
⎪⎩

P0(z, y) = 1 +
yz

1 − z
,

Pk+1(z, y) = 1 + z exp

(∫ z

0

Pk(t, y) − 1

t
dt

)
(k ≥ 0),

where Pk(z, y) :=
∑

n E(yYn,k)zn. Adopting the same set of symbols used for BSTs,
we obtain ∑

n,k

E(Yn,k)w
kzn = z(1 − z)−1−w,
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so that

E(Yn,k) =
s(n, k + 1)

(n− 1)!
.

Similarly, for the second factorial moment,

∑
n,k

E(Yn,k(Yn,k − 1))wkzn = 2
√
wz(1 − z)−1−w

∫ z

0

(1 − t)w−1I1

(
2
√
w log

1

1 − t

)
dt,

where

I1(z) :=
1

2

∑
m≥0

z2m+1

m!(m + 1)!4m

denotes the modified Bessel function of first order. Note that, for |w| > 4,

2
√
w

∫ 1

0

(1 − t)w−1I1

(
2
√
w log

1

1 − t

)
dt =

4

w
√

1 − 4/w(1 +
√

1 − 4/w)
.

The same set of tools used for BSTs also applies here; the analytic context is
indeed much simpler since it is known that (see Meir and Moon (1978), van der
Hofstad, Hooghiemstra, and van Mieghem (2002))

E(Y 2
n,k) =

∑
0≤j≤k

(
2j

j

)
s(n, k + j + 1)

(n− 1)!
;

compare (2.6).
The asymptotic behaviors of E(Y 2

n,k) can be summarized as follows. Again let
α := k/ log n.
– If α ∈ [0, 2]], then

E(Y 2
n,k) ∼

(log n)2k

(1 − α/2)Γ(2α + 1)k!2
;(7.1)

– if α = 2 + t/
√

log n, then

E(Y 2
n,k) ∼

1

24
√
π

Φ(t)k−1/24−kn4,

uniformly for t = o((log n)1/6);
– if α ∈ [[2, 4]], then

E(Y 2
n,k) ∼

1

24
√
π(4 log n− k)

4−kn4;

– if α = 4 + 2t/
√

log n, then

E(Y 2
n,k) ∼

1

24
√

2π
et

2/2D−1/2(t)k
−1/44−kn4,

uniformly for t = o((log n)1/6);
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– if α ∈ [[4,K], then

E(Y 2
n,k) ∼

(
1 +

4

α
√

1 − 4/α(1 +
√

1 − 4/α)

)
(log n)k

Γ(α + 1)k!
.

From (7.1) and the following estimate for the mean

E(Yn,k) ∼
(log n)k

Γ(α + 1)k!
(α ∈ [0,K]),

we obtain, for α ∈ [0, 2]],

V(Yn,k) ∼ ϕ(α)
(log n)2k

k!k!
,

where

ϕ(α) =
1

(1 − α/2)Γ(2α + 1)
− 1

Γ(α + 1)2
.

The function ϕ(α) satisfies ϕ(1) = ϕ′(1) = 0, and the same type of bimodal behavior
occurs when α = 1 + O(1/

√
log n), with the variance varying from n2/(log n)3 to

n2/(log n)2 there. Finer results as those for BSTs can be derived; we omit all details
here.

Interestingly, the bimodality of V(Yn,k) occurs when n ≥ 17 (much smaller than
that for BSTs) with the exception of n = 21, . . . , 32 and n = 64, 65, 66.
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Abstract. We characterize those functions on weighted trees that are minimized at Huffman
trees and those that are minimized at trees with the same level sequence as a Huffman tree. An
important tool is a set of inequalities between weights of subtrees shown to be characteristic for
Huffman trees. A byproduct is an algorithm transforming an arbitrary weighted tree into a Huffman
tree; for a given tree, the maximal number of steps that may be taken by this algorithm is a numerical
measure of how far the tree is from being a Huffman tree.
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0. Introduction. Huffman’s famous algorithm [6] constructs, for a given vector
W = (w1, w2, . . . , wn) of weights, a binary W -weighted tree T of minimal weighted
path length, that is, with smallest possible value of the sum,

wpl(T ) =
n∑

i=1

wi�i;

here �i denotes the level in T of the leaf with weight wi. A Huffman tree is one that can
be obtained by Huffman’s algorithm; the weighted path length is in fact minimized
by any tree of Huffman levels, that is, a weighted tree having the same level sequence
as a Huffman tree, and as proved by Kou [10, Theorem 3, p. 142] by no other trees.

0.1. The purpose of this paper is to analyze natural cost functions, defined on
weighted trees with a given vector of weights, that are minimized at Huffman trees
or at trees having some of the properties of Huffman trees. Our analysis is based on
the observation that from any given weighted tree we may obtain a new tree with the
relevant properties, by using certain transformations that change the structure of the
given tree. Each transformation is the result of applying successively a finite number
of flips to the tree, where a flip is an interchange of two disjoint subtrees.

Our basic idea is to single out for a given weighted tree T , not itself a Huffman
tree, certain flips that are allowed in the sense that they change T into a tree that is
“more like” a Huffman tree. Correspondingly, for us a cost function G is a function on
weighted trees, decreasing under allowed flips. In other words, a cost function is not
only minimized at Huffman trees, but its value G(T ) on an arbitrary weighted tree T
should decrease when an allowed flip is applied to T . Intuitively, the value G(T ) of
the cost function should indicate how much T deviates from being a Huffman tree.

It must of course be specified which flips are “allowed”; in fact, we consider several
natural classes of “allowed” flips. At a minimum we require for an allowed flip that it
moves the subtree with the bigger weight closer to the root. Such a flip will be called
monotonizing (or an m-flip for short). More precisely, the interchange of two disjoint
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subtrees U and V is an m-flip if

�U � �V and w(U) � w(V );

here �U denotes the level and w(U) the total weight of the subtree U . Notice that
an m-flip for which one of the two inequalities is an equality is reversible: in the tree
resulting from the flip, the interchange of U and V is again monotonizing (resulting
in the original tree). In the case of equal levels, the flip is called horizontal and in the
case of equal weights it is called weight neutral. A strict flip is an m-flip where both
inequalities are strict, and a cost function is strict if it is strictly decreasing under
strict flips.

0.2. Clearly, the more flips that are considered as “allowed,” the stronger the
requirements to the corresponding cost functions. If arbitrary horizontal flips are
allowed, then the corresponding cost functions depend only on the level sequence of
the tree. The biggest class is the class of all m-flips. A level cost, by definition, is
a tree function decreasing under all m-flips. For example, the weighted path length
wpl(T ) is a strict level cost.

It follows from the main theorem of section 3 that any level cost is minimized at
trees of Huffman levels, and that a strict level cost is minimized at no other trees. This
is an easy generalization of a result of Parker; see below. In fact, in the abstract setup
described below it is natural to restrict to m-flips that interchange a subtree with its
uncle; they are called special flips. A tree function required only to be decreasing
under special flips and horizontal flips is called a level precost. It is a nontrivial
generalization of Parker’s result that it holds for the wider class of level precosts.

Allowed flips of a second type are considered in section 5. They are “adapted” to
Huffman trees and they do not include arbitrary horizontal flips. In section 2 we char-
acterize Huffman trees among weighted trees by a certain set of inequalities between
weights of subtrees. Huffman flips (H-flips) are flips in a non-Huffman tree that tend
(in a heuristic sense) to decrease the number of violated inequalities. Corresponding
to the class of H-flips we have the notion of Huffman costs.

The basic examples of Huffman costs are defined from the multiset of “internal
weights” (t1, t2, . . . , tn−1) of a W -weighted tree T . Hu and Tucker [5] proved that any
W -Huffman tree H has “minimal” sequence of internal weights, say (h1, h2, . . . , hn−1)
(ordered increasingly), in the sense that for any W -weighted tree T ,

m∑
k=1

hk �
m∑

k=1

tk, for m = 1, 2, . . . , n− 1.

This result of Hu and Tucker was a key to a theorem of Glassey and Karp [3]: Huffman
trees minimize (among W -weighted trees) all tree functions of the form

Gf (T ) =

n−1∑
k=1

f(tk),

where f(t) is a given nondecreasing, concave function, and conversely, a W -weighted
tree T for which the value Gf (T ) is minimized for all such f is, in fact, a Huffman
tree. The expression Gf (T ), when f is the identity function, is simply wpl(T ). We
prove the analogous minimizing property for any Huffman cost; in fact, under natural
“strictness” conditions on a Huffman cost G we prove conversely that a weighted tree
T minimizing G is necessarily a Huffman tree. Hence it is a consequence of our results,
that if Gf (T ) is minimum for just one strictly increasing, strictly concave function f ,
then T is a Huffman tree.
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0.3. The flip distance to a Huffman tree. The results in sections 3 and
5 may be used to derive numerical measures of how much a given weighted tree T
deviates from being a Huffman tree: there is a maximal number N(T ) of strict H-flips
in any sequence of H-flips that can be applied successively to T , and when that many
strict H-flips are applied, then the resulting tree is a Huffman tree. So N(T ) may
be thought of as a distance from T to a Huffman tree; the function N(T ) is a strict
Huffman cost. In principle this result leads to an algorithm: If T is not a Huffman
tree, apply a strict H-flip to T . After a finite number of steps, T is transformed into
a Huffman tree. It is a consequence of the results in section 5 that this algorithm
contains no loops.

Similarly, there is a maximal number of strict flips in any sequence of m-flips that
can be applied to T . When that many are applied, the result is a tree of Huffman
levels.

0.4. Abstract weight algebras. Huffman’s algorithm depends on the way in
which total weights are assigned to subtrees: the weight of a father is the sum of the
weights of the two sons. Parker [12], exploiting Huffman’s idea for other optimization
problems, studied general types of weight combination functions, that is, binary op-
erations on weights. This work was continued by Knuth [8]; the weights considered
by Parker are nonnegative numbers, but Knuth works in an abstract framework. We
will, like Knuth, work with weights taken from an abstract weight algebra (A, ◦ ,�),
that is, an abstract set A with a linear order � and a commutative operation ◦ which
is monotone in the following sense:

(C1) x � y ⇒ x ◦ a � y ◦ a.

In addition to the standard assumption (C1) we will consider the following extra
conditions that may be imposed on the weight algebra:

(C2) (x ◦ y) ◦ (a ◦ b) = (x ◦ a) ◦ (y ◦ b) (bisymmetry of ◦ ).

(C3) x � y ⇒ (x ◦ a) ◦ y � (y ◦ a) ◦x (the associative inequality).

(C1+) x < y ⇒ x ◦ a < y ◦ a (strict monotonicity).

(C3+) x < y ⇒ (x ◦ a) ◦ y < (y ◦ a) ◦x (the strict associative inequality).

Clearly, (C2) and (C3) hold if the composition is associative, that is, when the
weight algebra is a commutative, linearly ordered semigroup (A,+,�). An important
general example is based on such a semigroup: If ε is an endomorphism of (A,+,�)
we may define a new composition x ◦ εy := (1 + ε)(x + y) for which (C1), (C2), and
(C3) hold (and even (C1+) and (C3+) if ε is strictly increasing and (C1+) holds for
+). In fact, the basic composition x ◦ y := λx + λy considered by Parker (for λ > 1)
is obtained from (R+,+,�) by taking as ε multiplication by λ− 1. The compositions
(1), (3), (4), and (5) considered by Knuth [8, p. 219–20] may be obtained similarly;
for example (1) is obtained with ε(x, x′) = (0, x).

A natural cost function in this setting is the “total weight”: w(T ) is the value
of the ◦ -expression in the weights of T (the expression’s parenthesis structure being
determined by the tree structure of T ). Parker proved [12, Theorem 1, p. 475] that
this function is minimized by Huffman trees if natural compatibility conditions are
assumed. These conditions are precisely that the total weight function is a level cost
as defined above.
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Parker claimed in [12, Theorem 2], that the conditions (C2) and (C3) imply that
the total weight function is a level cost. Parker left most of the argument to the
reader, and Knuth pointed out in [8, p. 218] that further assumptions are needed for
Parker’s claim. Knuth suggested in the references to [8] to replace (C1) and (C3) by
their strict forms (C1+) and (C3+). The “erratum page” Parker [13] acknowledges
the mistake. Apparently an argument for the corrected version of Parker’s claim has
not been published. We provide a proof in section 4.

Under the following extra positivity condition (C0) on the weight algebra: x �
x ◦ y, Knuth proved [8, pp. 217–218] that (C1), (C2), and (C3) imply that the total
weight w(T ) is minimized at Huffman trees. It is easy to see that the condition (C2)
implies that the total weight w(T ) is unchanged under horizontal flips, and obviously,
(C1) and (C3) imply that w(T ) is decreasing under special flips; hence w(T ) is a
level precost as defined above. Therefore, our general results on level precosts imply
that w(T ) is minimized at Huffman trees. In other words, the extra condition (C0)
assumed by Knuth is not needed.

0.5. Contents. The main results are in sections 3 and 5. In section 3 we prove
that any weighted tree, with a sequence of m-flips may be transformed into a Huffman
tree; in fact, it may be done with a sequence consisting of m-flips that are either
horizontal or special.

In the classical case of positive real weights it is well known that a Huffman tree
is monotone: of two leaves, the one closer to the root has the bigger weight. This
property may fail when weights are taken from a general weight algebra. However,
it’s a main step in our proof of Theorem 3.2 that any tree can be transformed into
a monotone tree by a sequence of m-flips each of which is either a horizontal flip or
a strict special flip. This step is taken in section 1. In fact, the definition of strict
special flips requires only that a total weight is assigned to any subtree; in section 1
we allow total weights to be assigned quite arbitrarily, not necessarily as the value of
the ◦-expression determined by the tree.

Gallager [2] gave an elegant characterization of the trees produced by Huffman’s
algorithm, with an application to “dynamic” Huffman coding; weights are assumed
by Gallager to be nonnegative, with at most one zero weight, but Knuth [9] gave a
formulation with multiple zero weights allowed. This Gallager–Knuth characterization
generalizes immediately to the abstract case of nonnegative weights of a commutative
ordered semigroup. The main result of section 2 is an analogous characterization of
Huffman trees with weights from an abstract weight algebra. (Knuth in [8] observes
that Huffman trees in absence of (C0) are “of comparatively little interest,” which
seems justified, although in [7] it’s emphasized, in the text and several exercises, that
the weights are arbitrary real.) Our characterization is in terms of a comprehensive
set of inequalities among weights of subtrees, essentially, (1) that any subtree (with an
uncle) has weight smaller than that of its uncle, and (2) that the two weight intervals
determined by any two disjoint pairs of brother subtrees are separated (common
interval ends are allowed). This characterization is fundamental to our work; section 2
also shows, with several examples, the importance of assuming the strict monotonicity
(C1+) of the operation ◦.

In sections 4 and 5 we assume that (C1) holds in the strict form (C1+); equiv-
alently, since the order is linear, we assume that the cancellation law holds for ◦.
In addition we assume the conditions (C2) and (C3). Section 4 describes two fun-
damental order relations, called majorization order and Schur order, on multisets of
weights; they are intended for comparison of trees via their internal weights. In the
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case of a commutative ordered semigroup these two orders are natural generalizations
of classical orders on multisets of reals; our generalization to arbitrary weight algebras
is nontrivial.

Section 5 studies cost functions that are minimized at Huffman trees. Clearly, a
horizontal flip in a Huffman tree may interfere with the separation of weight intervals
for disjoint subtrees and lead to a non-Huffman tree. So the class of allowed flips
must be narrowed. The relevant flips to allow in this case are the H-flips. One main
result is Theorem 5.3; it implies that any weighted tree T can be transformed into a
Huffman tree with a finite number of H-flips. This result seems quite analogous to
Theorem 3.2 which implies that any weighted tree can be transformed into a tree of
Huffman levels with a finite number of m-flips. However, our derivations of the two
results are quite different. For the proof of Theorem 5.3 we use the existence of a strict
Huffman cost. In fact, our second main result is the identification in Theorem 5.5 of
a natural strict Huffman cost: the multiset of internal weights (with the Schur order
on multisets).

A similar proof could have been given for Theorem 3.2 if a strict level cost exists.
However, we have not been able to prove for general weight algebras satisfying (C1+),
(C2), and (C3) that such a cost function exists, and the proof of Theorem 3.2 is
inductive instead. Such a strict level cost is necessary to obtain a “distance to a tree
of Huffman levels” analogous to the “distance to a Huffman tree” in section 0.3.

Theorem 5.5, for the classical case of positive real weights, is the result of Hu and
Tucker mentioned earlier. Their proof is fundamentally different: it uses the order in
which the internal nodes are constructed, and for general weights the result obtained
in this way is different from our result.

0.6. Trees etc. In this article, all trees will be assumed to be (finite) rooted
binary trees, and, in addition, weighted. We use the familiar terminology for trees,
but we work with subtrees rather than with vertices: the external vertices are called
leaves, the internal vertices correspond to (full) subtrees with more than one leaf. So
every proper subtree U of a tree T has a father and a brother. If the father of U is not
all of T , then the brother of the father is the uncle of U . The ancestor sequence of U
is the sequence U0, U1, . . . , where U0 = U , and Ui+1 is the father of Ui. The sequence
of brothers of ancestors is U ′

0, U
′
1, . . . , where U ′

i is the brother of Ui. In particular,
U ′

0 = U ′ is the brother of U . The ancestor sequence terminates when Ul is the whole
tree T , and then the sequence of brothers of ancestors ends with U ′

l−1; the number l
is the level of U , denoted �U ; in particular, every leaf i of T has a level, denoted �i.

U1

U0 U ′
0

U2

U1

U0 U ′
0

U ′
1

· · ·

Ul

Ul−1

U2

U1

U0 U ′
0

U ′
1

U ′
l−2

U ′
l−1

Throughout, we fix a multiset W of n � 1 weights from A. A tree for which the
multiset of leaf weights is W is called a W -weighted tree.

1. Monotone trees. In this section we assume that weights are taken from a
given linearly ordered set A.
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Definition 1.1. A W -weighted tree T is called monotone if, for all leaves i and
j of T , the following holds: wi > wj =⇒ �i � �j .

The multiset of n weights W may be indexed: w1, . . . , wn in such a way that

w1 � w2 � · · · � wn.

Accordingly, the leaves of a W -weighted tree T may be labelled with the numbers
1, . . . , n so that wi is the weight of the leaf i. The sequence of weights is increasing and
possibly constant on certain intervals of indices. The labelling defines a corresponding
sequence of levels (�1, . . . , �n). We will mostly assume that a labelling is chosen such
that the sequence of levels is decreasing on each interval where the weight sequence
is constant; with this assumption, the corresponding sequence of levels is called the
level sequence of T . Two W -weighted trees are called level equivalent if they have the
same level sequence.

Clearly, T is monotone if and only if the level sequence of T is decreasing,

�1 � �2 � · · · � �n.

Definition 1.2. The notion of an m-flip, as described in the introduction, depend
on the total weights assigned to subtrees of a given W -weighted tree T . Usually, and
in particular in all sections except for this one, we take as the total weight the value
of the parenthesized ◦ -expression defined by the tree. However, in this section we
consider an arbitrary total weight function S �→ w(S) from the set of (weighted ) trees
to the set A of weights. The only requirement is that the total weight of a weighted
tree with only one leaf is the weight of that leaf. The composition ◦ plays no role
in this section. Of course, the value of the total weight function on trees with only
two leaves is a binary composition, but it is not assumed that the value on trees with
more than two leaves is derived from this composition.

Relative to the given total weight function w, a flip interchanging two disjoint
subtrees U and V is an m-flip if

�U � �V and w(U) � w(V ).(1.2.1)

The result of the flip is a new tree. The flip is called strict if both inequalities in
(1.2.1) are strict. If one of the inequalities is an equality then the flip is reversible:
the flip of U and V in the new tree is an m-flip, resulting in the original tree.

A horizontal flip (�U = �V ) is always a reversible flip. It is easily seen that two
W -weighted trees T and S are level equivalent if and only if T with a sequence of
horizontal flips can be transformed into S.

A special flip is an m-flip of a subtree U with its uncle V := U ′
1, with the extra

condition that the weight of U is at least the weight of U ′, that is, if

w(U) � w(U ′
1) and w(U) � w(U ′);(1.2.2)

it is strict, if the first inequality is strict.
We emphasize that the class of m-flips, and hence the set of trees that may be

obtained from a given weighted tree by using m-flips, depends on the given total weight
function. Assume for instance that the total weight function is given by w(S) = +∞
for any tree S with at least two leaves. Then, with a finite number of horizontal or
special flips, any tree T can be transformed into a “flat” tree, that is, a tree in which
leaf levels differ by at most 1. At the other extreme, if w(S) = −∞ for any tree S
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with at least two leaves, then, with a finite number of horizontal or special flips, any
tree T can be transformed into a tree consisting of a single branch, that is, a tree
having only one pair of brother leaves.

The main result in this section is that with a finite number of horizontal or strict
special flips any tree T can be transformed into a monotone tree. Clearly, a tree is
subtree monotone in the sense that no strict flips exist if and only if no strict special
flips exist even after horizontal interchanges. We have not been able to prove that
any tree can be transformed with a finite number of horizontal or strict special flips
into a subtree monotone tree.

Lemma 1.3. Let S be a tree, let U be a subtree at level h � 2, and let U ′
0, . . . , U

′
h−1

be the sequence of brothers of ancestors of U . Then S can be transformed with a
sequence of strict special flips each of which leaves the subtrees U,U ′

0, . . . , U
′
h−1 intact

and such that either
(1) the level of U in the transformed tree is decreased by 1, or
(2) the transformed tree is obtained by a permutation of the subtrees U ′

0, . . . , U
′
h−1

in the original tree such that, with a reindexing after the permutation, the following
inequalities hold:

w(U) � w(U ′
1), w(U ′

0) � w(U ′
1) � · · · � w(U ′

h−1).(1.3.1)

Proof. Assume that a tree with the property in (1) cannot be obtained with a
sequence as specified.

Let U0, U1, . . . , Uh be the ancestor sequence of U (recall that U0 = U). Then U ′
i is

the brother of Ui and, for i < h−1, U ′
i+1 is the uncle of Ui and of U ′

i . Let ui := w(Ui)
and u′

i := w(U ′
i). The interchange of Ui and U ′

i+1 would decrease the level of Ui,
and hence also the level of U . Therefore, by the assumption in the beginning of the
proof, the interchange is not a strict special flip. In other words, (1.2.2), with the first
inequality strict, does not hold. Hence, for 0 � i < h− 1, we have that

ui � u′
i+1 or ui < u′

i.(∗)

If the sequence of weights u′
0, . . . , u

′
h−1 is not weakly increasing, then for some j <

h − 1, we have the inequality u′
j > u′

j+1. Combined with (∗), for i = j, it follows
that the interchange of U ′

j and U ′
j+1 is a strict special flip. Perform the flip and

replace S by the transformed tree. Note that after the flip, the ancestor sequence of
U is changed and, in particular, the weights ui may have changed. Anyway, by the
initial assumption, the inequalities of (∗) still hold and, after the change, u′

j < u′
j+1.

Therefore, after a finite number of flips, we obtain a tree where the u′
i are weakly

increasing. Since u′
0 � u′

1, it follows from (∗) that u0 � u′
1, that is, w(U) � w(U ′

1).
Therefore, the inequalities (1.3.1) hold.

Lemma 1.4. Any W -weighted tree T can be transformed into a monotone tree by
a sequence of flips, each of which is either horizontal or a strict special flip.

Proof. We consider trees into which T may be transformed with a sequence of
flips as specified. We prove, by descending induction on k = n, . . . , 2, 1, that T may
be transformed into a tree whose leaves may be labelled with the numbers 1, . . . , n so
that the sequence of weights is increasing: w1 � · · · � wn, and the following condition
holds:

�n � · · · � �k+1 � �j for j � k.(∗)k
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The condition (∗) implies that the tree is monotone. We may start the induction at
k = n where the condition is vacuous.

For the inductive step, we assume that k > 1 and that T can be transformed into
a tree satisfying (∗)k. We replace T by the transformed tree. It suffices to prove that
T can be transformed to a tree such that

(a) the levels of the leaves k + 1, k + 2, . . . , n are unchanged and (∗)k holds.
(b) �k � �j for j � k − 1.

We choose among the trees into which T may be transformed and such that (a) holds
one for which the level of a leaf with label at most k and weight equal to wk is
the smallest possible; relabel, if necessary, so that this smallest possible level is �k.
Replace T by the chosen tree.

Assume that (b) does not hold for T . Then there exists a p < k such that �p < �k.
The choice of the leaf with label k excludes that wp = wk. Hence, with u := wk we
have the following inequalities:

�n � · · · � �k+1 � �p < �k, wp < wk = u.

Set h := �k − �p + 1. Let U = U0 be the subtree with the single leaf k and consider
the sequences U0, U1, . . . and U ′

0, U
′
1, . . . of ancestors and brothers of ancestors. The

common level of Uh−1 and U ′
h−1 is �p. Therefore, with a horizontal flip we may

interchange U ′
h−1 and the leaf p. So, after the flip, the leaf p is the subtree U ′

h−1. In
particular, if u′

j := w(U ′
j), then u′

h−1 = wp.
The subtree Uh contains none of the leaves k+1, k+2, . . . , n, and it has the leaf k

as its subtree U0 at level h. By the choice of T , the level of U as a subtree of Uh cannot
be decreased with flips as specified. Therefore, by Lemma 1.3 applied with S := Uh

and U := U0, it is possible to transform Uh to a tree satisfying (2) of Lemma 1.3.
Replace in T the subtree Uh by the transformed Uh. Then the inequalities (1.3.1)
hold, that is,

u � u′
1, u′

0 � u′
1 � · · · � u′

h−1.(1.4.1)

Now wp is among the u′
j in the sequence, and since wp < u, it follows that wp = u′

0

and u′
0 < u′

1. It follows that the leaf p is the tree U ′
0, the brother of the leaf k, and so

�k = �p. In particular, the inequalities of (b) hold for j = p.
We claim that, in fact, all the inequalities of (b) hold. Indeed, if �k > �j for some

j < k, then we could repeat for the leaf j the argument above used for p. However,
this time the brother U ′

0 is the leaf p with weight wp. So both wp and wj occur in the
sequence u′

i; as wp < u and wj < u this contradicts the inequalities (1.4.1).
Therefore, (∗)k−1 holds and the proof of the induction step is complete.

2. Huffman trees. We assume for the rest of the article that the weights are
taken from a “weight algebra” (A, ◦ ,�) as described in the introduction. Notice that
although we only assume condition (C1) in the main results, the strict form (C1+)
is necessary to get familiar properties of Huffman trees. The total weight w(T ) of
(weighted) tree T is defined as the parenthesized ◦ -expression given by T .

Definition 2.1 (Huffman trees). A W -Huffman tree is a W -weighted tree that
may be obtained by Huffman’s algorithm, as described for the abstract setup by
Knuth [8, p. 217]. The notions of unfolding and collapsing explained in [1] generalize
immediately to the abstract setup, and we use them repeatedly. Recall that W is a
fixed multiset of n weights from the algebra A. Assume that n � 2. We denote by
w and w′, where w � w′, the two smallest elements of W , and define w = w ◦w′.
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The multiset obtained from W by removing w and w′, and adding w, is denoted W .
Notice that w = w′ is not excluded, since W is a multiset; moreover, w may be equal
to one or both of w and w′.

If T is a W -weighted tree then a pair of brother leaves will be called a Huffman
pair if their weights are the minimal weights w and w′ and the W -weighted tree
obtained from T by collapsing the pair is a W -Huffman tree. So, by definition, a
W -weighted tree is a W -Huffman tree if and only if it contains a Huffman pair.

In what follows, we say that two pairs of weights from the algebra, u, u′ and v, v′,
are separated if there exists a weight c such that the two weights of one of the pairs
are at most equal to c and the two weights of the other pair are at least equal to c.

Lemma 2.2. Let T be a W -Huffman tree. Consider a pair of brother leaves with
weights u � u′. Assume that there exists a Huffman pair different from the first pair.
Then u′ � u ◦u′.

Proof. The claim is trivially true for n = 2, 3, and we proceed by induction on
n. Consider the W -Huffman tree T obtained by collapsing a Huffman pair different
from the first pair. If, in T , there is a Huffman pair different from the first pair, then,
by induction, u′ � u ◦u′. Otherwise, the first pair is a Huffman pair in T . Then the
following inequalities hold:

w � w′ � u � u′ � w � u ◦u′.(2.2.1)

Indeed, w′ � u, because w,w′, u, u′ are four weights of W , and u′ � w, because
u, u′, w are three weights of W and u, u′ are the two smallest. Finally, since w � u
and w′ � u′, it follows that w � u ◦u′.

In particular, the asserted inequality is a consequence of (2.2.1).
Theorem 2.3. Consider, for a W -weighted tree T , the following conditions on

subtrees:
(i) The weight of a subtree having an uncle is at most the weight of the uncle.
(ii) The weight pairs of any two disjoint pairs of brother subtrees are separated.
(iii) If the weight of a son is at most the weight of the father, then the weight of

the father is at most the weight of the grandfather.
If T is a Huffman tree, then the three conditions hold. Conversely, if (i) and (ii) hold,
then T is a Huffman tree.

Proof. We use the notation of the introductory section for a subtree U and its
relatives. For (ii), let V, V ′ be brother subtrees, disjoint from U,U ′.

We observe first that (iii) is a consequence of (i). Indeed, assume that u � u1. If
(i) holds, then u′ � u′

1, and hence u1 = u ◦u′ � u1 ◦u′
1 = u2.

To prove the first part of the theorem, assume that T is a Huffman tree. We have
to prove, for any subtree U , the following assertion:

u′ � u′
1 and, in the setup for (ii), the weight pairs u, u′ and v, v′ are separated.

This assertion will be proved by induction on n. It is trivially true if n = 2, so
we assume that n � 3. Consider the W -Huffman tree T obtained by collapsing a
Huffman pair in T . Clearly, the assertion for T yields the assertion for T when the
Huffman pair can be chosen different from (U,U ′), and for (ii) also different from
(V, V ′).

So it suffices to prove the assertion in the exceptional case when U,U ′ is the
unique Huffman pair in T . Then {u, u′} = {w,w′}, and, clearly, the assertion is a
consequence of the following inequality, for any subtree V disjoint from the Huffman
pair: w(V ) � w′. Now, this inequality is obvious, if V is a single leaf, and if V is
not a single leaf, then V is an ancestor of some pair of leaves, say of weights ṽ, ṽ′.
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By Lemma 2.2, ṽ � ṽ ◦ ṽ′. So the assumption in (iii) with the leaf of weight ṽ as
the son is satisfied. Moreover, since (i), and hence (iii), holds for the collapsed tree
T by induction, it follows that the weights of the ancestors increase. In particular,
w(V ) � ṽ � w′. Thus the inequality holds and the first part of the theorem has been
proved.

To prove the second part, assume that (i) and (ii) hold. We say, just for the
present proof, that a pair of brother leaves is minimal if their weights are the two
minimal elements of W . Clearly, the two conditions (i) and (ii) are inherited by
trees obtained by collapsing. So, by induction, it suffices to prove that there exists a
minimal pair in T .

Consider a leaf of weight w. We may assume that its brother is a leaf. Indeed,
if the brother of w is not a leaf, then w is a granduncle of any proper subtree of the
brother. In particular, w would be a granduncle to a brother pair of leaves. That pair
would, by (i), be a minimal pair, in fact, with both leaves of weight w. So assume
that the brother of w is a leaf, say of weight u. If u = w′, then the required minimal
pair is obtained. So assume that u > w′.

Consider now a leaf of weight w′. We may assume that its brother is a leaf.
Indeed, if the brother is not a leaf, then, by arguing as in the preceding paragraph,
there is in the brother subtree a pair of leaves with weights at most w′. If that pair
is not a minimal pair, then the two weights are equal and equal to w′. In particular,
a leaf with weight w′ such that the brother is a leaf, say of weight v, has been
found. By (ii), the weight pairs w, u and w′, v are separated. Since u > w′, it follows
easily that w = w′ = v. In particular, the pair with weights w′, v is minimal, as re-
quired.

Corollary 2.4. Let T be a W -Huffman tree. Then any tree obtained from T
by collapsing a pair of brother leaves is a Huffman tree. In particular, any pair of
brother leaves with weights w,w′ is a Huffman pair.

Proof. The assertion follows from Theorem 2.3.
Corollary 2.5. Assume (C1+). Let T be a W -Huffman tree. Then, for two

disjoint subtrees at different levels, the subtree at the smaller level has the bigger
weight; in particular, T is monotone. Moreover, if n � 2, then w and w′ are weights
of a pair of brother leaves in T at the maximal level.

Proof. The second part is a consequence of the first. Indeed, assume that T is
monotone. There exists a Huffman pair in T . If there is a Huffman pair at the maximal
level of T , then the claim is trivially true. Assume that there is a Huffman pair at a
level which is not maximal. Consider the weights u � u′ of any pair of brother leaves
at the maximal level; then u′ � w since T is monotone and w � w′ � u � u′. Hence
all four weights are equal. In particular, any pair at the maximal level is a Huffman
pair.

To prove the first part, let U and V be disjoint subtrees at levels l > k and
weights u and v. We have to prove that u � v. This inequality holds by condition (i)
in Theorem 2.3 if V is a brother of an ancestor of U ; in particular, it holds if k = 1.
For k > 1, we proceed by induction on k, and assume that the inequality holds for
k − 1. We may assume that V is not a brother of an ancestor of U . Let u = u ◦u′

and v = v ◦ v′ where u′ and v′ are the weights of the brothers of U and V . The two
pairs of brother weights are separated by condition (ii) in Theorem 2.3. Therefore,
if v < u, then also v′ � u′; so by (C1+), v < u. This is a contradiction, since v
and u are the weights of the fathers of V and U at levels k − 1 and l − 1. Hence
u � v.
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Observation 2.6. (1) Consider a tree consisting of a single branch of length �,
that is, with only one pair of brother leaves of weights u � u′ and at level �. Then,
by Theorem 2.3, the tree is a Huffman tree if and only if u � u′ � u′

1 � · · · � u′
�−1.

(2) Consider a tree consisting of two simple branches of the same length, that is,
with only two pairs of brother leaves of weights u, u′ and v, v′ at the same level �.
Assume that one of the weights v, v′ is strictly smaller than one of weights in the other
pair. Assume (C1+). Then the tree is a Huffman tree if and only if the following sets
of inequalities hold:{

v
v′

}
�

{
u
u′

}
�

{
v1

v′1

}
�

{
u1

u′
1

}
� · · · �

{
u�−2

u′
�−2

}
�

{
v�−1

v′�−1

}
�

{
u�−1

u′
�−1

}
;

note that v�−1 = u′
�−1 and v′�−1 = u�−1 are the weights of the two subtrees at level

1. Indeed, if the inequalities hold then by Theorem 2.3 the tree is a Huffman tree.
Assume conversely that the tree is a Huffman tree. Consider the following inequalities:{

vi
v′i

}
�

{
ui

u′
i

}
�

{
vi+1

v′i+1

}
.(2.6.1)

The last set of inequalities hold because a Huffman tree is monotone by Corollary 2.5.
To prove the first it suffices, since the weight pairs are separated, to prove that one of
the weights vi, v

′
i is strictly smaller than one of the weights ui, u

′
i. This strict inequality

holds for i = 0 by hypothesis; in general, if it holds for i, then, by separation, the first
inequality in (2.6.1) holds; it implies that vi+1 < ui+1, and so the inequality holds for
i + 1.

Proposition 2.7. Assume (C1+). Let T be a W -Huffman tree, and let U and V
be disjoint subtrees of the same weight. Then the tree obtained from T by interchanging
U and V is a W -Huffman tree.

Proof. The assertion is trivial if n = 2. Proceed by induction, and assume n � 3.
Collapse a Huffman pair in T to obtain T . Clearly, if there is a Huffman pair inside
U or V or disjoint from U and V , then the assertion for T implies the assertion for T .

So it remains to consider the case where one of the subtrees, say U , is a leaf in a
Huffman pair, and where no Huffman pair is contained in V ; the assertion is obvious
if V is a leaf. Thus it suffices to rule out the possibility that V contains two or more
leaves.

Assume, indirectly, that V contains at least two leaves. Then V contains a pair
of brother leaves, say with weights v � v′. This pair is not a Huffman pair since no
Huffman pair is contained in V . Hence, by Lemma 2.2, the weight v = v ◦ v′ of the
father satisfies the inequality v′ � v. Therefore, by condition (iii) of Theorem 2.3,
v � w(V ). Moreover, the weight of U is w or w′, since U is a leaf in a Huffman pair.
Hence

w(U) � w′ � v � v′ � v � w(V ),(2.7.1)

and since w(U) = w(V ), it follows that all the weights in (2.7.1) are equal and equal
to w′; in particular, w′ ◦w′ = w′. In addition, since the pair of brother leaves in V ,
both of weight w′, is not a Huffman pair, it follows that w < w′. As a consequence,
since (C1+) is assumed, w ◦w′ < w′ ◦w′, that is, w < w′.

It follows that the three smallest weights in W are w,w′, w′. Hence, in T , the
(collapsed) leaf with weight w is part of the Huffman pair, and so its brother is a leaf
with weight w′; interchange that brother leaf with V . A contradiction is obtained: the
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resulting tree contains no Huffman pair, but it is a W -Huffman tree by the induction
hypothesis.

Example 2.8. Consider the weight algebra with only two weights a < b, and
x ◦ y = b for all x, y. Clearly (C1) holds, but (C1+) does not. It’s easy to see that a
weighted tree with 3 leaves and weights from this weight algebra is a Huffman tree if
and only if it is monotone. With 4 weights any Huffman tree is monotone; in fact,
there are just 2 monotone trees with 4 weights that are not Huffman trees, those
shown as T1 and T2 below.

T1

a a

a

a

T2

a b a b

T3

b a b b

T4

b b

a

b

T5

b b

b a b

The tree T3 is clearly a Huffman tree, but T4, which results from T3 by the special
flip of the right-hand side leaf pair with the left-most leaf, is not even of Huffman levels.
The tree T5 is a Huffman tree, but it’s not monotone; the horizontal flip of the leaf
pair (b, b) and the b-leaf from the leaf pair (a, b) leads to a tree which is not a Huffman
tree; similarly, the flip of the left-side branch in T5 and the b-leaf from the leaf pair
(a, b) leads to a tree which is not a Huffman tree; also there is no Huffman pair in T5

at the maximal level.

3. Minimality of trees of Huffman levels. We keep the assumptions on
the weight algebra from section 2. In particular, we assume only the monotonicity
condition (C1). In general, if S, U , V , . . . are trees, we denote by s, u, v, . . . their
total weights.

Lemma 3.1. Let T be a W -Huffman tree and let U and V be disjoint subtrees of
equal weights. Then the flip of U and V can be obtained by a sequence of flips each
of which is either a special flip of subtrees of equal weights or a horizontal flip.

Proof. In the proof we say that a flip of two subtrees U and V of equal weights is
a small flip if either �U = �V or if �U = �V +1 and u � u′. Clearly, in the second case
the flip may be obtained as a horizontal flip followed by a special flip followed by the
“reverse” horizontal flip.

To prove the lemma we show that the flip of U and V can be accomplished by a
sequence of small flips. First, if �U = �V , then the flip is horizontal, and hence a small
flip. So assume that the levels are different with, say, U at the larger level. Again, if
�U = �V + 1 and u � u′, then the flip is a small flip.

Proceed by induction on the difference in levels, and assume either that �U =
�V + 1 and u < u′, or that �U � �V + 2. Let S be the ancestor of U at level �V + 1.
By Theorem 2.3(i), we have the inequalities

u � u′
1 � u′

2 � · · · � s′.

If �U = �V +1, then U = S and the inequalities reduce to the single inequality u � s′;
it holds because u < u′ = s′ in this case. Clearly, if s′ � v, then all the inequalities
above are equalities; hence we may obtain the required flip of U and V by flipping
successively U and U ′

1, U
′
1 and U ′

2, . . . , S
′ and V , and then reversing the first part

of this sequence. Note that the inequality s′ � v holds if T is subtree monotone; in
particular, the proof of the lemma is complete if (C1+) holds; cf. Corollary 2.5.
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So assume that s′ > v. The weight pairs s, s′ and v, v′ are separated. So the
first pair “majorizes” the second, that is, the weights of the first pair are at least
equal to the weights of the second. Hence s1 � v1. If s1 > v1 or if s1 = v1 and
s′1 � s1 = v1 � v′1, then, similarly, s1, s

′
1 majorizes v1, v

′
1. Moreover, if s1, s

′
1 majorizes

v1, v
′
1, then s2 � v2. In this way we increase i as long as si, s

′
i majorizes vi, v

′
i. When

the process stops then

{si, s′i} � {vi, v′i} and

{
either Vi+1 is the uncle of Si+1 and s′i+1 � si+1 = vi+1,
or s′i+1 � si+1 = vi+1 � v′i+1.

Indeed, if the process stops because Vi+1 is the uncle of Si+1, then the asserted
inequalities follow from Theorem 2.3(i).

Now Si+1 and Vi+1 have the same weight and the difference in their levels is 1;
moreover, s′i+1 � si+1. Hence the flip of Si+1 and Vi+1 is a small flip. It follows from
the inequalities above that the resulting tree is a Huffman tree. Moreover, in this tree
the difference of levels of U and V is decreased by 2. If the original difference was 1,
then it is still 1, but with the roles of U and V interchanged. Moreover, in this case
v � v′. Therefore, in all cases, the induction hypothesis applies to the resulting tree.
As a consequence, the flip of U and V in the resulting tree may be obtained by a
sequence of small flips. Followed by the small flip of the trees corresponding to Si+1

and Vi+1, we obtain the flip of U and V in the original tree. So the assertion of the
lemma has been proved.

Theorem 3.2. (1) Let T be a W -weighted tree. Then T can be transformed into
a W -Huffman tree by a sequence of flips each of which is either horizontal or a strict
special flip.

(2) Let K and H be W -Huffman trees. Then K can be transformed into H by a
sequence of flips each of which is either a special flip of subtrees of equal weights or a
horizontal flip.

Proof. Clearly, the two assertions hold when n = 1. Proceed by induction on n.
Assume that n � 2 and that the assertions hold for trees with n− 1 leaves.

To prove (1), notice that by Lemma 1.4, by a sequence of flips as specified, T may
be transformed into a monotone tree. So, replacing T by the transformed tree, we
may assume that T is monotone. In particular, then the two smallest weights w � w′

are weights of leaves at the maximal level. After a horizontal flip we may assume
that w and w′ are the weights of brother leaves in T . Form the collapsed tree T .
By the induction hypothesis, we can, with a sequence of strict and/or horizontal flips,
transform T into a W -Huffman tree H. Clearly, these flips in the collapsed tree extend
to similar flips in the original tree. Therefore, if H is the W -Huffman tree obtained by
unfolding the collapsed leaf in H, the sequence of extended flips transforms T into H.

To prove (2), chose a Huffman pair in K and one in H and consider the cor-
responding collapsed trees K and H. By the induction hypothesis, we can, using a
sequence of flips as specified transform K into H. Under this transformation, the
collapsed leaf with weight w in K corresponds to a leaf of weight w in H, but not nec-
essarily to the collapsed leaf in H. So, the sequence obtained by extending these flips
transforms the W -Huffman tree K into a W -Huffman tree H̃ which is either equal
to H or can be transformed into H by a flip of the unfolded pair with the collapsed
leaf. By Lemma 3.1 the latter flip can be obtained by a sequence of flips as spec-
ified.

Definition 3.3. Level costs. A function T �→ G(T ) from the set of W -weighted
trees to a partially ordered set is called a level cost if G(T ) � G(S) when S results from
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T by an m-flip; and G is called a level precost if G is only assumed to be decreasing
under horizontal flips and special flips. Notice that horizontal and weight neutral
flips are reversible m-flips. Hence, equivalently, G is a level cost if the following three
conditions hold when S results from T by a flip of two subtrees:

(α) G(T ) = G(S) if the flip is horizontal,
(β) G(T ) = G(S) if the flip is weight neutral, and
(γ) G(T ) � G(S) if the flip is a strict flip.

A level cost G is said to be strict, if the inequality in (γ) is always strict. A level
precost is strict if the inequality in (γ) is strict when the strict flip is an flip of a
subtree U and its uncle U ′

1 where w(U) > w(U ′
1).

Corollary 3.4. Let T �→ G(T ) be a level precost. Then the value G(S) on a
W -weighted tree S having the same level sequence as a W -Huffman tree is minimum,
that is, for any W -weighted tree T we have the inequality G(T ) � G(S).

Moreover, if G is a strict level precost, then the following conditions on a W -
weighted tree S are equivalent:

(i) Any tree obtained from S by a sequence of horizontal interchanges is subtree
monotone, that is, for two disjoint subtrees at different levels, the subtree at
the smaller level has the bigger weight.

(ii) S has the same level sequence as a W -Huffman tree.
(iii) G(S) is minimum.
Proof. To prove the first assertion, let S and T be W -weighted trees such that

S has the same level sequence as a W -Huffman tree H. As noted in Definition 1.2,
there is a sequence of horizontal flips transforming H into S. By Theorem 3.2, there
is a sequence of flips, each of which is either horizontal or a special flip, transforming
T into H. As each such flip decreases the G-value it follows that G(T ) � G(S).

To prove the equivalence, we note that the implication (i)⇒(ii) holds in general,
that is, without the level cost being strict. Indeed, assume that S has the property
in (i). Then, in particular, S is monotone and so the weights w � w′ appear at the
maximal level. With a flip of weights at the maximal level, we may assume that they
appear as weights of a pair of brother leaves. Collapse the pair to obtain S. Clearly,
the condition (i) is inherited to S. So, by induction, S has the same level sequence as
a W -Huffman tree. Therefore, S has the same level sequence a W -Huffman tree.

Next, the implication (ii)⇒(iii) follows from the first assertion of the corollary.
Finally, we prove the implication (iii)⇒(i). Assume that G is strict and that G(S)

is minimum. The value G(S) is unchanged under horizontal flips. Hence it suffices
to prove that S is subtree monotone. Consider two disjoint subtrees U and V , of
weights u and v, with �U < �V . We have to prove that u � v. Clearly, if S̃ is the tree
obtained by collapsing U and V into two leaves of weights u and v, then every flip
of subtrees in S̃ yields a corresponding flip in S. In particular, the sequence of flips
(including horizontal flips) making S̃ monotone, provided by Lemma 1.4, contains no

strict flips since any strict flip would decrease the value G(S) strictly. Therefore S̃ is
itself monotone. Hence u � v, and the proof is complete.

Example 3.5. The total weight as a level cost. Assume that the weight algebra
A satisfies the conditions (C2) and (C3) (recall that (C1) is always assumed to hold).
Then the total weight w(T ) is a level precost. Indeed, assume that S is obtained
from T by a flip as in Definition 3.3. The equality w(T ) = w(S) in (β) is obvious.
The inequality w(T ) � w(S) in (γ) for a strict special flip follows from the associative
inequality (C3). Finally, the equality w(T ) = w(S) in (α) follows from (C2), as proved
by Knuth [8, p. 217]. So, Corollary 3.4 contains Knuth’s result [8, p. 218], but here
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proved without Knuth’s “positivity assumption” (C0).
It follows from the results of section 4, cf. 4.3(3), that if (C1+) hold then w(T ) is

in fact a level cost.
If the strict conditions (C1+) and (C3+) hold, then w(T ) is strict. Indeed, it fol-

lows from (C1+) that if the weight of a leaf of a tree is strictly increased, in particular,
if a subtree is replaced by a subtree of strictly bigger weight, then the total weight is
increased. Therefore, it follows from (C3+) that the inequality in (γ) is strict when
the flip is strict.

Definition 3.6. Level costs based on internal weights. Assume that the weight
algebra A satisfies the conditions (C2) and (C3).

Important tree functions are obtained as follows: For any weighted tree T denote
by ω(T ) the multiset of internal weights of T , that is, the set of total weights of
subtrees with at least two leaves. If T has n leaves, then ω(T ) is a multiset of n− 1
weights.

If G is a symmetric function in n− 1 weight variables, with values in a partially
ordered set R, then we define a corresponding tree function,

Gtree(T ) := G(ω(T ));

in particular, if R is a commutative, partially ordered group and g : A → R is any
function, there is a corresponding tree function defined by

Gg(T ) :=
∑

x∈ω(T )

g(x),

where the sum is over the internal weights of T .
Clearly, Gtree is a level cost if G is monotone in each variable and “balanced” in

the following sense:

G(u ◦ a, v ◦ b, . . . ) = G(u ◦ b, v ◦ a, . . . ),

and Gtree is strict if, in addition, (C1+) holds and G is strictly monotone. Indeed,
assume that S results from T as in Definition 3.3 by a flip, say of U and V . If the flip
is weight neutral, then ω(T ) = ω(S). If the flip is special: V is the uncle of U and
v � u, then the internal weights that are changed are the weights ui for i = 1, 2, . . . .
Of these, the first, u1 = u ◦ b, is decreased, since u � v, the second is decreased
by the associative inequality, and hence those of smaller levels are decreased; as a
consequence Gtree(T ) � Gtree(S). If the conditions on G are strict and the flip is
strict then the decrease in u1 is strict and so Gtree(T ) > Gtree(S). Finally, if the flip
is horizontal, the equality Gtree(T ) = Gtree(S) follows from the argument of Knuth
as in Definition 3.5, as G is balanced.

In particular, the tree function Gg is a level cost if

u � v =⇒ g(u) � g(v),

g(u ◦ a) + g(b ◦ v) = g(v ◦ a) + g(b ◦u).

Moreover, if (C1+) holds and g is strictly increasing, then Gg is a strict level cost.
If the weight algebra itself is a stable subset of a commutative ordered group

(in additive notation), we may take as g the identity. Then the corresponding tree
function is the weighted path length,

G(T ) =
∑

x∈ω(T )

x =
∑
i

�iwi,
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where the first sum is over the internal weights and the second sum is over the leaf
weights. Consequently, by Corollary 3.4, a W -weighted tree S is of Huffman levels if
and only if it minimizes the weighted path length.

Example 3.7. Comments. The equivalence of (i) and (ii) in Corollary 3.4 is proved
under the assumption that a strict level precost exists. It does not hold in general,
since a Huffman tree is not necessarily monotone, see Example 2.8.

If a strict level precost exists, then (C1+) holds. Indeed, consider the following
trees:

T

a

a v

a u

S

a

a u

a v

Here S may be obtained from T by interchanging two leaves with weights u and
v, and also by interchanging two subtrees with leaves a, u and a, v; assume that v > u
and hence that a ◦ v � a ◦u. Then both flips are m-flips; the first is a composition of a
special strict flip and two horizontal flips. Hence, if a strict level precost G exists, we
have that G(T ) > G(S). Therefore, the second flip is irreversible. Thus a ◦ v > a ◦u.

The authors have tried in vain to prove that if (C1+), (C2), and (C3) hold, then a
strict level precost exists. Under these conditions it follows from Examples 3.5 and 3.6
that a strict level precost exists if the composition is associative or if the associative
inequality holds in the strict form (C3+).

4. Orders on multisets. In this section we assume for the weight algebra A
conditions (C1+), (C2), and (C3).

Definition 4.1. Let X = (x1, . . . , xm) be a sequence of m weights. As we do not
assume that the composition is associative, we have to make a choice in the definition
of the composition:

x1 ◦ · · · ◦xm := (x1 ◦ · · · ◦xm−1) ◦xm;

it is the total weight of the tree Σ(x1, . . . , xm) defined inductively: Σ(x1) is the tree
with one leaf, of weight x1, and Σ(x1, . . . , xm) is the join Σ(x1, . . . , xm−1) ∪ Σ(xm).

If Y is a second sequence of weights, we write X � Y if Y and X have the same
number of elements, Y = (y1, . . . , ym), and

x1 ◦ · · · ◦xi � y1 ◦ · · · ◦ yi for i = 1, . . . ,m.

This relation, on the set of finite sequences of weights, is a partial order: it is obviously
reflexive and transitive, and asymmetry follows from (C1+). Clearly the relation
depends on both the composition and the order in the weight algebra.

Lemma 4.2. If x1 ◦ · · · ◦xm � y1 ◦ · · · ◦ ym and x1 � y1, then, for all weights z,

z ◦x1 ◦ · · · ◦xm � z ◦ y1 ◦ · · · ◦ ym.(4.2.1)

Proof. The two weights in (4.2.1) are the total weights of the two trees,

S := Σ(z, x1, . . . , xm) and T := Σ(z, y1, . . . , ym).



62 GUNNAR FORST AND ANDERS THORUP

For a join of trees, we have w(S ∪ U) = w(S) ◦ w(U). Hence, to prove the inequality
w(S) � w(T ) it suffices, by (C1+), to prove the inequality w(S ∪ U) � w(T ∪ U) for
some fixed tree U . We take for U any tree having at level m − 1 a leaf of weight u1

such that x1 � u1 � y1. As a simple choice we take the following:

U := Σ(u1, . . . , um), with x1 � u1 � y1,

and with arbitrary weights ui for i � 2.
Consider the join of S and U ,

S ∪ U = Σ(z, x1, . . . , xm) ∪ Σ(u1, . . . , um).(4.2.2)

In this tree the weights x2 and u1 appear as weights of leaves at the same level (equal
to m). So, by bisymmetry (C2), they can be interchanged without altering the total
weight. After the flip, u1 is the weight of the uncle of the leaf with weight x1, and
x1 � u1. Therefore, by the associative inequality (C3), the interchange of these
two weights gives a weak increase of total weight. In the resulting tree, there is a
subtree consisting of brother leaves of weights z and u1. By bisymmetry (C2), we can
interchange this subtree and the leaf of weight x2 (both at level m) without altering
the total weight. The interchange gives the following tree:

Σ(x1, . . . , xm) ∪ Σ(z, u1, . . . , um).(4.2.3)

Now, in this tree, replace the subtree Σ(x1, . . . , xm) by Σ(y1, . . . , ym); the result is
a weak increase in the total weight. Finally, use the inverses of the previous flips to
transform the tree (4.2.3) into T ∪ U . The total weight is further weakly increased,
since u1 � y1. Therefore, w(S ∪ U) � w(T ∪ U), and the proof is complete.

Consequences 4.3. Let X = (x1, . . . , xm) and Y = (y1, . . . , ym) be sequences of
weights. Then,

(1) It is an easy consequence of the lemma that insertion of a weight z at a given
position in the sequences preserves the order

X � Y =⇒ (x1, . . . , xr, z, xr+1, . . . , xm) � (y1, . . . , yr, z, yr+1, . . . , ym).

(2) By repeated application of (1), it follows that “shuffling” with a given sequence
Z = (z1, . . . , zp) preserves the order

X � Y =⇒ Z ∨X � Z ∨ Y.

The ∨-notation indicates the shuffled sequences: Z is shuffled into X and into Y with
respect to a fixed strictly increasing map {1, . . . , p} → {1, . . . , p + m}.

(3) Clearly, if a � u, then (a, u) � (u, a). Hence, as a special case of (2), it follows
for any sequence (z1, . . . , zp) that

a � u =⇒ (a, z1, . . . , zp, u) � (u, z1, . . . , zp, a).(4.3.1)

By combining the bisymmetry (C2) with (4.3.1) it follows that if we have two weights
in a tree and the bigger weight is at the bigger level, then the flip of the two weights
results in a weak decrease in the total weight. This result was announced by Parker
in [12], with the weak form (C1) of (C1+), and corrected in [13].

Definition 4.4. Majorization order. If X and Y are multisets of weights, we
write X � Y if the two multisets have the same number of elements, and, when the
elements are indexed increasingly, we have that

(x1, . . . , xm) � (y1, . . . , ym).
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For multisets of real weights, this relation � on multisets is the opposite of the weak
supermajorization order denoted ≺w in [11, Formula (12), p. 10]. In spite of this
conflict we will here use the name majorization order for the relation �. Notice that
(C1+) is required for the asymmetry of the relation �.

Let (x1, . . . , xm) be a sequence of weights such that xi > xi+1 for some i. Then
it follows from (C1) and (C3) that interchanging xi and xi+1 gives a sequence which
is smaller with respect to �. Consequently, among all permutations of (x1, . . . , xm),
the one in which the xi appear in weakly increasing order is smallest. From this
observation and consequence (2) above, it follows that, for all multisets Z,

X � Y =⇒ Z ∪X � Z ∪Y.(4.4.1)

Hence, multisets with the majorization order form a partially ordered semigroup.
Definition 4.5. Schur order. A second order on multisets, called Schur order

and denoted �s, is defined as follows: We write X �s Y if X can be transformed into
Y by a finite number of operations each of which consists in either replacing a weight
x by a weight y, where x � y, or replacing weights x, u by weights y, v, where x � u,
x � y � v and x ◦u = y ◦ v. Equivalently, the relation �s is the smallest relation on
multisets which is reflexive, transitive, and compatible with union and such that

{x} �s {y} if x � y, and

{x, u} �s {y, v} if {x, u} � {y, v} and x ◦u = y ◦ v.

It follows from (4.4.1) that majorization order � is finer than Schur order �s,

X �s Y =⇒ X � Y.(4.5.1)

In particular, from (4.5.1) we obtain the nontrivial fact that the relation �s is asym-
metric (and hence an order, not merely a preorder).

Symmetric functions G(x1, . . . , xm) in m weight variables correspond to functions
G(X ) on multisets of m elements. Assume that such a function G takes values in a
partially ordered set R. Then G is called Schur concave if, for all multisets Z with
m− 2 elements,

G(Z ∪ {x, u}) � G(Z ∪ {y, v}), when {x, u} � {y, v} and x ◦u = y ◦ v,

and strictly Schur concave if the inequality is strict whenever {x, u} 
= {y, v}.
Clearly G is increasing in each variable and Schur concave if and only if G(X ) �

G(Y) when X �s Y; a similar assertion holds for the strict version.
A function g(x) in a single weight variable x, with values in a partially ordered

semigroup (R,+, <), defines a symmetric function Gg in m variables: Gg(X ) :=∑
g(xi). The function Gg is Schur concave if and only if

g(x) + g(u) � g(y) + g(v) when x � u, x � y � v, x ◦u = y ◦ v.(4.5.2)

Call g concave, if (4.5.2) holds.
In the classical case, where the weight algebra is a commutative ordered group

(in additive notation), g is concave if, for all weights x, y,Δ with x < y and Δ > 0,

g(x + Δ) − g(x) � g(y + Δ) − g(y).(4.5.3)
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Example 4.6. Notes. For the case where the weight algebra is the set of positive
elements (or the set of all elements) in a commutative (linearly) ordered group, it is a
theorem, essentially due to Hardy, Littlewood, and Pólya, that the two partial orders
� and �s on multisets agree; cf. [4, Lemma 2, p. 47] or [11, Lemma B.1, p. 21].

The two orders differ in general. Consider for instance real weights with addition
and with Parker’s “λ-composition” x ◦ λy := λx + λy (for λ > 1), mentioned in the
Introduction. Denote by �λ the majorization order with respect to the composition
◦ λ. It is easy to see that

X � Y =⇒ X �λ Y.

The implication is a bi-implication for m � 2, and so the two compositions induce
the same Schur order on multisets. But the implication is not a bi-implication for
m � 3; in particular, the Schur order and the majorization order induced by ◦ λ are
different.

Clearly, for real weights and real functions, the condition (4.5.3) holds for an
increasing function g if and only if g is concave in the usual sense. It is a result of
Schur that a differentiable symmetric function G in m variables is Schur concave if
and only if (xi − xj)

(
∂G
∂xi

− ∂G
∂xj

)
� 0.

A classical example of a Schur concave function in the real case is the follow-
ing: Let h1, . . . , hm be functions of a positive real variable and form the symmetric
function

H(x1, . . . , xm) =
∑

hσ1(x1) · · ·hσm(xm),

where the sum is over all permutations σ1, . . . , σm of 1, 2, . . . ,m.
With positive numbers t1, . . . , tm and hi(x) := txi it is easily seen that the function

G := −H is Schur concave; it is increasing if 0 < ti � 1 for all i, and strictly increasing
and strictly Schur concave if at least two ti’s are different.

5. Minimality of Huffman trees. We keep the assumptions on the weight
algebra from section 4.

Definition 5.1. Huffman flips. Consider subtrees of a given tree T . An inter-
change of two disjoint subtrees U and V is called an H-flip if the following inequalities
hold:

�U � �V , u � v,(5.1.1)

u′
i � v′i for i = 0, . . . , l−2.(5.1.2)

As usual, u and v are the weights of U and V , and the u′
i and v′i are the weights of

the brothers of ancestors of U and V . The number l is the length of the path from V
to the first common ancestor of U and V .

The H-flip is said to be strict if u > v and either �U > �V or one of the inequalities
in (5.1.2) is strict. Note that an H-flip is strict if and only if it is nonreversible, that
is, if and only if in the tree resulting from the H-flip, the interchange of V and U is
not an H-flip.

As usual, we denote by U0 = U,U1, . . . and V0 = V, V1, . . . the ancestor sequences.
Thus Vl is the first common ancestor of V and U , and Vl = Ul+p for some p � 0. It
is not excluded that l = 1. In this case V is a brother of an ancestor of U , in fact
V = U ′

p; and the flip is an H-flip if u � v, since the set of inequalities (5.1.2) is empty.
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u u′
0

u′
1

u1

u2

ul−2+p

ul−1+p

u′
l−3+p

u′
l−2+p

v′0 v0

v′1

v′l−3

v′l−2

v1

v2

vl−2

vl−1

ul+p = vl

Lemma 5.2. Let T be a tree which is not a Huffman tree. Then there are subtrees
U and V in T such that the flip of U and V is a strict H-flip. In fact, the subtrees
may be chosen so that either V is the uncle of U , v < u, and u′ � u, or the following
inequalities hold:

�V + 1 � �U � �V , u > v, u′ < v′, u′ � u, v � v′, u � u′
1,(5.2.1) {

v
v′

}
�
{
u1

u′
1

}
�
{
v1

v′1

}
�
{
u2

u′
2

}
� · · · �

{
v�−2

v′�−2

}
�
{
u�−1

u′
�−1

}
�
{
v�−1

v′�−1

}
.(5.2.2)

Proof. Consider the conditions (i) and (ii) in Theorem 2.3. It follows from the
theorem that one of them is violated for T . If (i) is violated, then there is a subtree
U such that for the uncle of U , say V , we have that v < u. Clearly, then, the in-
terchange of U and V is a strict H-flip. It may be assumed in addition that u′ � u,
since otherwise the interchange of U ′ and V would be a strict H-flip for which the
additional inequality holds.

So assume that condition (i) holds for T . Then condition (ii) is violated. As a
consequence, there are two pairs of disjoint brother subtrees, say U,U ′ and V ′, V ,
such that the weight pairs are not separated. Choose the two pairs such that, first, �V
is smallest possible, and, among those, �U is minimum. Then �U � �V . In addition,
we may assume the following inequalities:

u′ � u, v � v′ and v < u, u′ < v′;

indeed, the first two hold after a possible renaming of brothers, and then the last two
are a consequence, because the weight pairs are not separated.

In particular, then (5.1.1) holds. Consider the smallest subtree containing U
and V . In the notation of Definition 5.1 it is Ul+p = Vl. It follows from the mini-
mality of the choice that if we collapse in this tree all of the subtrees U,U ′, U ′

1, . . .
and V, V ′, V ′

1 , . . . into single leaves, then the resulting tree satisfies the conditions of
Theorem 2.3 except that the weight pairs u, u′ and v′, v are not separated.

Therefore, if the two brother leaves u, u′ are collapsed into a single leaf, the
collapsed tree is a Huffman tree. The collapsed tree has two pairs of brother leaves,
of weights u1, u

′
1 and v, v′. Now u � u1, since (i) holds for T , and v < u. Hence

v < u1. It follows first, since the collapsed tree is monotone by Corollary 2.5, that
�V � �U − 1. Hence (5.2.1) holds. Next, since the weight pairs of the collapsed tree
are separated and v < u1, we obtain the first inequality in (5.2.2).

Assume first that �U = �V + 1. Apply Observation 2.6 to the collapsed tree. It
follows that all the inequalities in (5.2.2) hold, because the first one holds.
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Assume next that �U = �V . In the collapsed tree we may further collapse the pair
of leaves with weights v, v′. Apply Observation 2.6 to this doubly collapsed tree. By
symmetry, we may interchange the roles of the u’s and the v’s. So, we may assume
that all the inequalities of (5.2.2) hold except for the first; as the first holds, they all
hold.

Theorem 5.3. Any W -weighted tree T can be transformed into a W -Huffman
tree by a sequence of strict H-flips. If H and K are W -Huffman trees, then H can be
transformed into K by a sequence of reversible H-flips.

Proof. For the second assertion it suffices, by (2) of Theorem 3.2, to prove for
a W -Huffman tree H that the interchange of two subtrees U and V (disjoint, and
not brothers) of the same weight is an H-flip, and this follows from the separation
property of Theorem 2.3(ii), as in the proof of Lemma 5.2.

Consider now the first assertion. By Lemma 5.2, if T is not a Huffman tree, then
it admits a strict H-flip. Therefore, to finish the proof, it suffices to show that there is
a tree function which is strictly decreased by any strict H-flip. Such a tree function,
called a strict Huffman cost in Definition 5.4, is described in Theorem 5.5. When its
existence is established, the proof of the theorem is complete.

Definition 5.4. Huffman costs. A function T �→ G(T ), from the set of weighted
trees to some partially ordered set, is called a Huffman cost if it is decreasing under
H-flips, that is,

G(T ) � G(T̃ )(5.4.1)

whenever T̃ results from T by an H-flip. The Huffman cost G is called strict, if the
inequality (5.4.1) corresponding to any strict H-flip is strict.

Theorem 5.5. The function T �→ ω(T ), associating with a W -weighted tree its
multiset of internal weights (with the Schur order on multisets), is a strict Huffman
cost.

Proof. Let T̃ be the result of applying an H-flip to T , interchanging two subtrees
U and V as in Definition 5.1. Equivalently, T̃ is obtained from T by replacing U by
Ũ := V and V by Ṽ := U . We have to prove that ω(T ) � ω(T̃ ). In the notation of
Definition 5.1, the flip changes the following internal weights of T :

ui into ũi for i = 1, 2, . . . , and vi into ṽi for i = 1, . . . , l − 1.

Hence the multiset ω(T̃ ) can be obtained from ω(T ) by changing {ui, vi} to {ũi, ṽi}
for i = 1, . . . , l − 1 and {ui} to {ũi} for i � l. Therefore, to prove the assertion, it
suffices to verify the following relations of multisets:

{ui, vi} � {ũi, ṽi} and ui ◦ vi = ũi ◦ ṽi for i = 1, . . . , l−1,(5.5.1)

{ui} � {ũi} for i = l, l+1, . . . ,(5.5.2)

and to show that if the H-flip is strict, then at least one of the inequalities in (5.5.1)
or (5.5.2) is strict.

Assume first that 1 � i < l. Then ui ◦ vi is the total weight of the tree obtained
as the join of Ui and Vi, containing U and V , respectively, at the same level, and
ũi ◦ ṽi is the total weight of the tree obtained from the first by interchanging U and
V . Therefore, the equation ui ◦ vi = ũi ◦ ṽi follows from bisymmetry (C2). Moreover,
since v � u and u′

j � v′j for j = 0, . . . , i− 1, we have the inequalities,

v ◦u′
0 ◦ · · · ◦u′

i−1 �
{
u ◦u′

0 ◦ · · · ◦u′
i−1

v ◦ v′0 ◦ · · · ◦ v′i−1

}
� u ◦ v′0 ◦ · · · ◦ v′i−1.

In particular, ũi is the smaller of ũi, ṽi, ui, vi. Therefore, (5.5.1) holds.
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Next, the subtree Ũi for i < l + p is obtained from Ui by replacing U by V . So
ui � ũi for any i < l+ p. If i � l+ p, then the subtree Ui contains U and V , and ui is
the total weight of Ui. In this case, the decrease in weight, ui � ũi, is a consequence
of Lemma 4.2, as noted in 4.3(3). Thus the inequalities in (5.5.2) hold.

Assume that the H-flip is strict. Then v < u and, if p = 0, then u′
j < v′j for

some j = 0, . . . , l− 2. Clearly, since v < u, we obtain the strict inequality ui > ũi for
i = 1, . . . , l + p− 1. Hence, if p > 0, then the inequality in (5.5.2), for i = l, is strict.
If p = 0, then we obtain the strict inequality ũi < vi for i > j; in particular, then the
inequality in (5.5.1) is strict for i = l − 1.

Note 5.6. Theorem 5.5 establishes the existence of a strict Huffman cost, and so
completes the proof of Theorem 5.3.

Assume that G is a Huffman cost. Obviously, if T̃ results from T using a reversible
H-flip, then G(T ) = G(T̃ ). In particular, by the second part of Theorem 5.3, if H
and K are W -Huffman trees, then G(H) = G(K). Consequently, by the first part,
G is minimized on the W -Huffman trees; if G is strict, then conversely, if G(T ) is
minimum, then T is a W -Huffman tree.

Corollary 5.7. If a symmetric function G in n−1 weight variables is increasing
and Schur concave, then the tree function Gtree is a Huffman cost, and it is a strict
Huffman cost if and only if G is strictly increasing and strictly concave.

Let g be a function in a single weight variable. If g is increasing and concave,
then the corresponding tree function Gg is a Huffman cost. If g is strictly increasing
and strictly concave, then Gg is a strict Huffman cost.

Proof. This is an immediate consequence of Theorem 5.5.
Note 5.8. Consider the case of real weights and a strictly increasing function g(x).

If g is strictly concave in the usual sense, then (4.5.3) holds. Hence, by Example 4.5,
the corollary applies to tree function Gg. Consequently, the function Gg is minimized
exactly at the Huffman trees. In fact, it is not difficult to see that Gg is minimized
exactly at Huffman trees if and only if (4.5.3) holds in the following restricted form:

g(x + Δ) − g(x) � g(y + Δ) − g(y) when 0 < x < y, Δ > 0, y + Δ � 2x.

The latter condition holds if and only if g(x) is strictly concave on the positive reals;
it requires no condition on the values on negative weights.

Note 5.9. As noted in Example 4.6, the Schur order on real multisets induced by
Parker’s λ-composition x ◦ λy = λx+ λy is equal to the usual Schur order, and hence
equal to the usual majorization order.

Consequently, if a symmetric function G in n − 1 real variables is increasing
and Schur concave, then the corresponding tree function G(ωλ(T )), where the mul-
tiset ωλ(T ) of internal weights is computed with respect ◦ λ, is minimized at the
“λ-Huffman trees.” If G is strictly increasing and strictly Schur concave, then the
tree function G(ωλ(T )) is minimized only at the λ-Huffman trees; cf. [12, Theorem 5,
p. 478].
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EXACT MINIMUM DENSITY OF CODES IDENTIFYING VERTICES
IN THE SQUARE GRID∗
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Abstract. An identifying code C is a subset of the vertices of the square grid Z
2 with the

property that for each element v of Z
2, the collection of elements from C at a distance of at most

one from v is nonempty and distinct from the collection of any other vertex. We prove that the
minimum density of C within Z

2 is 7
20

.
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1. Introduction. Let C be a subset of the vertices of the square grid Z
2. For

a vertex v ∈ Z
2 define its identifying set I(v) as the set of all the elements from C

coinciding or connected by an edge with v. If for all vertices of Z
2 the identifying sets

are nonempty and distinct, then C is called an identifying (ID) code. The problem
is to find the minimum density of C within Z

2. This problem was introduced in [16]
in relation to fault diagnosis in arrays of processors. Here the nodes of an identifying
code correspond to controlling processors able to check themselves and their neighbors.
Thus the identifying property guarantees location of a faulty processor from the set
of “complaining” controllers.

Bounds on the density of ID codes in Z
2 were given in [5, 6, 16]. The best known

upper bound is 7
20 . It was shown in [5] and is given, e.g., by a configuration depicted

in Figure 1, shifted by vectors (10a + b, 4b), a, b,∈ Z. The best known lower bound
was 15

43 (see [6] and [20]). Thus there was a gap of about 0.0012 between the upper
and lower bound.
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Fig. 1. Configuration yielding an ID code with density 7
20

.
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Fig. 2. A vertex in C′.

In the current paper we close the gap by showing that the upper bound is indeed
tight, as conjectured in [5].

Theorem 1. The minimum density of ID codes in Z
2 is 7

20 .
Our approach is a development of the method suggested earlier in [6]. It relies

on construction of a bipartite graph characterizing the relations between vertices in
Z

2 and elements of C in their environments. We tried to keep our notation similar to
that of [6].

For papers dealing with ID codes in graphs other than Z
2 and under generaliza-

tions of the ID property, we refer to [1, 2, 5, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 21, 22] and references therein.

2. Definitions. Let C be an identifying code. We address the vertices of C
as codewords. Here V is the set of vertices in Z

2. In what follows, we treat C and
V as if they were finite; the problem with the infinity of |C| and |V | can be easily
resolved by defining the corresponding notions in a finite torus in Z

2 of growing size
and considering limits (see [6, section 2.1]).

For i = 1, . . . , 5, we denote

Li = {v ∈ V : |I(v)| = i}, li = |Li|,

L≥i =

5⋃
j=i

Lj , l≥i = |L≥i|.

Furthermore, we partition the set L3 into two subsets:

L̃3 = {v ∈ L3 : there exists a vertex v′ ∈ L≥3 such that |I(v) ∩ I(v′)| = 2}

and L3 = L3 \ L̃3, l̃3 = |L̃3|, l3 = |L3|, l̃3 + l3 = l3.
Let us partition C into subcodes C ′ and C ′′. We define C ′ to be the following set

of codewords:

C ′ = {c ∈ C : for each v such that c ∈ I(v), |I(v)| ≤ 2}

and C ′′ = C \ C ′. The surroundings of a codeword in C ′ are shown in Figure 2.
The notation in the figures throughout the paper is as follows: o is a codeword,
x is a noncodeword, and unmarked vertices could be either. If (α, β) ∈ C ′, then
(α + 2, β), (α − 2, β), (α, β + 2), (α, β − 2) ∈ C, and all eight neighbors, including
the diagonal ones, of (α, β) do not belong to C (in Figure 2, α = d and β = 3).



EXACT MINIMUM DENSITY OF IDENTIFYING CODES 71

O O

(a) (b)

O

O

(c)

O

O

(d)

O

O

(e)

a b c d e
0

1

2

3

4

O

O

(f)

a b c d e f
0

1

2

3

4

5

O

O

(g)

Fig. 3. Impossible relations between codewords in C′.

Figure 3 shows impossible relations between codewords in C ′. In every subfigure
there are two marked vertices; if both of them belong to C ′, then either this fact
contradicts Figure 2 or the code is not an identifying code. For example,

• in Figure 3(f), if b1, d3 ∈ C ′, then |I(c2)| = 0;
• in Figure 3(g), if b1, e4 ∈ C ′, then I(c2) = I(d3).

The following equality is obtained by counting in two ways the number of pairs
(c, v), c ∈ I(v):

5|C| =

5∑
i=1

ili

= l1 + 2(|V | − l1 − l≥3) + 3l≥3 + l4 + 2l5.(1)

Substituting l1 ≤ |C| into (1), we get

(2) 6|C| ≥ 2|V | + l≥3 + l4 + 2l5.
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For C ′′, we have the following lemma.
Lemma 1.

(3) 2l̃3 + 3l3 + 4l4 + 5l5 ≥ |C ′′|.

Proof. We partition L̃3 into two subsets,

L̃3

1
= {v ∈ L̃3 : ∃v′ ∈ L̃3 s.t. |I(v) ∩ I(v′)| = 2},

L̃3

2
= {v ∈ L̃3 : ∀v′ ∈ L≥3, |I(v) ∩ I(v′)| = 2 ⇒ v′ /∈ L̃3}

We note that C ′′ = A1 ∪A2 ∪A3, where

A1 = {c ∈ C ′′ : ∃v ∈ L≥3 \ L̃3 s.t. c ∈ I(v)},

A2 = {c ∈ C ′′ : ∃v ∈ L̃3

1
s.t. c ∈ I(v)},

A3 = {c ∈ C ′′ : ∃v ∈ L̃3

2
s.t. c ∈ I(v), and ∀v′ ∈ L≥3 \ L̃3, c /∈ I(v′)}.

For each pair v1, v2 ∈ L̃3

1
such that |I(v1) ∩ I(v2)| = 2, there are four codewords

in C ′′ which belong to the identifying sets of v1 or v2 (i.e., |I(v1) ∪ I(v2)| = 4).

Hence, |A2| ≤ 2|L̃3

1
|. For each vertex v ∈ L̃3

2
there is at most one codeword in C ′′

which belongs to I(v) but not to the identifying set of any vertex in L≥3 \ L̃3; hence

|A3| ≤ |L̃3

2
|. Therefore, |A2 ∪ A3| ≤ 2l̃3, and since |A1| ≤ 3l3 + 4l4 + 5l5, the claim

follows.

3. What we do. For an identifying code C, we construct in section 4 a bipartite
graph Γ whose vertex set is C ′ ∪ L≥3 (i.e., each edge is in C ′ × L≥3) such that the
degree of every element of C ′ is at least 4, the degree of every element of L3 is at most
2, the degree of every element of L̃3 is at most 6, and the degree of every element of
L≥4 is at most 4. A vertex from a subset satisfying the corresponding bound on its
degree is said to have a legal degree.

Before we proceed with the construction, we present an argument which leads
from the existence of Γ to the bound |C| ≥ 7

20 |V |.
The existence of Γ implies that

(4) 2l3 + 6l̃3 + 4l≥4 ≥ the number of edges in Γ ≥ 4|C ′|;

hence,

(5) l3 + 3l̃3 + 2l≥4 ≥ 2|C ′|.

We denote l4 = αl≥3 and l5 = βl≥3; then by (3) and (2),

3l≥3 + l4 + 2l5 ≥ |C ′′| + l̃3,

l≥3 ≥ 1

3 + α + 2β

(
|C ′′| + l̃3

)
.(6)

Plugging (6) into (2), we get

6|C| ≥ 2|V | + 1 + α + 2β

3 + α + 2β

(
|C ′′| + l̃3

)
,

6|C| ≥ 2|V | + 1

3

(
|C ′′| + l̃3

)
.(7)
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Hence, by (2) + 6(7) we get

(8) 42|C| ≥ 14|V | + l3 + 3l̃3 + 2l4 + 3l5 + 2|C ′′|.

We substitute (5) into (8) to get

(9) 42|C| ≥ 14|V | + 2(|C ′| + |C ′′|) + l5.

Therefore,

(10) 40|C| ≥ 14|V |.

4. The construction of Γ. The construction consists of 10 steps. The graph
obtained after the ith step is denoted Γi; hence Γ = Γ10. The vertex set of Γi for each
i is C ′ ∪L≥3. Every step adds new edges to Γ. After each step, before we proceed to
the next step, we show that all the elements of L≥3 have legal degrees in Γi (Lemmas
2–11). In other words, we show that the increments in the degrees of the elements
of L≥3 do not go beyond their legal degrees. After the last step, we show that the
degrees of all the elements of C ′ are at least 4 (Lemmas 12–17) and conclude that all
the degrees in Γ are legal (Corollary 4.1).

In most of the steps there are figures, which describe configurations of codewords,
along with rules about how to add edges to Γ. The same instructions indeed should
be applied also in the rotations and reflections of the figures.

Throughout the rest of the paper, we often use Figures 2 and 3 to determine that
a certain element of Z

2 cannot belong to C ′. However, for the sake of fluency we omit
the references to these figures.

Step 1. Construct the bipartite graph Γ1 with no edges whose vertex set is
C ′ ∪ L≥3.
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Fig. 4. Step 2.

Step 2. Add the edge (d3, d5) marked in Figure 4(a) if d5 ∈ L≥3, and the edge
(d3, e5) marked in Figure 4(b) if e5 ∈ L≥3, unless it is either the case in Figure 5(a),
where the edges (k6, j8) and (i6, j8) should not be added, or the case in Figure 5(b),
where the edge (k6, j8) should not be added, or the case in Figure 5(c), where the
edge (j6, j8) should not be added.
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Fig. 5. The marked edges are not added in Step 2.

The following lemmas are straightforward (they are proved in [6]; notice that
Figure 5(a) is used only in Lemma 2, and Figures 5(b) and 5(c) are used only at a
later stage in this paper).

Lemma 2. The degree of each element of L≥3 \ L̃3 in Γ2 is at most 2.

Lemma 3. The degree of each element of L̃3 in Γ2 is at most 3.
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Fig. 6. The marked edges are not added in Step 3.
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Fig. 7. Step 4.

Step 3. For each edge (c1, c2) in Γ2, c1 ∈ C ′, c2 ∈ L̃3 ∪L≥4, add an edge (c1, c2)
(i.e., there are two edges between c1 and c2) unless it is the case in Figure 6, where
the edges (d3, f4), (d5, f4) should not be added.

Lemma 4. All the elements of L≥3 have legal degrees in Γ3.

Proof. By Lemma 3, the degree of an element of L̃3 in Γ2 is at most 3; therefore
its degree in Γ3 is at most 6. By Lemma 2, the degree of an element of L≥4 in Γ2 is
at most 2; therefore its degree in Γ3 is at most 4.

Step 4. Add the edge marked in Figure 7, i.e., the edge (d3, b1) (b1 ∈ L≥3 since
I(b1) 
= I(c2)).

Lemma 5. All the elements of L≥3 have legal degrees in Γ4.
Proof. In Γ3 the degree of b1 is 0 (since b1 /∈ C). If b1 ∈ L4, i.e., a1, b0 ∈ C, then

b1 can have at most four neighbors in Γ4. If b1 ∈ L3, i.e., either a1 ∈ C or b0 ∈ C,
then b1 can have at most two neighbors in Γ4.

Step 5. Add the edge marked in Figure 8, i.e., the edge (h3, e3).
Lemma 6. All the elements of L≥3 have legal degrees in Γ5.
Proof. If d3 /∈ C, then h3 is the only neighbor of e3 in Γ5. If d3 ∈ C, then e3 ∈ L4

can have neighbors in b3 (Step 5) and in c1, c5 (Step 4), the number of which is at
most four (in fact at most three: if c1 and c5 are connected to e3, then c3 ∈ C and
b3 cannot be connected to e3 by Step 5).
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Step 6. Add the edge marked in Figure 9, i.e., the edge (i3, h6) (h6 ∈ L≥3 since
I(g5) 
= I(h6)).

Lemma 7. All the elements of L≥3 have legal degrees in Γ6.
Proof.
• If h7, i6 ∈ C, then h6 ∈ L4 and the possible neighbors of h6 (in addition to
i3) are f8, j8 (Step 4), h9 (Step 5), and i9, g9 (Step 6). At most one of the
vertices f8 and g9 belongs to C ′, and at most one of the vertices h9 and i9
belongs to C ′; therefore the degree of h6 is at most 4.

• If i6 ∈ C and h7 /∈ C, then h6 ∈ L3. The only neighbor of h6 is i3; therefore
the degree of h6 is 1.

• If h7 ∈ C and i6 /∈ C, then h6 ∈ L3. The possible neighbors of h6 (in addition
to i3) are f8, i9, and at most one of them belongs to C ′, and hence the degree
of h6 is at most 2.

Step 7. Add the edge (i3, f3) marked in Figure 10 if at least one of the vertices
e3, e4, f5 belongs to C. Note that this edge should be added only once, even if f2 ∈ C
and at least one of the vertices e2, e1, f0 belongs to C.

Lemma 8. All the elements of L≥3 have legal degrees in Γ7.
Proof.
• If e3 ∈ C, then f3 ∈ L≥4. The possible neighbors of f3 (in addition to i3) are
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f1 (Steps 2 and 3) and c3 (Step 7). Note that f6 /∈ C ′ because I(g5) 
= I(h4),
and for a similar reason f0 /∈ C ′. Also note that connections made by Steps
2 and 3 have two edges. Therefore the degree of f3 is at most 4.

• If e3 /∈ C and f2 ∈ C, then f3 ∈ L4. The possible neighbors of f3 (in
addition to i3) are d2, d3, d4 (Steps 2 and 3). It is possible for two of them to
belong to C ′ only when d2, d4 ∈ C ′, which is the case in Figure 6. Therefore
the degree of f3 is at most 3.

• If e3, f2 /∈ C and f5 ∈ C, then f3 ∈ L̃3. The possible neighbors of f3 (in
addition to i3) are d3, d4, f1 (Steps 2 and 3), at most two of them belong to
C ′, and therefore the degree of f3 is at most 5.

• If e3, f2, f5 /∈ C, then e4 ∈ C (otherwise the edge is not added), and hence

f3 ∈ L̃3. The only possible neighbor of f3 (in addition to i3) is f1 (Steps 2
and 3); therefore its degree is at most 3.

Step 8. Add the marked edge in Figure 11, i.e., the edge (k6, i7).
Lemma 9. All the elements of L≥3 have legal degrees in Γ8.
Proof. The only possible neighbor of i7 (in addition to k6) is f6 (Step 6); hence

the degree of i7 is at most 2.
Step 9. Add the edge (k6, h6) marked in Figure 12 if h6 /∈ C or h7 /∈ C.
Lemma 10. All the elements of L≥3 have legal degrees in Γ9.
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Fig. 12. Step 9.

Proof.
1. If h6 /∈ C, then h5 ∈ C (since I(i5) 
= I(i6)) and at least one of the vertices

g6, h7 belongs to C (since I(i5) 
= I(h6)). Therefore h6 ∈ L≥3.
• If g6, h7 ∈ C, then h6 ∈ L4. The possible neighbors of h6 (in addition

to k6) are e5, e7 (Step 6), f4 (Step 4), and e6 (Steps 5 and 9). At most
two of them belong to C ′; therefore the degree of h6 is at most 3.

• If g6 ∈ C and h7 /∈ C, then g7 ∈ C (since |I(h7)| > 0) and the possible
neighbors of h6 (in addition to k6) are f4 and e7, at most one of them
belongs to C ′, and therefore the degree of h6 is at most 2.

• If h7 ∈ C and g6 /∈ C, then k6 is the only neighbor of h6; therefore the
degree of h6 is 1.

2. If h6 ∈ C, then h7 /∈ C (otherwise the edge is not added) and at least one of
g6, h5 belongs to C (since I(i6) 
= I(h6)). Therefore h6 ∈ L≥3.

• If h5 ∈ C and g6 /∈ C, then the possible neighbors of h6 (in addition to
k6) are f5 and f6 (Steps 2 and 3). At most one of them belongs to C ′;
therefore the degree of h6 is at most 2 if h6 ∈ L3 (Step 2 only) and at

most 3 if h6 ∈ L̃3 (Steps 2 and 3).
• If h5, g6 ∈ C, then the only possible neighbor of h6 (in addition to k6)

is e6 (Steps 7 and 9); therefore its degree is at most 2.
• If h5 /∈ C, then g6 ∈ C. The only possible neighbor of h6 (in addition

to k6) is h4 (Steps 2 and 3). It is impossible for e6 with Step 9 to be a
neighbor of h6 because, in this case, I(g11) = I(i11) or I(h5) = I(h7) (it
depends on the rotation/reflection of Figure 12 relative to e6). Therefore

the degree of h6 is at most 2 if h6 ∈ L3 (Step 2) and at most 3 if h6 ∈ L̃3

(Steps 2 and 3).
Step 10. For each edge (c1, c2), c1 ∈ C ′, c2 ∈ L≥3 in Γ9, if the degree of c2 is

1, then add an edge (c1, c2).
Lemma 11. All the elements of L≥3 have legal degrees in Γ10.
Proof. For each vertex c2 ∈ L≥3, if the degree of c2 in Γ9 is 1, then its degree in

Γ10 is 2; otherwise its degree does not change.
Step 10 is the last step, and Γ = Γ10. Lemma 11 states that the degrees of all the

vertices of L≥3 are legal in Γ, and it remains to prove the same about the elements
of C ′.

Lemma 12. In Figure 5(c), the degree of j6 in Γ10 is at least 4.
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Proof. By Step 4, there are edges (j6, h8) and (j6, l8). Since I(l6) 
= I(l7),
l6 ∈ L≥3 or l7 ∈ L≥3. Therefore, by Step 2, there is in Γ2 at least one of the edges
(j6, l6) and (j6, l7). By the same argument, there is in Γ2 at least one of the edges
(j6, h6) and (j6, h7); hence the degree of j6 is at least 4.

Lemma 13. In Figure 5(b), the degree of k6 in Γ10 is at least 4.
Proof. If m5 ∈ C, then by Steps 2 and 3 there are two edges (k6,m6) and two

edges (k6,m7), so assume that m5 /∈ C. In this case, l4 ∈ C since |I(l5)| > 0. We
show that by Steps 3 and 10 there are two edges (k6,m7): If m7 /∈ L3, then there are
two edges (k6,m7) by Steps 2 and 3. If m7 ∈ L3, then n6, n7, n8,m9 /∈ C. In this
case, o7 ∈ C (since I(l7) 
= I(n7)) and o8 ∈ C (since I(m9) 
= I(n8)). It follows that
the edge (k6,m7) exists in Γ2 since it is not omitted in a rotation of either Figure
5(a) or Figure 5(b). Steps 2, 7, and 9 leave the degree of m7 equal to one; hence
if m7 ∈ L3, then the degree of m7 in Γ9 is 1, and by Step 10 there are two edges
(k6,m7).

• If j4 /∈ C, then i5 ∈ C since |I(j5)| > 0. If neither of the edges (k6, k4) and
(k6, l4) is in Γ2, it can be only due to a rotation of Figure 5(b), in which case,
by the same argument as for the edge (k6,m7), there are two edges (k6, i5),
and we are done. If neither of the edges (k6, i5) and (k6, i6) are not in Γ2,
it can be only due to a rotation of Figure 5(b), but it is impossible since
I(h8) 
= I(i9). Therefore the degree of k6 is at least 4.

• If j4 ∈ C, then there is an edge (k6, k4) and the nontrivial case is that in
which k4 ∈ L3. If i5 ∈ C, then by Step 4 there is an edge (k6, i4) and we are
done, so assume that i5 /∈ C. The situation is described in Figure 12, and
the degree of k6 increases by either Step 8 or Step 9.

Lemma 14. In Figure 5(a), the degree of k6 in Γ10 is at least 4.
Proof. First note that j4 ∈ C (since |I(j5)| > 0), m7 ∈ C (since |I(l7)| > 0),

and m8 ∈ C (since I(k9) 
= I(l8)). If m7 ∈ L3 and o7 ∈ C ′, then l4 ∈ C (since
|I(l5)| > 0) and m4 ∈ C (since I(m5) 
= I(n6)), and there are two edges (k6, l4) and
two edges (k6, k4). If m7 /∈ L3 or o7 /∈ C ′, then by Step 3 or Step 10 there are two
edges (k6,m7). Also there are two edges (k6,m6) or two edges (k6, k4) (since l4 ∈ C
or m5 ∈ C so that |I(l5)| > 0). Therefore the degree of k6 is at least 4.

In what follows we assume that all the elements of C ′, for which we want to
show that the degree is at least 4, have not been treated in Lemmas 12, 13, and 14.
Lemmas 15 and 16 are taken from [6]. Lemma 15 is straightforward, and hence is
given without a proof.

Lemma 15. For every element of C ′, which has not been treated in Lemmas 12,
13, and 14, the degree in Γ2 is at least 2.

Lemma 16. If an element of C ′ has degree 2 in Γ2, then its degree in Γ is at least
4 (again, an element which has not been treated in Lemmas 12, 13, and 14).

Proof. An element of C ′ with degree 2 in Γ2 must be of the form shown in Figure
13. If b4 /∈ C, then b3, b5 ∈ C (since I(c3) 
= I(c4) 
= I(c5)), and by Step 5 there is an
edge (e4, b4). If b4 ∈ C, then at least one of b3 and b5 belongs to C. Assume without
loss of generality that b5 ∈ C. If a4, a5, b6 /∈ C, then c7 ∈ C (since I(c6) 
= I(d5)),
and by Step 6 there is an edge (e4, d7). If at least one of the vertices a4, a5, b6 belongs
to C, then by Step 7 there is an edge (e4, b4).

In a similar way, there is an edge that starts in e4 and is connected to h4 or f1
or f7; therefore the degree of e4 in Γ7 is at least 4.

Lemma 17. If an element of C ′ has degree 3 in Γ2, then its degree in Γ is at least
4 (again, an element which has not been treated in Lemmas 12, 13, and 14).
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Fig. 13. A codeword in C′ with degree 2 in Γ2.

Fig. 14. Illustration of case 2(a) of Lemma 17.

Proof. Let n15 be a codeword in C ′ whose degree in Γ2 is 3. Assume without loss
of generality that l16 ∈ C. We distinguish between several cases as follows:

1. If m17 ∈ C, then l17 /∈ C (since the degree of n15 in Γ2 is 3), and by Step 4
there is an edge (n15, l17) in Γ.

2. If m17 /∈ C:
(a) If it is the case in Figure 14, the proof is similar to the proof of Lemma

16. If n18 /∈ C then m18, o18 ∈ C and by Step 5 there is an edge
(n15, n18). If n18 ∈ C then at least one of m18 and o18 belongs to
C; without loss of generality assume that o18 ∈ C. If at least one of
n19, o19, p18 belongs to C then by Step 7 there is an edge (n15, n18).
Otherwise q17 ∈ C since I(p17) 
= I(o16). If q16 /∈ C then by Step 6

there is an edge (n15, q16). Otherwise p16 ∈ L̃3 and the degree of n15
in Γ3 is at least 4.

(b) If l17 ∈ C, then if n15 is the only neighbor of l16, then by Step 10 there
are two edges (n15, l16) and we are done. In the following subcases, n15
is not the only neighbor of l16.

i. If n17 ∈ C ′, then p16 ∈ C (since |I(o16)| > 0). Since the degree
of n15 in Γ2 is 3, and |I(m14)| > 0 and |I(o14)| > 0, we get the
configuration shown in Figure 15. If n12 ∈ C, then the degree of
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Fig. 15. Illustration of Case 2(b)i of Lemma 17.

n15 in Γ3 is at least 4, and hence we assume that n12 /∈ C. If
m11, n11, o11 /∈ C ′, then n15 is the only neighbor of n13, and by
Step 10 the degree of n15 in Γ is at least 4.
A. If n11 ∈ C ′, then p12 ∈ C (since I(o12) 
= I(o14)), and q13 ∈ C

(since I(o12) 
= I(p13)). For similar reasons, l12, k13 ∈ C. The
situation now is depicted in Figure 5(c), and again there are two
edges (n15, n13) by Step 10.

B. If o11 ∈ C ′, then q12 ∈ C (since |I(p12)| > 0) and q13 ∈ C
(since I(p13) 
= I(o14)). This case is depicted in Figure 5(b). If
in addition m11 ∈ C ′, this is the case in Figure 5(a). Again, by
Step 10, there are two edges (n15, n13).

ii. We assume now that l16 ∈ L3; otherwise there are two edges (n15, l16)
(Step 3) and we are done, unless it is the case in Figure 6, which has
been treated in case 2(b)i. Therefore m13 ∈ C (since |I(m14)| >
0). j15, j17 /∈ C ′ since I(k16) 
= I(m16). Also, there is no edge
(l19, l16). The only possibility left, since n15 is not l16’s only neigh-
bor, is that j16 ∈ C ′. In this case, since I(k15) 
= I(l14), l13 ∈ C.
We repeat with m13 instead of l16, i.e., we have already treated all
the cases except for the case in which m13 ∈ L3 and m11 ∈ C ′. We
have p13, p14 ∈ C and repeat with p14 instead of l16, and finally
o17, p17 ∈ C, and the degree of n15 is at least 4.

(c) If l17 /∈ C, then since I(l15) 
= I(l16), at least one of the vertices
l14, k15, k16 belongs to C.

i. If l14 ∈ C, the nontrivial case is that in which l15 ∈ L3. If p16 ∈ C,
then we can assume that o17 /∈ C (otherwise it is case 1) and p17 /∈ C
(otherwise it is case 2(b)). But now we are in case 2(a). Therefore
we assume that p16 /∈ C, and similarly we assume that p14 /∈ C.
Hence o13, o17 ∈ C so that |I(o14)| > 0 and |I(o16)| > 0. We
assume that p13, p17 /∈ C (otherwise it is case 2(b)), and we are
again in case 2(a).

ii. If l14 /∈ C, then m13 ∈ C. We can assume that l13 /∈ C (otherwise
it is case 2(b)) and o13 /∈ C (otherwise it is case 2(c)i). Therefore
p14 ∈ C, and similarly p13, p16 /∈ C. Hence o17 ∈ C and the degree
of n15 is at least 4.
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Corollary 4.1. All the degrees in Γ are legal.
As shown in section 3, this is enough to accomplish the proof of Theorem 1.

Acknowledgments. We would like to thank the anonymous referees.
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ON EQUITABLE COLORING OF d-DEGENERATE GRAPHS∗

A. V. KOSTOCHKA† , K. NAKPRASIT‡ , AND S. V. PEMMARAJU§

Abstract. An equitable coloring of a graph is a proper vertex coloring such that the sizes of any
two color classes differ by at most 1. A d-degenerate graph is a graph G in which every subgraph has
a vertex with degree at most d. A star Sm with m rays is an example of a 1-degenerate graph with
maximum degree m that needs at least 1 + m/2 colors for an equitable coloring. Our main result
is that every n-vertex d-degenerate graph G with maximum degree at most n/15 can be equitably
k-colored for each k ≥ 16d. The proof of this bound is constructive. We extend the algorithm
implied in the proof to an O(d)-factor approximation algorithm for equitable coloring of an arbitrary
d-degenerate graph. Among the implications of this result is an O(1)-factor approximation algorithm
for equitable coloring of planar graphs with fewest colors. A variation of equitable coloring (equitable
partitions) is also discussed.
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1. Introduction. An equitable coloring of a graph is a proper vertex coloring
such that the sizes of every two color classes differ by at most 1. Equitable colorings
naturally arise in some scheduling, partitioning, and load balancing problems [1, 2, 18,
23, 8, 24]. Pemmaraju [21] and Janson and Ruciński [11] used equitable colorings to
derive deviation bounds for sums of dependent random variables that exhibit limited
dependence. Subsequently, Janson [9] explored equitable colorings with applications
to U -statistics, random strings, and random graphs. In these applications, the fewer
colors we use, the better.

In contrast with ordinary coloring, a graph may have an equitable k-coloring (i.e.,
an equitable coloring with k colors) but no equitable (k + 1)-coloring. It is easy to
check that the complete bipartite graph K7,7 has an equitable k-coloring for k = 2, 4, 6
and k ≥ 8 but has no equitable k-coloring for k = 3, 5, 7. For a graph G, let eq(G)
denote the smallest k0 such that G is equitably k-colorable for every k ≥ k0.

Finding eq(G) even for planar graphs G is an NP-complete problem. In particular,
determining if a given planar graph with maximum vertex degree 4 has an equitable
coloring using at most 3 colors is NP-complete. This can be seen as follows. It is known
[6] that determining if a planar graph with maximum vertex degree 4 is 3-colorable
is NP-complete. For a given n-vertex planar graph G with maximum vertex degree
4, let G′ be obtained from G by adding 2n isolated vertices. Then G is 3-colorable if
and only if G′ is equitably 3-colorable.

This NP-completeness result motivates a series of extremal problems on equitable
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colorings. A typical problem would ask us to show that if a graph G is “sparse,” then
eq(G) is “small.” Here “sparse” might mean that G has a small maximum degree,
or small average degree, or is d-degenerate for a small d. Recall that a graph G is
d-degenerate if every subgraph G′ of G has a vertex with degree (in G′) at most d.
It is well known that forests are exactly 1-degenerate graphs, outerplanar graphs are
2-degenerate, and planar graphs are 5-degenerate. By definition, the vertices of every
d-degenerate graph can be ordered v1, . . . , vn in such a way that for every i ≥ 2, vertex
vi has at most d neighbors vj with j < i.

Hajnal and Szemerédi [7] considered the first version of “sparseness” of a graph.
They settled a conjecture of Erdős by proving that every graph G with maximum
degree at most Δ has an equitable k-coloring for every k ≥ 1 + Δ. In other words,
they proved that eq(G) ≤ Δ(G)+ 1 for every graph G. In its “complementary” form,
this result concerns the decomposition of a sufficiently dense graph into cliques of
equal size, which has been used in a number of applications of Szemerédi’s regular-
ity lemma [13]. The bound of the Hajnal–Szemerédi theorem is sharp, but it can
be improved for some important classes of graphs. In fact, Chen, Lih, and Wu [5]
conjectured that every connected graph G with maximum degree Δ ≥ 2 has an eq-
uitable coloring with Δ colors, except when G is a complete graph or an odd cycle
or Δ is odd and G = KΔ,Δ. They proved the conjecture for graphs with maximum
degree at most 3. Lih and Wu [19] proved the conjecture for bipartite graphs and
Yap and Zhang [25, 26] proved that the conjecture holds for outerplanar graphs and
planar graphs with maximum degree at least 13. In an unpublished paper, Nakprasit
extended the result of Yap and Zhang [26] to planar graphs with maximum degree at
least 9.

If a graph G has moderate maximum degree Δ and, in addition, is d-degenerate
for a small d, then one can get a somewhat better than Δ bound on eq(G). Meyer
[20] proved that every forest (i.e., 1-degenerate graph) with maximum degree Δ has
an equitable coloring with 1 + �Δ/2� colors. This bound is attained at the star
Sm with m rays: in every proper coloring of Sm, the center vertex forms a color
class, and hence the remaining vertices need at least m/2 colors. Kostochka and
Nakprasit [15] obtained the upper bound eq(G) ≤ (d + Δ + 1)/2 for d-degenerate
graphs with maximum degree Δ in the case Δ ≥ 27d. This bound is also sharp.

Bollobás and Guy [4] initiated a new and important direction of research for
equitable colorings. They showed that while 1 + �Δ/2� is a tight upper bound on the
equitable chromatic number of trees, “most” trees can be equitably 3-colored. Their
result implies that each n-vertex forest F with Δ(F ) ≤ n/3 can be equitably 3-colored.
This result seems to uncover a fundamental phenomenon in equitable colorings: apart
from some “star-like” graphs, most graphs admit equitable colorings with few colors.
Another example of this phenomenon was given by Pemmaraju [22]. He showed that
every n-vertex outerplanar graph G with Δ(G) ≤ n/6 can be equitably 6-colored. In
this paper we show that this phenomenon is widely pervasive.

Our main result is the following.
Theorem 1. For d, n ≥ 1, every d-degenerate, n-vertex graph G with Δ ≤ n/15

is equitably k-colorable for each k ≥ 16d.
The proof of Theorem 1 is constructive and provides an O(d)-factor approxima-

tion algorithm for equitable coloring with fewest colors of each d-degenerate n-vertex
graph G with Δ ≤ n/15. Furthermore, many d-degenerate graphs need at least Ω(d)
colors for ordinary coloring, and for such graphs our algorithm gives a constant factor
(independent of d) approximation. Then we extend the algorithmic side of Theorem 1
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to all d-degenerate graphs and show the following.
Theorem 2. There exists a polynomial time algorithm that for every equitably

s-colorable d-degenerate graph G produces an equitable k-coloring of G for any k ≥
31ds.

The result of Theorem 2 was already used by Bodlaender and Fomin [3] for
constructing a polynomial time algorithm for equitable coloring of graphs with a
bounded tree width. Theorem 2 gives an O(d)-factor approximation algorithm for
the problem of the equitable coloring of a d-degenerate graph with fewest colors.
For some classes of graphs such as planar graphs, this translates into an O(1)-factor
approximation algorithm.

The technique used for the proof of Theorem 1 allows us to treat the follow-
ing variation of equitable coloring. An equitable k-partition of a graph G is a col-
lection of subgraphs {G[V1], G[V2], . . . , G[Vk]} of G induced by the vertex partition
{V1, V2, . . . , Vk} of V (G) where, for every pair Vi and Vj , the sizes of Vi and Vj differ
by at most 1. Certainly, every equitable coloring is an equitable partition. Pem-
maraju [22] proved that every outerplanar graph has an equitable partition into two
forests.

Theorem 3. Let k ≥ 3 and d ≥ 2. Then every d-degenerate graph has an
equitable k-partition into (d− 1)-degenerate graphs.

This is an extension of the Bollobás–Guy result [4], which essentially asserts the
same for d = 1 and k = 3. Note that there is no restriction on the maximum degree
of a graph in Theorem 3, while such a restriction is important in the Bollobás–Guy
theorem.

2. Coloring d-degenerate graphs with O(d) colors. An enumeration v1,
v2, . . . , vn of the vertices of a graph G is a greedy enumeration (or a greedy order) if
for every i, 1 ≤ i ≤ n, the vertex vi is a vertex of maximum degree in G−v1−· · ·−vi−1.
Similarly, the enumeration or order is degenerate if for every i, 1 ≤ i ≤ n, the vertex
vi has minimal degree in G({v1, . . . , vi}). Note that if v1, v2, . . . , vn is a greedy order
on G, then vi, vi+1, . . . , vn is a greedy order on G − v1 − · · · − vi−1, and that if
v1, v2, . . . , vn is a degenerate order on G, then v1, v2, . . . , vi is a degenerate order on
G− vi+1 − · · · − vn.

If G is d-degenerate, then, by the very definition, in every degenerate order
v1, v2, . . . , vn of G, every vi has at most d neighbors vj with j < i.

The main result of section 2 is Theorem 1 whose statement we repeat below for
the reader’s convenience.

Theorem 4 (restatement of Theorem 1). Every d-degenerate graph with maxi-
mum degree at most Δ is equitably k-colorable when k ≥ 16d and n ≥ 15Δ.

Proof. Let G be a d-degenerate graph with vertex set V of size n and edge set
E(G). Let t be an integer such that k(t− 1) < n ≤ kt and k ≥ 16d.

Case 1. t ≤ 15. We will color the vertices one by one in a degenerate order
v1, . . . , vn (with some recolorings). Suppose we cannot color vertex vi. Let Z be the
set of color classes containing neighbors of vi. Since G is d-degenerate, |Z| ≤ d. If
a color class M /∈ Z has fewer than t vertices, then we can color vi with M . Since
n ≤ kt, there is a color class M0 ∈ Z with at most t − 1 vertices. If a vertex w in a
color class M /∈ Z has no neighbors in M0, then we can recolor w with M0 and color
vi with M . Thus, each of the (k − |Z|)t colored vertices outside of Z has a neighbor
in M0. Therefore,

(t− 1)Δ ≥ (k − d)t
15

16
kt ≥ 15

16
n.
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Since n ≥ 15Δ, we have

(t− 1)
n

15
≥ 15

16
n,

and hence t− 1 ≥ 152/16 > 14, which contradicts the choice of t.
Case 2. t ≥ 16. Let t = β14

m + β24
m−1 + · · · + βm+1, where βj is an integer,

0 ≤ βj ≤ 3. For i = 1, 2, . . . ,m+1, define li = β14
i−1+β24

i−2+· · ·+βi. For notational
convenience, let l0 = 0. We have that li = 4li−1 + βi for each i = 1, 2, . . . ,m + 1 and
also that t = lm+1.

We now partition V into sets C1, C2, . . . , Cm+1 and color the vertices in Ci at the
ith phase of the algorithm. We use the values of l1, l2, . . . , lm to control the sizes of
these sets. For convenience, set A0 = B0 = C0 = ∅. For each i = 1, 2, . . . ,m, we
construct sets Ai and Bi and let Ci = Ai∪Bi. We use C ′

i to denote the vertices in the
sets constructed thus far. In other words, for each i = 0, 1, . . . ,m+1, we let C ′

i denote
∪i
j=0Cj . For each i = 1, 2, . . . ,m, Ai is constructed by selecting vertices in G− C ′

i−1

as follows. Arrange the vertices of G − C ′
i−1 in a greedy ordering and let Ai be the

first (li− li−1)k vertices in this ordering. Bi is selected from vertices in G−C ′
i−1−Ai

as follows. Initially set Bi = ∅ and, while there is a vertex w ∈ G−C ′
i−1−Ai−Bi that

has at least 13d neighbors in Ai ∪Bi ∪ C ′
i−1, add w to Bi. Repeat this process until

every vertex w ∈ G−C ′
i−1 −Ai −Bi has fewer than 13d neighbors in C ′

i−1 ∪Ai ∪Bi.
This completes the construction of Ai and Bi and we simply set Ci = Ai ∪Bi. After
constructing C1, C2, . . . , Cm, we set Cm+1 = V (G) − C ′

m.
Now let bi = |Bi| for each i = 0, 1, 2, . . . ,m and let e(H) denote the number of

edges in a graph H. It follows from our construction that for each i = 0, 1, . . . ,m,

e(G[C ′
i]) ≥ 13d

i∑
j=0

bj .

On the other hand, G[C ′
i] is a d-degenerate graph and has lik+

∑i
j=0 bj vertices, and

so e(G[C ′
i]) < (lik+

∑i
j=0 bj)d. It follows that

∑i
j=0 bj < (lik/12), or in other words,

for each i = 1, . . . ,m,

|C ′
i| <

13

12
lik.(1)

Since C ′
m+1 = V (G), we also know that |C ′

m+1| ≤ tk = lm+1k.
We will color C1 with k colors in such a way that each color class has at most

� 7
6 l1� vertices. We color vertices in C1 one by one in a degenerate order. Hence when

we color vertex u ∈ C1, there are at least k − d color classes that do not contain
neighbors of u. Since

|C1| <
13l1k

12
≤ 13l1k

12

16(k − d)

15k
<

7

6
l1(k − d),

there exists a color class M of size less than 7
6 l1 that does not contain neighbors of u.

We color u with color M .
We now show how to color the rest of the sets C2, C3, . . . , Cm+1. For 2 ≤ i ≤ m+1,

at the ith phase we start with G such that all vertices in C ′
i−1 have been colored. At

this phase we will color the vertices in Ci in a degenerate order in such a way that (i)
every color class is of size at most Li, where Li = � 7

6 li� for 2 ≤ i ≤ m, and Lm+1 = t;
(ii) the vertices in C ′

i−1 will not be recolored.
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Claim 2.1. For every i ≥ 2, Li−1/Li ≤ 2/5.
Proof. Recall that li ≥ 4li−1 for every i ≥ 2. If i = m + 1, then Li = li = t ≥ 16.

Therefore,

Lm

Lm+1
=

�7lm/6�
t

≤ 7lm/6 + 5/6

t
≤ 7

6 · 4 +
5/6

16
=

11

32
<

2

5
.

If 2 ≤ i ≤ m, then Li = � 7li
6 �. If li−1 ≥ 2, then li ≥ 8 and

Li−1

Li
≤ 7li−1/6 + 5/6

7li/6
≤ 1

4
+

5/6

7 · 8/6 =
19

56
<

2

5
.

Finally, if li−1 = 1, then Li−1 = 2 and Li ≥ 5. This proves the claim.
Suppose we want to color a vertex v. Let M1, . . . ,Mk be the current color classes.

Let Y0 denote the set of color classes of cardinality less than Li. If some Mj ∈ Y0

contains no neighbors of v, then we color v with Mj and work with the next vertex.
Otherwise, let Y0-candidate be a vertex w ∈ V − C ′

i−1 such that there exists a color
class M(w) ∈ Y0, with w /∈ M(w) and NG(w)∩M(w) = ∅. Let Y1 be the set of color
classes containing a Y0-candidate. If a member Mj of Y1 does not contain a neighbor
of v, then we color v with Mj and recolor some Y0-candidate w ∈ Mj with M(w). For
h ≥ 1, let a Yh-candidate be a vertex w ∈ Ci −∪M∈Y0∪···∪Yh

M such that there exists
M(w) ∈ Yh with NG(w) ∩M(w) = ∅. Let Yh+1 be the set of color classes containing
a Yh-candidate. If a member Mj of Yh+1 does not contain a neighbor of v, then we
color v with Mj and similarly to the above recolor a sequence of candidates. Finally,
let Y = ∪∞

j=0Yj and y = |Y |. Then by the above, Y possesses the following properties:
(a) Every color class in Y contains a neighbor of v.
(b) Every vertex u ∈ Ci − ∪M∈Y M has a neighbor in every M ∈ Y (otherwise

the color class of u would be in Y ).
We will prove that there is at least one color class M in Y that does not contain

neighbors of v. Suppose this is not the case.
Observe that each vertex u ∈ Ci has less than 13d neighbors in C ′

i−1 (by the
construction of Bi−1) and at the moment of coloring has at most d neighbors among
vertices of Ci colored earlier (since vertices are considered in a degenerate order). So
when we color a vertex u ∈ Ci, there are less than (13 + 1)d color classes that have
neighbors of u. By property (a) of Y, y < 14d.

Claim 2.2. y < 8d/7.
Proof. Let S = ∪M∈Y M and T = Ci−S. By property (b) of Y, at least y|T | edges

connect T with S. Since G is d-degenerate, we conclude that y|T | < d(|S|+ |T |), i.e.,
that (y − d)|T | < d|S|. Clearly, |S| ≤ yLi. By the definition of Y0, every color class
outside of Y0 has size exactly Li, and each k − y color class outside of Y contains at
most Li−1 vertices in C ′

i−1. Hence

|T | ≥ (k − y)(Li − Li−1).

By Claim 2.1, Li−Li−1

Li
≥ 1 − 2

5 = 3
5 for every i ≥ 2. Therefore,

(y − d)(k − y)
3

5
< dy.

Since k ≥ 16d, the last inequality yields that (y−d)(16d− y) 3
5 < dy. This implies the

following inequality for γ = y/d:

γ2 − 46

3
γ + 16 > 0.
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Therefore, either γ > (23+
√

385)/3 ∼ 14.207 . . . or γ < (23−
√

385)/3 ∼ 1.1261 . . . <
8/7. The former is impossible since y ≤ 14d, and thus the latter holds. This proves
the claim.

Subcase 2.1. 2 ≤ i ≤ m. The total number of colored vertices is at least Li(k−y),
which by Claim 2.2 is greater than⌈

7li
6

⌉(
k − 8d

7

)
≥ 7li

6

13k

14
=

13lik

12
.

This contradicts (1) for j = i− 1.
Subcase 2.2. i = m + 1. Let Di be the highest degree in G[V − C ′

i].
Claim 2.3. l1Δ+(l2− l1)D1 +(l3− l2)D2 + · · ·+(lm+1− lm)Dm ≤ 3Δ+4.25dt.
Proof. Observe that

|E(G)| ≥
∑

1≤i≤m
1≤j≤lik

degV−C′
i−1−{vi

1,...,v
i
j−1}(v

i
j) . . . .

By the definition of Ai, for vij ∈ Ai,

degG[V−C′
i−1−{vi

1,...,v
i
j−1}](v

i
j) ≥ Di and |Ai| = (li − li−1)k.

Thus,

|E(G)| ≥ k(l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + · · · + (lm − lm−1)Dm).

Since |E(G)| < dn ≤ dtk, we have

l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + · · · + (lm − lm−1)Dm < dt.(2)

Note that

li+1 − li
li − li−1

=
4li + βi+1 − li

4li−1 + βi − li−1
≤ 3(4li−1 + βi) + 3

3li−1 + βi
= 4 +

3 − βi

3li−1 + βi
≤ 4 +

1

li−1
.

For i ≥ 3, we obtain li+1 − li ≤ (4 + 1
4 )(li − li−1). Also (l2 − l1) − 4.25l1 =

β2 − 1.25l1. Therefore,

4.25 (l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + . . . + (lm − lm−1)Dm)

≥ (l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm + (1.25l1 − β2)D1.

Comparing with (2), we get

(l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm < 4.25dt + β2D1 − 1.25l1D1.

Hence

l1Δ+(l2 − l1)D1 +(l3 − l2)D2 + · · ·+(lm+1 − lm)Dm ≤ l1Δ+4.25dt+β2D1 −
5

4
l1D1.

In order to prove the claim it is now enough to show that

l1Δ + β2D1 −
5

4
l1D1 ≤ 3Δ.(3)
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Recall that l1 ≤ 3 and β2 ≤ 3. If β2 ≤ 5
4 l1, then (3) is evident. If β2 > 5

4 l1, then

l1Δ + β2D1 −
5

4
l1D1 ≤ l1Δ +

(
β2 −

5

4
l1

)
Δ ≤ β2Δ ≤ 3Δ.

This proves (3) and thus the claim.
Let M1 ∈ Y0. By construction, every Mj contains at most Li vertices in C ′

i. So
the number of neighbors of M1 is at most

L1Δ + (L2 − L1)D1 + · · · + (Lm+1 − Lm)Dm

=

⌈
7l1
6

⌉
Δ +

(⌈
7l2
6

⌉
−
⌈

7l1
6

⌉)
D1 + · · · +

(
t−

⌈
7lm
6

⌉)
Dm

=

⌈
7l1
6

⌉
(Δ −D1) +

⌈
7l2
6

⌉
(D1 −D2) + · · · +

⌈
7lm
6

⌉
(Dm−1 −Dm) + tDm

≤ 7l1
6

(Δ −D1) +
5

6
(Δ −D1) +

7l2
6

(D1 −D2) +
5

6
(D1 −D2)

+ · · · + 7lm
6

(Dm−1 −Dm) +
5

6
(Dm−1 −Dm) + tDm

≤
(

7l1
6

+
5

6

)
Δ +

7

6
((l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm) .

On the other hand, as in the proof of Claim 2.2, every color class outside of Y0 has
size exactly Lm+1 = t, and each of the k−y color classes outside of Y contains at most
Lm vertices in C ′

m. Hence, the number of neighbors of M1 is at least (k− y)(t−Lm).
Note that

t− Lm = t−
⌈

7lm
6

⌉
≥ t

(
1 −

7lm
6 + 5

6

t

)
= t

(
1 − 7

4 · 6 − 5

6 · 16

)
=

21

32
t.

Hence by Claim 2.3 we have

(k − y)(t− Lm) ≥
(
k − 8d

7

)
21

32
t.

Comparing this with the upper bound above and applying Claim 2.3 we get(
k − 8d

7

)
21

32
t ≤ 5

6
Δ +

7

6
(3Δ + 4.25dt) .

Since Δ ≤ n/15 ≤ kt/15, this reduces to(
k − 8d

7

)
21

32
≤ 5

6 · 15
k +

7

6

(
3

15
k + 4.25d

)
,

which gives (
21

32
− 1

18
− 7

6

1

5

)
k ≤

(
21

32

8

7
+

7 · 4.25

6

)
d.

It follows that

k

d
≤ 68.5

12

1440

529
=

8220

529
< 15.6,

which contradicts k ≥ 16d. This proves the theorem.
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Algorithm. The above proof implies a simple algorithm for equitable k-coloring
of any n-vertex d-degenerate graph with Δ(G) ≤ n/15. We first partition V (G) into
sets Ci, 1 ≤ i ≤ m + 1, as described in the first part of the proof. Then for each
i = 1, 2, . . . ,m+1, we attempt to color vertices of Ci in degenerate order. It is possible
that in the process some vertices may have to be recolored, but these recolorings are
restricted to the set currently being colored, namely, Ci. The algorithm clearly runs
in polynomial time and it can be implemented in O(n3) time; we do not give details
here.

3. Constant-factor approximation algorithm. The algorithm above can be
thought of as providing an O(d)-factor approximation algorithm for equitable coloring
with fewest colors of an n-vertex d-degenerate graph with maximum degree at most
n/15. In this section, we extend this to an O(d)-factor algorithm for equitable coloring
of an arbitrary d-degenerate graph. This implies an O(1)-factor algorithm for planar
graphs. The main result in this section is the following.

Theorem 5. Every n-vertex d-degenerate graph G with maximum degree at most
Δ is equitably k-colorable for any k, k ≥ max{62d, 31d n

n−Δ+1}.
Proof. Let G be an n-vertex d-degenerate graph. Let G0 = G, h = 30d−1 and, for

j = 1, . . . , h, let wj be a vertex of the maximum degree in Gj−1 and Gj = Gj−1 −wj .
Claim 3.1. For every v ∈ V (Gh), degGh

(v) < n/30.
Proof. If degGh

(v) ≥ n/30 for some v ∈ V (Gh), then also degGj−1
(wj) ≥ n/30 for

every j = 1, . . . , 30d−1, and hence |E(G)| ≥ 30d(n/30) = dn. This is a contradiction,
since any n-vertex d-degenerate graph has fewer than dn edges.

Claim 3.2. There are pairwise disjoint independent sets M1,M2, . . . ,Mh such
that for every j, 1 ≤ j ≤ h,

(i) wj ∈
⋃j

s=1 Ms,
(ii) �n/k ≤ |Mj | ≤ �n/k�, and

(iii) nj/k ≤
∑j

s=1 |Ms| < 1 + nj/k.
Proof. Let X1 = V (G) − w1 − NG(w1). Clearly, |X1| ≥ n − Δ − 1. Since G is

d-degenerate, X1 contains an independent set M ′
1 of size at least |X1|

d+1 ≥ n−Δ−1
d+1 . Since

n

k
≤ n− Δ + 1

31d
<

n− Δ

d + 1
,

|M ′
1| > n

k − 1
d+1 . Hence, we can choose a subset M ′′

1 of M ′
1 of size

⌈
n
k

⌉
− 1 and let

M1 = M ′′
1 + w1. By construction, M1 satisfies properties (i)–(iii) for j = 1.

Suppose we have constructed M1,M2, . . . ,Mj−1 satisfying (i)–(iii) for some j ≤ h.

Let xj = wj if wj /∈
⋃j−1

s=1 Ms, and let xj be any vertex outside
⋃j−1

s=1 Ms otherwise.

Let Xj = V (G) −
⋃j−1

s=1 Ms − xj −NG(xj). Since G is d-degenerate, Xj contains an

independent set M ′
j of size at least

|Xj |
d+1 . Suppose that |M ′

j | < −1 + n/k. In view of
(iii), this means that

n− 1 − (j − 1)nk − 1 − Δ

d + 1
<

n

k
− 1.

For n > k and d ≥ 1, the last inequality yields n − Δ + 1 < (j+d)n
k + 1 < 31dn

k . But
this contradicts the choice of k. Thus, we can choose a subset of M ′

j that together
with xj forms an independent set M ′′

j of size �n/k�. If

|M ′′
j | +

j−1∑
s=1

|Ms| <
jn

k
+ 1,
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then we let Mj = M ′′
j ; otherwise we get Mj by deleting a vertex v �= xj from M ′′

j .
Note that in the latter case, �n/k �= �n/k�, and thus (i)–(iii) hold in both cases.
This proves the claim.

Let G′ be the graph obtained by deleting vertices in M1 ∪M2 ∪ · · · ∪Mh from G
and let V ′ = V (G′).

Claim 3.3. |V ′| ≥ 16n/31.
Proof. By (iii) of Claim 3.2, |V ′| ≥ n − (30d − 1)n/k − 1 ≥ n − 30dn/k. Since

k ≥ 62d, we get |V ′| ≥ 32n/62.
By Claims 3.1 and 3.3,

|V ′|
Δ(G′)

≥ 32n

62
· 30

n
> 15.

Since k−h ≥ 62d−30d = 32d, by Theorem 1, G′ is equitably (k−h)-colorable. Hence
G is equitably k-colorable. This proves the theorem.

Corollary 1. Every d-degenerate graph with n vertices and maximum degree at
most 1 + n/2 is equitably k-colorable when k ≥ 62d.

Now we are ready to prove Theorem 2, which we state again for convenience.
Theorem 6 (restatement of Theorem 2). There exists a polynomial time algo-

rithm that, given a d-degenerate graph G with χeq(G) ≤ s, can equitably color G with
k colors for any k, k ≥ 31ds.

Proof. Assume that a graph G on n vertices with maximum degree Δ admits an
equitable coloring φ with s colors. Let v ∈ V (G) have degree Δ. The color class of
v contains at most n − Δ vertices. Thus no other color class can contain more than
n− Δ + 1 vertices. Hence,

s >
n

n− Δ + 1
.(4)

Also, if G has at least one edge, s ≥ 2. If Δ ≤ 1 + n/2, then by Corollary 1 G can be
equitably k-colored for any k ≥ 62d. Since 62d ≤ 31ds, G can be equitably k-colored
for any k ≥ 31ds. If Δ > 1 + n/2, then 31d n

n−Δ+1 > 62d and therefore by Theorem
5, G can be equitably k-colored for any k ≥ 31d n

n−Δ+1 . It follows from inequality (4)
that G can be equitably k-colored for any k ≥ 31ds.

The fact that such an equitable k-coloring can be constructed in polynomial
time is implied by the proof of Theorem 5. The algorithm is sketched here. First
identify the high degree vertices w1, w2, . . . , wh in G and construct the color classes
M1,M2, . . . ,Mh containing these vertices as in Claim 3.1. Construction of these color
classes uses as a subroutine an algorithm that finds an independent set of size at
least m/(d + 1) in a given m-vertex, d-degenerate graph. The following greedy al-
gorithm suffices for this task: pick a minimum degree vertex, delete the vertex and
its neighbors, and repeat until no vertices are left. Since at every step we deleted
at most d + 1 vertices, the number of steps will be at least m/(d + 1). Once the
color classes M1,M2, . . . ,Mh are constructed and the colored vertices are deleted,
we are left with a graph whose maximum vertex degree is less than n/30. We
color the vertices in this graph using the algorithm from the previous section. This
phase dominates the running time of the algorithm, and hence we have an O(n3)
algorithm.

4. Equitable partitions of d-degenerate graphs. It is easy to see that any
d-degenerate graph G can be partitioned into two (d−1)-degenerate graphs: construct
a degenerate ordering and color the vertices in this order red or blue using the rule
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that a vertex v is colored red if it has less than d red neighbors; otherwise, color v
blue. While this procedure leads to a partition into (d − 1)-degenerate graphs, this
partition need not be equitable. In fact, the only partition of the star Sm with m rays
(which is 1-degenerate) into two independent sets (which are 0-degenerate) is that
in which one set contains one vertex and the other contains the rest. Similarly, any
partition of Sm into k 0-degenerate sets has one 1-element set and some set with at
least m/k elements. In this section we show that if we have d ≥ 2 and we allow for a
third set, then we can provide equitability. This extends the Bollobás–Guy result [4]
to arbitrary d ≥ 2 and also provides a tool for obtaining equitable colorings that use
few colors. Specifically, we will prove Theorem 3.

Theorem 7 (restatement of Theorem 3). Let k ≥ 3 and d ≥ 2. Then every
d-degenerate graph can be equitably partitioned into k (d− 1)-degenerate graphs.

Proof. We prove the result by contradiction, assuming that the above claim is
false. Let G be a smallest (with respect to the number of vertices) counterexample to
the theorem. Let n = |V (G)|. Then n > dk, because otherwise, any equitable vertex
partition is good enough. A simple observation that forms the basis of the proof is
the following.

Claim 4.1. Let v1, v2, . . . , vm be a d-degenerate vertex ordering of a d-degenerate
graph H. If H−vm has a k-partition (W1, . . . ,Wk), where every Wi induces a (d−1)-
degenerate subgraph, then among W1 + vm, . . . ,Wk + vm at most one is not (d − 1)-
degenerate. Furthermore, if Wi+vm is not (d−1)-degenerate, then vm has d neighbors
and Wi contains all d neighbors of vm.

Proof. By the definition of a d-degenerate vertex ordering, the degree of vm is
at most d. If Wi has fewer than d neighbors of vm, then we can append vm to a
(d− 1)-degenerate ordering of Wi.

Claim 4.2. The minimum degree of G is d and n is divisible by k.
Proof. Suppose that n = k · s + r, where 1 ≤ r ≤ k. We can choose a degenerate

ordering of G such that the last vertex in the ordering, vn, is a vertex of minimum
degree. By the minimality of G, there exists an equitable k-partition (W1, . . . ,Wk)
of V (G) − vn into sets inducing (d − 1)-degenerate graphs. Note that exactly r − 1
of these sets have size s + 1 and the remaining k − r + 1 sets are of size s. Since
k−r+1 ≥ 1, there is at least one Wi of size s. If degG(vn) ≤ d−1, then adding vn to
any set Wi of size s creates the desired equitable k-partition of G. This contradicts
the choice of G and so we have that degG(vn) ≥ d.

If k does not divide n, then we have r < k. This implies that there are k−r+1 ≥ 2
sets of size s and, by Claim 4.1, we can add vn to at least one of these sets of size s.
Again, this contradicts the choice of G as a minimal counterexample and implies that
k divides n.

Given a vertex ordering R = {v1, . . . , vn} of a graph H and an edge e = vivj ∈
E(H), we denote lR(e) = i and rR(e) = j if i < j. From all d-degenerate orderings of
V (G) choose a special ordering U = (u1, . . . , un), where the maximum index lU (e) of
an edge e ∈ E(G) is maximized. Let i0 be the maximum of lU (e) over all the edges in
the special ordering U . For convenience, we use Ui to denote the set {ui, ui+1, . . . , un}
for each i, 1 ≤ i ≤ n.

Claim 4.3. The vertex ui0 is adjacent to ui for every i0 < i ≤ n, and the set
Ui0+1 is independent.

Proof. The second part of the claim is directly implied by the definition of i0.
Suppose that for some j > i0, the vertex uj is not adjacent to ui0 . Then all the
neighbors of uj are in V (G)−Ui0 . So moving uj from its current position to just before
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ui0 creates another d-degenerate ordering of V (G). In this ordering the maximum
index of the left end of an edge is i0 + 1, which contradicts the choice of the special
ordering U .

Now we are ready to prove the theorem.
Case 1. i0 ≥ n−k+1. Let G′ = G−Un−k+1. By the minimality of G, V (G′) has

an equitable partition (W1, . . . ,Wk) into sets inducing (d−1)-degenerate graphs. Now
we attempt to consecutively add un−k+1, un−k+2, . . . , un (in this order) so that (a) we
add one vertex to every set, and (b) every new set still induces a (d − 1)-degenerate
graph. For vertices un−k+1, un−k+2, . . . , un−1 we can do this by Claim 4.1. Suppose
that after adding vertices un−k+1, un−k+2, . . . , un−1, Wi is the only set to which no
vertex has been added. The trick with un is that one of its neighbors is ui0 , which has
already been added to a set different from Wi. Thus un has at most (d−1) neighbors
in Wi and therefore the set Wi ∪ {un} still induces a (d− 1)-degenerate graph.

Case 2. i0 ≤ n − k. Let G′′ = G − Ui0 . By the minimality of G, V (G′′) has
an equitable partition (W1, . . . ,Wk) into sets inducing (d − 1)-degenerate graphs.
For i > i0, call a set W� 1 ≤ � ≤ k i-incompatible if all d − 1 neighbors of ui

different from ui0 are in W�. By Claim 4.1, for every i > i0, there could be at most
one i-incompatible set. However, a set W� may be i-incompatible for several i. By
Claim 4.1, ui0 can be added to any one of at least k − 1 sets among the Wi’s. Let
S = {Wi | 1 ≤ i ≤ k and ui0 can be added to Wi}. There exists some set W�′ ∈ S
such that W�′ is i-incompatible with at most (n− i0)/|S| values of i > i0. Since k ≥ 3,
|S| ≥ 2 and so (n − i0)/|S| ≤ (n − i0)/2. Now add ui0 to W�′ . Any ui, i > i0, for
which W�′ is i-incompatible, can be added to any set other than W�′ . Distribute such
ui’s among sets other than W�′ so that the sizes of new sets do not exceed s = n/k.
The remaining ui’s can be added to any set. Thus, we add these in an arbitrary way
so that the size of every Wl becomes s = n/k.

Algorithm. The algorithm implied by the above proof is sketched here; the
correctness of the algorithm follows from the proof. An equitable k-partition of a
given n-vertex graph G is constructed recursively. If G contains a vertex of degree
less than d or if n is not divisible by k, we construct a d-degenerate ordering of G
and, assuming that v is the last vertex in this ordering, construct an equitable k-
partition of G − v and then add v to one of the k sets. Otherwise, we construct a
special d-degenerate ordering U of G, referred to in the proof, as follows. Let L0

be the set of vertices in G with degree at most d. If L0 contains a pair of adjacent
vertices, say u and v, then U is obtained by constructing an arbitrary d-degenerate
ordering of G − u − v and appending u and v to this. Otherwise, let L1 be the set
of vertices in G − L0 with degree at most d. By definition, every vertex in L1 has a
neighbor in L0. Find a vertex v ∈ L1 with fewest neighbors in L0. Let S denote the
set of neighbors of v in L0. U is obtained by constructing an arbitrary d-degenerate
ordering of G − v − S and appending v followed by vertices in S to this. Once U is
constructed, we determine whether Case 1 (respectively, Case 2) of the proof applies
and accordingly construct an equitable k-partition of G′ = G−Un−k+1 (respectively,
G′′ = G − Ui0) and add vertices in Un−k+1 (respectively, Ui0) to the sets in the
partition. It is easy to see that O(n2) time suffices for the algorithm, though it seems
likely that with more care this can be implemented in subquadratic time.

Remark. In [17], a list analogue of equitable coloring was considered. A list
assignment L for a graph G assigns to each vertex v ∈ V (G) a set L(v) of allowable
colors. An L-coloring of G is a proper vertex coloring such that for every v ∈ V (G)
the color on v belongs to L(v). For example, when colors represent time periods and
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vertices are jobs, the list model incorporates the restriction that not all time periods
are suitable for all jobs. A list assignment L for G is k-uniform if |L(v)| = k for all
v ∈ V (G).

Given a k-uniform list assignment L for an n-vertex graph G, we say that G is
equitably L-colorable if G has an L-coloring of G such that every color has at most
�n/k� vertices. A graph G is equitably list k-colorable if G is equitably L-colorable
whenever L is a k-uniform list assignment for G.

Because some colors in the lists may occur rarely, one cannot ensure using each
color, and most of the techniques previously used for ordinary equitable colorings do
not work well for equitable list colorings. In particular, it is not absolutely clear how
to adapt the proofs of Theorems 1 and 2 for equitable colorings. However, the idea
of the proof of Theorem 3 could be adapted to prove its list version as follows.

Theorem 8. Let k ≥ 3 and d ≥ 2. Suppose that every vertex v of a d-degenerate
graph G on n vertices is given a list L(v) of k colors. Then the vertices of G can be
colored from their lists in such a way that every color class induces a (d−1)-degenerate
subgraph of G and contains at most �n/k� vertices.
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Abstract. In this paper, we examine noisy radio (broadcast) networks in which every bit
transmitted has a certain probability of being flipped. Each processor has some initial input bit, and
the goal is to compute a function of these input bits. In this model, we show a protocol to compute
any threshold function using only a linear number of transmissions.
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1. Introduction. The influence of noise (or faults) on the complexity of com-
putation has been studied in many contexts. In particular, researchers have been
interested in random noise. In a typical scenario, it is assumed that the outcome of
each operation is noisy, with some fixed probability p, and all the faults are indepen-
dent. Usually, if t is the number of operations performed by the computation, then
by repeating each operation O(log t) times and taking the majority of the results, one
can ensure a constant probability of error at the cost of O(t log t) operations. It is
desirable, however, to obtain a cost of O(t) (i.e., to increase the utilized resources
only by a constant factor compared to the nonnoisy case). In spite of the appar-
ent simplicity of this noise model, it turns out that overcoming such a noise, with
only a constant increase in the cost, may be nontrivial and in some cases impossi-
ble. Such a noise model has been studied in the contexts of circuits with noisy gates
(e.g., [Neu56, DO77a, DO77b, Pip85, RS91]), decision trees with noisy nodes (e.g.,
[FRPU90, RS91, EP98]), communication complexity (e.g., [Sch96, RS94]), and others
(e.g., [Tay68, Kuz73, Gác86, Spi96]).

In this paper, we consider noisy radio (broadcast) networks. The main feature of
radio networks is that information is communicated by using broadcast; i.e., when a
processor sends a message, all its neighbors receive it. There has been a considerable
amount of attention given to this model. The most important problem, studied in this
model, is the broadcast problem, where one processor wants to send some message
to all the processors in the network (e.g., [CK85, CK87, CW87, ABLP91, BGI92,
KM98, GM03] and references therein). In addition, general transformations have
been developed to translate protocols from the radio model to the standard point-to-
point network model [ABLP92]. All the above work assumes noise-free transmission.
We consider the case of random noise as described above. To simplify things, we
ignore the topology of the network and study the simplest network topology—a fully
connected radio network; this allows us to focus on the issue of efficiently overcoming
the noise.
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This question of noisy radio (broadcast) networks was already studied by Gallager
[Gal88]. More formally, Gallager considers the following setting: there are n processors
in the network P1, . . . , Pn. Each processor Pi starts the protocol with an input bit bi
and each processor’s goal is to compute the value of some function f(b1, . . . , bn). The
basic operation in this model is a broadcast operation, in which one processor Pi sends
a bit b and all processors hear it. We rule out encoding of information using silence
by assuming that a processor has to send a bit whenever it is its turn to broadcast.
Conceptually, one may view silence and nonsilence as encoding the values zero and
one, and therefore they too should be subject to noise. (See a detailed discussion in
section 2.2.)

Obviously, in the noise-free case, every function can be computed using n broad-
cast operations and n is also a lower bound for nondegenerate functions. In the noisy
setting, when Pi broadcasts a bit, every processor Pj receives this bit with probabil-
ity 1 − p and receives its complement, b̄, with probability p. The question is what
bounds can be proved in the noisy case. By the above arguments, O(n log n) broad-
cast operations suffice and Ω(n) broadcast operations are necessary. Gallager [Gal88]
proved that in fact every function can be computed using O(n log log n) broadcast op-
erations.1 It remained open whether one can achieve the desired O(n) upper bound.
In particular, Yao [Yao97] suggested concentrating on this open problem with re-
spect to the family of threshold functions as a special case, which already seems to be
difficult.2

In this paper, we answer this question in the affirmative for all threshold functions
(this includes as special cases the functions AND, OR, and MAJORITY ). Namely,
we present a protocol to compute any such function using O(n) broadcast operations.
The correctness proof of our protocol uses some probabilistic analysis that might be
useful in other settings as well. In particular, in our protocol the processors need not
have an a priori knowledge of p, the noise probability (although for simplifying the
presentation we start with the assumption that p is known; later, however, we show
how to get rid of this assumption and use any upper bound p′ < 1/2 on the true noise
rate p). Also, as is usually required from protocols that run in noisy environments,
the schedule in our protocol (i.e., the decision of which processor broadcasts next) is
oblivious; i.e., it does not depend on messages received during the execution of the
protocol (which are potentially noisy).

Subsequent work. Some relevant work was done after the conference version of
our paper appeared. This subsequent work shows results of a nature similar to those
presented in the conference version (i.e., computing simple functions on a radio net-
work using a linear, or almost linear, number of broadcasts) in more complicated noise
models. Feige and Kilian [FK00] consider an “adversarial” noise model. In this model,
a processor receives a broadcasted bit correctly with some probability 1−p. Then, the
adversary may choose to correct the values of corrupted bits, but may not corrupt the
values of correctly received bits. Very recently, Newman [New04] considered another
noise model (which is also more general than the one considered in this paper), where
the noise rate is not fixed. Instead, there is only a global upper bound p on the noise
rate. Then, for each broadcast and for each receiver, with some probability p∗ ≤ p,
the broadcast bit is received corrupted at the receiver (and, as usual, all errors are
independent).

1Gallager’s paper [Gal88] concentrates on the parity function; however, the protocol presented
there can in fact deal with any function.

2A threshold function is defined using a parameter k. It returns 1 if
∑n

i=1 bi ≥ k and 0 otherwise.
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Organization. In section 2, we provide some necessary background from proba-
bility theory together with a precise definition of the model. In section 3, we present
our protocol. We start with the slightly easier case, where the noise rate, p, is known
to all processors. Later, in section 4, we extend our solution to handle the case in
which p is unknown.

2. Preliminaries.

2.1. Probability theory. In this section, we provide some notation and facts
from probability theory. Most of these are standard but certain facts are less com-
monly used in computer science.

Denote by b(k;n, p) the probability of having exactly k successes in n independent
trials, where each trial has probability p for success. That is, for integers 0 ≤ k ≤ n
and a real number 0 ≤ p ≤ 1,

b(k;n, p)
�
=

(
n

k

)
pk(1 − p)n−k.

Denote by B(k;n, p) the probability of having at most k successes in n trials, where
each trial has probability p for success. That is,

B(k;n, p)
�
=

k∑
i=0

b(i;n, p) =

k∑
i=0

(
n

i

)
pi(1 − p)n−i.

For our proofs, we will need to estimate such binomial coefficients. Below are some
useful (standard) facts that will help us in doing so (see, e.g., [SF96, p. 169]). We
start with Stirling’s formula

n! =
√

2πn
(n
e

)n
(

1 + O

(
1

n

))
.

Let k be either � pn� or �pn� (i.e., k is approximately the expected number of suc-
cesses). Then,

b(k;n, p) =
1√

2πp(1 − p)n

(
1 + O

(
1

n

))
.(2.1)

Finally, note that b(k;n, p) is maximal for these values of k. That is, for any k ≤ �pn�,

b(k − 1;n, p) ≤ b(k;n, p),(2.2)

and similarly, for any k ≥ �pn�,

b(k + 1;n, p) ≤ b(k;n, p).

The following inequality, due to Chernoff [Che52], is a standard and useful fact.
Let X1, . . . , Xn be n independent 0-1 random variables with “success” probability p
(i.e., Pr[Xi = 1] = p). Then, the probability that

∑n
i=1 Xi deviates significantly from

its expected value (i.e., from pn) is small. More precisely, we have the following.
Lemma 2.1. Let X1, . . . , Xn be n independent, identically distributed (i.i.d.)

binary random variables, and let p = Pr[Xi = 1]i for all i. Then,

Pr

[
n∑

i=1

Xi < (p− λ)n

]
≤ e−λ2n/2p ≤ e−λ2n/2.
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Suppose that we have n independent 0-1 random variables X1, . . . , Xn with “suc-
cess” probabilities p1, . . . , pn (respectively). Obviously, the expected value of

∑n
i=1 Xi

is μ
�
=

∑n
i=1 pi. Consider all possible choices for p1, . . . , pn such that their sum is μ.

The following lemma, due to Hoeffding [Hof56], states that the probability of getting
k successes (for k, which is smaller than the expectation) is maximal if all the pi’s are
equal (i.e., each of them is μ/n). Formally, we have the following.

Lemma 2.2 (see [Hof56]). Let Xi (1 ≤ i ≤ n) be n independent, binary random
variables. Let μ = E[

∑n
i=1 Xi]. For any integer k ≤ μ− 1,

Pr

[
n∑

i=1

Xi ≤ k

]
≤ B(k;n, μ/n).

The above lemma allows us to transform situations in which we have several types
of random variables with different probabilities into a more “uniform” setting.

The median of a probability distribution is a number x such that Pr(X ≤ x) ≥ 1/2
and Pr[X ≥ x] ≥ 1/2. The following lemma [JS68] states that the median of a
binomial distribution is very close to its expectation.

Lemma 2.3 (see [JS68]). Let Xi be n i.i.d., binary random variables. Let μ =

E[
∑n

i=1 Xi]. The median of the distribution X
�
=

∑n
i=1 Xi is either �μ� or �μ�.

We also use the following property of b(k;n, p) that states that, when k is very
close to the expectation (i.e., to pn), then the value of b(k;n, p) is approximately
1/
√
n (for completeness, we prove this in the appendix).
Lemma 2.4. Let c ≥ 0 and p ∈ (0, 1) be constants. Then, for sufficiently large n,

we have

b(�np� − c;n, p) = Θ

(
1√
n

)
.

2.2. Model. The model consists of n processors P1, . . . , Pn that are commu-
nicating over a fully connected radio network (also called a single-hop network in
the context of radio networks). When a certain processor Pi broadcasts a bit, all
other processors (for simplicity, including itself) receive the bit corrupted by some
noise. Formally, denote by bi,k the kth bit submitted by Pi during the execution
of the protocol. When processor Pi broadcasts this bit bi,k, then each processor Pj

receives bi,k ⊕ ri,j,k, where the ri,j,k’s are i.i.d., binary random variables such that
Pr[ri,j,k = 1] = p < 1/2.

Initially, each processor Pi has an input bit bi. The goal of P1, . . . , Pn is to
evaluate some function f on their inputs (i.e., to compute the value f(b1, . . . , bn)).
We will be interested mainly in threshold functions, i.e., functions that depend only
on whether the number of ones in the input exceeds a given threshold. We say that
the protocol is correct if, with probability ≥ 1−ε, all the processors output the correct
value (where ε is any fixed constant, e.g., ε = 0.01).

We also require that the scheduling of the transmissions be oblivious; i.e., it can
be fixed ahead of time independently of the input (and of previous trasmissions).3

Whenever it is Pi’s turn to broadcast according to the schedule, it must send a bit

3This is a common requirement for communication in noisy environments. The reason behind
this requirement is that if the schedule depends on previous transmissions then, due to the noise,
different processors get different information, which can result in chaotic situations.
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and is not allowed to remain silent.4 We emphasize that, since our paper is about
proving upper bounds, putting extra requirements on the protocols only makes the
results stronger.

The communication complexity measure is the number of broadcast operations
performed (as a function of n). In particular, the obliviousness of the schedule im-
plies that the number of transmissions is the same for all inputs and in all possible
executions.

3. Computing the threshold function. In this section we present a protocol,
THRESHOLD(k, ε), which allows the n processors to decide whether the number of ones

in the input, �
�
=

∑n
i=1 bi, is at least as large as the “threshold parameter” k or not. If

� ≥ k, then the output should be 1 (i.e., “TRUE”); else (� < k), the output should be 0
(i.e., “FALSE”). We denote by ε the accuracy parameter. Recall that the correctness
condition requires that, with probability at least 1 − ε, all the processors have the
correct value. We first assume that p, the noise rate, is known to all processors. Later,
we show how to remove this assumption (section 4).

The basic idea is as follows: In the first round each processor Pi broadcasts its
bit bi for m2 times (repeating each broadcast for m2 = O(1) times is intended to
make sure that, for different values of �, the expected number of ones received is
significantly different); then Pi compares the number of ones that it received, Ai, to
θk which is essentially the expected number of ones Pi should have received, given
that the input contains exactly k ones. We denote by βi the result of this comparison
in processor Pi (i.e., βi = 1 iff Ai ≥ θk). In the next two steps, each Pi computes
γi, which is supposed to be the majority of the βi’s, and then computes δi, which is
supposed to be the majority of the γi’s and, as will be shown, is also supposed to be
identical to the value of the function. One of the difficulties, of course, is that when
the processors compute the majorities (i.e., the values γi, δi) the transmissions might,
again, be corrupted by noise.

Intuitively, the main claim that we will prove is that the computed values βi, γi, δi
are expected to be more and more “biased” toward the correct output. More precisely,
we start the protocol with a bias of the inputs to the correct output value that may
be as small as 1/n (when we compare the border cases � = k and � = k−1). In round
A, we set the parameters such that the bias of each processor increases to O(1/

√
n).

In other words, we expect at least n/2 +O(
√
n) of the processors to have the correct

output (i.e., to have βi, that is, identical to the desired output value). In round B,
we are taking the majority of n “noisy” votes βi; now we can boost the number of
processors that have the correct output (i.e., those processors for which γi is identical
to the desired output value) to n/2+Θ(n). Finally, in round C, since we already have
a clear majority with the correct value, using a Chernoff bound, with overwhelming
probability all the processors will have the correct output δi. Clearly, due to the
noise, each step in this description might fail. In our analysis, we compute the failure
probability of each round and sum them up in order to get the total probability of
failure. This total probability of failure should be less than the accuracy parameter, ε.

4There are two widely studied models of broadcast/radio networks (see, e.g., [Tan81] for a dis-
cussion including a technological justification for each of the models): (a) a model that allows a
processor to remain silent in its turn; and (b) a model that does not allow a processor to remain
silent in its turn. Our work, as well as that of [Gal88] and many others, refers to the latter model.
It is easy to see that in the former model all functions can be computed in O(n) broadcasts even in
the presence of noise (the reason is that in this model processors can encode information by silence
and silence is assumed to be unaffected by noise).
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The protocol THRESHOLD(k,ε) for processor Pi is as follows. (Recall that, for
convenience, each time that a bit is broadcasted to all processor, it is also received by
the sending processor.)
Initialize Given p, n, and k,

let θk = pnm2 + k(1 − 2p)m2 −m1,
where m1 = max{2 ln(3/ε)/(c22), 4(c2(1 − 2p))−2}
and m2 = �2m1/(1 − 2p)�
(and c2 is a constant to be fixed later).

Round A Broadcast input bi (to all processors) m2 times.
Receive m2n bits αi,j,m (for 1 ≤ j ≤ n, 1 ≤ m ≤ m2).
Let Ai =

∑
j,m αi,j,m.

Let βi = 1 iff Ai ≥ θk.
Round B Broadcast (to all processors) βi once.

Let γi be the majority of the bits received. (Break ties arbitrarily.)
Round C Broadcast (to all processors) γi once.
OUTPUT δi—the majority of the bits received. (Break ties arbitrarily.)

3.1. Analysis. The following theorem is obvious from the code of the protocol.
Theorem 3.1. THRESHOLD(k, ε) is an oblivious protocol that requires only O(n)

broadcast operations.
Our main task is to compute the error probability of the protocol. In the following

series of lemmata, we establish the desired property at the end of each round; later,
in Theorem 3.7, we combine these properties to establish that the error is bounded
by ε.

Lemma 3.2. Let � =
∑n

i=1 bi. Then,
(1) The random variables A1, . . . , An are i.i.d.;
(2) for all i, E[Ai] = m2pn + (1 − 2p)m2�; and
(3) for all i, |E[Ai] − θk| ≥ m1 − 1.
Proof. The random variables Ai are identically distributed since, for every pro-

cessor Pi, the value of Ai is defined in the same way (in particular, the noise rate is
the same for all messages and, for convenience, every processor sends its input bit to
itself as well). The independence of the Ai’s is by the independence of the noise in
our model.

As for the expectation, each of the � bits bj such that bj = 1 contributes to
the expectation 1 − p in each of the m2 times it is transmitted (since 1 − p is the
probability that a “1” bit is received as “1”), and each of the n− � bits bj such that
bj = 0 contributes to the expectation p in each of the m2 times it is transmitted (since
p is the probability that a “0” bit is received as “1”). Altogether

E[Ai] = m2(�(1 − p) + (n− �)p)

= m2(�(1 − 2p) + np)

= m2np + (1 − 2p)m2�.

The third inequality follows from the fact that for � = k (using the definition of
θk), we have E[Ai] − θk = m1 and that, for � = k − 1, we have (using the definition
of m2)

|E[Ai] − θk| = |m1 − (1 − 2p)m2| ≥ |m1 − (2m1 + 1)| = m1 − 1.

Note that we chose the value θk in the protocol in a way that it is at least m1 − 1
away from the expected value of Ai. The next lemma claims that by comparing Ai
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and θk we can know, with probability slightly better than 1/2, whether � (the number
of 1’s in the input) is at least k (the threshold). More precisely, for any given i, the
value βi, computed in round A, is correct (i.e., it is equal to the value of the function,
which is 1 iff � ≥ k) with a probability that is larger than 1/2 by at least Ω(

√
m1/n).

Lemma 3.3. Let � =
∑n

i=1 bi and p < 1/2 be a constant. For some constant c1
and for all i,

(1) if � ≥ k, then Pr[Ai > θk] > 1/2 + c1
√
m1/n; and

(2) if � < k, then Pr[Ai < θk] > 1/2 + c1
√
m1/n.

Proof. By Lemma 3.2, the expected value of Ai is μ� = pnm2 + (1− 2p)m2�. For
k ≤ �, we have θk < μk ≤ μ�, and, moreover, μ�− θk ≥ m1 − 1. For simplicity assume
that θk is not integral, i.e., �θk� �= �θk�. By Lemma 2.2,

Pr[Ai > θk] ≥ 1 −B(�θk� ;N, r�),(3.1)

where N = m2n and r� = μ�/N . (Note that r� = (1 − �/n)p + �/n(1 − p) is always
between p and 1 − p.) Unfortunately, it seems that using a standard Chernoff bound
(e.g., Lemma 2.1) would not give us much (since trying to distinguish “close” prob-
abilities, as is the case here, would fail if we use a small sample size). On the other
hand, it is clear that Pr[Ai > θk] is minimized when the difference between k and
� is minimized, therefore we can assume, without loss of generality, that � = k. In
addition, we need a refined analysis that bounds the individual binomial coefficients.
By Lemma 2.3, the median for the binomial distribution is either �μ�� or �μ��. We
can bound the desired probability,

B(�θk� ;N, rk) = B(�μk� − 1;N, rk) − (B(�μk� − 1;N, rk) −B(�θk� ;N, rk))(3.2)

≤ 1/2 −
�μk�−�θk	∑

j=1

b(�μk� − j;N, rk),(3.3)

where we use here the fact that B(�μk�−1;N, rk) ≤ 1/2 (by the definition of median).
Note that, by the definition of θk, we have �μk�−�θk� ≥ m1. By applying Lemma 2.4,
for each 1 ≤ j ≤ �μk� − �θk�, we get

b(�μk� − j;N, rk) = Θ

(
1√
N

)
.(3.4)

Therefore, by substituting (3.3) and (3.4) into (3.1), and by the choice of parameters
(N = m2n and m2 = Θ(m1)), we get

Pr[Ai > θk] ≥ 1 −
(

1

2
−m1 · Θ

(
1

√
m2n

))

=
1

2
+ c1

√
m1/n,

which completes the proof for the case when k ≤ �.
The proof for the case when k > � is similar.
Lemma 3.4. At the end of round A, with probability at least 1−e−c22m1/2, at least

n/2 + c2
√
m1n of the values βi are correct, where c2 = c1/2.

Proof. By Lemma 3.3, for each processor Pi, the probability that βi is
correct is at least 1/2 + c1

√
m1/n. Consider the probability that the number of

correct βi’s is smaller than n/2+ c2
√
nm1. By Lemma 2.1, this probability is at most

e−((c1−c2)
√

m1/n)2n/2 = e−c22m1/2.
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Lemma 3.5. Assume that, at the beginning of round B, there are at least n/2 +
c2
√
nm1 of the βi’s with the correct value. Then, at the end of round B, with proba-

bility at least 1 − e−q2n/2, at least (1 − 2q)n of the processors have the correct value,

where q = e−(c2(1−2p))2m1/2 < e−2, and m1 > 4(c2(1 − 2p))−2.
Proof. Each γi is a random variable, which is the majority of n random variables,

βi, corrupted by noise rate p. By the assumption of the lemma, at least n/2+c2
√
nm1

of the βi’s are correct and at most n/2−c2
√
nm1 are incorrect. We want to bound the

probability that a processor, after the noise is applied to the broadcast messages, gets
more incorrect values than correct. Using Lemma 2.2, we can bound the probability
of this event by B(n/2;n, r), where

r =

(
1

2
+ c2

√
m1

n

)
· (1 − p) +

(
1

2
− c2

√
m1

n

)
· p

=
1

2
+ c2(1 − 2p)

√
m1

n
.

Using Lemma 2.1, we can now bound this probability by e−(c2(1−2p)
√

m1/n)2n/2 =
e−(c2(1−2p))2m1/2 = q. Therefore, each γi has a probability at least 1 − q of being
correct. By the choice of m1, we ensure that q < e−2.

We need to bound the probability that the number of correct γi’s is significantly
smaller than (1−q)n (which is a lower bound on the expected number of correct γi’s).

Using again Lemma 2.1, with probability at least 1 − e−q2n/2, at least (1 − 2q)n of
the γi’s have the correct value.

Lemma 3.6. Given that at the beginning of round C at least (1 − 2q)n (for
q < e−2) of the bits γi have the correct value, then at the end of round C, with

probability 1 − ne−((1/2−2q)(1−2p))2n/2, all the processors output the correct value.
Proof. Again, using Lemma 2.2, we can bound the probability that a given output

δi is incorrect by B(n/2;n, r), where r is the average probability of success. That is,

r = (1 − 2q)(1 − p) + 2qp =
1

2
+

(
1

2
− 2q

)
(1 − 2p).

Using Lemma 2.1, we bound this probability by at most e−((1/2−2q)(1−2p))2n/2 for each
processor. Summing over all the processors, we get the desired bound.

We can now establish the correctness of the protocol with respect to the accuracy
parameter ε.

Theorem 3.7. Let � =
∑n

i=1 bi. For any k and ε and sufficiently large n,
when running the protocol THRESHOLD(k, ε) with probability 1− ε, if � ≥ k, then each
processor Pi has δi = 1, and if � < k, then each processor Pi has δi = 0.

Proof. By Lemma 3.4, after round A, with probability at least 1 − ε/3, at least
n/2 + c2

√
m1n of the values βi are correct (since m1 ≥ (2 ln(3/ε))/(c22)).

By Lemma 3.5, if the protocol does not fail in round A then, with probability
at least 1 − e−ne−4/2, we have at least (1 − 2e−2)n processors with the correct value.
Note that the error probability in this round goes to zero as n increases and therefore,
for sufficiently large n, the failure probability is less than ε/3.

By Lemma 3.6, if the protocol does not fail in rounds A and B then, with proba-
bility at least 1−ne−(1/2−2e−2)2n/2, all the processors output the correct value. Again,
if we choose n sufficiently large, then this will be less than ε/3. Hence, the total failure
probability is bounded by ε.
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The parameter m1 has two constraints, which are independent of n. The first
appears in Lemma 3.5 and requires that m1 > 4(c2(1−2p))−2. The second constraint,
from Lemma 3.4, requires that m1 ≥ (2 ln(3/ε))/(c22). Our choice of m1 meets both
bounds.

4. Unknown noise rate (p). In this section, we present a protocol for comput-
ing threshold functions even in the case where the noise rate is unknown. A simple
approach for transforming the algorithm of the previous section into the case where
the noise rate p is unknown is the following. First, estimate the noise rate p and
then use this estimate, p̂, in place of the real noise rate p. When considering the
algorithm, one can observe that an error of O(1/n) in p̂ would increase θk by only
a constant and hence will not matter. Unfortunately, the difference between p and
p̂ would be much larger (in all estimation methods that we know of that use only
O(n) broadcasts); this would cause this approach to fail. (For example, assume that
initially each processor sends a zero bit, and then the number of ones received by each
processor serves as an estimate of the error rate. For a single processor, the expected
error would be Θ(1/

√
n), which is much too large. If we could combine the error esti-

mates computed at all the processors, we would get a much better estimate because in
Θ(n) broadcasts there are Θ(n2) received bits. But we do not know how to compute
this with O(n) broadcasts.) An additional difficulty in applying this approach is that
we may lose the obliviousness of the protocol: we need all the processors to have
the same value for p̂, as it influences the value of m2 and hence the schedule of the
protocol.

Here we take a different approach to overcoming the unknown noise rate. In
fact, we never attempt to estimate the noise rate p; instead, we only assume that
the processors are given some upper bound p′ on the noise rate, i.e., a value p′ such
that p < p′ < 1/2. (Clearly, having such a bound is a more realistic assumption than
actually knowing the exact noise rate p; such a bound may sometimes be achieved by
empirical methods or just as an assumption on the environment in which the protocol
runs.) The idea is to replace the constant θk with a random variable Θk, such that
E[Θk] = θk, and to reprove Lemma 3.3 with Θk instead of θk. (We need to get a
nontrivial bound on the noise, p′, since a direct estimate of the noise rate would incur
an error of Ω(1/

√
n), as explained above. Also, our running time would depend on

the distance of the bound p′ from 1/2.)
First, we define the following round of broadcasts. Each of the k processors

P1, . . . , Pk sends a bit 1, and each of the n− k processors Pk+1, . . . , Pn sends a bit 0.
Each processor repeats this m2 times, where m2 is defined using p′ instead of p, i.e.,
m2 = �2m1/(1 − 2p′)� and m1 = (8 + ln 1/ε)/(c2(1 − 2p′))2. Processor Pi receives
m2n bits ηi,j and sets Θk,i =

∑m2n
j=1 ηi,j − m1 (each processor Pi has its own value

Θk,i; note that this value is only used by Pi in the computation of βi and has no
influence on the schedule).

We observe that the values Θk,i (for 1 ≤ i ≤ n) are i.i.d. In addition, the expec-
tation of Θk,i is

E[Θk,i] = [(1 − p)m2k + pm2(n− k)] −m1

= m2pn + m2k(1 − 2p) −m1

= θk.

It remains to show a lemma analogous to Lemma 3.3.
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Lemma 4.1. Let � =
∑

i bi and p < 1/2 be a constant. For some constant c3,

(1) if � ≥ k, then Pr[Ai > Θk,i] > 1/2 + c3
√
m1/n; and

(2) if � < k, then Pr[Ai < Θk,i] > 1/2 + c3
√
m1/n.

Proof. First, consider the case � ≥ k. Clearly, the probability that Ai is larger
than Θk,i is minimized when � = k. In this case, the random variables Ai and Θk,i+m1

are identical. To see this, we introduce a permutation σ of the processors as follows:
we match each processor Pi, for 1 ≤ i ≤ k, in the computation of Θk,i, to Pσ(i) which
is one of the k processors having input 1 in the computation of Ai. Similarly, we match
each processor Pi, for k + 1 ≤ i ≤ n, in the computation of Θk,i, to Pσ(i), which is
one of the remaining n−k processors (those that have input 0) in the computation of
Ai. Therefore, the random variables Ai and Θk,i +m1 are identical, and we conclude
that

Pr[Ai ≥ Θk,i + m1] ≥
1

2
.

For the proof we will use the identity

Pr[Ai > Θk,i] = Pr[Ai ≥ Θk,i + m1] + Pr[Θk,i + m1 > Ai > Θk,i].

The first term is at least half, as explained above, so now we are interested in bounding
the second term, which will give the bias that Ai has over Θk,i.

Consider pairs of messages seen by processor Pi: in each pair, one message is
from the computation of Θk,i and the other is the corresponding message from the
computation of Ai (according to σ). That is, for some m (1 ≤ m ≤ m2), each pair
is of the form αi,j,m and ηi,σ(j),m. For each pair, the messages αi,j,m and ηi,σ(j),m

are i.i.d. Therefore, given that αi,j,m �= ηi,σ(j),m, the probability that 1 = αi,j,m >
ηi,σ(j),m = 0 is exactly 1/2 (by symmetry). Also, the probability that αi,j,m �= ηi,σ(j),m

is 2p(1− p). Let t be the number of pairs in which αi,j,m �= ηi,σ(j),m. Then, it follows
that the expected value of t is 2p(1 − p)m2n. Using Lemma 2.1, with probability

1 − 2e−(p(1−p))2m2n/2 = 1 − e−c′n, we have t ∈ [p(1 − p)m2n, 3p(1 − p)m2n].

Let Δ
�
= |

∑
i,j,m αi,j,m−

∑
i,j,m ηi,j,m|. Given that there are exactly t pairs, where

elements of each pair are different, the probability that Δ ≤ m1 is O(m1/
√
t). As-

suming that t is in the range [p(1−p)m2n, 3p(1−p)m2n], we have that the probability
is at least

c4

√
(1 − 2p′)m1

p(1 − p)n
= c5

√
m1

n

for a constant p. Therefore,

Pr[Ai > Θk,i] = Pr[Ai ≥ Θk,i + m1] + Pr[Θk,i + m1 > Ai > Θk,i]

>
1

2
+ c5

√
m1

n
− e−c′n

=
1

2
+ c3

√
m1

n
.

This concludes the case that � ≥ k.
Now, assume that � < k. Again, the probability would be minimized when

� = k− 1. In this case we use σ to match only n− 1 processors with identical inputs,
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and we are left with a pair of processors: one sends 1 (in the computation of Θk,i)
and the other sends 0 (in the computation of Ai). Without loss of generality, and
to simplify the notation, we assume that processor P1, which broadcasts 1 in the
computation of Θk,i, has input 0 in the protocol and is not matched by σ. Let the
absolute difference between the sums of the η’s and the α’s in the n − 1 matched

processors be Δ, i.e., Δ
�
= |(

∑
ηi,j,m) − (

∑
αi,j,m)| (where each sum is over 1 ≤ i ≤

n, 2 ≤ j ≤ n, 1 ≤ m ≤ m2). We will bound our event using the identity

Pr[Ai < Θk,i] = Pr[Ai < Θk,i|Δ ≤ m1] · Pr[Δ ≤ m1]

+ Pr[Ai < Θk,i|Δ > m1] · Pr[Δ > m1],

where m1 = (1−2p′)m2/2. Intuitively, when Δ is less than m1, the pair of unmatched
processors (which, by the above assumption, is processor P1 in both cases) “decides”
the outcome.

Let t be the number of pairs in which αi,j,m and ηi,σ(j),m differ. Then, the

probability that Δ ≤ m1 is c6m1/
√
t for some constant c6. Again, with probability

1 − e−c′n, we have that t ∈ [m2np(1 − p), 4m2np(1 − p)]. Therefore,

Pr[Δ ≤ m1] ≥ c6
m1√
t
− e−c′n = c7

√
m1

n
= q

for a constant p.
Now consider the pair of unmatched processors. The expected difference in the

unmatched processors is at least (1 − 2p′)m2 ≥ 2m1. Therefore, the difference in the

unmatched processors is more than m1, with probability at least 1−2e−(1−2p′)2m2/2 >
2/3, for m1 > (ln 6)/(1 − 2p′). This implies that, given that Δ ≤ m1, the probability
that Θk,i > Ai is strictly bounded away from half. Namely,

Pr[Θk,i > Ai|Δ ≤ m1] ≥
2

3
.

Given that Δ > m1, it is equally likely to favor Ai or Θk,i. Since the bias in the
unmatched pair is in favor of Θk,i we have

Pr[Θk,i > Ai|Δ ≤ m1] ≥ 1/2.

To conclude,

Pr[Ai < Θk,i]

= Pr[Ai < Θk,i|Δ ≤ m1] · Pr[Δ ≤ m1] + Pr[Ai < Θk,i|Δ > m1] · Pr[Δ > m1]

≥ 2

3
q +

1

2
(1 − q)

=
1

2
+

q

6
.

This concludes the case k > �.
Once we have established Lemma 4.1, the proof is the same as before. Therefore,

we have established the following theorem.
Theorem 4.2. There exists a protocol with O(n) broadcasts that computes any

threshold function, even if the actual noise rate p is unknown and only an upper bound
p′ is available.
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Appendix. Proof of Lemma 2.4. By definition,

b(k;n, p) =
k + 1

n− k
· 1 − p

p
· b(k + 1;n, p).

For k = �pn� − j, we get

b(�pn� − j;n, p) =
�pn� − j + 1

n− �pn� + j
· 1 − p

p
· b(�pn� − j + 1;n, p)

≤ pn− j + 1 − p �pn� + pj − p

np− p �pn� + pj
· b(�pn� − j + 1;n, p)

=

(
1 − j + p− 1

np− p �pn� + pj

)
· b(�pn� − j + 1;n, p).

Also, using the Stirling formula (see (2.1)),

b(�pn� ;n, p) =
1 + O(1/n)√
2πp(1 − p)n

.

Therefore, by applying the above (and (2.2)) we get

b(�pn� − c;n, p) =

⎛
⎝ c∏

j=1

(
1 − j + p− 1

np− p �pn� + pj

)⎞⎠ · b(�pn� ;n, p)

=

(
1 − Θ(c2)

2p(1 − p)n
+ O

(
1

n2

))
1 + O(1/n)√
2πp(1 − p)n

= Θ

(
1√
n

)

for constants p and c.
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THE COFFMAN–GRAHAM ALGORITHM OPTIMALLY SOLVES
UET TASK SYSTEMS WITH OVERINTERVAL ORDERS∗
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Abstract. Scheduling of unit execution time (UET) task systems on parallel machines with
minimal schedule length is known to be NP-complete. The problem is polynomially solvable for some
special cases. For a fixed number of parallel machines m > 2, the complexity of the problem is still
open, but the problem becomes NP-hard if m is arbitrary. In this paper we characterize a new order
class that properly contains quasi-interval orders and we prove that the Coffman–Graham algorithm
yields optimal schedules for this new class on any number of machines. Finally, some extensions are
discussed for a larger order class and for scheduling in the presence of unit communication delays.
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1. Introduction. We consider a set X of n partially ordered unitary tasks rep-
resented by a partial order G = (X,≺), also called a precedence graph. Tasks must
be performed by a number of identical processors, which may vary in time without
violating the precedence constraints. It is required that if x ≺ y, then the execution
of task y cannot begin until the execution of x has been completed. At each time
slot the number of executed tasks cannot exceed the number of available processors,
referred to as a profile. In nonpreemptive scheduling problems, it is assumed that a
task, once started, is executed to completion. Our goal is to determine a schedule that
minimizes the time taken to finish all the tasks. Such a schedule is said to be optimal.
The maximum number of processors available at any time is called the breadth and is
denoted m. A profile is said to be straight if the number of available processors is the
same at any time.

Ullman shows in [17] that for general m this problem is NP-complete.
Polynomial algorithms have been developed for optimally solving some special

cases. In the case of a straight profile, Hu [10] gives an O(n) algorithm for scheduling
inforests and outforests. Also, for a straight profile and a fixed breadth m, Dolev and
Warmuth [6] give an O(n2m−2 log n) algorithm for opposing forests. Scheduling of
interval orders can be done in linear time [15, 12]. A generalization of this result to
quasi-interval orders is given in [13]. If the number of machines is limited to 2, this
problem is solvable for arbitrary precedence constraints [3, 12]. Also, there exists an
O(n2l) algorithm for precedence graphs of bounded width l [1, 16]. For an arbitrary
profile with a fixed breadth m, Dolev and Warmuth [6] provide an O(nm−1) algorithm
for scheduling level orders, an O(nm−1) algorithm for inforests, and an O(nm−1 log n)
algorithm for outforests. Also, Dolev and Warmuth prove in [5] that if the breadth of
the profile is fixed and the height of the precedence graph is bounded by a constant
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h, there exists an O(nh(m−1)+1) algorithm for finding an optimal schedule. With a
constant breadth m, the scheduling problem of an arbitrary precedence graph is still
open. In this paper we characterize a new order class that properly contains quasi-
interval orders and we prove that the Coffman–Graham (CG) algorithm yields optimal
schedules for this new order class on any number of machines. This increases our
knowledge about the precise location of the borderline between polynomial solvable
and NP-complete problems for task systems wider than interval orders.

The organization of the paper is as follows. In the next section we give some
notation and definitions. In section 3 we recall the definition of the most successors
first (MSF) schedules and some results related to interval orders and quasi-interval
orders. In section 4 we describe the CG algorithm and show that it is optimal for
quasi-interval orders. In section 5 we introduce a larger order class, called overinterval
orders, and show that the overinterval order recognition can be done in O(n3) time.
In section 6, we prove that the CG algorithm is optimal for the class of overinterval
orders. Finally, we discuss some extensions in the last section.

2. Notation and definitions. Let G = (X,≺) be a precedence graph. If there
is a directed path of one or more arcs from task x to task y, then x is a predecessor of y
and y is a successor of x. Γ+(x) (resp., Γ−(x)) denotes the set of all successors (resp.,
predecessors) of x. Two nodes x and y are incomparable, denoted by x||y, if neither
precedes the other. Otherwise they are said to be comparable. A subset V ⊂ X is
linearly ordered if V does not contain any incomparable tasks. The transitive closure
of G = (X,≺) is denoted by G = (X,≺). The graph, edges of which are exactly the
incomparable pairs of ≺ on X, is called the incomparability graph and is denoted by
Gc. A task y is an immediate successor (resp., immediate predecessor) of a task x iff
y is a successor (resp., predecessor) of x and there is no task z with x≺z≺y (resp.,
y≺z≺x). The height of a task x, denoted by h(x), is the length of the longest path
that starts at x. If a task has no successor, then h(x) = 0 and x is said to be terminal.
A task x is initial if Γ−(x) = ∅. We denote by h(G) the height of G, which is the
length of the longest path in G. Any precedence graph G can be partitioned into levels
i, i = h(G), . . . , 1: level i contains all tasks x that start paths of length i− 1 but not
i. A profile is a sequence of nonnegative integers specifying the number of identical
processors that are available in each time slot of length one. We shall interpret profile
M = (m1, . . . ,md), where d is its length, to mean that each slot i in [0, d) there are
mi processors available. A profile M is called straight if ∀i, j mi = mj . Otherwise, it
is called variable. The breadth of M is denoted m and is defined as m = maxi mi.

A schedule S assigns a starting time S(x) to each task x such that
1. ∀i |{x ∈ X such that S(x) = i− 1}| ≤ mi,
2. ∀(x, y) ∈ X ×X with x ≺ y, S(x) + 1 ≤ S(y).
Our goal is to find a schedule with a minimal length.
A schedule is full if at each time slot before the last one all the available processors

are busy. Note that any full schedule is necessarily optimal.

3. MSF schedules. The MSF algorithm is a list scheduling algorithm [7, 8].
The MSF algorithm first orders the tasks in a priority list LMSF in nonincreasing
order of their successor number. Then at each time slot, the first available processor
executes the first available task in LMSF .

A partial order (X,≺) is called an interval order iff its vertices i ∈ X can be
represented by intervals [ai, bi[ on the real line such that i ≺ j iff bi ≤ aj . Also, a
partial order (X,≺) is an interval order iff its transitive closure does not contain a
suborder isomorphic to the structure described in Figure 1 (see [15]). Then, a partial
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Fig. 2. Forbidden structures for quasi-interval orders.

order is an interval order iff ∀i, j ∈ X, Γ+(i) ⊂ Γ+(j) or Γ+(j) ⊂ Γ+(i).
A partial order (X,≺) is called a quasi-interval order (see [13]) iff its transitive

closure does not contain a suborder isomorphic to a structure of either type I, II, or
III, as described in Figure 2. We can state the following lemmas.

Lemma 1. Let G = (X,≺) be a precedence graph. Then the following statements
are evidently equivalent:

• G does not contain a substructure of type I from Figure 2.
• For each 4-tuple a, b, c, d ∈ X, with a≺c, b≺d, a||b, a||d, c||b, c||d, we have that

if e ∈ X − {a, b, c, d}, a≺e, e||b, and e||d, then c and e are comparable.
• For each pair i, j ∈ X, with both Γ+(i)−Γ+(j) and Γ+(j)−Γ+(i) nonempty,

we have that Γ+(i) − Γ+(j) is linearly ordered.
Lemma 2. Let G = (X,≺) be a precedence graph. Then the following statements

are evidently equivalent:
• G does not contain a substructure of type II from Figure 2.
• For each 4-tuple a, b, c, d ∈ X, with a≺c, b≺d, a||b, a||d, c||b, c||d, we have that

if e ∈ X − {a, b, c, d}, e≺c, e||a (which implies e �∈ Γ+(b), e �∈ Γ+(d)), then
e≺d.

• For each pair i, j ∈ X, with both Γ+(i)−Γ+(j) and Γ+(j)−Γ+(i) nonempty,
we have that for each x ∈ Γ+(i) − Γ+(j) and each z ∈ Γ+(j) − Γ+(i), if
y ∈ Γ−(x) and y||i, then y ∈ Γ−(z).

Lemma 3. Let G = (X,≺) be a precedence graph. Then the following statements
are evidently equivalent:

• G does not contain a substructure of type III from Figure 2.
• For each 4-tuple a, b, c, d ∈ X, with a≺c, b≺d, a||b, a||d, c||b, c||d, we have that

if e ∈ X − {a, b, c, d}, b≺e, c≺e (which implies d �∈ Γ+(e)), then d≺e.
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• For each pair i, j ∈ X, with both Γ+(i)−Γ+(j) and Γ+(j)−Γ+(i) nonempty,
we have that for each x ∈ Γ+(i) − Γ+(j) and each z ∈ Γ+(j) − Γ+(i), if
y ∈ Γ+(x) ∩ Γ+(j), then y ∈ Γ+(z).

The following characterization of quasi-interval orders is straightforward from
Lemmas 1, 2, and 3.

Proposition 1. Let G = (X,≺) be a precedence graph. Then the following
statements are equivalent:

(i) G is a quasi-interval order.
(ii) For each pair i, j ∈ X, with both Γ+(i)−Γ+(j) and Γ+(j)−Γ+(i) nonempty,

we have that
• Γ+(i) − Γ+(j) is linearly ordered;
• for each x ∈ Γ+(i) − Γ+(j) and each z ∈ Γ+(j) − Γ+(i), if y ∈ Γ−(x) and

y||i, then y ∈ Γ−(z);
• for each x ∈ Γ+(i)−Γ+(j) and each z ∈ Γ+(j)−Γ+(i), if y ∈ Γ+(x)∩Γ+(j),

then y ∈ Γ+(z).
The MSF algorithm optimally solves interval order problems (see [15, 12]). The

same result holds for quasi-interval orders (see [13]).

4. CG schedules. The CG algorithm (see [3, 11]) is a list scheduling algorithm,
where the priority list is obtained as follows. Its construction is based on the labels
α(i) assigned to the tasks i:

• Choose an arbitrary task x without successors and define α(x) = 1.
• Suppose, for some j ≤ n, that labels 1, . . . , j−1 have been assigned. For each

task x, all of whose immediate successors have already been labeled, we form
a decreasing sequence using the labels of the immediate successors of x. The
smallest such sequence (lexicographically) determines the task to be assigned
the label j. Then the list LCG used in the list scheduling is constructed in
a decreasing order of the labels of the tasks. Note that no two tasks get the
same label.

As mentioned before, the MSF algorithm solves quasi-interval order problems
optimally. Now, we will show that the CG algorithm solves quasi-interval order prob-
lems optimally as well. First, let us note that in the general case, neither schedule
dominates the other, as shown in Figure 3. For the precedence graph described in
Figure 3, we have LMSF = (5, 7, 6, 4, 3, 2, 1) and LCG = (7, 6, 5, 4, 3, 2, 1). Note that
in Figure 3, any task i is indexed by its CG label, α(i). The main result of this section
is based on the following two lemmas.

Lemma 4. Let G = (X,≺) be a precedence graph. Then ∀i, j ∈ X, if h(i) > h(j),
then α(i) > α(j).

Proof. The proof is by induction on the levels of G. It suffices to note that the
labels of all the tasks of any level l = h(G)− 1, . . . , 1 are assigned before labeling any
task on level l + 1.

Lemma 5. Let G = (X,≺) be a quasi-interval order. Then ∀i, j ∈ X, if |Γ+(i)| >
|Γ+(j)|, then α(i) > α(j).

Proof. Let G = (X,≺) be a quasi-interval order, and let i, j ∈ X such that
|Γ+(i)| > |Γ+(j)|. We will consider two cases.

Case 1. j ∈ Γ+(i). Then h(i) > h(j) and, according to Lemma 4, we have
α(i) > α(j).

Case 2. i||j. According to Lemma 1 and, since |Γ+(i)| > |Γ+(j)|, we consider two
subcases.
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Fig. 3. CG and MSF schedules: for general precedence graphs neither dominates the other.

Case 2.1. Γ+(j) ⊂ Γ+(i). So using the definition of the CG labels, we get
α(i) > α(j).

Case 2.2. Γ+(i) − Γ+(j) and Γ+(j) − Γ+(i) are nonempty and linearly ordered.
So since |Γ+(i)| > |Γ+(j)|, we have Γ+(i) − Γ+(j) = {i1 . . . is} and Γ+(j) − Γ+(i) =
{j1 . . . jr} with i1 ≺ · · · ≺ is, j1 ≺ · · · ≺ jr, and s > r. First, we will show that
Γ+(i) ∩ Γ+(j) ⊂ Γ+(jr) ∩ Γ+(is). Indeed, let k ∈ Γ+(i) ∩ Γ+(j).

• k ∈ Γ+(jr). Otherwise, since jr �∈ Γ+(i), we have k||jr. So we would have
the following for all q ∈ [1 . . . s]:

– iq �∈ Γ+(k); otherwise we would have iq ∈ Γ+(j).
– k �∈ Γ+(iq) ∀q ∈ [1 . . . s]; otherwise we would have a suborder iso-

morphic to a forbidden structure for quasi-interval orders of type III
({i, j, iq, jr, k}, {i≺iq, iq≺k, j≺k, j≺jr}).

Hence,∀q ∈ [1 . . . s], we have k||iq. Therefore, we would have a suborder
isomorphic to a forbidden structure for quasi-interval orders of type I ({j, is−1,
k, jr, is}, {j≺k, j≺jr, is−1≺is}).

• k ∈ Γ+(is). Otherwise, since is �∈ Γ+(j), we have k||is. So we would have a
suborder isomorphic to a forbidden structure for quasi-interval orders of type
III ({j, i, jr, is, k}, {j≺jr, jr≺k, i≺k, i≺is}).

Now Γ+(i) ∩ Γ+(j) ⊂ Γ+(jr) ∩ Γ+(is) and s > r imply that h(i) > h(j) and,
according to Lemma 4, we have α(i) > α(j).

From Lemma 5, we deduce that for quasi-interval orders, any CG schedule is an
MSF schedule. Now, as the MSF algorithm is optimal for quasi-interval orders, the
CG algorithm is optimal for quasi-interval orders, too. Hence, the following theorem
holds.

Theorem 1. The CG algorithm optimally solves quasi-interval order problems
with arbitrary profiles.

The class of quasi-interval orders is a generalization of the class of interval orders.
To study the behavior of the CG algorithm for precedence graphs of a larger order
class than the class of quasi-interval orders, we consider the precedence graph G,
described in Figure 4. G does not contain a suborder isomorphic to the forbidden
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structure of type I or II for quasi-interval orders but G is not a quasi-interval order.
We note that the MSF schedule is not optimal for G (see Figure 4.b) whereas the CG
schedule is (see Figure 4.c).

5. A new order class (overinterval orders). In this section, we introduce
a new order class, the overinterval order class. A partial order G = (X,≺) is an
overinterval order iff its transitive closure does not contain a suborder isomorphic to a
structure of type I or II described in Figure 2. Overinterval orders are a generalization
of quasi-interval orders. We give a characterization of this new order class and a
recognition algorithm of overinterval orders that can be implemented in O(n3). First,
we state a new characterization of precedence graphs not containing a substructure
of type II.

Lemma 6. Let G = (X,≺) be a precedence graph. Then the following statements
are evidently equivalent:

• G does not contain a substructure of type II from Figure 2.
• For each 4-tuple a, b, c, d ∈ X, with a≺c, b≺d, a||b, a||d, c||b, c||d, we have that

if e ∈ X − {a, b, c, d}, e≺c, e||b, and e||d, then a and e are comparable.
• For each pair i, j ∈ X, with both Γ−(i)−Γ−(j) and Γ−(j)−Γ−(i) nonempty,

we have that Γ−(i) − Γ−(j) is linearly ordered.
The following proposition is straightforward from Lemmas 1 and 6.
Proposition 2. Let G = (X,≺) be a precedence graph. G is an overinterval

order iff we have
• for each pair i, j ∈ X, with both Γ+(i)−Γ+(j) and Γ+(j)−Γ+(i) nonempty,

Γ+(i) − Γ+(j) is linearly ordered;
• for each pair i, j ∈ X, with both Γ−(i)−Γ−(j) and Γ−(j)−Γ−(i) nonempty,

Γ−(i) − Γ−(j) is linearly ordered.
Before describing our recognition algorithm for overinterval orders and proving

its correctness, we give this technical lemma.
Lemma 7. Let G = (X,≺) be a precedence graph and {i1, . . . , ik} ⊂ X. Then the

following statements are equivalent:
(1) {i1, . . . , ik} is linearly ordered and |Γ+(i1)| ≥ . . . ≥ |Γ+(ik)|.
(2) i1≺ · · ·≺ik.
Proof. By induction on k.
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Given that we have a characterization for overinterval orders by forbidden struc-
tures, the recognition of an overinterval order is polynomial. Indeed, it suffices to
check whether all 5-element induced suborders are isomorphic to a structure of type
I or II described in Figure 2. Below, we describe a recognition algorithm for over-
interval orders that can be implemented to run in O(n3) time. The correctness of
this algorithm follows from Proposition 2, which states that a precedence graph is
not an overinterval order iff there exist (i, j) ∈ X × X such that at least one of the
sets Γ+(i) − Γ+(j) and Γ+(j) − Γ+(i) is not linearly ordered (whereas they are both
nonempty) or at least one of the sets Γ−(i)−Γ−(j) and Γ−(j)−Γ−(i) is not linearly
ordered (whereas they are both nonempty).

Algorithm 1 Overinterval order recognition.

Require: A precedence graph G = (X,≺)
Ensure: A variable FLAG which is 0 if G is an overinterval order and 1 otherwise

FLAG := 0;
Compute I := {(i, j) ∈ X ×X such that i||j};
while (I �= ∅) and (FLAG = 0) do

Let (i, j) ∈ I; I := I − {(i, j)};
Compute Γ+(i) − Γ+(j), Γ+(j) − Γ+(i), Γ−(i) − Γ−(j), and Γ−(j) − Γ−(i);
if Γ+(i) − Γ+(j) �= ∅ and Γ+(j) − Γ+(i) �= ∅ then

if Γ+(i) − Γ+(j) is not linearly ordered, then FLAG := 1; return; end if
if Γ+(j) − Γ+(i) is not linearly ordered, then FLAG := 1; return; end if

end if
if Γ−(i) − Γ−(j) �= ∅ and Γ−(j) − Γ−(i) �= ∅, then

if Γ−(i) − Γ−(j) is not linearly ordered, then FLAG := 1; return; end if
if Γ−(j) − Γ−(i) is not linearly ordered, then FLAG := 1; return; end if

end if
end while.

Now, we will specify an appropriate data structure. The adjacency sets are stored
using adjacency arrays instead of adjacency lists. For any task i ∈ X, we consider
an array ai = (ai1, . . . , a

i
n) with aik = 1 if k ∈ Γ+(i) and 0 otherwise. The storage

requirement for this data structure can be accomplished in O(n2) time with O(n2)
space. First, we preprocess the tasks by computing |Γ+(i)| for each task i. This
can be done in O(n2) time. Then we relabel the tasks so that |Γ+(i)| ≥ |Γ+(i + 1)|.
Now note that k ∈ Γ+(i) − Γ+(j) = {i1, . . . , iq} iff aik − ajk = 1. So, Γ+(i) − Γ+(j)
can be computed in O(n) time for any i, j ∈ X. Moreover, according to Lemma 7,
Γ+(i) − Γ+(j) is linearly ordered iff i1≺ · · ·≺iq. This can be checked in O(n) time.
Now, the loop “while” repeats at most O(n2) times. This leads to the following
theorem.

Theorem 2. The recognition of overinterval orders can be done in O(n3) time
and O(n2) space.

6. Overinterval orders and CG schedules. In this section, we will establish
that CG schedules are optimal for overinterval orders and any arbitrary profile. In
order to introduce this result, we need some technical lemmas.

Lemma 8. Let M be a profile of breadth 2 and G = (X,≺) a precedence graph,
where X = {I0, . . . , Ik} ∪ {J0, . . . , Jk} is such that

• (I0, . . . , Ik) and (J0, . . . , Jk) are two paths of G,
• ∀i ∈ [0, k] Ii||Ji,
• ∀i ∈ [1, k] Ji−1||Ii.



116 MARC CHARDON AND AZIZ MOUKRIM

If there exists a full schedule S∗ for G and M such that ∀i ∈ [1, k], S∗(Ji) ≤
S∗(Ii−1) and S∗(J0) < S∗(I0), then the list schedule S′ with the priority list L =
(I0, J0, . . . Ik, Jk) is optimal for G and M. Moreover, we have ∀i ∈ [0, k], S∗(Ji) ≤
S′(Ii) ≤ S′(Ji) ≤ S∗(Ii).

Proof. Let S′ be the list schedule with the priority list L = (I0, J0, . . . , Ik, Jk) for
the precedence graph G and the profile M .

Since ∀i ∈ [0, k] we have Ii||Ji and ∀i ∈ [1, k] we have Ji−1||Ii, we can conclude
that the order induced by L is a topological order (this means that if x, y ∈ X with
x≺y, then x appears before y in the list L) and (I0, J0, . . . , Ik, Jk) is a path in the
incomparability graph Gc. It follows that, as the breadth of the profile is two, S′ could
be built by placing the tasks of X in the profile M according to the order specified in
L. So S′ is a full schedule. Now we will show that

(1) ∀i ∈ [0, k], S′(Ji) ≤ S∗(Ii).
(2) ∀i ∈ [0, k], S∗(Ji) ≤ S′(Ii).
Proof of (1). If k = 0, then X = {I0, J0} and S′(J0) = S∗(I0). If k > 0, then

S∗(J1) ≤ S∗(I0). Therefore there exists at least one task which is executed before I0
in S∗, whereas at most one task (I0) is executed before J0 in S′. So S′(J0) ≤ S∗(I0).
Now, let i ∈ [1, k]. S∗(Ji) ≤ S∗(Ii−1) < S∗(Ii). Therefore at least 2i + 1 tasks
({J0, . . . , Ji}∪{I0, . . . , Ii−1}) are executed in S∗ before Ii, whereas at most 2i+1 tasks
({J0, . . . , Ji−1}∪{I0, . . . , Ii}) are executed in S′ before Ji. Therefore S′(Ji) ≤ S∗(Ii).

Proof of (2). If k = 0, then X = {I0, J0} and S∗(J0) = S′(I0). If k > 0, then
S∗(J0) < S∗(I0). Therefore S∗(J0) = S′(I0). Now, let i ∈ [1, k]. S∗(Ji) ≤ S∗(Ii−1).
Therefore at most 2i − 1 tasks ({J0, . . . , Ji−1} ∪ {I0, . . . , Ii−2}) are executed in S∗

before Ji, whereas at least 2i− 1 tasks ({J0, . . . , Ji−2} ∪ {I0, . . . , Ii−1}) are executed
in S′ before Ii. So S∗(Ji) ≤ S′(Ii).

Since S′ is a list schedule with the priority list L = (I0, J0, . . . , Ik, Jk) and the
order induced by L is a topological order (if x≺y, then x appears before y in L), we
have S′(Ii) ≤ S′(Ji). Hence, from (1) and (2), we have the result S∗(Ji) ≤ S′(Ii) ≤
S′(Ji) ≤ S∗(Ii). This completes the proof.

In the rest of this section, we consider an overinterval order G = (X,≺) and an
arbitrary profile M . Let I0 and J0 be two initial tasks of G such that α(J0) < α(I0).
Let S∗ be a schedule of G, which fits the profile M such that S∗(J0) = 0, S∗(I0) > 0.
We define the set C(I0, J0, S

∗) as a subset of nonnegative integers in the following
way: k ∈ C(I0, J0, S

∗) iff there exist two paths (I0, . . . , Ik) and (J0, . . . , Jk) such that
∀i ∈ [1, k]

• S∗(Ji) ≤ S∗(Ii−1);
• α(Ji) < α(Ii);
• S∗(T ) > S∗(Ii−1) ∀T ∈ Γ+(Ji−1) − Γ+(Ji);
• S∗(T ′) < S∗(Ji) ∀T ′ ∈ Γ−(Ii) − Γ−(Ii−1);
• Ii �∈ Γ+(Ji−1).

Note that 0 ∈ C(I0, J0, S
∗). So, C(I0, J0, S

∗) �= ∅. Moreover, note that ∀k ∈
C(I0, J0, S

∗), we have k ≤ |X|, and therefore k∗ := max{k ≥ 0, k ∈ C(I0, J0, S
∗)}

exists.
Lemma 9.

(1) ∀i ∈ [1, k∗] we have Ji−1||Ii.
(2) ∀i ∈ [0, k∗] we have Ji||Ii.
Proof. (1) Let i ∈ [1, k∗], Ii �∈ Γ+(Ji−1). Moreover, S∗(Ji) ≤ S∗(Ii−1) implies

that S∗(Ji−1) < S∗(Ji) ≤ S∗(Ii−1) < S∗(Ii). So S∗(Ji−1) < S∗(Ii), and therefore
Ji−1 �∈ Γ+(Ii). Hence, Ji−1||Ii.
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(2) As I0 and J0 are two initial tasks, we have I0||J0.
Let i ∈ [1, k∗]. As α(Ji) < α(Ii), we have Ii �∈ Γ+(Ji). Moreover, S∗(Ji) ≤

S∗(Ii−1) implies that S∗(Ji) ≤ S∗(Ii−1) < S∗(Ii), and therefore Ji �∈ Γ+(Ii). Hence,
Ji||Ii. This completes the proof.

Lemma 10. If Γ+(Jk∗) �= ∅, then ∀J ∈ Γ+(Jk∗), S∗(J) > S∗(Ik∗).
Proof. Assume that Γ+(Jk∗) �= ∅ and that {J ∈ Γ+(Jk∗)/S∗(J) ≤ S∗(Ik∗)} �= ∅.

So, let U ∈ Γ+(Jk∗) such that S∗(U) = min{S∗(J)/J ∈ Γ+(Jk∗) and S∗(J) ≤
S∗(Ik∗)}. We will show that there exists V ∈ Γ+(Ik∗) − Γ+(Jk∗) such that

(i) S∗(V ) = min{S∗(I)/I ∈ Γ+(Ik∗) − Γ+(Jk∗) and α(I) > α(U)}.
(ii) ∀T ∈ Γ+(Jk∗) − Γ+(U), S∗(T ) > S∗(Ik∗).
(iii) ∀T ′ ∈ Γ−(V ) − Γ−(Ik∗), S∗(T ′) < S∗(U).
Proof of (i). We show first that U ||Ik∗ .
If U≺Ik∗ , then Jk∗≺U≺Ik∗ . This contradicts the result of Lemma 9 (Jk∗ ||Ik∗).

As S∗(U) ≤ S∗(Ik∗), U �∈ Γ+(Ik∗). So U ||Ik∗ .
Now α(Ik∗) > α(Jk∗), Jk∗≺U , and U ||Ik∗ . So by the definition of CG labels, we

have {I ∈ Γ+(Ik∗) − Γ+(Jk∗) with α(I) > α(U)} �= ∅. So ∃V ∈ Γ+(Ik∗) − Γ+(Jk∗)
such that S∗(V ) = min{S∗(I)/I ∈ Γ+(Ik∗) − Γ+(Jk∗) and α(I) > α(U)}.

Proof of (ii). Assume that there exists T ∈ Γ+(Jk∗) − Γ+(U) such that S∗(T ) ≤
S∗(Ik∗). Therefore,

• T ∈ Γ+(Jk∗)−Γ+(Ik∗): by definition of T , T ∈ Γ+(Jk∗). Moreover, S∗(T ) ≤
S∗(Ik∗) implies that T �∈ Γ+(Ik∗). Hence, T ∈ Γ+(Jk∗) − Γ+(Ik∗).

• U ∈ Γ+(Jk∗)−Γ+(Ik∗): by definition of U , U ∈ Γ+(Jk∗). Moreover, S∗(U) ≤
S∗(Ik∗) implies that U �∈ Γ+(Ik∗). Hence, U ∈ Γ+(Jk∗) − Γ+(Ik∗).

• V ∈ Γ+(Ik∗) − Γ+(Jk∗): that follows from (i).
• T ||U : As T ∈ Γ+(Jk∗) − Γ+(U), T �∈ Γ+(U). Moreover, U �∈ Γ+(T ). Oth-

erwise we would have Jk∗≺T≺U , and therefore S∗(T ) < S∗(U) ≤ S∗(Ik∗).
Then S∗(T ) < S∗(U) would contradict the definition of S∗(U) = min{S∗(J)/J
∈ Γ+(Jk∗) and S∗(J) ≤ S(Ik∗)}. Hence, T ||U .

Therefore, Γ+(Ik∗)−Γ+(Jk∗) �= ∅, Γ+(Jk∗)−Γ+(Ik∗) �= ∅, and Γ+(Jk∗)−Γ+(Ik∗)
is not linearly ordered. This contradicts the characterization of overinterval orders
(see Proposition 2).

Proof of (iii). Assume that there exists T ′ ∈ Γ−(V )−Γ−(Ik∗) such that S∗(T ′) ≥
S∗(U). Therefore, as in the proof of (ii), one can verify that

• Ik∗ ∈ Γ−(V ) − Γ−(U).
• T ′ ∈ Γ−(V ) − Γ−(U).
• Jk∗ ∈ Γ−(U) − Γ−(V ).
• T ′||Ik∗ .

Therefore, Γ−(U) − Γ−(V ) �= ∅, Γ−(V ) − Γ−(U) �= ∅, and Γ−(V ) − Γ−(U) is
not linearly ordered. This contradicts the characterization of overinterval orders (see
Proposition 2).

From (i), (ii), and (iii), we have
• Ik∗≺V .
• Jk∗≺U .
• S∗(U) ≤ S∗(Ik∗).
• α(U) < α(V ).
• S∗(T ) > S∗(Ik∗) ∀T ∈ Γ+(Jk∗) − Γ+(U).
• S∗(T ′) < S∗(U) ∀T ′ ∈ Γ−(V ) − Γ−(Ik∗).
• V �∈ Γ+(Jk∗).

It follows that if we assume {J ∈ Γ+(Jk∗)/S∗(J) ≤ S∗(Ik∗)} �= ∅, we would
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have a contradiction with k∗ = max{k ≥ 0, k ∈ C(I0, J0, S
∗)}. This completes the

proof.
Now, we give our main result.
Theorem 3. The CG algorithm is optimal for overinterval orders and arbitrary

profiles.
Proof. Assume that for some overinterval order G = (X,≺), the CG algorithm

is not optimal, with X being as small as possible. Let SCG be a CG schedule and
S∗ be an optimal schedule. For each time instant t, we define OCG(t) and O∗(t) as
OCG(t) = {x ∈ X/SCG(x) = t} and O∗(t) = {x ∈ X/S∗(x) = t}.

We will show that S∗ can be transformed into another optimal schedule S′ such
that O′(0) = OCG(0), with O′(t) = {x ∈ X/S′(x) = t}. This would contradict the
minimality of G. First, we will show that S∗ can be chosen such that |O∗(0)| =
|OCG(0)| by considering two cases.

Case 1. |O∗(0)| < |OCG(0)|. So, S∗ has an idle processor at time t = 0 and
there exists a task I ∈ OCG(0) −O∗(0). By executing I at time t = 0 in S∗, we also
obtain an optimal schedule. Repeating this operation |OCG(0)−O∗(0)| times, we can
assume that |O∗(0)| = |OCG(0)|.

Case 2. |O∗(0)| > |OCG(0)|. So there exists an available task I and an idle
processor at time t = 0 in SCG. This contradicts the CG algorithm scheme.

Hence, we can assume that |O∗(0)| = |OCG(0)|. If O∗(0) �= OCG(0), then there
exist I0, J0 ∈ X such that I0||J0, S

∗(J0) = 0, S∗(I0) > 0, SCG(I0) = 0, SCG(J0) > 0,
and α(I0) > α(J0). Now, let k∗ = max{k ≥ 0, k ∈ C(I0, J0, S

∗)}. According to
Lemma 9, we have ∀i ∈ [0, k∗]: Ii||Ji and ∀i ∈ [1, k] Ji−1||Ii.

Moreover, as (I0, . . . , Ik∗) and (J0, . . . , Jk∗) are two paths, at each time instant
at most two tasks of the set {I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗} are executed. Without
considering the tasks of the set X − ({I0, . . . , Ik∗}∪ {J0, . . . , Jk∗}) and by proceeding
as in Lemma 8, we replace the tasks of {I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗} by using the list
schedule with the priority list L = (I0, J0, . . . , Ik∗ , Jk∗). We denote the new schedule
by S′. Note that it suffices to prove that S′ is feasible in order to conclude that it is
optimal.

According to Lemma 8, ∀i ∈ [0, k∗], S∗(Ji) ≤ S′(Ii) ≤ S′(Ji) ≤ S∗(Ii). So,
∀i ∈ [0, k∗], S∗(Ji) ≤ S′(Ji) and S′(Ii) ≤ S∗(Ii). Then, to check that S′ is feasible, it
suffices to show that ∀i ∈ [0, k∗],

(i) ∀T ∈ Γ+(Ji) − ({I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗}), S′(Ji) < S′(T )(= S∗(T )).
(ii) ∀U ∈ Γ−(Ii) − ({I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗}), S′(U)(= S∗(U)) < S′(Ii).
(i) Let i ∈ [0, k∗] and T ∈ Γ+(Ji) − ({I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗}). We will

consider the following two cases:
• Jk∗≺T . So according to Lemma 10, S∗(T ) > S∗(Ik∗). As S∗(Ik∗) ≥

S′(Jk∗), S∗(T ) > S′(Jk∗).
• ∃i0 ≥ i such that T ∈ Γ+(Ji0) − Γ+(Ji0+1). So, according to the def-

inition of C(I0, J0, S
∗), we have S∗(T ) > S∗(Ii0). Now, according to

Lemma 8, S∗(Ii0) ≥ S′(Ji0). So S∗(T ) > S′(Ji0) ≥ S′(Ji) (i ≤ i0).
(ii) Let i ∈ [0, k∗] and U ∈ Γ−(Ii) − ({I0, . . . , Ik∗} ∪ {J0, . . . , Jk∗}). As Γ−(I0) =

∅, there exists i0 ≤ i such that U ∈ Γ−(Ii0) − Γ−(Ii0−1). According to
the definition of C(I0, J0, S

∗), we have S∗(U) < S∗(Ji0), and according to
Lemma 8, S∗(Ji0) ≤ S′(Ii0). So, S∗(U) < S′(Ii0) ≤ S′(Ii) (i0 ≤ i).

Job I0 is now in O∗(0) too, since I0 has taken the place of J0 in the modified
optimal schedule S∗. Repeating the transformation used in the proof of Lemma 8
|O∗(0) − OCG(0)| times, we obtain another optimal schedule S′ such that O′(0) =
OCG(0) and have a contradiction. This completes the proof.
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Fig. 5.

7. Discussion. In this paper, we have introduced the class of overinterval orders.
Next, we have shown that the CG algorithm solves the nonpreemptive scheduling
problem of UET task systems with overinterval orders on arbitrary profiles. A natural
extension of this work is to study the behavior of the CG algorithm for larger order
classes than overinterval orders. Unfortunately, as soon as a precedence graph contains
a suborder isomorphic to a forbidden structure for overinterval orders of type I (see
Figure 3) or of type II (see Figure 5), the CG algorithm does not ensure obtaining
optimal schedules.

Another interesting extension is the scheduling problem of UET task systems in
the presence of unit communication delays, also called UECT task systems (see [2]).
In this case, a precedence constraint i ≺ j states that a data transfer must occur after
the end of task i and before the beginning of task j. If i and j are not assigned to the
same processor, a delay of length cij = 1 is needed to forward the data. A schedule
S assigns a starting time S(i) and a processor π(i) ∈ {1, . . . ,m} to each task i such
that

1. ∀i, j ∈ X, if π(i) = π(j), then S(i) + 1 ≤ S(j) or S(j) + 1 ≤ S(i).
2. ∀(i, j) ∈ X × X with i ≺ j, if π(i) = π(j), then S(i) + 1 ≤ S(j) else

S(i) + 2 ≤ S(j).
Our goal is to find a schedule that minimizes the time taken to finish all the tasks.

We have proven that the MSF algorithm optimally solves UECT task systems with
quasi-interval orders (see [14]). This no longer remains true for overinterval orders. A
counterexample is illustrated in Figure 6, where LMSF = (1, 2, 3, 4, 5, 6, 7, 8). Hanen
and Munier (see [9]) have studied the behavior of the CG algorithm for the UECT
problem. The task system considered in Figure 7 shows that the CG algorithm does
not always lead to an optimal solution for UECT task systems with overinterval orders
(LCG = (8, 7, 6, 5, 4, 3, 2, 1)).
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TIGHTER BOUNDS FOR GRAPH STEINER TREE
APPROXIMATION∗

GABRIEL ROBINS† AND ALEXANDER ZELIKOVSKY‡

Abstract. The classical Steiner tree problem in weighted graphs seeks a minimum weight con-
nected subgraph containing a given subset of the vertices (terminals). We present a new polynomial-
time heuristic that achieves a best-known approximation ratio of 1 + ln 3

2
≈ 1.55 for general graphs

and best-known approximation ratios of ≈ 1.28 for both quasi-bipartite graphs (i.e., where no two
nonterminals are adjacent) and complete graphs with edge weights 1 and 2. Our method is consid-
erably simpler and easier to implement than previous approaches. We also prove the first known
nontrivial performance bound (1.5 · OPT) for the iterated 1-Steiner heuristic of Kahng and Robins
in quasi-bipartite graphs.

Key words. Steiner trees, approximation algorithms, graph Steiner problem, iterated 1-Steiner

AMS subject classifications. 05C05, 05C85

DOI. 10.1137/S0895480101393155

1. Introduction. Given an arbitrary weighted graph with a distinguished vertex
subset, the Steiner tree problem seeks a minimum-cost subtree spanning the distin-
guished vertices. Steiner trees are important in various applications such as VLSI
routing [14], wirelength estimation [7], phylogenetic tree reconstruction in biology
[11], and network routing [12]. The Steiner tree problem is NP -hard, even in the
Euclidean or rectilinear metrics [8], and thus efficient approximation heuristics are
sought instead of exact algorithms.

Arora established that Euclidean and rectilinear minimum-cost Steiner trees can
be efficiently approximated arbitrarily close to optimal [2]. On the other hand, unless
P = NP , the Steiner tree problem in general graphs cannot be approximated within
a factor of 1 + ε for sufficiently small ε > 0 [5]. For arbitrary weighted graphs, the
best Steiner approximation ratio achievable within polynomial time was gradually
improved from 2 to 1.59 in a series of papers [21, 22, 3, 23, 18, 15, 10].

In this paper we address the graph Steiner tree problem by presenting a polynomial-
time approximation scheme with a best-known performance ratio approaching 1 +
ln 3
2 ≈ 1.55. This improves upon the previously best-known ratio of 1.59 due to

Hougardy and Prömel [10]. We apply our heuristic for the Steiner tree problem to
quasi-bipartite graphs (i.e., graphs in which no two nonterminals are adjacent), where
our heuristic achieves an approximation ratio of ≈ 1.28 within time O(mn2) (m and n
are the number of terminals and nonterminals in the graph, respectively). This is an
improvement over the primal-dual algorithm of Rajagopalan and Vazirani [19], where
the bound exceeds 1.5.
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We also show that the well-known iterated 1-Steiner heuristic of Kahng and
Robins [13, 9, 14] achieves an approximation ratio of 1.5 in quasi-bipartite graphs.
Previously, no nontrivial bounds were known for the iterated 1-Steiner heuristic. Fi-
nally, we improve the approximation ratio achievable for the Steiner tree problem in
complete graphs with edge weights 1 and 2 from the previously best-known bound of
4
3 [5] to less than 1.28 for our algorithm.

The remainder of this paper is organized as follows. In the next section we in-
troduce basic definitions, notation, and properties. In section 3 we present our main
algorithm, the k-restricted loss-contracting algorithm (k-LCA). The basic approxima-
tion result for the k-LCA is proved in section 4. In sections 5 and 6 we prove an
approximation ratio of the k-LCA in general graphs and estimate the performance of
the iterated 1-Steiner and the k-LCA heuristics in both quasi-bipartite graphs and
complete graphs with weights 1 and 2. We conclude in section 7 with possible future
research directions.

2. Definitions, notation, and basic properties. Let G = (V,E, cost) be a
graph with nonnegative edge costs. Any tree in G spanning a given set of terminals
S ⊆ V is called a Steiner tree, and the cost of a tree is defined to be the sum of its
edge costs. The Steiner tree problem seeks a minimum-cost Steiner tree for a given
terminal set S. Any nonterminal vertices contained in a Steiner tree are referred to as
Steiner points. We can assume that the graph edge cost function is metric (i.e., the
triangle inequality holds) since we can replace any edge e ∈ E with the shortest path
connecting the ends of e. Henceforth, we will therefore assume that G is a complete
graph. Similarly, for the subgraph GS induced by the terminal set S, let GS be the
complete graph with vertex set S.

Let MST (GS) be a minimum spanning tree of GS . For any graph H, let cost(H)
be the sum of the costs of all edges in H. We thus denote the cost of a minimum
spanning tree of H by mst(H), e.g., cost(MST (GS)) = mst(GS). For brevity, we use
mst to denote mst(GS).

A Steiner tree over a terminal subset S′ ⊂ S in which all terminals S′ are leaves
is called a full component (see Figure 1(a)). Any Steiner tree can be decomposed into
full components by splitting all the nonleaf terminals. Our algorithm will proceed by
adding full components to a growing solution, based on their “relative cost savings”
(this notion will be made precise below). We assume that any full component has its
own copy of each Steiner point so that full components chosen by our algorithm do
not share Steiner points.

A Steiner tree that does not contain any Steiner points (i.e., where each full
component consists of a single edge) will henceforth be called a terminal-spanning
tree. Our algorithm will compute relative cost savings with respect to a “shrinking”
terminal-spanning tree, which initially coincides with MST (GS).

The relative cost saving of a full component is quantified by the ratio of how much
that full component decreases the cost of the current terminal-spanning tree over the
cost of connecting its Steiner points to terminals. The cost savings of an arbitrary
graph H with respect to a terminal-spanning tree T is the difference between the
cost of T and the cost of the Steiner tree in the graph obtained by augmenting H
with the tree T . Let T [H] be the minimum-cost graph in H ∪ T , which contains
H and spans all the terminals of S (see Figure 2). The gain of H with respect
to T is defined as gainT (H) = cost(T ) − cost(T [H]). If H is a Steiner tree, then
gainT (H) = cost(T ) − cost(H). Note that gainT (H) ≤ cost(T ) −mst(T ∪H) since
T [H] cannot cost less than MST (T ∪ H). In fact, the gain of a full component K
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Fig. 1. (a) A full component K: filled circles denote terminals and hollow circles denote Steiner
points. (b) Connected components of Loss(K) to be collapsed; dashed edges belong to Loss(K). (c)
The corresponding terminal-spanning tree C[K] with the contracted Loss(K).

(b)(a)

T[H]T

H

Fig. 2. (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) The
corresponding graph T [H] contains H and spans all of the terminals.

also can be defined as

gainT (K) = cost(T ) −mst(T ∪ E0(K)) − cost(K),

where E0(K) are zero-cost edges between all pairs of terminals of K. For brevity, the
minimum spanning tree of T ∪E0 will be referred to as T/E0 for any set of zero-cost
edges between pairs of terminals in S.

We will use the following property of gain (see Lemma 3.3-4, p. 465 in [22] and
Lemma 3.14, p. 391 in [3]). Let E0 be an arbitrary set of zero-cost edges between
pairs of terminals, and let K be a full component. Then

gainT/E0
(K) ≤ gainT (K).

This property implies the following key property of gain.
Lemma 2.1. For any terminal-spanning tree T and full components K1,K2, . . . ,Kn,

gainT

(
n⋃

i=1

Ki

)
≤

n∑
i=1

gainT (Ki).

Proof. The proof follows from the following chain of inequalities:

gainT

(
n⋃

i=1

Ki

)
= cost(T ) − cost

(
T/

n⋃
i=1

E0(Ki)

)
−

n∑
i=1

cost(Ki)

= cost(T ) − cost(T ∪ E0(K1)) − cost(K1)

+ cost(T/E0(K1)) − cost(T/E0(K1) ∪ E0(K2)) − cost(K2)

. . .
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+ cost

(
T/

n−1⋃
i=1

E0(Ki)

)
− cost

(
T/

n⋃
i=1

E0(Ki)

)
− cost(Kn)

=

n∑
i=1

gainT/
⋃

j≤i−1 E0(Kj)(Ki)

≤
n∑

i=1

gainT (Ki).

The minimum-cost connection of the Steiner points of a full component K to its
terminals is denoted Loss(K). Formally, Loss(K) is a minimum-cost subgraph of K
containing a path from each Steiner point of K to one of the terminals of K (see
Figure 1(b)). The following lemma gives a simple method of computing Loss(K).

Lemma 2.2. For any full component K, Loss(K) = MST (K ∪ E0) \ E0, where
K ∪ E0 is K combined with zero-cost edges E0 between all pairs of terminals in K.

Proof. The forest F = MST (K ∪E0) \E0 connects all Steiner points of K to the
terminals of K and has cost MST (K ∪ E0). Note that F has the minimum possible
cost since Loss(K) ∪ E0 spans all the vertices of K and therefore cannot cost more
than MST (K ∪ E0).

Intuitively, Loss will serve as an upper bound on the optimal solution cost increase
during our algorithm’s execution (as will be elaborated below). We will denote the
cost of Loss(K) by loss(K). The loss of a union of full components is the sum of
their individual losses.

As soon as our algorithm selects a full component K it contracts its Loss(K),
i.e., “collapses” each connected component of Loss(K) into a single node (see Figure
1(c)). Formally, a loss-contracted full component C[K] is a terminal-spanning tree
over the terminals of K in which two terminals are connected if there is an edge
between the corresponding two connected components in the forest Loss(K). The
cost of any edge in C[K] coincides with the cost of the corresponding edge in K.
The 1-to-1 correspondence between edges of K \ Loss(K) and C[K] implies that
cost(H) − loss(H) = cost(C[H]). Similarly, for any Steiner tree H, C[H] is the
terminal-spanning tree in which the losses of all full components of H are contracted.

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which
each full component has at most k terminals. Let Optk be an optimal k-restricted
Steiner tree, and let optk and lossk be the cost and loss of Optk, respectively. Let opt
and loss be the cost and loss of the optimal Steiner tree, respectively.

The following lemma shows that if no k-restricted full component can improve
a Steiner tree H, then H cannot be very expensive; i.e., if we contract the loss of
each full component of H, then the resulting tree costs no more than an optimal
k-restricted Steiner tree.

Lemma 2.3. Let H be a Steiner tree; if gainC[H](K) ≤ 0 for any k-restricted full
component K, then

cost(H) − loss(H) = cost(C[H]) ≤ optk.

Proof. Let K1, . . . ,Kp be full components of Optk. The proof follows from the
following chain of inequalities:

cost(C[H]) − optk = gainC[H](Optk)

= gainC[H](K1 ∪ · · · ∪Kp)

≤ gainC[H](K1) + · · · + gainC[H](Kp)

≤ 0.
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Input: A complete graph G = (V,E, cost) with edge costs satisfying the triangle
inequality, a set of terminals S ⊆ V , and an integer k, 3 ≤ k ≤ |S|
Output: A k-restricted Steiner tree in G connecting all the terminals in S

T = MST (GS)
H = GS

Repeat forever
Find a k-restricted full component K with at least 3 terminals

maximizing r = gainT (K)/loss(K)
If r ≤ 0 then exit repeat
H = H ∪K
T = MST (T ∪ C[K])

Output the tree MST (H)

Fig. 3. The k-LCA.

An approximation ratio of an algorithm is an upper bound on the ratio of the
cost of the found solution over the cost of an optimal solution. In the next section we
will propose a new algorithm for the Steiner tree problem and prove a (best-to-date)
approximation ratio for it.

3. The algorithm. All previous heuristics (except those of the Berman–Ramaiyer
[3] approach) with provably good approximation ratios repeatedly choose appropriate
full components and then contract them to form the overall solution. However, this
strategy does not allow us to discard an already accepted full component even if later
we would find out that a better full component conflicts with a previously accepted
component (two components conflict if they share at least two terminals).

The main idea behind the loss-contracting algorithm (see Figure 3) is to contract
as little as possible so that (i) a chosen full component may still participate in the
overall solution, but (ii) not many other full components would be rejected. In par-
ticular, if we contract Loss(K), i.e., replace a full component K with C[K], then (i)
it will not cost anything to add a full component K to the overall solution, and (ii)
we decrease the gain of full components, which conflict with K by a small value (e.g.,
less than in the Berman–Ramaiyer algorithm for large k and much smaller than in
[15] for any k).

Our algorithm iteratively modifies a terminal-spanning tree T , which is initially
MST (GS), by incorporating into T loss-contracted full components greedily chosen
from G. Each such component K has positive gain, and therefore contains at least
three terminals and has nonzero loss. The intuition behind the gain-over-loss objective
ratio is as follows. The cost of the approximate solution lies between mst = mst(GS)
and optk. If we accept a component K, then it increases (by the gain of K) the gap
between mst and the cost of the approximation. Thus the gain of K is our clear
profit. On the other hand, if K does not belong to Optk, then after accepting K
we would no longer be able to reach Optk because we would need to compensate for
the connection of incorrectly chosen Steiner points. Therefore, the value of loss(K),
which is the connection cost of Steiner points of K to terminals, is an upper bound
on the increase in the cost gap between optk and the best achievable solution after
accepting K. Thus loss(K) is an estimate of our connection expense. Maximizing
the ratio of gain over loss is equivalent to maximizing the profit per unit expense.

We now describe a polynomial-time implementation of the k-LCA. We first find
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all pairwise distances in the graph G. Then, for each k-tuple of terminals (there are
|S|k of them) it is sufficient to try all possible choices of k − 2 Steiner points chosen
from the nonterminal nodes of V − S because every k-restricted full component K
is uniquely defined by its Steiner points of degree at least 3. The loss of K can be
determined in time O(k2) by finding the minimum spanning tree of K∪E0 (see Lemma
2.2). Thus, we can find all full Steiner components in time O(|S|k · |V −S|k−2). Note
that the cost and loss do not change in the iterations of the k-LCA.

The number of iterations of k-LCA cannot exceed the number of full Steiner
components O(Sk) since we have gainT (K) = 0 after contracting the loss of a full
component K. The gain of a full component K can be found in time O(k) after
precomputing the longest edges between any pair of nodes in the current minimum
spanning tree, which may be accomplished in time O(S logS). Thus, the runtime of
all the iterations can be bounded by O(k · S2k+1 logS). The total runtime is thus
O(|S|k · |V − S|k−2 + k · S2k+1 logS).

4. Approximation ratio of the k-LCA. This section proves the basic ap-
proximation result of this paper.

Theorem 4.1. For any instance of the Steiner tree problem, the cost of the
approximate Steiner tree produced by the k-LCA is at most

Approx ≤ lossk · ln
(

1 +
mst− optk

lossk

)
+ optk.(4.1)

Proof. Let K1, . . . ,Klast be full components chosen by the k-LCA. Let T0 =
MST (GS) and let Ti, i = 1, . . . , last be the tree T produced by the k-LCA after i
iterations. Let cost(Ti) be the cost of Ti after the ith iteration of the k-LCA.

Lemma 4.2. gainTi−1
(Ki) = cost(Ti−1) −mst(Ti−1 ∪Ki).

Proof. It is sufficient to show that Ti−1[Ki] = MST (Ti−1 ∪ Ki). Assume that
MST (Ti−1∪Ki) does not contain some edge e ∈ Ki and let A and B be two connected
components of Ki − {e}. We will show that either A or B has a larger gain-over-loss
ratio, which contradicts the choice of Ki.

Since e does not belong to MST (Ti−1 ∪ Ki), we have cost(Ti−1[A ∪ B]) <
cost(Ti−1[Ki]). By Lemma 2.1, gainTi−1

(Ki) < gainTi−1
(A ∪ B) ≤ gainTi−1

(A) +
gainTi−1(B). Since e /∈ MST (Ti−1∪Ki), we conclude that e /∈ MST (Ki∪E0), where
E0 are zero-cost edges between all terminals of Ki, and by Lemma 2.2, e /∈ Loss(Ki).
Thus Loss(Ki) = Loss(A) ∪ Loss(B) and loss(Ki) = loss(A) + loss(B). Finally,

gainTi−1
(Ki)

loss(Ki)
<

gainTi−1(A) + gainTi−1(B)

loss(A) + loss(B)
≤ max

{
gainTi−1(A)

loss(A)
,
gainTi−1(B)

loss(B)

}
.

We define the supergain of a graph H with respect to a Steiner tree T as

supergainT (H) = gainT (H) + loss(H).

By Lemma 4.2, the supergain of Ki with respect to Ti−1 is

supergainTi−1(Ki) = gainTi−1(Ki) + loss(Ki)

= cost(Ti−1) −mst(Ti−1 ∪Ki) + mst(Ti−1 ∪Ki) − cost(Ti)

= cost(Ti−1) − cost(Ti).(4.2)

Let Gi = supergainTi(Optk) be the supergain of the optimal k-restricted Steiner tree
Optk with respect to Ti, i = 0, 1, . . . , last. Let loss(n) be the loss of the first n
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accepted full trees K1, . . . ,Kn. We now show that the loss of the full components
identified by the k-LCA does not grow too fast.

Lemma 4.3. If Gn is positive, then loss(n)
lossk

≤ ln G0

Gn
.

Proof. Let li = loss(Ki) and gi = supergainTi−1(Ki) be, respectively, the loss
and supergain of the ith full Steiner tree accepted by the k-LCA. Let Optk consist of
full components Xj . By Lemma 2.1,

G0

lossk
≤

∑
Xj∈Optk

supergainT0(Xj)∑
Xj∈Optk

loss(Xj)
≤ 1 + max

Xj∈Optk

{
gainT0(Xj)

loss(Xj)

}

≤ 1 +
gainT0(K1)

loss(K1)
=

g1

l1
.

Inductively, for i = 1, 2, . . . , n, Gi−1

lossk
≤ gi

li
. Therefore,

gi ≥
li

lossk
Gi−1.(4.3)

Each time the k-LCA accepts a full tree Ki, it decreases the cost of Ti by the
supergain of Ki, which results in a decrease of the supergain of Optk by the same
value. Equality (4.2) yields Gi = cost(Ti)−cost(Optk)+lossk. Therefore, Gi−1−Gi =
cost(Ti−1) − cost(Ti) = gi.

Inequality (4.3) implies that Gi = Gi−1 − gi ≤ Gi−1

(
1 − li

lossk

)
. Since Gn > 0,

unraveling the last inequality yields

Gn

G0
≤

n∏
i=1

(
1 − li

lossk

)
.

Taking the natural logarithms of both sides and using the inequality x ≥ ln(1 + x),
we finally obtain

ln
G0

Gn
≥

n∑
i=1

li
lossk

=
loss(n)

lossk
.(4.4)

By Lemma 2.3, after the algorithm stops iterating, the cost of the last tree Tlast

will be at most optk. We stop iterating when cost(Tn+1) < optk ≤ cost(Tn) for some
n.

We now show how iteration n+1 can be “partially” performed so that cost(Tn+1)
will coincide with optk. We split gn+1 = supergainTn

(Kn+1) into two values g1
n+1

and g2
n+1 (i.e., gn+1 = g1

n+1 + g2
n+1) such that cost(Tn)− g1

n+1 = optk and, therefore,

g1
n+1 = cost(Tn) − optk,(4.5)

Gn − g1
n+1 = cost(Tn) − optk + lossk − (cost(Tn) − optk) = lossk.(4.6)

We split ln+1 = loss(Kn+1) into l1n+1 and l2n+1 such that gn+1

ln+1
=

g1
n+1

l1n+1
. Finally, we set

loss1(n + 1) = loss(n) + l1n+1 and

G1
n+1 = Gn − g1

n+1 > 0.(4.7)
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Since gn+1

ln+1
=

g1
n+1

l1n+1
, inequality (4.4) implies that

ln
G0

G1
n+1

≥ loss1(n + 1)

lossk
.(4.8)

Since gi = gainTi(Ki)+ loss(Ki) ≥ loss(Ki) = li, we have
g2
n+1

l2n+1
= gn+1

ln+1
≥ 1, and thus

obtain

g2
n+1 ≥ l2n+1.(4.9)

The cost of the approximate Steiner tree after n + 1 iterations is at most

Approx(n + 1) = mst(T0 ∪K1 ∪ · · · ∪Kn+1)

≤ mst(MST (T0 ∪K1) ∪K2 ∪ · · · ∪Kn+1) + loss(K1)

≤ mst(T1 ∪K2 ∪ · · · ∪Kn+1) + loss(K1)

. . .

≤ mst(Tn ∪Kn+1) +

n∑
i=1

loss(Ki)

≤ cost(Tn+1) + loss(n + 1).(4.10)

Since Approx(n) decreases with n, the upper bound on Approx(n+1) also bounds
Approx = Approx(last), the output of the k-LCA. We complete the proof of inequality
(4.1) with the following chain of inequalities:

Approx ≤ Approx(n + 1)

≤(4.10) loss(n + 1) + cost(Tn+1)

= loss(n) + l1n+1 + l2n+1 + cost(Tn) − g1
n+1 − g2

n+1

≤(4.9) loss(n) + l1n+1 + cost(Tn) − g1
n+1

=(4.5) loss(n) + l1n+1 + optk

≤(4.8) lossk · ln G0

G1
n+1

+ optk

=(4.7) lossk · ln mst− optk + lossk
Gn − g1

n+1

+ optk

=(4.6) lossk · ln mst− optk + lossk
lossk

+ optk

= lossk · ln
(

1 +
mst− optk

lossk

)
+ optk.

5. Performance of the k-LCA in general graphs. Our estimate of the per-
formance ratio of the k-LCA in arbitrary graphs is based on estimating optimal k-
restricted Steiner trees. Let ρk be the worst-case ratio of optk

opt . It was shown in [6]

that ρk ≤ 1 + 	log2 k
−1. We will show below that the approximation ratio of the
k-LCA is at most ρk(1 + 1

2 ln( 4
ρk

− 1)). Therefore, the approximation ratio of the

k-LCA converges to 1 + ln 3
2 < 1.55 when k → ∞ since limk→∞ ρk = 1. This is

an improvement over the algorithm given by Hougardy and Prömel [10], where the
approximation ratio approaches 1.59.
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Theorem 5.1. The k-LCA has an approximation ratio of at most (1+ 1
2 ln( 4

ρk
−

1))ρk.
Proof. Since mst ≤ 2 · opt (see [21]), inequality (4.1) yields the following upper

bound on the output tree cost of the k-LCA:

Approx ≤ lossk · ln
(

1 +
2 · opt− optk

lossk

)
+ optk.

Following [15], we show that for any Steiner tree T , loss(T ) ≤ 1
2cost(T ). Without

loss of generality, we can assume that T is a rooted tree, where all Steiner points
have degree at least 3 (degree-2 Steiner points can be disregarded since the graph is
complete). For each Steiner point in T , choose the shortest outgoing edge; then, all
chosen edges (i) connect all Steiner points to terminals (thus having cost of at least
loss(T )), and (ii) have total cost of at most half the cost of T . Therefore

lossk ≤ 1

2
optk.

The partial derivative (lossk · ln(1+ 2·opt−optk
lossk

))′lossk is always positive; the upper

bound on Approx is therefore maximized when lossk = 1
2optk. We thus obtain

Approx

opt
≤ optk

opt
·

⎛
⎝1 +

ln
(

4opt
optk

− 1
)

2

⎞
⎠ .

Since the upper bound above grows when optk increases, we can replace optk
opt with

the maximum value of ρk.

6. Steiner trees in both quasi-bipartite graphs and complete graphs
with edge weights 1 and 2. Recently, Rajagopalan and Vazirani [19] suggested a
primal-dual–based algorithm for approximating Steiner trees. They show that their
algorithm has an approximation ratio of 1.5 + ε for quasi-bipartite graphs, i.e., the
graphs in which no nonterminals are adjacent. We first show that the well-known
iterated 1-Steiner heuristic [13, 9, 14] has an approximation ratio of 1.5. Next, we
apply the k-LCA to quasi-bipartite graphs and estimate its runtime. Finally, we prove
that the performance ratio of the k-LCA for quasi-bipartite graphs is below 1.28.

We also apply the k-LCA to the Steiner tree problem in complete graphs with
edge weights 1 and 2. Bern and Plassmann [5] proved that this problem is MAX
SNP-hard and gave a 4

3 · OPT approximation algorithm. Applying Lovász’s algo-
rithm for the parity matroid problem (see [16]), Berman, Fürer, and Zelikovsky gave
a 1.2875-approximation algorithm that was given in [4]. We will show that the perfor-
mance ratio of the k-LCA approaches 1.28 for such graphs, improving on previously
achievable bounds.

6.1. The iterated 1-Steiner heuristic. The iterated 1-Steiner heuristic (see
[13, 9, 14]) repeatedly adds Steiner points to the terminal set, as long as doing so
decreases the cost of the minimum spanning tree over the terminals. Accepted Steiner
points are deleted if they become useless, i.e., if their degree becomes 1 or 2 in the
minimum spanning tree over the terminals. A generalization of the iterated 1-Steiner
heuristic to arbitrary graphs, along with a polynomial-time implementation, is given
in [1].
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Although the iterated 1-Steiner heuristic decreases the minimum spanning tree
cost by the maximum possible value at each iteration, we will estimate the cost of the
output Steiner tree regardless of how it was obtained. The following theorem will also
enable us to estimate the performance ratio of a faster batched variant of the iterated
1-Steiner heuristic [13, 9, 14].

Theorem 6.1. Given an instance of the Steiner tree problem in a quasi-bipartite
graph G, let H be a Steiner tree in G such that (i) any Steiner point has degree
at least 3, and (ii) H cannot be improved by adding any other Steiner point, i.e.,
mst(H ∪ v) ≥ cost(H) for any vertex v in G. Then the cost of H is at most 1.5 times
the optimal.

Proof. Any full component in quasi-bipartite graphs has only a single Steiner
point. Therefore, the loss of any full component equals the cost of the cheapest edge
connecting its single Steiner point to a terminal. Since any Steiner point has degree
at least 3 (condition (i)), the loss of any full component in H is at most one-third of
its cost. Thus, loss(H) ≤ 1

3 · cost(H).
We now show that gainC[H](K) ≤ 0 for any full component K. Condition (ii)

implies that mst(H∪K) ≥ cost(H). If we contract the loss of H, then we can decrease
MST (H∪K) by at most loss(H) since reduction by loss(H) happens only if all edges
of Loss(H) belong to MST (H ∪ K). Therefore, mst(C[H] ∪ K) ≥ mst(H ∪ K) −
loss(H) and mst(C[H]∪K) ≥ cost(H)−loss(H) = cost(C[H]). Thus, gainC[H](K) ≤
cost(C[H])−mst(C[H]∪K) ≤ 0. By Lemma 2.3, cost(H)− loss(H) ≤ opt, and since
loss(H) ≤ 1

3 · cost(H), we obtain cost(H) ≤ 3
2 · opt.

The above result helps to explain why the iterated 1-Steiner and Rajagopalan–
Vazirani heuristics perform similarly when applied to instances of the Steiner tree
problem restricted to the rectilinear plane (see [17]).

6.2. Runtime of the k-LCA in quasi-bipartite graphs. For a given Steiner
point v, the k-LCA adds only a full component with the largest gain, since the loss
is determined by v. We can find a full tree with maximum gain with respect to a
terminal-spanning tree T , among all possible full components with Steiner point v,
by merely finding all neighbors of v in MST (T ∪ v). Therefore, a full component
maximizing the gain-over-loss ratio over all k can be found within polynomial time.

We estimate the runtime of the k-LCA for quasi-bipartite graphs as follows. Let
m and n be the number of terminals and nonterminals, respectively. The number of
iterations is O(n) since a Steiner point can be added only once into H. Each iteration
consists of O(n) gain evaluations, each of which can be computed within O(m) time.
Using the appropriate data structures, the k-LCA can be implemented within a total
runtime of O(n2 · m), where m is the number of terminals and n is the number of
nonterminals.

6.3. Performance bound of the k-LCA for special graphs. We first esti-
mate the loss of a Steiner tree in quasi-bipartite graphs and in complete graphs with
edge weights 1 and 2.

Lemma 6.2. For the Steiner tree problem in quasi-bipartite graphs and in com-
plete graphs with edge weights 1 and 2,

mst ≤ 2(optk − lossk).(6.1)

Proof. For quasi-bipartite graphs, let K be an arbitrary full component of a
Steiner tree T with p terminals connected by a single Steiner point with edges of
lengths d0, d1, . . . , dp−1. Assume that loss(K) = d0 = min{di}. Let mst(K) be the
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cost of a minimum spanning tree of GS′ , where S′ is the set of terminals in K. By
the triangle inequality, we have

mst(K) ≤
p−1∑
i=1

(d0 + di) = p · d0 + cost(K) − 2d0 ≤ 2cost(K) − 2loss(K).

The bound (6.1) follows from the fact that mst, the cost of a minimum spanning
tree over S, does not exceed the sum of mst-costs for terminals in each of the full
components in Optk.

Now we prove the lemma for the case of complete graphs with edge weights 1 and
2. Let m and n, respectively, be the number of terminals and Steiner points in the
optimal k-restricted Steiner tree Optk. Then mst ≤ 2m− 2 since all edge weights are
at most 2, and optk ≥ m + n− 1 since Optk contains m + n nodes. We may assume
that full components of Optk contain only edges of weight 1, and therefore lossk = n.
Thus, mst ≤ 2m− 2 = 2(m + n− 1 − n) ≤ 2(optk − lossk).

Theorem 6.3. The k-LCA has an approximation ratio of at most ≈ 1.279 for
quasi-bipartite graphs and an approximation ratio approaching ≈ 1.279 for complete
graphs with edge weights 1 and 2.

Proof. After substituting the minimum spanning tree bound (6.1) into inequality
(4.1), we obtain

Approx ≤ lossk · ln
(

optk
lossk

− 1

)
+ optk.(6.2)

Taking the partial derivative of (loss · ln( optk
lossk

− 1))′lossk , we see that the single

maximum of the upper bound (6.2) occurs when x = lossk
optk−lossk

is the root of the
equation 1 + lnx + x = 0. Solving this equation numerically, we obtain x ≈ 0.279.
Finally, we substitute x into (6.2), yielding

Approx ≤ x

1 + x
· optk · ln 1

x
+ optk = (x + 1) · optk ≈ 1.279 · optk.

The bound above is valid for the output of the k-LCA for quasi-bipartite graphs
if we set k = |S|, i.e., if we omit the index k. For complete graphs with edge weights
1 and 2, optk converges to opt, and the approximation ratio of the k-LCA therefore
converges to 1.279 when k → ∞.

7. Conclusions and open problems. We presented a new best-performing
polynomial-time heuristic for the classical graph Steiner tree problem. This heuristic,
called the k-restricted loss-contracting algorithm (k-LCA), can be applied to arbitrary
metric spaces. The worst-case performance for the k-LCA depends on the Steiner ratio
and the loss of the optimal Steiner tree (i.e., the cost of connecting Steiner points to
terminals). We proved that the k-LCA is currently the best approximation heuristic
for the Steiner tree problem in graphs: its approximation ratio is ≈ 1.55 for general
graphs and ≈ 1.28 for both quasi-bipartite graphs and graphs with edge costs 1 and
2. We also used our techniques to derive the first known nontrivial performance ratio
(1.5 · OPT) for the iterated 1-Steiner heuristic of Kahng and Robins [13, 9, 14, 1] in
quasi-bipartite graphs.

Chief among the remaining open problems is finding heuristics for the classical
graph Steiner problem with improved performance bounds. Other special cases of the
Steiner problem for special metrics, cost functions, and graph types may be explored
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separately, where it may be possible to exploit the specific underlying structure to
further improve the performance bounds. Interestingly, our k-LCA is the first (and
so far the only) heuristic that is proven to work well for all of the special graph types
discussed above.

From a practical perspective, for any given fixed performance bound it would be
useful to minimize the running times of the associated heuristics and to quantify and
explore various tradeoffs between running times and solution quality. Finally, it would
be useful to implement the various heuristics and explore their practical runtime and
empirical solution quality by comparing the performance of these implementations
side by side on various classes and sizes of inputs.
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Abstract. Given a set P of at most 2n − 3 prescribed edges (n ≥ 2), the n-dimensional
hypercube Qn contains a Hamiltonian cycle passing through all edges of P iff the subgraph induced
by P consists of pairwise vertex-disjoint paths. This answers a question of Caha and Koubek, who
showed that for any n ≥ 3 there are 2n− 2 edges of Qn not contained in any Hamiltonian cycle, but
that still satisfy the above condition.
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1. Introduction. The n-dimensional hypercube Qn is a graph whose vertex set
consists of all binary vectors of length n, with two vertices being adjacent whenever
the corresponding vectors differ in exactly one coordinate. There is a large amount
of literature on graph-theoretic properties of hypercubes (e.g., see the comprehensive
survey paper [7]) as well as on their applications in parallel computing (e.g., see
[10], a monograph partially devoted to hypercubic architectures of massively parallel
computers).

It is well known that Qn is Hamiltonian for every n ≥ 2. The publication of
this fact dates back to 1872 [5], and since then the research on Hamiltonian cycles in
hypercubes satisfying certain additional properties has received considerable attention
(a survey can be found in [11]). The applications in parallel computing inspired the
study of hypercubes with faulty links, which lead to the investigation of Hamiltonian
cycles of Qn avoiding a certain set of forbidden edges [2, 3, 12].

This paper studies the following problem, which is in a sense complementary
to the last one mentioned above: Given a set of prescribed edges in the hypercube,
which conditions guarantee the existence of a Hamiltonian cycle passing through every
edge of this set? This question has been proposed in a recent work by Caha and
Koubek [1], where they observed that any proper subset P of edges of a Hamiltonian
cycle necessarily induces a subgraph consisting of pairwise vertex-disjoint paths. They
showed that in the case when |P| ≤ n − 1, n ≥ 2, this condition is also sufficient to
guarantee the existence of a Hamiltonian cycle of Qn passing through every edge of
P. On the other hand, for any n ≥ 3 there is a set of 2n − 2 edges, satisfying the
above condition, but not contained in any Hamiltonian cycle. Indeed, let v be an
arbitrary vertex of Qn and let P be a set of edges incident with neighbors of v so that
all neighbors, except one neighbor of v, are incident with exactly two edges of P, but
no edge of P is incident with v. It is not difficult to see that this always can be done
in such a way that the above condition is preserved. Since Qn is a regular graph of
degree n, it follows that |P| = 2n− 2 and that any cycle passing through all edges of
P avoids v.
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The main purpose of this paper is to show that the upper bound obtained in
this way is sharp: Given a set of at most 2n − 3 prescribed edges of Qn, n ≥ 2,
satisfying the above necessary condition, we describe a construction of a Hamiltonian
cycle passing through every edge of this set.

2. Terminology and notation. The terminology and notation used in this
paper mostly follow [6]. As usual, the vertex and edge sets of a graph G are denoted
by V (G) and E(G), respectively. The distance of vertices x and y in G is denoted by
dG(x, y), with the subscript being omitted when the context is clear. For e, e′ ∈ E(G),
dG(e, e′) = min{dG(x, y) | x ∈ e, y ∈ e′}. Given a set E ⊆ E(G) of edges of a graph
G, 〈E〉 denotes the subgraph of G, induced by E , i.e., V (〈E〉) =

⋃
e∈E e, E(〈E〉) = E .

A path P = x0, x1, . . . , xn of length n between x0 and xn is a graph P with
V (P ) = {x0, . . . , xn} and E(P ) = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}}. Vertices x0

and xn are called endvertices of P . A cycle of length n is a connected 2-regular graph
on n vertices. Given a set E of edges, a path P (cycle C) passes through E if E ⊆ E(P )
(E ⊆ E(C)). The vertices of V (P ) (V (C)) form the vertex set spanned by path P
(cycle C).

The following properties and notation shall be useful later:

1. For any n ≥ 1 there are n + 1 ways to split Qn+1 into two disjoint copies of
Qn, denoted by QL

n and QR
n (the “left” and the “right” subcube). Then any vertex

x ∈ V (QL
n) has in QR

n a unique neighbor, denoted by xR. Similarly, any vertex y ∈
V (QR

n ) has in QL
n a unique neighbor, denoted by yL. For an edge e = {x, y} ∈ E(QL

n),
eR denotes the edge {xR, yR} ∈ E(QR

n ).

Given a set P ⊆ E(Qn+1), we denote its subsets P ∩ E(QL
n) and P ∩ E(QR

n ) by
PL and PR, respectively.

2. If x, y, z are pairwise distinct vertices of Qn+1 such that x and y are adjacent,
there exists a split such that x, y ∈ V (QL

n) and z ∈ V (QR
n ).

3. Qn is a bipartite graph for any n ≥ 1, which means that for any x, y ∈ V (Qn),
the length of each path between x and y has the same parity as d(x, y).

4. The (0,2)-property: Any two distinct vertices of Qn (n ≥ 1) have exactly two
neighbors in common or none at all.

5. For any edge e ∈ E(Q3) there exists a unique edge e′ ∈ E(Q3) such that
d(e, e′) = 2.

6. The notation A = B
.
∪ C means that A = B ∪ C and B ∩ C = ∅.

3. Lemmas. This section is devoted to auxiliary results preparing the necessary
technique for the constructive proof of the main theorem, which is based on the usual
divide and conquer strategy: Split the hypercube into two subcubes, inductively
construct cycles in each part, and join them to obtain the desired Hamiltonian cycle
of the whole graph. The following lemma guarantees that the split always can be
done in such a way that it enables the cycles to be combined in the final one.

Given a set of prescribed edges P and a split of Qn+1 into QL
n and QR

n , we say that
an edge e ∈ E(QL

n) is free if e �∈ PL, eR �∈ PR, and both 〈PL ∪ {e}〉 and 〈PR ∪ {eR}〉
consist of pairwise vertex-disjoint paths.

Lemma 3.1. Let n ≥ 3 and P ⊆ E(Qn+1) such that |P| ≤ 2(n + 1) − 3 and
〈P〉 consists of pairwise vertex-disjoint paths. Then there exists a split of Qn+1 into
subcubes QL

n and QR
n satisfying the following conditions:

(i) There exists a free edge {x, y} in QL
n ;

(ii) P \ (PL ∪ PR) is either empty or equals {{x, xR}}.
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Proof. First, assume that Qn+1 is split into subcubes QL
n and QR

n such that
P = PL ∪ PR. Observe that e ∈ E(QL

n) is not free iff e or eR

• belongs to P, or
• is incident with a vertex of 〈P〉 of degree two, or
• joins endvertices of a path of 〈P〉.

Denote by m the number of vertices of 〈P〉 of degree two and by p the number
of connected components of 〈P〉 and observe that m ≤ |P| − 1 and m + p = |P|.
Consequently, |{e ∈ E(QL

n) | e is not free}| does not exceed

|P| + m(n− 2) + p = 2|P| + m(n− 3) ≤ 2(n− 1)2 + 2 < n2n−1 = |E(Qn)|
for n ≥ 3. Hence there must be a free edge in QL

n .
Next assume that P \ (PL ∪ PR) = {{x, xR}} for some x ∈ V (QL

n). If condition
(i) does not hold, then for any edge {x, y} ∈ E(QL

n), at least one of the following must
be true:

(a) y is an endvertex of a path, starting at x, which forms a connected component
of 〈PL〉;

(b) y is incident with two edges of PL;
(c) yR is an endvertex of a path, starting at xR, which forms a connected com-

ponent of 〈PR〉;
(d) yR is incident with two edges of PR.

Note that as any hypercube is a triangle-free graph, no edge of PL (PR) can be
incident with two distinct neighbors of x (xR). Moreover, since x has exactly n
distinct neighbors in QL

n and each of conditions (a) and (c) holds for at most one
of them, it follows that there are at least 2 + 2(n − 2) = 2n − 2 edges of PL ∪ PR,
incident either with a neighbor of x in QL

n or with a neighbor of xR in QR
n . Taking

into account that {x, xR} ∈ P, it follows that |P| ≥ 2n − 1. Since we assumed that
|P| ≤ 2n− 1, we can conclude that this inequality is actually equality. Hence

(e) every edge of PL (PR) must be incident with a neighbor of x (xR).
Moreover,

(f) for any neighbor y of x in QL
n , exactly one of conditions (a)–(d) holds.

On the other hand,
(g) each of conditions (a) and (c) holds for exactly one neighbor of x.

In particular, it follows (from (g)) that there are paths u0 = x, u1, . . . , u2k+1 and
v0 = xR, v1, . . . , v2r+1 forming connected components of 〈PL〉 and 〈PR〉, respectively,
such that (by (e)) for any i ∈ {0, 1, . . . , k} and j ∈ {0, 1, . . . , r}, u2i+1 is a neighbor of
x, v2j+1 is a neighbor of xR, and d(u2i+1, v2j+1) = 3 (there is a path of length three
between them, and the distance cannot be one, since then v2j+1 = uR

2i+1, contrary
to (f)). As {x, xR} ∈ P, path P = u2k+1, u2k, . . . , u1, u0, v0, v1, . . . , v2r, v2r+1 forms a
connected component of 〈P〉. We can conclude that

(∗) one of the connected components of 〈P〉 is a path P of odd length such
that the only edge of P , incident with neighbors of both endvertices of P , is
{x, xR}.

What can be said about an arbitrary path P ′, P ′ �= P , which forms a connected
component of 〈P〉? First note that {x, xR} �∈ E(P ′), as it already belongs to P .
Hence P ′ is either in 〈PL〉 or in 〈PR〉. Now choose an arbitrary edge e of P ′ and
observe that by condition (e) there has to be a neighbor y of x in QL

n such that e is
incident with y or yR. By (f), exactly one of conditions (a)–(d) holds for y. Condition
(g) reveals that it cannot be (a) and (c), as they already hold for endvertices of P ,
which is vertex-disjoint with P ′. It follows that y has to be incident with exactly two
edges of P ′. Hence P ′ is a path of even length. It follows that
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(∗∗) P is the only path of odd length which forms a connected component of 〈P〉;
moreover, {x, xR} ∈ E(P ).

Now assume that none of the n + 1 splits of Qn+1 into two n-dimensional subcubes
has the property that each edge of P belongs to one of the two subcubes forming the
split. If there were at least n distinct splits of Qn+1 into QL

n and QR
n such that for

each of them, |P \ (PL ∪ PR)| ≥ 2, then

|P| ≥ 2n + 1 > 2(n + 1) − 3,

contrary to our assumption. It follows that there must exist two distinct splits into
subcubes QLi

n and QRi
n (i ∈ {1, 2}) such that P \ (PLi ∪PRi) = {{xi, x

R
i }}. Suppose,

by way of contradiction, that none of them satisfies (i). Then both (∗) and (∗∗) must
hold for each {xi, x

R
i }, i ∈ {1, 2}. In particular, condition (∗∗) says that there is a

unique path P of odd length which forms a connected component of P; moreover,
{xi, x

R
i } ∈ E(P ) for each i ∈ {1, 2}. Furthermore, condition (∗) reveals that the

only edge of P , incident with neighbors of both endvertices of P , is {xi, x
R
i } for each

i ∈ {1, 2}. It follows that {x1, x
R
1 } = {x2, x

R
2 }, which contradicts our assumption that

{QL1
n , QR1

n } �= {QL2
n , QR2

n }.
The main obstacle we face in our divide and conquer approach is an unequal

distribution of prescribed edges between two subcubes. If one of the subcubes into
which the hypercube is split contains too many prescribed edges, the induction cannot
be used. We propose a solution based on a simple idea: Temporarily remove some
edges from the prescribed set, apply the induction, and then repair the cycle obtained
in this way to include also the edges temporarily removed. In the process of repairing,
the cycle may fall apart into several paths. In order to join them into the desired
Hamiltonian cycle of the whole graph, we need to cover the other subcube with a
certain number of paths. This task is accomplished by the following lemmas.

First let us recall the following classical result, originally proved by Havel in [8].
Lemma 3.2 (Havel’s lemma). Let n ≥ 1 and x, y ∈ V (Qn) be such that d(x, y) is

odd. Then there exists a Hamiltonian path between x and y in Qn.
The following generalization is needed.
Lemma 3.3. Let x, y, u, v be pairwise distinct vertices of Qn, n ≥ 2, such that

both d(x, y) and d(u, v) are odd. Then
(i) there exist paths P1 between x and y and P2 between u and v such that

V (Qn) = V (P1)
.
∪ V (P2);

(ii) moreover, in the case when d(x, y) = 1, path P1 can be chosen such that
P1 = x, y, unless n = 3, d(u, v) = 1, and d({x, y}, {u, v}) = 2.

Proof. We argue by induction on n. The case n = 2 is left to the kind reader,
while the case n = 3 is settled by Figure 3.1. Now let n ≥ 3 and assume that the
statement of the theorem holds for the hypercube of dimension n. Split Qn+1 into QL

n

and QR
n such that x ∈ V (QL

n) and v ∈ V (QR
n ); moreover, in the case when d(x, y) = 1,

without loss of generality, assume that y belongs to V (QL
n) as well.

Case 1. y ∈ V (QL
n).

(1.1) u ∈ V (QL
n). Choose a vertex w ∈ V (QL

n) \ {x, y, u} such that d(u,w) is odd
and, in the case when n = 3, d(u,w) �= 1. By the induction hypothesis, there are
paths P1 between x and y and P ′

2 between u and w whose vertices form a partition of
V (QL

n). Moreover, in the case when d(x, y) = 1 we can assume that P1 = x, y. Since
d(u,wR) is even, d(wR, v) must have the same parity as d(u, v), which is odd by our
assumption. Hence by Lemma 3.2, there exists a Hamiltonian path P ′′

2 between wR

and v in QR
n . The desired path P2 is a concatenation of paths P ′

2 and P ′′
2 .
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Fig. 3.1. Case n = 3 of Lemma 3.3.

(1.2) u ∈ V (QR
n ). First apply Lemma 3.2 to obtain a Hamiltonian path P ′

2

between u and v in QR
n . In the case when d(x, y) > 1 simply apply Lemma 3.2 again

to obtain a Hamiltonian path P1 between x and y in QL
n and set P2 = P ′

2. If, however,
d(x, y) = 1, observe that it is possible to choose an edge {r, s} ∈ E(P ′

2) such that
{rL, sL} ∩ {x, y} = ∅. Moreover, in the case when n = 3, this choice can be made in
such a way that d({x, y}, {rL, sL}) �= 2. It remains to apply the induction to obtain
paths P1 = x, y and P ′′

2 between rL and sL whose vertices partition V (QL
n). The

desired path P2 is obtained by replacing r, s in P ′
2 with path r, P ′′

2 , s.

Case 2. y ∈ V (QR
n ). Note that in this case d(x, y) ≥ 3.

(2.1) u ∈ V (QL
n). Choose in QL

n distinct vertices w and z such that both d(u,w)
and d(x, z) are odd and {w, z} ∩ {x, u} = ∅ = {wR, zR} ∩ {y, v}. By induction, there
are paths P ′

1 between x and z and P ′
2 between u and w whose vertices partition V (QL

n).
Similarly, there are paths P ′′

1 between zR and y and P ′′
2 between wR and v whose

vertices partition V (QR
n ). The desired paths P1 and P2 are obtained as concatenations

of P ′
1 with P ′′

1 and of P ′
2 with P ′′

2 , respectively.

(2.2) u ∈ V (QR
n ). This case is isomorphic to (1.1).

Corollary 3.4. Let n ≥ 2, x, y ∈ V (Qn), and e ∈ E(Qn) be such that d(x, y) is
odd and e �= {x, y}. Then there is a Hamiltonian path in Qn between x and y passing
through edge e.

Proof. First consider the case when e is incident with one of the vertices, say
e = {x, u}, u �= y. Let v be an arbitrary neighbor of u, distinct from x. Since d(x, y)
is odd by our assumption and d(x, v) = 2, d(y, v) must be odd as well. Note that this
also means that vertices x, y, u, and v are pairwise disjoint. Moreover, in the case
when n = 3 and d(y, v) = 1, the fact that d(u, v) = 1 implies d({x, u}, {y, v}) �= 2.
Hence, it is safe to apply part (ii) of Lemma 3.3 to obtain paths P1 = x, u and P2

between v and y, whose concatenation provides the desired Hamiltonian path between
x and y passing through e.

It remains to settle the case when e = {u, v} such that {u, v}∩{x, y} = ∅. Observe
that then necessarily either both d(x, u) and d(y, v) or both d(x, v) and d(y, u) must
be odd. The statement of the corollary now follows from part (i) of Lemma 3.3.

It should be noted that Corollary 3.4 also follows from a more general theorem of
[1] on paths with prescribed edges in hypercubes.

The last lemma of this section gathers the fruit of our previous work by showing
how to extend paths in one subcube to a Hamiltonian cycle of the whole graph.

Lemma 3.5. Let n ≥ 1, Qn+1 be split into subcubes QL
n and QR

n , and P ⊆ E(QL
n)

be such that 〈P〉 either forms a Hamiltonian path of QL
n or consists of paths P1 between

x and y and P2 between u and v in QL
n such that

(i) V (QL
n) = V (P1)

.
∪ V (P2);

(ii) there are two vertices in {x, y, u, v} whose mutual distance is odd.

Then there exists a Hamiltonian cycle of Qn+1 passing through P.
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Proof. If 〈P〉 forms a Hamiltonian path between x and y in QL
n , find an isomorphic

path between xR and yR in QR
n and join both paths by edges {x, xR} and {y, yR}.

Next assume that there are paths P1 and P2 such that conditions (i) and (ii) hold.
First observe that as |V (Qn)| is even, |V (P1)| ≡ |V (P2)| (mod 2), and hence d(x, y)
and d(u, v) have the same parity. In our connected bipartite graph it means that
d(x, u) and d(y, v) have the same parity, too. It is easy to see that condition (ii) and
bipartiteness imply that both d(x, u) and d(y, v) are odd, or both d(x, v) and d(y, u)
are odd. Without a loss of generality, we can assume the former.

It remains to use Lemma 3.3 to construct paths P ′
1 between xR and uR and P ′

2

between yR and vR in QR
n so that V (QR

n ) = V (P ′
1)

.
∪ V (P ′

2) and to observe that the
desired Hamiltonian cycle of Qn+1 is induced by edges of E(P1) ∪ E(P2) ∪ E(P ′

1) ∪
E(P ′

2) ∪ {{x, xR}, {y, yR}, {u, uR}, {v, vR}}.

4. Hamiltonian cycles. Now we are ready to prove the main result.

Theorem 4.1. Let n ≥ 2 and P ⊆ E(Qn) be such that |P| ≤ 2n − 3. Then
there exists a Hamiltonian cycle of Qn passing through P iff 〈P〉 consists of pairwise
vertex-disjoint paths.

Proof. The necessity of the condition (observed in [1]) follows from the fact that
for any Hamiltonian cycle C of Qn, |P| < |V (Qn)| = |E(C)| and a proper subset of
edges of a cycle always induces a graph consisting of vertex-disjoint paths. It remains
to show that the condition is also sufficient. We argue by induction on n. The case
n ∈ {2, 3} may be verified by inspection (which is done in detail in [1]). Now let n ≥ 3
and assume that the statement of the theorem holds for the hypercube of dimension n.
Using Lemma 3.1, split Qn+1 into subcubes QL

n and QR
n such that |P \(PL∪PR)| ≤ 1.

Assuming without a loss of generality that |PL| ≥ |PR|, consider the following two
cases.

Case 1. There exists x ∈ V (QL
n) such that P \ (PL ∪ PR) = {{x, xR}}.

(1.1) |PL| < 2n − 3. By Lemma 3.1 we can assume that there is a free edge
{x, y} ∈ E(QL

n). By the induction hypothesis there exist Hamiltonian cycles C in QL
n

and C ′ in QR
n passing through PL∪{x, y} and PR∪{xR, yR}, respectively. The desired

Hamiltonian cycle of Qn+1 is induced by edges of (E(C)∪E(C ′)∪{{x, xR}, {y, yR}})\
{{x, y}, {xR, yR}}.

(1.2) |PL| = 2n − 3 and |PR| ≤ 1. Using the induction, find a Hamiltonian
cycle C in QL

n passing through PL. Since {x, xR} ∈ P, at most one of the two edges
of C incident with x may belong to PL. Hence there has to be an edge {x, y} ∈
E(C) \ PL. If {xR, yR} �∈ PR, then simply use the induction hypothesis to find in
QR

n a Hamiltonian cycle C ′ containing PR ∪ {{xR, yR}}; the desired Hamiltonian
cycle of Qn+1 is then induced by edges of (E(C) ∪ E(C ′) ∪ {{x, xR}, {y, yR}}) \
{{x, y}, {xR, yR}}.

If, however, {xR, yR} ∈ PR, choose an edge {r, s} ∈ E(C) \PL such that {r, s}∩
{x, y} = ∅. Note that as

|E(C)\(PL∪{e ∈ E(C) | e∩{x, y} �= ∅})| ≥ |E(C)|−|PL|−3 ≥ 2n−(2n−3)−3 ≥ 2

for n ≥ 3, there are always at least two ways to choose such an edge. In particular,
in case n = 3 this choice can be made in such a way that d({r, s}, {x, y}) �= 2.
Then d({rR, sR}, {xR, yR}) �= 2 as well, and therefore it is safe to apply part (ii) of
Lemma 3.3 to find in QR

n a path P between rR and sR, spanning all vertices of QR
n

except xR and yR. The desired Hamiltonian cycle of Qn+1 is then induced by edges
of (E(C) ∪ E(P ) ∪ {{x, xR}, {xR, yR}, {y, yR}, {r, rR}, {s, sR}}) \ {{x, y}, {r, s}}.
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(1.3) |PL| = 2n−2 and |PR| = 0. First choose an edge {u, v} ∈ PL such that v is
an endvertex of a path of 〈PL〉; moreover, if 〈PL〉 contains a path with an endvertex
equal to x, then v = x. Next apply the induction to find in QL

n a Hamiltonian cycle
C passing through PL \ {{u, v}} and consider the following two subcases.

(1.3.1) {u, v} �∈ C. Let r and s be the respective neighbors of u and v on C such
that

(i) {u, r} �∈ PL;
(ii) each of the two paths between r and s on C contains either u or v.

The way v has been chosen implies that {v, s} �∈ PL. The existence of a path of
length three between r and s means that d(r, s) is odd and the same has to be
true about the distance of their respective neighbors rR and sR in QR

n . In case
x = r or x = s simply use Lemma 3.2 to find a Hamiltonian path P between rR

and sR in QR
n . The desired Hamiltonian cycle of Qn+1 is then induced by edges of

(E(C) ∪ E(P ) ∪ {{r, rR}, {s, sR}}) \ {{u, r}, {v, s}}; since {x, xR} equals {r, rR} or
{s, sR}, it really passes through P.

If, however, x is distinct from both r and s, find on C a neighbor y of x so that
{x, y} �∈ PL. Note that the way {u, v} has been defined guarantees that y can be
chosen so that y �∈ {r, s}. It remains to use Lemma 3.3 to partition V (QR

n ) into
vertices of paths P1 between rR and sR and P2 between xR and yR. The desired
Hamiltonian cycle of Qn+1 is then induced by edges of (E(C) ∪ E(P1) ∪ E(P2) ∪
{{u, v}, {x, xR}, {y, yR}, {r, rR}, {s, sR}}) \ {{x, y}, {u, r}, {v, s}}.

(1.3.2) {u, v} ∈ C. Let y be a neighbor of x on C such that {x, y} �∈ PL. By
Lemma 3.2 QR

n contains a Hamiltonian path P between xR and yR and the desired
Hamiltonian cycle of Qn+1 is induced by edges of (E(C)∪E(P )∪{{x, xR}, {y, yR}})\
{{x, y}}.

Case 2. P = PL ∪ PR.

(2.1) |PL| < 2n− 3. Lemma 3.1 guarantees the existence of a free edge {x, y} ∈
QL

n . By the induction hypothesis there exist Hamiltonian cycles C in QL
n and C ′ in QR

n

passing through PL∪{x, y} and PR∪{xR, yR}, respectively. The desired Hamiltonian
cycle of Qn+1 is then induced by edges of (E(C) ∪ E(C ′) ∪ {{x, xR}, {y, yR}}) \
{{x, y}, {xR, yR}}.

(2.2) |PL| = 2n−3 and |PR| ≤ 2. First apply the induction to find a Hamiltonian
cycle C in QL

n passing through PL. Since |E(C)| − (|PL| + |PR|) ≥ 2n − (2n −
1) ≥ 3 for n ≥ 3, there has to be a free edge {x, y} ∈ E(C) \ PL. It remains to
use the induction again to obtain a Hamiltonian cycle C ′ in QR

n passing through
PR ∪ {{xR, yR}}. The desired Hamiltonian cycle of Qn+1 is induced by edges of
(E(C) ∪ E(C ′) ∪ {{x, xR}, {y, yR}}) \ {{x, y}, {xR, yR}}.

(2.3) |PL| = 2n−2 and |PR| ≤ 1. First choose an edge {u, v} ∈ PL such that v is
an endvertex of a path of 〈PL〉. Next apply the induction to find in QL

n a Hamiltonian
cycle C spanning PL \ {{u, v}}. If {u, v} ∈ E(C), use the same construction as in
case (2.2) to obtain the desired Hamiltonian cycle. If this is not the case, choose on
C neighbors r and s of u and v, respectively, such that

(i) {u, r} �∈ PL;
(ii) each of the two paths between r and s on C contains either u or v.

The way v has been chosen implies that {v, s} �∈ PL. The existence of a path of
length three between r and s means that d(r, s) is odd and the same has to be true
about d(rR, sR). If {rR, sR} �∈ PR, find a Hamiltonian path P in QR

n between rR

and sR passing through PR, using Corollary 3.4 in case |PR| = 1 or Lemma 3.2 in
case PR = ∅. The desired Hamiltonian cycle of Qn+1 is then induced by edges of
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(E(C) ∪ E(P ) ∪ {{u, v}, {r, rR}, {s, sR}}) \ {{u, r}, {v, s}}.
If, however, PR = {{rR, sR}}, which means that d(r, s) = 1, choose an edge

{p, q} ∈ E(C) \ (PL ∪ {{u, r}, {v, s}}). Note that as |E(C)| − (|PL \ {{u, v}}|+ 2) =
2n − (2n− 1) ≥ 3 for n ≥ 3, this is always possible. Then use Corollary 3.4 to obtain
a Hamiltonian path P in QR

n between pR and qR, passing through edge {rR, sR}.
The desired Hamiltonian cycle of Qn+1 is then induced by edges of (E(C) ∪ E(P ) ∪
{{u, v}, {r, s}, {p, pR}, {q, qR}}) \ {{u, r}, {v, s}, {p, q}}.

(2.4) |PL| = 2n− 1 and |PR| = 0. First choose two distinct edges {x, y}, {u, v} ∈
P in the following way: If P forms a matching, the choice is arbitrary; otherwise x and
v should be distinct endvertices of the same path, forming a connected component
of 〈P〉.

Next apply the induction to find in QL
n a Hamiltonian cycle C passing through

P \ {{x, y}, {u, v}}. If at least one of the two chosen edges is included in C, use
a construction from the preceding cases. If this is not the case, observe that the
way {x, y} and {u, v} were chosen guarantees that we can assume without a loss of
generality that one of the paths on C between x and v contains both y and u. Now
consider the following subcases:

(2.4.1) dC(x, v) = 1. Let y′ and u′ be the respective neighbors of y and u such
that one of the paths between them on C contains x and v and the other contains y
and u. Note that then {{x, v}, {y, y′}, {u, u′}} ∩ P = ∅. It remains to observe that
〈(E(C) ∪ {{x, y}, {u, v}}) \ {{x, v}, {y, y′}, {u, u′}}〉 forms a Hamiltonian path of QL

n

passing through P and to apply Lemma 3.5.
(2.4.2) dC(x, v) ≥ 2. Choose neighbors x′, y′, u′, v′ of x, y, u, v on C, respectively,

in the way described below. Note that in each case the four chosen vertices are
pairwise distinct and, moreover, {{x, x′}, {y, y′}, {u, u′}, {v, v′}} ∩ P = ∅.

(2.4.2.1) If one of the paths on C between x and y contains both u and v, choose
the neighbors in such a way that

(i) one of the paths on C between x and y contains x′ and y′ and and the other
contains u and v;

(ii) one of the paths on C between u and v contains x, y, v′ and the other contains
only u′.

(2.4.2.2) If one of the paths on C between x and y contains u and the other
contains v, we claim that

max(dC(u, x), dC(x, v), dC(v, y)) ≥ 3.

Indeed, if not, then dC(x, v) = 2, and hence there is a common neighbor z of x and
v on C. Now u, v, z, x forms a path of length three between u and x. It follows that
d(x, u) must be odd and our assumption dC(u, x) < 3 implies that actually x and u
are adjacent. Then apply the same argument to y and v to see that {y, v} ∈ E(Qn),
too. Finally, observe that now x and v have three distinct neighbors in common,
namely u, y, and z, which contradicts the (0, 2)-property of the hypercube.

(2.4.2.2.1) If dC(u, x) ≥ 3, choose the neighbors in such a way that
(i) one of the paths on C between x and u contains x′ and u′ and the other y

and v;
(ii) one of the paths on C between y and v contains all of y′, v′, x, u.

(2.4.2.2.2) If dC(x, v) ≥ 3, choose the neighbors in such a way that
(i) one of the paths on C between x and v contains x′ and v′ and the other u

and y;
(ii) one of the paths on C between y and u contains all of y′, u′, x, v.
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(2.4.2.2.3) dC(v, y) ≥ 3. This case is isomorphic to (2.4.2.2.1).
Now observe that in all cases described above,

〈(E(C) ∪ {{x, y}, {u, v}}) \ {{x, x′}, {y, y′}, {u, u′}, {v, v′}}〉

consists of two paths P1 and P2 such that
(i) V (QL

n) = V (P1)
.
∪ V (P2);

(ii) P ⊆ E(P1) ∪ E(P2);
(iii) endvertices of P1 and P2 are in {x′, y′, u′, v′}.

It remains to note that the existence of a path x′, x, y, y′ means that d(x′, y′) is odd
and to apply Lemma 3.5.

5. Concluding remarks. The existence of Hamiltonian cycles passing through
prescribed edges is apparently related to the problem of Hamiltonicity of graphs with
faulty edges mentioned in the introduction. Indeed, if two prescribed edges are in-
cident with the same vertex v, any cycle passing through them must avoid all the
remaining edges, incident with v. In particular, this argument can be used to show
how Theorem 4.1 implies a classical result of [3] on the existence of Hamiltonian cycles
of Qn avoiding n− 2 forbidden edges (see [4] for details).

In may be of interest to explore further this connection comparing the complexity
of both problems. The problem of Hamiltonicity of hypercubes with faulty edges
is known to be NP-complete [2]. Does a similar result hold for the variant with
prescribed edges?

Another generalization would lead to considering more than 2n − 3 prescribed
edges in Qn and looking for conditions sufficient for the existence of a Hamiltonian
cycle. A natural way to strengthen the condition of Theorem 4.1 is to consider only
prescribed edges forming a matching. There is a related conjecture of Kreweras saying
that any perfect matching of Qn (n ≥ 2) is contained in a Hamiltonian cycle. It can
be easily seen to be true for n = 2, 3, while the case n = 4 was verified in [9]. To the
best of our knowledge, no other results have been published.
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(1984), pp. 135–152.



144 TOMÁŠ DVOŘÁK
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1. Introduction. In their paper on wire-tap channel II [4], Ozarow and Wyner
discussed the use of linear codes for protecting information from intruders. It has been
shown in [5] that the weight hierarchy of a linear code completely characterizes the
performance of the code on the wire-tap channel. In addition, it has been pointed out
that, for a related cryptographical application, the weight hierarchy also completely
characterizes the performance of a linear code as a t-resilient function [1].

One motivation for studying the chain condition (CC) is that when two codes
A and B satisfy the CC, the weight hierarchy of their product A ⊗ B can often be
expressed in terms of those of A and B. Another motivation is related to the minimum
trellis structure. A sufficient condition for optimal bit ordering in terms of a related
chain formulation is stated in [3].

An [n, k] code C is called projective if any two of its coordinates are linearly
independent, i.e., if the dual code C⊥ has minimum distance d⊥ ≥ 3. The support of
a binary vector is the set of its nonzero coordinates. The minimum support weight,
dr, of a code C is the size of the smallest support of any r-dimensional subcode of C.
In particular d1 = d. The weight hierarchy of C is {d1, d2, . . . , dk}.

The concept of the CC was introduced by Wei and Yang [6].
Definition 1.1. An [n, k] code C satisfies the CC if it is equivalent to a code C̃

such that there exists a chain of subcodes of C̃, D1 ⊂ D2 ⊂ · · · ⊂ Dk = C̃, where, for
1 ≤ r ≤ k, we have dim(Dr) = r and χ(Dr) = {1, 2, . . . , dr}.

Theorem 1.2 (see [2]). A code C of length n = g(k, d) + 1 satisfies the CC.
Theorem 1.3 (duality; see [5]). Let C be an [n, k] code and C⊥ be its dual code.

Then {dr : 1 ≤ r ≤ k} = {1, 2, . . . , n} \ {n + 1 − d⊥r : 1 ≤ r ≤ n− k}.
From now on C is a binary linear projective code. In the rest of this paper

we study conditions under which codes of length above the Griesmer bound satisfy
the CC.

2. Main results. For the description of generator matrices of projective codes
we need some further notation. A column in this description represents a sequence of
columns in the generator matrix, where a (�) can be either a 0 or a 1. The number
of columns in the sequence is written above the column and a+ b+ · · ·+ z = l. From
now on Gn will be a generator matrix of a code C, written in the form
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Gn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a︷ ︸︸ ︷
0 . . . 0

b︷ ︸︸ ︷
0 . . . 0 . . .

v︷ ︸︸ ︷
0 . . . 0

z︷ ︸︸ ︷
0 . . . 0

Gn−l . . . . . . . . . 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

� . . . � 1 . . . 1 0 . . . 0 . . . 0 . . . 0 0 . . . 0
� . . . � � . . . � 1 . . . 1 . . . 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

� . . . � � . . . � � . . . � . . . 0 . . . 0 0 . . . 0
� . . . � � . . . � � . . . � . . . 1 . . . 1 0 . . . 0
� . . . � � . . . � � . . . � . . . � . . . � 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(2.1)

where Gn−l generates an [n− l, k − l + 1] code.
For given k and d, there exists an [n, k, d] code only if

n(k, d) ≥ g(k, d) :=

k−1∑
i=0

⌈
d

2i

⌉
,

where �x� is the least integer not smaller than x; this is known as the Griesmer bound.
Theorem 2.1. If C is an [n, k] code with dual distance at least 3 and generator

matrix Gn, where Gn−l generates an [n− l, k− l + 1] code that satisfies the CC, then
C satisfies the CC.

Proof. Since C is projective, its generator matrix can be written in the form (2.1),
where Gn−l spans an [n− l, k − l + 1] code Ck−l+1.

Since Ck−l+1 satisfies the CC we conclude that C does also.
Example 1. Let C11[33, 11, 11] be the dual code of a cyclic [33, 22, 6] code with

generator polynomial 101001100101. C11 is a projective code since d⊥1 = 6. A gener-
ator matrix G11×33 of C11 may be written in the form

G11×33 = (I11×11|A11×22),

where I11×11 is the identity matrix. A11×22 contains columns of weight 5. By deleting
all rows in G11×33 that have support size 1 in a column of weight 5 in A11×22, we
obtain a [27, 6, 11] code with d⊥1 = 3. We consider its generator matrix, written in
the form

G6×27 = (I6×6|A6×21),

where I6×6 is the identity matrix. A6×21 contains columns of weight 2. By deleting
the two rows in G6×27 that have support size 1 in a column of weight 2 in A6×21, we
obtain a [24, 4, 12] code. The code [24, 4, 12] satisfies the CC since 24 = g(4, 12) + 1.
Then by Theorem 2.1 the [27, 6, 11] code and the [33, 11, 11] code will satisfy the CC.

Proposition 2.2. Let C1 be an [n1 = g(k, d) + 3, k1, d1] projective code with
generator matrix Gn1 . If there exists a code C[n1 − 1, k, d ≤ 2k−2] with generator
matrix Gn1−1 such that d⊥1 = 3, d⊥2 = 5, then C1 satisfies the CC.

Proof. According to Theorem 2.1 all we need to prove is that C satisfies the CC.
From Theorem 1.3 and conditions d⊥1 = 3, d⊥2 = 5, it follows that the weight

hierarchy of C is di = g(i, d) for 1 ≤ i ≤ k−3, dk−2 = g(k−2, d)+1, and di = g(i, d)+2
for i = k − 1, k.

Since d ≤ 2k−2, dk−2 = g(k − 2, d) + 1, and d⊥2 = 5, we have dk−3 = g(k − 3, d).
By Theorem 1.3, the highest di’s are dk = n, dk−1 = n − 1, dk−2 = n − 3, dk−3 =
n − 5. Since d⊥1 = 3, a generator matrix of C can be written in the form (2.1) with
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n− l = k − 2, a = 2, where Gk−2 generates an [n− 3 = g(k − 2, d) + 1, k − 2, d] code
Ck−2. The code Ck−2 generated by the first k−2 rows has length n−3 = g(k−2, d)+1
and, according to Theorem 1.2, satisfies the CC. From dk−3 = g(k − 3, d) it follows
that the weight hierarchy of Ck−2 coincides with the first k−2 elements of the weight
hierarchy of C, completing the proof.

Definition 2.3. Let c be a nonzero codeword of C and G a generator matrix
for C, with c as the first row. The code generated by the restriction of G to the
columns in which c has zero coordinates is called the residual code of C with respect
to c and is denoted by Res(C, c).

Theorem 2.4. A necessary and sufficient condition for an [n = g(k, d) +α, k, d]
code C with weight hierarchy {d1 = d, d2, . . . , dk} to satisfy the CC is that there
exists an [n − d, k − 1, d′1 = d2 − d] code C ′ = Res(C, c) with weight hierarchy
{d′1, d′2 = d3 − d, . . . , d′k−1 = dk − d}, which satisfies the CC.

Proof. Let C be a code as in the theorem and which satisfies the CC. Without
loss of generality its generator matrix G can be written in the form (2.1) in such a
way that its rows display the chain of subcodes of Definition 1.1. Let c be the first
row in G. We will prove that C ′ = Res(C, c) satisfies the CC for α = 2. The proof
for α > 2 is similar.

Since C is a code with length 2 above the Griesmer bound, there are integers 0 <
m ≤ p < k such that d1 = d, d2 = g(2, d), . . . , dm = g(m, d), dm+1 = g(m + 1, d) + 1,
. . . , dp = g(p, d) + 1, dp+1 = g(p + 1, d) + 2, . . . , dk. Now, we prove that m �= p.
Suppose that there exists a code C with parameters as described in the theorem and
an integer s such that 0 < s < k, Bj = 0, j = 1, 2, . . . , k − s − 2, and Bk−s−1 > 0
with, furthermore, di = g(i, d) for 1 ≤ i ≤ s, di = g(i, d) + 2 for s + 1 ≤ i ≤ k. In
other words, suppose that l = p = s. Assume w.l.o.g. that a codeword of C⊥ has for
support the last k − s positions. Then a generator matrix of C can be written in the
form (2.1), where Gs generates a subcode of length n− (k − s) and dimension s and
where a = 3.

The last k − s − 2 columns in (2.1) are linear independent. The second column
after Gs, (h2), is a linear combination of all k − s − 2 columns on its right since
Bk−s−1 > 0. The first column after Gs differs from h2 by the projectivity assumption.
Therefore, it can be a linear combination of at most k− s− 3 columns chosen among
the last k−s−2. This contradicts the assumption that Bj = 0, j = 1, 2, . . . , k−s−2.
Hence m �= p.

Let us calculate d′l−1 and d′l: d
′
l−1 = dl−d = g(l−1, d′1), d

′
l = dl+1−d = g(l, d′1)+1.

The same relations are valid between dp, d
′
p−1 and dp+1, d

′
p. Therefore, C ′ has weight

hierarchy d′1 = d2 − d, d′2 = d3 − d, . . . , d′k−1 = dk − d and satisfies the CC.
Conversely, let C be an [n = g(k, d) + 2, k, d] code with weight hierarchy {d1 = d,

d2, . . . , dk} and such that there exists an [n−d, k−1, d′1 = d2−d] code C ′ = Res(C, c)
with weight hierarchy {d′1, d′2 = d3 − d, . . . , d′k−1 = dk − d} satisfying the CC. From
Definition 2.3 it follows that C satisfies the CC.
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A RANDOM VERSION OF SHEPP’S URN SCHEME∗
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Abstract. In this paper, we consider the following random version of Shepp’s urn scheme: A
player is given an urn with n balls. p of these balls have value +1 and n − p have value −1. The
player is allowed to draw balls randomly, without replacement, until he or she wants to stop. The
player knows n, the total number of balls, but knows only that p, the number of balls of value
+1, is a number selected randomly from the set {0, 1, 2, . . . , n}. The player wishes to maximize the
expected value of the sum of the balls drawn. We first derive the player’s optimal drawing policy and
an algorithm to compute the player’s expected value at the stopping time when he or she uses the
optimal drawing policy. Since the optimal drawing policy is rather intricate and the computation of
the player’s optimal expected value is quite cumbersome, we present a very simple drawing policy,
which is asymptotically optimal. We also show that this random urn scheme is equivalent to a
random coin tossing problem.

Key words. urn scheme, optimal drawing policy, random coin tossing process, stopping time,
the “k” in the hole policy
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1. Introduction. In [8], Shepp considered the following optimal stopping prob-
lem: A player is given an urn with n balls. p of these balls have value +1 and n− p
have value −1. The player knows n and p. The player’s goal is to maximize the ex-
pected value of the sum of the balls drawn. The player may draw as long as he or
she wishes, without replacement. Shepp was interested in knowing for what n and p
there is a drawing policy for which V (n, p), the expected value of the game if there
are n balls, p of which are +1, is positive. He showed that for a given n there is an
integer γ(n) such that V (n, p) > 0 if and only if p ≥ γ(n). More precisely, he showed
that there exists a β(p) for which V (n, p) > 0 if and only if 0 ≤ n− p ≤ β(p).

In [1], Boyce was interested in the following bond-selling problem: A corporation
must repay 10 million dollars in bank loans in three months, and it wishes to sell
bonds to repay the loan. However, the company’s economists predict that in three
months bond prices will be lower (interest rates higher). Should the corporation issue
the bonds now, wait a month or two, or wait the full three months? For this bond-
selling problem, Boyce introduced a random version of Shepp’s urn scheme, which can
be stated as follows: A player is given an urn with n balls. p of these balls have value
+1 and n − p have value −1. The player is allowed to draw balls randomly, without
replacement, until he or she wants to stop. The player knows n, the total number of
balls, but only knows the distribution of p, the number of balls of value +1. The player
wishes to maximize the expected value of the sum of his draws. Boyce briefly studied
this problem and proposed a procedure to compute the player’s expected value at the
stopping time when he or she uses an optimal drawing policy.
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In this paper, we study this random version of Shepp’s urn scheme for the case
when the distribution of p is uniform over the set {0, 1, 2, . . . , n}. In section 2, we derive
the player’s optimal drawing policy and an algorithm to compute the player’s expected
value at the stopping time when he or she uses the optimal drawing policy. It will be
seen that the optimal drawing policy is very intricate. Also the computation of the
player’s optimal expected value at the stopping time is quite cumbersome, especially
as n gets large. In section 3, we present a very simple drawing policy and show
that this simple drawing policy is not only asymptotically optimal, but also performs
very well even when n is small. Our data reveal that for n = 10, 20, . . . , 1,000, the
difference between the expected value at the stopping time under an optimal drawing
policy and the expected value at the stopping time under this simple drawing policy
is less than 1. In section 4, we will show that this random urn problem can be stated
as a random coin tossing problem.

2. An optimal drawing policy. In order to compute the expected value of the
game, we consider what the remaining value of the game would be, conditioned on
the outcome of the first k draws. Suppose there are n balls and k balls have been
drawn, j of which have value +1. Let E(n, k, j) denote the remaining expected value
of the game from this point on. The following lemma gives the critical recursion for
E. Its proof is a straightforward application of Bayes’ law, but we include a proof for
the sake of completeness.

Lemma 1. If 0 ≤ j ≤ k ≤ n− 1, then

E(n, k, j) = max

{
0,

2j − k

k + 2
+

j + 1

k + 2
E(n, k + 1, j + 1) +

k − j + 1

k + 2
E(n, k + 1, j)

}
.

Proof. Having drawn k balls, with j “+1 balls,” the player has to decide whether
to play any further. The player may draw another ball; suppose that the conditional
probability that it is +1 is α(n, k, j) = α and that it is −1 is β = 1−α. The expected
value of the remainder of the game, if another ball is drawn, is then

α− β + αE(n, k + 1, j + 1) + βE(n, k + 1, j).

Thus, the player should draw another ball if this is positive and stop otherwise. The
recursion relation will then follow if we can show that α = j+1

k+2 . To do this, let
Xi = 1 if the ith draw is a +1, or let Xi = 0 otherwise for all i = 1, 2, . . . , k + 1. Let
Sk =

∑k
i=1 Xi. Then it is easy to see that

α = P (Xk+1 = 1|Sk = j) = P ([Sk = j] ∩ [Xk+1 = 1])/P (Sk = j).

For each i = 0, 1, 2, . . . , n, let Ai denote the event [p = i]. Since the distribution of p
is uniform over the set {0, 1, 2, . . . , n}, P (Ai) = 1

n+1 for all i = 0, 1, 2, . . . , n.

P (Sk = j) =

n∑
i=1

P ([Sk = j] ∩Ai) =

n∑
i=1

P ([Sk = j]|Ai)P (Ai)

=
1

n + 1

n−k+j∑
i=j

(
i
j

)(
n−i
k−j

)
(
n
k

) =

(
n+1
k+1

)
(n + 1)

(
n
k

) =
1

k + 1

since P ([Sk = j]|Ai) = 0 if i < j or i > n− k + j.
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Similarly,

P ([Sk = j] ∩ [Xk+1 = 1]) =

n∑
i=1

P ([Sk = j] ∩ [Xk+1 = 1] ∩Ai)

=

n∑
i=1

P ([Sk = j] ∩ [Xk+1 = 1]|Ai)P (Ai) =
1

n + 1

n−k+j∑
i=j+1

(i− j)
(
i
j

)(
n−i
k−j

)
(n− k)

(
n
k

)

=
(j + 1)

(n + 1)(n− k)
(
n
k

) n−k+j∑
i=j+1

(
i

j + 1

)(
n− i

k − j

)
=

(j + 1)

(k + 1)(k + 2)

since P ([Sk = j] ∩ [Xk+1 = 1]|Ai) = 0 if i < j + 1 or i > n− k + j.
Therefore,

α =

{
(j + 1)

(k + 1)(k + 2)

}/{
1

(k + 1)

}
=

(j + 1)

(k + 2)
.

This completes the proof of Lemma 1.
It is clear that E(n, n, j) = 0 for all j = 0, 1, 2, . . . , n since there are no balls left.

It is also clear that if the player draws k balls, j of which have value +1, the player
should stop drawing unless E(n, k, j) > 0. Therefore, the optimal drawing policy can
be stated as follows: At the beginning, the player will draw a ball if and only if
E(n, 0, 0) > 0. Suppose that the player has drawn k balls, j of which have value +1;
the player will continue to draw if and only if E(n, k, j) > 0.

Boyce briefly studied this problem in [1]. He produces a procedure for computing
E(n, 0, 0). The procedure requires computing all of E(n, k, j) for 0 ≤ j ≤ k < n in
order to get E(n, 0, 0). It is clear that the computation is very cumbersome, and for
each new n, we have to compute all new E(n, k, j) for all 0 ≤ j ≤ k < n to determine
the new optimal drawing policy.

Table 1 gives partial values of E(120, k, j) for 0 ≤ j ≤ k ≤ 25.
The optimal drawing policy can also be stated as follows: For each given n, we

create a table such as Table 1. We start from the position in which k = 0 and j = 0
and move one step down or one step to the southeast according to when a “−1” ball
is drawn or a “+1” ball is drawn. We will stop drawing if and only if we reach a zero.
However, even when n is moderate, it takes too much time to construct such a table.

Theorem 1. E(n, 0, 0) is a strictly increasing function of n.
Proof. It is sufficient to show that E(n+ 1, k, j) ≥ E(n, k, j) and E(n+ 1, k, k) >

E(n, k, k) for all 0 ≤ j ≤ k ≤ n. Since E(n+1, n, j) = max{0, 2j−n
n+2 } and E(n, n, j) = 0

for all 0 ≤ j ≤ n, and since E(n + 1, k, j) = max{0, 2j−k
k+2 + j+1

k+2E(n, k + 1, j +

1) + k−j+1
k+2 E(n, k + 1, j)} and E(n, k, j) = max{0, 2j−k

k+2 + j+1
k+2E(n, k + 1, j + 1) +

k−j+1
k+2 E(n, k+1, j)} for all 0 ≤ j ≤ k ≤ n−1 and n ≥ 1, by mathematical induction we

can conclude that E(n + 1, k, k) > E(n, k, k) for all 0 ≤ k ≤ n and n ≥ 1. Therefore,
E(n, 0, 0) is a strictly increasing function of n.

Theorem 2. E(n, 0, 0) ≤ n
4 + o(n).
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Table 1

E(120, k, j).

k j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

0 27.49 - - - - - - - -
1 6.98 48.00 - - - - - - -
2 1.28 19.38 61.80 - - - - - -
3 0 7.13 31.63 71.20 - - - - -
4 0 2.02 15.30 42.19 77.70 - - - -
5 0 0.23 6.62 23.98 50.79 82.28 - - -
6 0 0 2.29 12.72 32.17 57.64 85.55 - -
7 0 0 0.44 6.03 19.41 39.42 63.05 87.91 -
8 0 0 0 2.33 10.91 26.01 45.63 67.32 89.81
9 0 0 0 0.56 5.49 16.32 32.13 50.84 70.68
10 0 0 0 0 2.28 9.55 21.80 37.61 55.18
11 0 0 0 0 0.61 5.02 14.07 27.04 42.39
12 0 0 0 0 0 2.20 8.47 18.73 31.86
13 0 0 0 0 0 0.64 4.60 12.35 23.27
14 0 0 0 0 0 0.01 2.11 7.60 16.37
15 0 0 0 0 0 0 0.67 4.24 10.97
16 0 0 0 0 0 0 0.04 2.00 6.87
17 0 0 0 0 0 0 0 0.68 3.91
18 0 0 0 0 0 0 0 0.07 1.89
19 0 0 0 0 0 0 0 0 0.67
20 0 0 0 0 0 0 0 0 0.09
21 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0

Table 1

Continued.

k p = j j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17

0 - - - - - - - - -
1 - - - - - - - - -
2 - - - - - - - - -
3 - - - - - - - - -
4 - - - - - - - - -
5 - - - - - - - - -
6 - - - - - - - - -
7 - - - - - - - - -
8 - - - - - - - - -
9 90.82 - - - - - - - -
10 73.35 91.67 - - - - - - -
11 58.77 75.47 92.23 - - - - - -
12 46.51 61.75 77.15 95.57 - - - - -
13 36.19 50.04 64.22 78.47 92.73 - - - -
14 27.53 40.02 53.05 66.26 79.50 92.75 - - -
15 20.35 31.44 43.37 55.61 67.94 80.29 92.65 - -
16 14.50 24.15 34.96 46.29 57.79 69.33 80.89 92.44 -
17 9.84 18.03 27.68 38.10 48.82 59.64 70.47 81.32 92.16
18 6.25 12.97 21.43 30.92 40.88 51.01 61.20 71.40 81.60
19 3.61 8.90 16.12 24.64 33.83 43.32 52.91 62.52 72.14
20 1.78 5.72 11.70 19.19 27.60 36.45 45.47 54.55 63.64
21 0.65 3.44 8.09 14.53 22.11 30.31 38.78 47.36 55.96
22 0.10 1.68 5.25 10.61 17.32 24.84 32.76 40.86 49.00
23 0 0.63 3.10 7.39 13.18 19.98 27.35 34.97 42.69
24 0 0.10 1.57 4.83 9.68 15.72 22.49 29.64 36.95
25 0 0 0.60 2.88 6.79 12.02 18.17 24.82 31.72
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Table 1

Continued.

k j = 18 j = 19 j = 20 j = 21 j = 22 j = 23 j = 24 j = 25

0 - - - - - - - -
1 - - - - - - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -
5 - - - - - - - -
6 - - - - - - - -
7 - - - - - - - -
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 - - - - - - - -
12 - - - - - - - -
13 - - - - - - - -
14 - - - - - - - -
15 - - - - - - - -
16 - - - - - - - -
17 - - - - - - - -
18 91.80 - - - - - - -
19 81.76 91.38 - - - - - -
20 72.73 81.82 90.91 - - - - -
21 64.57 73.17 81.78 90.39 - - - -
22 57.17 65.33 73.50 81.67 89.83 - - -
23 50.44 58.20 65.96 73.72 81.48 89.24 - -
24 44.31 51.69 59.08 66.46 73.85 81.23 88.62 -
25 38.72 45.74 52.77 59.81 66.85 73.89 80.93 87.96

Proof. Following Boyce [2], where the player starts with an urn with n balls and a
known p of “+1” balls, let V (n, p) be the player’s expected score at the stopping time
when he or she uses the optimal drawing policy. It is easy to see that E(n, 0, 0) ≤

1
n+1

∑n
j=0 V (n, j). If n = 2m, then by a theorem of Shepp, V (2m, j) ≤ V (2m,m)

for all j = 0, 1, 2, . . . ,m and V (2m, j) ≤ 2j − 2m + V (2m,m) for all j = m + 1,m +
2, . . . , 2m. Since V (2m,m) ≈

√
m, it is easy to see that E(n, 0, 0) ≤ n

4 + o(n). The
proof for the case when n is odd is similar.

In theory, we can compute the expected score at the stopping time under the
optimal drawing policy and describe the optimal drawing policy for each given positive
integer n. However, even when n is just moderately large, the computation is very
cumbersome and it is very difficult to describe the optimal drawing policy precisely.
In section 3, we will present a simple drawing policy, which is not only asymptotically
optimal, but also performs very well even when n is small. Our data reveal that for
n = 10, 20, . . . ,1,000, E(n, 0, 0)−W (n, kn) < 1, where W (n, kn) is the expected value
at the stopping time when the player uses the simple drawing policy, which will be
introduced in section 3.

3. A simple drawing policy. One natural approach to determine when to stop
is to play until we are a certain amount “in the hole.” Here we continue drawing until
the number of “−1” balls drawn is k more than the number of “+1” balls drawn. We
will call this strategy “the k in the hole drawing policy.” Let W (n, k) be the expected
value of the game following “the k in the hole drawing policy” when the urn originally
contains n balls. One would expect the optimal choice for k to depend on n. We will
show that it does. We will also show how to compute this optimal k very quickly.
Most important, we will show that for any given n “the k in the hole drawing policy”
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is asymptotically optimal if we choose the best k.
Theorem 3. For each integer 1 ≤ k ≤ n, if n− k is even,

W (n, k) =
1

n + 1

⎧⎨
⎩ (n− k + 2)(n− k)

4
−

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ ,

and if n− k is odd,

W (n, k) =
1

n + 1

⎧⎨
⎩ (n− k + 1)2

4
−

n−k∑
j=(n−k+1)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ .

Proof. We give the proof when n−k is even; when n−k is odd the proof is similar.
For each j = 0, 1, 2, . . . , n, let W (n, k, j) be the expected value at the stopping time
when the player uses “the k in the hole drawing policy” and the urn originally contains
n− j balls of value −1 and j balls of value of +1. It is easy to see that

W (n, k) =
1

n + 1

n∑
j=0

W (n, k, j).

It is also clear that W (n, k, j) = 2j−n if j > n−k and W (n, k, j) = −k if j < (n−k)/2.
If (n − k)/2 ≤ j ≤ n − k, then by the reflection principle [5, p. 72], W (n, k, j) =
2j−n with probability 1−

(
n

k+j

)
/
(
n
j

)
and W (n, k, j) = −k with probability

(
n

k+j

)
/
(
n
j

)
.

Therefore,

W (n, k) =
1

n + 1

n∑
j=0

W (n, k, j)

=
1

n + 1

⎧⎨
⎩

(n−k−2)/2∑
j=0

(−k) +

n∑
j=n−k+1

(2j − n)

+
n−k∑

j=(n−k)/2

{
(2j − n)

[
1 −

(
n

k+j

)
(
n
j

)
]

+ (−k)

(
n

k+j

)
(
n
j

)
}⎫⎬
⎭

=
1

n + 1

⎧⎨
⎩−k(n− k)

2
+

n∑
j=(n−k)/2

(2j − n) −
n−k∑

j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭

=
1

n + 1

⎧⎨
⎩ (n− k + 2)(n− k)

4
−

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ .

This completes the proof of Theorem 3.
For each positive integer n, let

kn = min{k | 1 ≤ k ≤ n, W (n, k) = max{W (n, j) | 1 ≤ j ≤ n}},

kn = max{k | 1 ≤ k ≤ n, (n + 1)(n− k)2 ≥ 8n(n− 1)k3},

kn = min{k | 1 ≤ k ≤ n, (n + 1)(n + k)2 ≤ 2(n− k)2k3}.
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Table 2

W (n, k), E(n, 0, 0), kn, kn, and kn.

n W (n, 1) W (n, 2) W (n, 3) W (n, 4) W (n, 5) E(n, 0, 0) kn, kn kn

10 1.65 1.59 1.33 1.03 0.77 1.65 1 1 3
20 3.57 3.82 3.61 3.29 2.95 3.82 2 2 3
30 5.50 6.08 5.96 5.66 5.31 6.08 2 2 3
40 7.43 8.35 8.33 8.06 7.71 8.37 2 2 4
50 9.36 10.62 10.70 10.47 10.14 10.70 2 3 4
60 11.29 12.89 13.07 12.89 12.57 13.08 2 3 4
70 13.22 15.16 15.45 15.31 15.01 15.46 3 3 4
80 15.15 17.43 17.83 17.73 17.45 17.85 3 3 4
90 17.08 19.71 20.21 20.15 19.90 20.25 3 3 4
100 19.01 21.98 22.59 22.58 22.34 22.66 3 3 4
200 38.32 44.71 46.41 46.86 46.85 46.98 3 4 5
300 57.64 67.45 70.24 71.15 71.37 71.53 4 5 6
400 76.95 90.19 94.07 95.44 95.90 96.17 4 6 6
500 96.27 112.94 117.91 119.74 120.43 120.89 4 6 7
600 115.58 135.68 141.74 144.04 144.96 145.65 5 7 7
700 134.90 158.42 165.57 168.33 169.50 170.44 5 7 8
800 154.21 181.16 189.40 192.63 194.03 195.25 5 7 8
900 173.53 203.90 213.23 216.93 218.56 220.07 5 8 8

1,000 192.84 226.64 237.07 241.23 243.10 244.90 5 8 9

Table 2

Continued.

n W (n, 6) W (n, 7) W (n, 8) W (n, 9) W (n, 10) E(n, 0, 0) kn, kn kn

10 0.53 0.34 0.18 0.08 0 1.65 1 1 3
20 2.61 2.28 1.97 1.68 1.41 3.82 2 2 3
30 4.94 4.57 4.21 3.86 3.52 6.08 2 2 3
40 7.33 6.95 6.56 6.18 5.81 8.37 2 2 4
50 9.76 9.37 8.97 8.57 8.18 10.70 2 3 4
60 12.20 11.80 11.40 10.99 10.58 13.08 2 3 4
70 14.64 14.25 13.84 13.43 13.02 15.46 3 3 4
80 17.09 16.70 16.29 15.88 15.46 17.85 3 3 4
90 19.55 19.16 18.75 18.34 17.91 20.25 3 3 4
100 22.01 21.62 21.22 20.80 20.37 22.66 3 3 4
200 46.63 46.32 45.95 45.55 45.13 46.98 3 4 5
300 71.29 71.05 70.73 70.36 69.96 71.53 4 5 6
400 95.95 95.80 95.53 95.20 94.82 96.17 4 6 6
500 120.62 120.54 120.33 120.04 119.69 120.89 4 6 7
600 145.28 145.30 145.14 144.88 144.55 145.65 5 7 7
700 169.95 170.05 169.94 169.72 169.43 170.44 5 7 8
800 194.42 194.80 194.75 194.57 194.30 195.25 5 7 8
900 219.29 219.55 219.56 219.41 219.17 220.07 5 8 8

1,000 243.96 244.30 244.37 244.26 244.05 244.90 5 8 9

It is easy to see that kn ≤ kn for each positive integer n. In Theorem 8, we will prove
that kn ≤ kn ≤ kn for each positive integer n.

Table 2 provides some numerical values of W (n, k), E(n, 0, 0), kn, kn, and kn
for various n and k.

Table 2 provides numerical evidence of the following: (I) For each k, W (n, k) is
increasing in n. (II) For each n, W (n, k) first increases and then decreases in k (for
small n, W (n, k) is decreasing in k). (III) kn ≤ kn ≤ kn. (IV) W (n, kn) ≈ n

4 .
Theorem 4 proves (I). Theorem 5 proves (IV). Theorem 7 gives a partial answer

to (II). Theorem 8 proves (III).
Theorem 4. For each fixed k (1 ≤ k ≤ n), W (n, k) is increasing in n.
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Proof. We will prove the case when n−k is even since the proof for the case when
n− k is odd is similar. By Theorem 3

W (n + 1, k) =
1

n + 2

⎧⎨
⎩ (n− k + 2)2

4
−

n−k+1∑
j=(n−k+2)/2

(2j + k − n− 1)

(
n+1
k+j

)
(
n+1
j

)
⎫⎬
⎭

=
1

n + 2

⎧⎨
⎩ (n− k + 2)2

4
−

n−k∑
j=(n−k)/2

(2j + k + 1 − n)

(
n+1

k+j+1

)
(
n+1
j+1

)
⎫⎬
⎭

and

W (n, k) =
1

n + 1

⎧⎨
⎩ (n− k + 2)(n− k)

4
−

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ .

Therefore,

W (n + 1, k) −W (n, k) =
1

(n + 1)(n + 2)

⎧⎨
⎩ (n + 2)2 − k2

4

−
n−k∑

j=(n−k)/2

{
(n + 1)(2j + k + 1 − n)

(
n+1

k+j+1

)
(
n+1
j+1

) − (n + 2)(2j + k − n)

(
n

k+j

)
(
n
j

)
}⎫⎬
⎭ .

To show that W (n + 1, k) −W (n, k) ≥ 0, it is sufficient to show that

n−k∑
j=(n−k)/2

{
(n + 1)(2j + k + 1 − n)

(
n+1

k+j+1

)
(
n+1
j+1

) − (n + 2)(2j + k − n)

(
n

k+j

)
(
n
j

)
}

≤ (n + 2)2 − k2

4
.

Notice that

n−k∑
j=(n−k)/2

{
(n + 1)(2j + k + 1 − n)

(
n+1

k+j+1

)
(
n+1
j+1

) − (n + 2)(2j + k − n)

(
n

k+j

)
(
n
j

)
}

=

n−k∑
j=(n−k)/2

{
(n + 1)(2j + k + 1 − n)(j + 1) − (n + 2)(2j + k − n)(k + j + 1)

k + j + 1

} (
n

k+j

)
(
n
j

) .

For fixed 1 ≤ k ≤ n, let

g(j) = (n + 1)(2j + k + 1 − n)(j + 1) − (n + 2)(2j + k − n)(k + j + 1).

After simplification,

g(j) = −2j2 − (2nk + 5k + 1 − 2n)j + (n2k + 2nk + 2n + 1 − nk2 − 2k2 − k).
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Since k ≥ 1, g(j) is decreasing for j ≥ (n− k)/2 and g(j) ≤ 0 if

j ≥ 1

4
{ 2n− 2nk − 5k − 1 +

√
4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9) }.

Therefore, there are at most

1

4
{−2nk − 3k + 3 +

√
4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9)}

terms of g(j) which are nonnegative and

n−k∑
j=(n−k)/2

{
(n + 1)(2j + k + 1 − n)(j + 1) − (n + 2)(2j + k − n)(k + j + 1)

k + j + 1

} (
n

k+j

)
(
n
j

)
≤ (n + 1)(n + 2 − k){−2nk − 3k + 3 +

√
4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9)}

4(n + 2 + k)
.

To show that W (n + 1, k) −W (n, k) ≥ 0, now it is sufficient to show that

(n + 1)(n + 2 − k){−2nk − 3k + 3 +
√

4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9)}
4(n + 2 + k)

≤ (n + 2 + k)(n + 2 − k)

4
,

which is equivalent to showing that

(n+1){−2nk−3k+3+
√

4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9)} ≤ (n+2+k)2.

To show that

(n+1){−2nk−3k+3+
√

4(k2 + 1)n2 + 12(k2 + 1)n + (9k2 + 2k + 9)} ≤ (n+2+k)2,

it is sufficient to show that

(n+1)2{4(k2+1)n2+12(k2+1)n+(9k2+2k+9)} ≤ {(n+1)(2nk+3k−3)+(n+2+k)2}2.

After simplification,

{(n+1)(2nk+3k−3)+(n+2+k)2}2 − (n+1)2{4(k2+1)n2+12(k2+1)n+(9k2+2k+9)}

= (4k−3)n4 + (8k2+18k−6)n3 + (4k3+42k2+30k−10)n2 + (14k3+70k2+24k−16)n

+ (k4 + 14k3 + 42k2 + 12k − 8).

Since 1 ≤ k ≤ n,

(4k−3)n4 + (8k2+18k−6)n3 + (4k3+42k2+30k−10)n2 + (14k3+70k2+24k−16)n

+ (k4 + 14k3 + 42k2 + 12k − 8) ≥ 0.

This completes the proof of Theorem 4.
Theorem 5. W (n, kn) ≈ n

4 .
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Proof. Notice that for each fixed k,

1

n2

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

) ≈
∫ 1

1/2

(2x− 1)(1 − x)kx−kdx

and

1

n2

n−k∑
j=(n−k+1)/2

(2j + k − n)

(
n

k+j

)
(
n
j

) ≈
∫ 1

1/2

(2x− 1)(1 − x)kx−kdx.

Let t = (1 − x)/x; then

∫ 1

1/2

(2x− 1)(1 − x)kx−kdx =

∫ 1

0

(1 − t)tk(1 + t)−3dt.

By the mean value theorem,

∫ 1

0

(1 − t)tk(1 + t)−3dt = ak

∫ 1

0

(1 − t)tkdt =
ak

(k + 1)(k + 2)

for some constant 1
8 < ak < 1. Therefore, 4W (n,k)

n ≈ (1− k
n )2 − bk

(k+1)(k+2) as n → ∞
for any fixed positive integer k, where bk is a constant between 1

2 and 4. Since k is

arbitrary and 4W (n,kn)
n ≥ 4W (n,k)

n for all 1 ≤ k ≤ n, 4W (n,kn)
n → 1 as n → ∞ and this

completes the proof of Theorem 5.
Combining Theorems 2 and 5, we have the following theorem.
Theorem 6. The kn in the hole drawing policy is asymptotically optimal. Even

though the computation for W (n, k) is much simpler and faster than that for E(n, 0, 0),
we still have to compute W (n, k) for all k, 1 ≤ k ≤ n to identify kn. The next result
enables us to reduce the amount of required computation somewhat.

Theorem 7. For 1 ≤ k ≤ n − 4, if W (n, k) ≥ W (n, k + 2), then W (n, k) ≥
W (n, k + 2j) for all 1 ≤ j ≤ (n− k)/2.

Proof. We will give the proof for the case when n− k is even since the proof for
the case when n− k is odd is similar. By a direct computation, Theorem 7 holds for
1 ≤ n < 10, so we will assume that n ≥ 10 in the proof below. It is also easy to verify
that Theorem 7 holds if k = n − 4; we will assume n − k ≥ 6. For each 1 ≤ k ≤ n,

let u(n, k) = (n−k)(n−k+2)
4 and v(n, k) =

∑n−k
j=(n−k)/2(2j + k − n)

( n
k+j)
(nj)

. Also for

1 ≤ k ≤ n− 2, let u′(n, k) = u(n, k)− u(n, k + 2) and v′(n, k) = v(n, k)− v(n, k + 2).
It is easy to see that u′(n, k) = n − k for all 1 ≤ k ≤ n − 2 and n − k is even. Since
( n
j+1+k)
( n
j+1)

≥ ( n
j+k+2)
(nj)

if j ≥ n−k
2 − 1, v′(n, k) ≥ 0. It is also clear that (n + 1)W ′(n, k) =

(n+1){W (n, k)−W (n, k+2)} = u′(n, k)− v′(n, k). Now we will prove that for fixed
n, there exists a k′n such that v′(n, k) ≥ u′(n, k) if k ≤ k′n and v′(n, k) < u′(n, k) if
k′n < k < n − 2. Since u′(n, k) is a linear function in k, it is sufficient to prove that
v′(n, k) is convex in k, i.e., to prove that v′(n, k) + v′(n, k + 4) ≥ 2v′(n, k + 2). It is
equivalent to proving that v(n, k)− 3v(n, k+2)+3v(n, k+4)− v(n, k+6) ≥ 0. After
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simplification,

v(n, k) − 3v(n, k + 2) + 3v(n, k + 4) − v(n, k + 6)

=
n−k∑

(n−k)/2

(2j + k − n)

{(
n

j+k

)
(
n
j

) − 3

(
n

j+k+1

)
(

n
j−1

) + 3

(
n

j+k+2

)
(

n
j−2

) −
(

n
j+k+3

)
(

n
j−3

)
}
.

It is easy to see that, to show v(n, k)−3v(n, k+2)+3v(n, k+4)−v(n, k+6) ≥ 0, it

is sufficient to show that for n−k even, n ≥ 10, n−k ≥ 6, and (n−k)
2 ≤ j ≤ n−k−3,(

n
j+k

)
(
n
j

) − 3

(
n

j+k+1

)
(

n
j−1

) + 3

(
n

j+k+2

)
(

n
j−2

) −
(

n
j+k+3

)
(

n
j−3

) ≥ 0.

Since for j = n− k − 2, n− k − 1, n− k,(
n

j+k

)
(
n
j

) − 3

(
n

j+k+1

)
(

n
j−1

) + 3

(
n

j+k+2

)
(

n
j−2

) −
(

n
j+k+3

)
(

n
j−3

) ≥ 0,

it is sufficient to show that for n−k even, n ≥ 10, n−k ≥ 6, and (n−k)
2 ≤ j ≤ n−k−3,(

n
j+k

)
(
n
j

) − 3

(
n

j+k+1

)
(

n
j−1

) + 3

(
n

j+k+2

)
(

n
j−2

) −
(

n
j+k+3

)
(

n
j−3

) =
(j − 3)!(n− j)!

(j + k + 3)!(n− j − k)!
h(j, k, n) ≥ 0,

where

h(j, k, n) = j(j − 1)(j − 2)(j + k + 1)(j + k + 2)(j + k + 3)

−3(j − 1)(j − 2)(n− j + 1)(j + k + 2)(j + k + 3)(n− k − j)

+3(j − 2)(n− j + 1)(n− j + 2)(j + k + 3)(n− k − j)(n− k − j − 1)

−(n− j + 1)(n− j + 2)(n− j + 3)(n− k − j)(n− k − j − 1)(n− k − j − 2).

Let n− k = 2y, j = y + x, k = z, n = 2y + z; then

h(j, k, n) = h(y+x, z, 2y+z) = 8(8x3+x)y3+{12(8x3−4x2+x)z+12(8x3−12x2+x)}y2

+{12(4x3 − 4x2 + x)z2 + 48(2x3 − 4x2 + x)z + 4(14x3 − 36x2 + 13x)}y

+{4(2x3−3x2+x)z3+12(2x3−5x2+2x)z2+4(7x3−21x2+11x)z+12(x3−3x2+24x)}.

Since x = 0, 1, 2, . . . , y − 3, y = 3, 4, . . . , z = 2, 4, . . . , it is easy to check that h(y +
x, z, 2y + z) ≥ 0. The proof of Theorem 7 now is complete.

We can use Theorem 7 to identify kn by comparing W (n, k) and W (n, k + 2).
Once we find k1 and k2 such that W (n, 2k1 − 1) ≥ W (n, 2k1 + 1) and W (n, 2k2) ≥
W (n, 2k2 + 2), then kn = 2k1 − 1 if W (n, 2k1 − 1) ≥ W (n, 2k2) and kn = 2k2 if
W (n, 2k1 − 1) < W (n, 2k2). The problem here is that we still don’t know how many
values of W (n, k) we will have to compute. Fortunately the next theorem gives a lower
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bound and an upper bound for kn, which helps us to reduce the amount of required
computation to identify kn.

Theorem 8. Let kn, kn, and kn be as defined above. Then for all n ≥ 1,
kn ≤ kn ≤ kn.

Proof. We will give the proof for kn ≤ kn since the proof for kn ≤ kn is similar. We
also give the proof only for the case when n−k is even since the proof for the case when
n−k is odd is also similar. We will assume that n ≥ 1,000 since Table 2 above reveals
that Theorem 8 holds for n ≤ 1,000. By Theorem 7, if v′(n, k) < u′(n, k) = n− k and
v′(n, k − 1) < u′(n, k − 1) = n− k + 1, then kn ≤ k. Now

v′(n, k) = v(n, k) − v(n, k + 2) =
(n− k)(

n
k

) +

(n+k)/2∑
j=k+1

(n + k − 2j)

{(
n

j−k

)
(
n
j

) −
(

n
j−k−1

)
(

n
j+1

)
}

=
(n− k)(

n
k

) + (n + 1)

(n+k)/2∑
j=k+1

(n + k − 2j)2
j! (n− j − 1)!

(j − k)! (n− j + k + 1)!

<
(n− k)(

n
k

) + (n + 1)

(n+k)/2∑
j=k+1

(n + k − 2j)2

(n− j)(n + k + 1 − j)

(
j

n + k − j

)k

<
(n− k)(

n
k

) +
4(n + 1)

(n− k)(n + k)

(n+k)/2∑
j=k+1

(n + k − 2j)2
(

j

n + k − j

)k

≈ (n− k)(
n
k

) +
4(n + 1)(n + k)2

(n− k)

∫ 1

1/2

(2x− 1)2(1 − x)kx−kdx.

For 2 ≤ k ≤ n− 2 and n large, (n−k)

(nk)
is negligible. Also notice that

∫ 1

1/2

(2x− 1)2(1 − x)kx−kdx = lim
m→∞

2mk∑
j=1

1

4mk

j2

4m2k2

(
2mk − j

2mk + j

)k

≤ lim
m→∞

2mk∑
j=1

1

16k3

j2

m3
e−j/m ≤ lim

m→∞

1

16k3

1

m3

(e2/m + e1/m)

(e1/m − 1)3
=

1

8k3
.

Therefore, v′(n, k) = v(n, k) − v(n, k + 2) < (n+1)(n+k)2

2(n−k)k3 . Now if (n + 1)(n + k)2 ≤
2(n− k)2k3, then v′(n, k) < (n+1)(n+k)2

2(n−k)k3 ≤ (n− k) and kn ≤ k and this completes the

proof of Theorem 8.

Table 3 provides some numerical values of kn, kn, k
∗
n, kn,W (n, kn), and (n−kn+1)2

4(n+1)

for n = 100, 200, 300, . . . , 3,000, where k∗n = the integer part of (n2 )1/3.
By Theorems 7 and 8, we can identify the optimal kn very quickly. From the

proof of Theorem 5, W (n, k) = 1
n+1{

(n−k+2)(n−k)
4 − n2ck

(k+1)(k+2)} if n − k is even and

W (n, k) = 1
n+1{

(n−k+1)2

4 − n2ck
(k+1)(k+2)} if n−k is odd, where ck is a constant between

1
2 and 1. Therefore, the optimal kn = dnn

1/3, where dn is a constant less than 1.
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Table 3

kn, kn, k
∗
n, kn,W (n, kn) and

(n−kn+1)2

4(n+1)
.

n kn kn k∗n kn W (n, kn)
(n−kn+1)2

4(n+1)

100 2 3 3 4 22.59 23.77
200 2 4 4 5 46.86 48.27
300 3 5 5 6 71.37 72.77
400 3 6 6 6 95.95 97.27
500 3 6 6 7 120.62 122.27
600 4 7 7 7 145.30 146.77
700 4 7 7 8 170.05 171.77
800 4 7 7 8 194.80 196.77
900 4 8 8 8 219.56 221.27

1,000 4 8 8 9 244.37 246.27
1,100 5 8 8 9 269.18 271.26
1,200 5 8 8 9 293.99 296.26
1,300 5 9 8 9 318.81 320.77
1,400 5 9 8 9 343.65 345.76
1,500 5 9 9 10 368.50 370.76
1,600 5 9 9 10 393.35 395.76
1,700 5 9 9 10 418.20 420.76
1,800 6 10 9 10 443.06 445.26
1,900 6 10 9 10 467.93 470.26
2,000 6 10 10 11 492.81 495.26
2,100 6 10 10 11 517.69 520.26
2,200 6 10 10 11 542.56 545.26
2,300 6 10 10 11 567.44 570.26
2,400 6 11 10 11 592.33 594.76
2,500 6 11 10 11 617.22 619.76
2,600 6 11 10 11 642.12 644.76
2,700 6 11 11 12 667.02 669.76
2,800 7 11 11 12 691.91 694.76
2,900 7 11 11 12 716.81 719.76
3,000 7 11 11 12 741.71 744.76

By Theorem 8, the constant dn is approximately between 1
2 and (1

2 )1/3. From Table

3, it seems that kn = the integer part of { 1
2 + (n2 )1/3}. However, we do not have

a proof yet. We can start with k = the integer part of { 1
2 + (n2 )1/3} and compare

W (n, k),W (n, k + 2) and W (n, k + 1),W (n, k + 3). Then we either increase k by 1
or decrease k by 1. By this procedure, we can identify kn very quickly. For example,
even when n = 100,000, we need at most 14 comparisons to identify the optimal kn.
Table 3 also confirms Theorem 8, which implies that kn → ∞ as n → ∞ even though
kn → ∞ very slowly.

Theorem 9. kn → ∞ as n → ∞.
Although we are not able to prove that kn is nondecreasing in n, we have the

following weaker theorem, which is interesting and useful to identify kn.
Theorem 10. For all n ≥ 1, |kn+1 − kn| ≤ 1.
Proof. By Theorem 7, it is sufficient to prove v(n + 1, k − 1) − v(n + 1, k) ≥

v(n, k) − v(n, k + 1) ≥ v(n + 1, k + 1) − v(n + 1, k + 2). We will give only the
proof for v(n, k) − v(n, k + 1) ≥ v(n + 1, k + 1) − v(n + 1, k + 2) since the proof for
v(n + 1, k − 1) − v(n + 1, k) ≥ v(n, k) − v(n, k + 1) is similar. We will assume that
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n + k is even since the proof for the case when n + k is odd is similar. Notice that

v(n, k) − v(n, k + 1)

=

(n+k)/2−1∑
j=k

(n + k − 2j)

(
n

j−k

)
(
n
j

) −
(n+k)/2−1∑

j=k

(n + k − 1 − 2j)

(
n

j−k

)
(

n
j+1

)

=

(n+k)/2−1∑
j=k

(
n

j−k

)
(
n
j

) {
(n + k − 2j) − (n + k − 1 − 2j)

j + 1

n− j

}

and

v(n + 1, k + 1) − v(n + 1, k + 2)

=

(n+k)/2∑
j=k+1

(n + k + 2 − 2j)

(
n+1

j−k−1

)
(
n+1
j

) −
(n+k)/2∑
j=k+1

(n + k + 1 − 2j)

(
n+1

j−k−1

)
(
n+1
j+1

)

=

(n+k)/2−1∑
j=k

(n + k − 2j)

(
n+1
j−k

)
(
n+1
j+1

) −
(n+k)/2−1∑

j=k

(n + k − 1 − 2j)

(
n+1
j−k

)
(
n+1
j+2

)

=

(n+k)/2−1∑
j=k

(
n+1
j−k

)
(
n+1
j+1

) {(n + k − 2j) − (n + k − 1 − 2j)
j + 2

n− j

}

=

(n+k)/2−1∑
j=k

(
n

j−k

)
(
n
j

) {
(n + k − 2j) − (n + k − 1 − 2j)

j + 2

n− j

}
j + 1

n + k + 1 − j
.

Since 1 ≤ j ≤ n+k
2 − 1, j+1

n+k+1−j < 1. Therefore, v(n, k) − v(n, k + 1) ≥ v(n + 1, k +

1) − v(n + 1, k + 2) and this completes the proof of Theorem 10.
From our computation, we notice that kn is nondecreasing in n. If this statement

is true, we can further reduce the computation for identifying kn. However, we do
not have a proof for this statement either. It is worthwhile to point out that both
“the k∗n in the hole drawing policy” and “the kn in the hole drawing policy” are also
asymptotically optimal. However, we do not know how big the difference between
W (n, kn) and W (n, k∗n) will be. If the difference between W (n, kn) and W (n, k∗n) is
bounded, then we can just use “the k∗n in the hole drawing policy.”

4. A random coin tossing problem. In this section, we will show that our
urn problem is in fact equivalent to the following coin tossing problem, which can be
described as follows: A player is given a coin and is allowed to toss the coin at most n
times, but can stop any time he or she wishes. The player gets a +1 each time a head
is tossed and a −1 each time a tail is tossed. The player does not know the probability
“p” of getting a head on each toss but knows that p has a uniform distribution over
the interval [0, 1].
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For each positive integer n and integers 0 ≤ j ≤ k ≤ n, let G(n, k, j) be the
player’s additional (conditional) expected value at the stopping time when he or she
uses an optimal stopping rule for the remaining game given that the player has tossed
the coin k times and j of which are heads.

Lemma 2. If 0 ≤ j ≤ k ≤ n− 1, then

G(n, k, j) = max

{
0,

2j − k

k + 2
+

j + 1

k + 2
G(n, k + 1, j + 1) +

k − j + 1

k + 2
G(n, k + 1, j)

}
.

By mathematical induction, it is easy to show that for fixed n and k, G(n, k, j) is
increasing in j. It makes sense to define jnk to be the smallest j such that G(n, k, j) >
0. The optimal stopping rule can then be stated as follows: If the player did not stop
earlier and has tossed the coin k times, j of which are heads, then the player should
continue to toss as long as j ≥ jnk unless k = n. It is clear that E(n, k, j) = G(n, k, j)
for all 0 ≤ j ≤ k ≤ n and n ≥ 1, so this random coin tossing problem is equivalent to
the random version of Shepp’s urn scheme problem.

For each nonnegative integer k, “the k in the hole stopping rule” says the player
will continue to toss the coin if the number of tails tossed is still less than k + the
number of heads tossed. Let H(n, k) be the expected value of the game when the player
uses “the k in the hole stopping rule.”

Theorem 11. For all 1 ≤ k ≤ n, H(n, k) = W (n, k).
Proof. It is sufficient to show that if n− k is even,

H(n, k) =
1

n + 1

⎧⎨
⎩ (n− k + 2)(n− k)

4
−

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ ,

and if n− k is odd,

H(n, k) =
1

n + 1

⎧⎨
⎩ (n− k + 1)2

4
−

n−k∑
j=(n−k+1)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ .

We give the proof for the case when n − k is even; when n − k is odd the proof is
similar. For each j = 0, 1, 2, . . . , n, let H(n, k, j) be the value at the stopping time
when the player uses “the k in the hole stopping rule” assuming that there are j heads
in n tosses. Then it is clear that H(n, k, j) = 2j − n if j > n− k,

H(n, k, j) = (2j − n)

{
1 −

(
n

k + j

)/(
n

k

)}
− k

(
n

k + j

)/(
n

k

)

if (n − k)/2 ≤ j ≤ n − k (by the reflection principle), and H(n, k, j) = −k if j <
(n − k)/2. For each j = 0, 1, 2, . . . , n, let P (j) be the probability of getting j heads
in n tosses. Given that the probability of getting a head in a toss is p, P (j) =(
n
j

)
pj(1 − p)n−j . Hence

H(n, k) =

∫ 1

0

n∑
j=0

H(n, k, j)P (j)dp

=
1

n + 1

⎧⎨
⎩ (n− k + 2)(n− k)

4
−

n−k∑
j=(n−k)/2

(2j + k − n)

(
n

k+j

)
(
n
j

)
⎫⎬
⎭ .

Therefore, H(n, k) = W (n, k).
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ALTERNATIVE DIGIT SETS FOR NONADJACENT
REPRESENTATIONS∗
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Abstract. It is known that every positive integer n can be represented as a finite sum of the
form n =

∑
ai2

i, where ai ∈ {0, 1,−1} for all i, and no two consecutive ai’s are nonzero. Such
sums are called nonadjacent representations. Nonadjacent representations are useful in efficiently
implementing elliptic curve arithmetic for cryptographic applications.

In this paper, we investigate if other digit sets of the form {0, 1, x}, where x is an integer, provide
each positive integer with a nonadjacent representation. If a digit set has this property, we call it a
nonadjacent digit set (NADS). We present an algorithm to determine if {0, 1, x} is an NADS and, if
it is, we present an algorithm to efficiently determine the nonadjacent representation of any positive
integer. We also present some necessary and sufficient conditions for {0, 1, x} to be an NADS. These
conditions are used to exhibit infinite families of integers x such that {0, 1, x} is an NADS, as well
as infinite families of x such that {0, 1, x} is not an NADS.

Key words. nonadjacent representations, redundant representations, digit sets, radix 2
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1. Introduction and history. In a base 2 (or radix 2) positional number sys-
tem, representations of integers are converted into integers via the rule

(. . . a3a2a1a0)2 = · · · + a32
3 + a22

2 + a12
1 + a0.

Each of the ai’s is called a digit. In the usual radix 2 positional number system each
digit is equal to 0 or 1. If we let D = {0, 1}, then we say that D is the digit set for
this number system.

It is often advantageous to employ alternate digit sets. The digit set D =
{0, 1,−1} was studied as early as 1951 by Booth. Booth [1] presents a technique
whereby a binary computer can calculate a representation of the product of two inte-
gers without any extra steps to correct for its sign. His method is implicitly based on
replacing one of the operands in the multiplication with a {0, 1,−1}-radix 2 represen-
tation. In 1960, through his investigations on how to reduce the number of additions
and subtractions used in binary multiplication and division, Reitwiesner [8] showed
that every integer has an easily constructed canonical {0, 1,−1}-radix 2 representation
with a minimal number of nonzero digits.

Reitwiesner’s canonical {0, 1,−1}-radix 2 representations are defined by the fol-
lowing property.
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Property M. Of any two consecutive digits, at most one is nonzero.
In other words, in such representations, nonzero digits are nonadjacent. These

representations have come to be called nonadjacent forms (NAFs). The terminology
“Property M” was applied by Reitwiesner and likely reflects the fact that {0, 1,−1}-
radix 2 representations, which satisfy this property, have a minimal number of nonzero
digits.

Cryptographers came to be interested in NAFs through the study of exponen-
tiation. Jedwab and Mitchell [4] noticed that it is possible to reduce the number
of multiplications used in the square-and-multiply algorithm for exponentiation if a
{0, 1,−1}-radix 2 representation of the exponent is used. This led them to an inde-
pendent discovery of the NAF. However, in multiplicative groups, like those used in
the Rivest–Shamir–Adleman (RSA) public key cryptosystem and the Digital Signa-
ture Algorithm (DSA) [6], using the digit −1 requires the computation of an inverse,
which is more costly than a multiplication.

In elliptic curve groups this is not a problem since inverses can be computed es-
sentially for free. Morain and Olivos [7] observed that in these groups the operation
analogous to exponentiation could be made more efficient using {0, 1,−1} represen-
tations. They give two algorithms for performing scalar-multiplication using addition
and subtraction. The {0, 1,−1}-radix 2 representations, upon which their algorithms
are based, are in fact the same ones that Booth and Reitwiesner studied. NAFs
and representations like them are important tools in the efficient implementations of
elliptic curve cryptosystems (cf. Gordon [3], Solinas [10, 11], Brickell et al. [2]).

If a radix 2 representation has digit set D and satisfies Property M, we call it
a D-nonadjacent form (D-NAF). In this paper, we consider the question of which
sets D provide NAFs for every positive integer. If D is such a digit set, then we
call it a nonadjacent digit set (NADS). After a preliminary version of this paper was
completed, it was discovered that a related question had been studied by Matula.
Matula [5] defines and investigates basic digit sets. A set of digits containing 0 is
called basic if it provides every positive and negative integer with a unique radix-r
representation without the use of a separate sign. If a digit set is basic, Matula shows
that r �= 2; in this paper we are concerned only with radix 2 representations. Another
difference between our work and Matula’s is that he imposes no relation on the digits
of a representation, while we are interested only in nonadjacent representations.

We examine digit sets of the form {0, 1, x} with x ∈ Z. It is known that letting
x = −1 gives an NADS, but it is somewhat surprising that there are many values of
x with this property; for example, x = −5,−13,−1145. We give infinite families of
x’s for which {0, 1, x} is an NADS, and we also give infinite families of x’s for which
{0, 1, x} is not an NADS. We also give some results on the necessary conditions D
must satisfy in order to be an NADS. The algorithms we present and analyze for
computing D-NAFs might be of some interest as well.

2. Preliminaries. We start by introducing some definitions and notation, which
will facilitate our discussions.

All of the radix 2 representations we consider here are finite sums of the form∑
i≥0 ai2

i, which we denote by (. . . a2a1a0)2. Since (. . . a2a1a0)2 stands for a finite
sum, all but a finite number of the ai’s are zero. Because of this property, we can
consider the length of a representation as follows.

Definition 2.1. The length of a representation (. . . a2a1a0)2 is the integer

min{� ∈ Z : � ≥ 0, and for any i ≥ �, ai = 0}.
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For the representation (a�−1 . . . a1a0)2, it is implicit that ai = 0 for all i ≥ �; note
that if a�−1 �= 0, then this representation has length �. According to the definition
above, the all-zero representation has length 0.

We will always use D to denote a digit set. The set of all strings of digits from
D is denoted by D∗. The empty string is in D∗ and is denoted by ε. Now, if D is
the digit set for (a�−1 . . . a1a0)2, then a�−1 . . . a1a0 is a string in D∗. Conversely, any
string α ∈ D∗ corresponds to a radix 2 representation with digit set D, namely, (α)2.
If α, β ∈ D∗, then we denote their concatenation by α‖β.

We apply some of our terminology for representations to strings. If 0 ∈ D, and if
a finite string α ∈ D∗ satisfies Property M, then we call α a D-NAF. If, in addition,
(α)2 = n, we say α is a D-NAF for n. Notice that if α is a D-NAF for n, then α with
any leading zeros removed is also a D-NAF for n. We denote the string formed by
deleting the leading zeros from α by α̂.

Given a digit set D and an integer n, we define a map

RD(n) :=

{
α̂, where α ∈ D∗ is a D-NAF for n, if one exists,

⊥ otherwise.

Here, ⊥ is just some symbol not in D. If RD(n) evaluates to a D-NAF for n, then
by definition that string has no leading zeros. For example, if D = {0, 1,−9}, then
RD(7) might evaluate to 10009 since 10009 is a D-NAF, has no leading zeros, and
(10009)2 = 1 · 24 +0 · 23 +0 · 22 +0 · 21 − 9 · 20 = 7. If there is more than one string in
D, which is a D-NAF for n and has no leading zeros, then RD(n) might evaluate to
any one of these strings. Later on we will prove that 3 does not have a D-NAF, and
hence RD(3) =⊥.

We are interested in determining which integers have D-NAFs, so we define the
set

NAF(D) := {n ∈ Z : RD(n) �=⊥}.

From our example with D = {0, 1,−9} we see 7 ∈ NAF(D), but 3 �∈ NAF(D). Using
this notation, our definition of an NADS is as follows.

Definition 2.2. D is an NADS if Z
+ ⊆ NAF(D).

3. Necessary conditions for {0, 1, x} to be an NADS. If we suppose D =
{0, 1, x} is an NADS, then we can deduce necessary conditions on x.

Theorem 3.1. Let D = {0, 1, x}. If there exists n ∈ NAF(D) with n ≡ 3
(mod 4), then x ≡ 3 (mod 4).

Proof. Take n ∈ NAF(D) with n ≡ 3 (mod 4). For some particular D-NAF, say
(. . . a2a1a0)2, we have

(. . . a2a1a0)2 = n

=⇒ a0 ≡ 1 (mod 2)

=⇒ a0 �= 0.

Since a0 is nonzero and the representation is nonadjacent, we have a1 = 0. Thus

(. . . a20a0)2 = n

=⇒ a0 ≡ 3 (mod 4)

=⇒ a0 �= 1

=⇒ a0 = x.
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So x = a0 ≡ 3 (mod 4).
If D = {0, 1, x} is an NADS, then 3 ∈ NAF(D), and by the previous result x ≡ 3

(mod 4). So, if we are trying to find a value of x that makes {0, 1, x} an NADS, we
need only consider those values congruent to 3 modulo 4.

3.1. The case x > 0. If we restrict x to be a positive integer, then we can give
a complete characterization of all values which make D = {0, 1, x} an NADS. It is
well known that x = 3 is such a value, and this is remarked by Solinas [9]. We give a
proof of this fact and then show that no other positive value of x makes {0, 1, x} an
NADS.

Theorem 3.2. The only NADS of the form {0, 1, x} with x > 0 is {0, 1, 3}.
Proof. Let n be any positive integer. We want to show that n has a {0, 1, 3}-NAF.

Let (. . . a2a1a0)2 be the usual {0, 1}-radix 2 representation of n. If this representation
satisfies Property M, there is nothing to prove, so suppose it does not. Let i be the
smallest integer for which ai+1 = ai = 1. Replace digits ai+1 and ai with 0 and 3,
respectively. Since 2i+1 + 2i = 0 · 2i+1 + 3 · 2i, the resulting representation stands
for the same integer. By working from right to left, repeating this substitution as
necessary, we transform (. . . a2a1a0)2 into a {0, 1, 3}-NAF. This proves that {0, 1, 3}
is an NADS.

Now consider x with x > 3. We show n = 3 does not have a {0, 1, x}-NAF.
Suppose to the contrary that for some {0, 1, x}-NAF we have (. . . a2a1a0)2 = 3. Since
3 is odd, a0 �= 0 and so a1 = 0. Now a0 ≡ 3 (mod 4), so it must be that a0 = x.
However, since each of the digits in {0, 1, x} is nonnegative, we have

3 = (. . . a20x)2 = · · · + a22
2 + 0 · 21 + x ≥ x > 3,

which is a contradiction. So, 3 does not have a {0, 1, x}-NAF when x > 3.
An example helps illustrate the construction used in the above proof. Suppose

n = 237. To find a {0, 1, 3}-NAF for 237 we start with its usual binary representation
and then, working from right to left, replace any occurrences of the digits 11 with 03:

237 = (11101101)2 = (10300301)2.

A natural question to ask is if this is the only {0, 1, 3}-NAF for 237. We give the
answer in the next section.

3.2. Uniqueness. We show that every integer, not only just the positive ones,
has at most one {0, 1, x}-NAF, where x ≡ 3 (mod 4).

Theorem 3.3. If x ≡ 3 (mod 4), then any integer has at most one finite length
{0, 1, x}-NAF.

Proof. Let D = {0, 1, x} and suppose the result is false. Then it must be that

(a�−1 . . . a2a1a0)2 = (b�′−1 . . . b2b1b0)2,

where (a�−1 . . . a2a1a0)2 and (b�′−1 . . . b2b1b0)2 are two different D-NAFs with lengths
� and �′, respectively. These representations stand for the same integer; call it n. We
can assume that � is as small as possible.

If a0 = b0, then

(a�−1 . . . a2a1)2 = (b�′−1 . . . b2b1)2,

and so we have two different, and shorter, D-NAFs, which stand for the same integer,
contrary to the minimality of �. So it must be that a0 �= b0.
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If one of a0 or b0 is 0, then n is even, and so both a0 and b0 are 0. But a0 and b0
are different so it must be that a0 is equal to 1 or x. Without loss of generality, we
can assume the representations have the form

(a�−1 . . . a20x)2 = (b�′−1 . . . b201)2.

This implies x ≡ 1 (mod 4), contrary to our hypothesis that x ≡ 3 (mod 4). Thus
every integer has at most one D-NAF.

4. Recognizing NADS of the form {0, 1, x}. From now on we fix D =
{0, 1, x} with x ≡ 3 (mod 4). In this section we work toward a method of deciding
if {0, 1, x} is an NADS. By Theorem 3.2, this is easy when x > 0, so we will assume
x < 0.

Recall that RD(n) evaluates either to the symbol ⊥ or to a finite string, with no
leading zeros, that is a D-NAF for n. Theorem 3.3 tells us that any n has at most
one D-NAF, so in the second case, the string returned by RD(n) is unique. Thus,
RD(n) is well defined (i.e., for every input n there is exactly one output).

The ability to evaluate RD(n) can be useful in deciding if D is an NADS. If we can
find n ∈ Z

+ such that RD(n) =⊥, then we know that D is not an NADS. Also, if we
have an algorithmic description of RD(n), we might be able to analyze this algorithm
and show that for any n ∈ Z

+, RD(n) �=⊥, thus proving that D is an NADS.
We show that RD(n) can be computed recursively and give an algorithm which

evaluates RD(n) in this manner. We begin with some lemmas.
Lemma 4.1. If n ≡ 0 (mod 4), then n ∈ NAF(D) if and only if n/4 ∈ NAF(D).

Further, if n ∈ NAF(D), then RD(n) = RD(n/4)‖00.
Proof. Since n ≡ 0 (mod 4), the definition of the digit set D implies that any

D-NAF for n is of the form (a�−1 . . . a3a200)2, where a�−1 �= 0. Now,

n ∈ NAF(D) ⇐⇒ n has a D-NAF of the form (a�−1 . . . a3a200)2

⇐⇒ n/4 has a D-NAF of the form (a�−1 . . . a3a2)2

⇐⇒ n/4 ∈ NAF(D),

which proves the first part of the lemma. If n ∈ NAF(D), then

RD(n) = a�−1 . . . a3a200 = a�−1 . . . a3a2‖00 = RD(n/4)‖00,

which proves the second part of the lemma.
We omit the proofs of the next three lemmas since they can be established by

making only minor changes to the proof of Lemma 4.1.
Lemma 4.2. If n ≡ 1 (mod 4), then n ∈ NAF(D) if and only if (n − 1)/4 ∈

NAF(D). Further, if n ∈ NAF(D), then RD(n) = RD(n−1
4 )‖01.

Lemma 4.3. If n ≡ 2 (mod 4), then n ∈ NAF(D) if and only if n/2 ∈ NAF(D).
Further, if n ∈ NAF(D), then RD(n) = RD(n/2)‖0.

Lemma 4.4. If n ≡ 3 (mod 4), then n ∈ NAF(D) if and only if (n − x)/4 ∈
NAF(D). Further, if n ∈ NAF(D), then RD(n) = RD(n−x

4 )‖0x.
Given an integer n, if we somehow know that n ∈ NAF(D), then Lemmas 4.1–

4.4 suggest a recursive procedure that we can use to evaluate RD(n). To illustrate,
suppose D = {0, 1,−9}. It was shown in an earlier example that 7 ∈ NAF(D). Using
these lemmas, we have

RD(7) = RD(4)‖09 = RD(1)‖00‖09 = 1‖00‖09 = 10009.
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To describe the general procedure for computing RD(n), given that n ∈ NAF(D), we
use the following two functions:

fD(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n/4 if n ≡ 0 (mod 4),

(n− 1)/4 if n ≡ 1 (mod 4),

n/2 if n ≡ 2 (mod 4),

(n− x)/4 if n ≡ 3 (mod 4),

(4.1)

gD(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

00 if n ≡ 0 (mod 4),

01 if n ≡ 1 (mod 4),

0 if n ≡ 2 (mod 4),

0x if n ≡ 3 (mod 4).

(4.2)

Note that fD returns an integer, and gD returns a string. Below the procedure is
described in pseudocode.

Procedure 4.5. evalα-RD(n)

α ← ε
while n �= 0

do

{
α ← gD(n) ‖ α
n ← fD(n)

return α̂

Procedure 4.5 terminates on input n if and only if fD
i(n) = 0 for some positive

integer i. An easy calculation shows that, for D = {0, 1,−9}, fD3(7) = 0, and so the
procedure terminates on input n = 7. However, fD(3) = 3 and so fD

i(3) = 3 �= 0 for
all i, and thus the procedure does not terminate on input n = 3.

Using the previous lemmas, we can show that Procedure 4.5 terminates on input
n if and only if n ∈ NAF(D). Instead of making use of the lemmas individually, we
find it more convenient to summarize them as follows.

Lemma 4.6. For all n ∈ Z, n ∈ NAF(D) if and only if fD(n) ∈ NAF(D).
Further, if n ∈ NAF(D), then RD(n) = RD(fD(n))‖gD(n).

Now, suppose n ∈ NAF(D). Then the finite string RD(n) can be computed
with a finite number of recursive steps. This implies that there is some positive
integer i such that fD

i(n) = 0, which in turn implies that the procedure terminates.
Conversely, suppose the procedure terminates. Then fD

i(n) = 0 for some i, and
clearly 0 ∈ NAF(D). Thus, fD

i(n) ∈ NAF(D), and by the lemma n ∈ NAF(D).
Procedure 4.5 is named evalα-RD(n). We justify this name by noting that if

the procedure terminates, it returns a string with no leading zeros (i.e., α̂) equal to
RD(n). We are not able to evaluate RD(n) for all values of n using this procedure
because we have not yet described a way to recognize when RD(n) =⊥. We proceed
to do this now.

To decide if D = {0, 1, x} is an NADS, it suffices to determine if there are any
n ∈ Z

+ for which Procedure 4.5 fails to terminate. We can determine if the procedure
will terminate by examining the iterates of fD.

Let n be a positive integer. Observe that, for n �≡ 3 (mod 4), we have that

n > fD(n) ≥ 0,(4.3)
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and, for n ≡ 3 (mod 4), that

n > fD(n) ⇐⇒ n > −x/3,(4.4)

fD(n) ≥ 0 ⇐⇒ n ≥ x.(4.5)

Since x is negative, we see that any iterate of the function fD, on input n, always
results in a nonnegative integer. Consider the graph Gn having directed edges

n → fD(n) → fD
2(n) → fD

3(n) → · · · .
The vertices of Gn are nonnegative integers. Inequalities (4.3) and (4.4) tell us that
there must be some vertex of Gn that is less than −x

3 . Suppose fD
i(n) < −x

3 . We

claim fD
i+1(n) < −x

3 as well. This is clearly true if fD
i(n) ≡ 0, 1, 2 (mod 4). If

fD
i(n) ≡ 3 (mod 4), then

fD
i(n) <

−x

3
=⇒ fD

i(n) − x

4
<

−x
3 − x

4

=⇒ fD
i+1(n) <

−x− 3x

12
=

−x

3
,

and so the claim is true. The claim also tells us that if fD
i(n) < −x

3 , then any
subsequent iterate of fD must be less than −x

3 .
From the preceding discussion it is clear that for a positive integer n, either

1. Gn is a path terminating at 0, or
2. Gn contains a directed cycle of integers in the interval {1, 2, . . . ,

⌊−x
3

⌋
}.

If we can detect a directed cycle in Gn, then we can determine whether or not Proce-
dure 4.5 will terminate on input n. To do this we need to compute and store some of
the vertices of Gn. However, as Procedure 4.5 executes, it computes all the vertices
of Gn, so we might as well modify the procedure to detect a directed cycle in Gn on
its own. This modification is described below as Algorithm 4.7.

Algorithm 4.7. eval-RD(n)

α ← ε
while n > −x/3

do

{
α ← gD(n) ‖ α
n ← fD(n)

S ← ∅

while n �= 0

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if n ∈ S
then return ⊥

S ← S ∪ {n}
α ← gD(n) ‖ α
n ← fD(n)

return α̂

Now we can use the title “Algorithm” rather than “Procedure” because eval-

RD(n) terminates for every n ∈ Z
+. (For some positive integers, it was shown that

evalα-RD(n) fails to terminate, which is why it cannot technically be called an
algorithm.) As its name suggests, Algorithm 4.7 evaluates RD(n) for any n ∈ Z

+. It
is possible to show that the running time of eval-RD(n) is O(lg n + |x|).
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Returning to our main task of recognizing when {0, 1, x} is an NADS, Algo-
rithm 4.7 and the preceding analysis are very helpful since they lead us to the following
result.

Theorem 4.8. Suppose x is a negative integer and x ≡ 3 (mod 4). If every
element in the set {n ∈ Z

+ : n ≤ �−x/3�} has a {0, 1, x}-NAF, then {0, 1, x} is an
NADS.

Proof. From inspection of Algorithm 4.7 this result is almost immediate; however,
we can give a formal argument using the graph Gn.

Suppose the hypothesis is true. We must argue that {0, 1, x} is an NADS. Take
any n ∈ Z

+ and consider the graph Gn. Suppose Gn contains a directed cycle. Let
n0 be a vertex in this cycle. Then 1 ≤ n0 ≤ �−x/3�, and Gn0 must contain the same
directed cycle. This implies that n0 does not have a {0, 1, x}-NAF, contrary to our
hypothesis. So, Gn is a path terminating at 0, and thus n has a {0, 1, x}-NAF.

Theorem 4.8 suggests a computational method of determining if {0, 1, x} is an
NADS. For each n ∈ Z

+, n ≤ �−x/3�, compute eval-RD(n). If all of these values
have {0, 1, x}-NAFs, then {0, 1, x} is an NADS; otherwise, we find a value that does
not have a {0, 1, x}-NAF, which proves that {0, 1, x} is not an NADS. To recognize an
NADS, this method requires �−x/3� calls to eval-RD(n). However, we can decrease
this number, as the next result shows.

Corollary 4.9. Suppose x is a negative integer and x ≡ 3 (mod 4). If every
element in the set {n ∈ Z

+ : n ≤ �−x/3� , n ≡ 3 (mod 4)} has a {0, 1, x}-NAF, then
{0, 1, x} is an NADS.

Proof. If {0, 1, x} is not an NADS, then choose the smallest integer n0 ∈ Z
+ such

that Gn0 contains a directed cycle. By Theorem 4.8 it must be that n0 ≤ �−x/3�.
Let n1 = fD(n0); then (n0, n1) is an arc of Gn. If n0 �≡ 3 (mod 4), then n1 < n0 and
Gn1

contains the same directed cycle, contrary to the choice of n0. Thus, it must be
that n0 ≡ 3 (mod 4). So, if the hypothesis is true, there can be no smallest positive
integer which does not have a {0, 1, x}-NAF. Hence {0, 1, x} is an NADS.

Now we can detect an NADS of the form {0, 1, x} with about �−x/12� calls to
eval-RD(n). An optimized version of an algorithm utilizing this method is described
in Algorithm 4.10. We have used this algorithm to find all the values of x greater than
−106 such that {0, 1, x} is an NADS; some of these values are listed in the appendix.

Algorithm 4.10. is-nads(x)

[h]N ← 3
T ← ∅

while N ≤ −x/3

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ← N
S ← ∅

while n �= 0 and n �∈ T

do

⎧⎪⎪⎨
⎪⎪⎩

if n ∈ S
then return “no”

S ← S ∪ {n}
n ← fD(n)

N ← N + 4
T ← T ∪ S

return “yes”
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Fig. 5.1. G(−61).

5. Directed graphs and NADS. For small values of x, a convenient way to
demonstrate that {0, 1, x} is an NADS is to draw a number of directed graphs. From
the previous section, we know that {0, 1, x} is an NADS if and only if each directed
graph, Gn, n ∈ {1, 2, . . . ,

⌊−x
3

⌋
}, is a path terminating at zero. If we define

G(x) :=

�−x
3 �⋃

n=1

Gn,

then we have that {0, 1, x} is an NADS if and only if G(x) is a directed tree rooted
at zero. If {0, 1, x} is not an NADS, then G(x) must contain a directed cycle. In
this section we discuss some of the properties of G(x); in particular, we give a cor-
respondence between strings in {00, 01, 0, 0x}∗, which represent nonzero multiples of
Mersenne numbers and directed cycles of G(x).

We start with an example. Let x = −61. Since
⌊−x

3

⌋
= 20, G(x) is the union of

G1, G2, . . . G20. A drawing of G(x) is given in Figure 5.1. In the appendix, it is noted
that {0, 1,−61} is an NADS and, from Figure 5.1, we see that this is indeed the case
since G(x) contains no directed cycle.

The function gD, which was defined in (4.2), can be used to label the arcs of each
G1, G2, . . . G20 as follows:

n
gD(n)−−−−→ fD(n)

gD(fD(n))−−−−−−−→ fD
2(n)

gD(fD
2(n))−−−−−−−→ fD

3(n)
gD(fD

3(n))−−−−−−−→ · · · .

Recall that gD returns a string from the set {00, 01, 0, 0x}. These arc labels can be
applied to G(x), as shown in Figure 5.2.

The arc labels on this drawing of G(x) allow us to easily determine the D-NAF of
any node of G(x). If n is a node then, since G(x) is a tree, there is a unique directed
path from n to the root node (i.e., Gn). The sequence of arc labels on the reverse of
this path identifies the {0, 1, x}-NAF for n. For example, if we let n = 14, then from
Figure 5.2 the directed path from 14 to 0 is

14
0−→ 7

0x−→ 17
01−→ 4

00−→ 1
01−→ 0.

If we read the sequence of arc labels above from right to left and concatenate them,
we get the string 01‖00‖01‖0x‖0. It is easily verified that 14 = (0100010x0)2.
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Fig. 5.2. G(−61) with arc labels.

To see why this is true in general, suppose the path from n to 0 has length t and
consider the label gD(n) on the arc (n, fD(n)). From the definition of fD and gD, we
have

fD(n) =
n− (gD(n))2

2|gD(n)|
(5.1)

=⇒ n = 2|gD(n)|fD(n) + (gD(n))2,

where |gD(n)| denotes the length of the string gD(n). Replacing n with fD(n) in (5.1)
we have

fD(n) = 2|gD(fD(n))|fD
2(n) + (gD(fD(n)))2.(5.2)

Substituting (5.2) into (5.1) we find

n = 2|gD(fD(n))|+|gD(n)|fD
2(n) + 2|gD(n)|(gD(fD(n)))2 + (gD(n))2

=⇒ n = 2|gD(fD(n))‖gD(n)|fD
2(n) + (gD(fD(n))‖gD(n))2.

This method of substitution can be applied again. In (5.1), n can be replaced with
fD

2(n), and then we can use this new equation to substitute for fD
2(n) above, and

so on.
Let α be the string formed by concatenating the arc labels along the reverse of

the path from n to 0. Then we have

α = gD(fD
t−1(n))‖ · · · ‖gD(fD

2(n))‖gD(fD(n))‖gD(n).

From (5.1), it follows that

n = 2|α|fD
t(n) + (α)2.(5.3)

Since the length of the path from n to 0 is t, fD
t(n) = 0, and thus

n = (α)2,

that is, α is a D-NAF for n.
The main result of this section concerns directed cycles in G(x), so let us consider

an example that contains a directed cycle. Let x = −41. This value of x is not listed
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Fig. 5.3. G(−41) with arc labels.

in the appendix, so we expect that {0, 1,−41} is not an NADS, and the drawing of
G(x) in Figure 5.3 establishes this. Note that G(x) consists of two components. Any
node in the component of G(x) that does not contain 0 does not have a D-NAF since
there is no directed path from that node to 0.

Consider the directed cycle of G(x). This cycle can be considered as a directed
path from 3 to itself:

3
0x−→ 11

0x−→ 13
01−→ 3.

Reading the sequence of arc labels above from right to left and concatenating them,
we get the string 01‖0x‖0x. This string has length 6 and, because of this, we claim
that 26 − 1 must divide (010x0x)2. Since x = −41, (010x0x)2 = −189 and it is easy
to check that this claim is valid. The following result provides an explanation.

Theorem 5.1. Suppose x is a negative integer and x ≡ 3 (mod 4). Then,
G(x) has a directed cycle if and only if ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 �= 0 and
2|α| − 1 | (α)2.

Proof. Suppose G(x) has a directed cycle. Choose a node n in some directed
cycle of G(x) and let t be the length of this cycle. Then we have

n
gD(n)−−−−→ fD(n)

gD(fD(n))−−−−−−−→ fD
2(n) → · · · → fD

t−1(n)
gD(fD

t−1(n))−−−−−−−−−→ n.

Some node in this cycle must be congruent to 3 modulo 4. If not, then the iterates of
fD are strictly decreasing on this cycle and we get

n > fD(n) > fD
2(n) > · · · > fD

t−1(n) > n,

which is a contradiction. A consequence of this fact is that one of the arcs in the cycle
is labeled 0x. As before, let

α = gD(fD
t−1(n))‖ · · · ‖gD(fD

2(n))‖gD(fD(n))‖gD(n).

Note that (α)2 �= 0 because α contains the substring 0x. Equation (5.3) gives us

n = 2|α|fD
t(n) + (α)2.

Since fD
t(n) = n, we have

n = 2|α|n + (α)2

=⇒ −n(2|α| − 1) = (α)2.
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Thus, (α)2 �= 0 and 2|α| − 1 | (α)2, as required.
Suppose α ∈ {00, 01, 0, 0x}∗ has the property that (α)2 �= 0 and 2|α| − 1 | (α)2.

The string 0x must be a substring of α; otherwise, 0 < (α)2 < 2|α| − 1, and this
contradicts our hypothesis that 2|α| − 1 | (α)2. We claim that we can assume (α)2 is
odd. To see why, let α′ be any left cyclic shift of α. For some u ∈ Z

+, we have

(α′)2 ≡ 2u(α)2 (mod 2|α| − 1)

=⇒ (α′)2 ≡ 0 (mod 2|α| − 1),

and since |α| = |α′|, this gives us that 2|α
′| − 1 | (α′)2. Also, (α′)2 �= 0 because

(α)2 �= 0. Now, α contains the substring 0x, so it must have some left cyclic shift
that ends in 1 or x; that is, for some α′, (α′)2 is odd. Thus, if (α)2 is not odd, we can
replace α with α′, where (α′)2 is odd.

Let n = − (α)2
2|α|−1

. We will show that n is in a directed cycle of G(x). Since α

contains the substring 0x, |α| ≥ 2, and so we have the following:

−n(2|α| − 1) = (α)2

=⇒ n = 2|α|n + (α)2
(5.4)

=⇒ n ≡ (α)2 (mod 4)

=⇒ α = α1‖gD(n), where α1 ∈ {00, 01, 0, 0x}∗.

Using these implications, we can compute fD(n) as follows:

fD(n) =
n− (gD(n))2

2|gD(n)|

=
2|α|n + (α)2 − (gD(n))2

2|gD(n)|
(5.5)

=
2|α|n + (α1‖gD(n))2 − (gD(n))2

2|gD(n)|

= 2|α|−|gD(n)|n + (α1)2

= 2|α1|n + (α1)2.

Equation (5.5) is similar to (5.4). If |α1| ≥ 2, the preceding arguments can be reapplied
to compute fD

2(n). In doing so, we find

fD
2(n) = 2|α2|n + (α2)2,

where α1 = α2‖gD(fD(n)) and α2 ∈ {00, 01, 0, 0x}∗. We can continue computing
iterates of fD in this manner until, for some t ≥ 1, we obtain

fD
t(n) = 2|αt|n + (αt)2,

where αt−1 = αt‖gD(fD
t−1(n)), αt ∈ {00, 01, 0, 0x}∗, and |αt| < 2.

There are two cases to consider. If |αt| = 0, then it must be that αt = ε, and thus

fD
t(n) = 20n + (ε)2 = n.

Thus, n is in a directed cycle (of length t) in G(x). If |αt| = 1, then it must be that
αt = 0, and thus

fD
t(n) = 21n + (0)2 = 2n.
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Recall that (α)2 is odd. Since n = 2|α|n + (α)2 and |α| ≥ 2, n is also odd. Thus,
2n ≡ 2 (mod 4) and so

fD
t+1(n) =

2n

2
= n.

Thus, n is in a directed cycle (of length t + 1) in G(x).
Theorem 5.1 gives a complete characterization of NADS; however, it is unclear if

this characterization is helpful in finding values of x, which make {0, 1, x} an NADS.
On the other hand, Theorem 5.1 is very useful for finding values of x for which {0, 1, x}
is not an NADS. We give some examples of this in the next section.

The remainder of this paper reads as follows. In section 6, we give some infinite
families of values for x for which D is not an NADS. In section 7, we give some infinite
families of values for x for which D is an NADS. We conclude by mentioning some
additional problems related to NADS in section 8.

6. Infinite families of non-NADS. Consider the list of x values that appears
in the appendix. If we examine the first few entries of this list, we find no multiples
of 3. In fact, this is true of the whole list, and the same can be said of multiples of 7
and 31. These observations are a consequence of the following result.

Corollary 6.1. Let x be a negative integer with x ≡ 3 (mod 4). If (2s − 1) | x
for any s ≥ 2, then {0, 1, x} is not an NADS.

Proof. This result follows from Theorem 5.1; however, it is just as easy to give a
direct proof. Let n = −x/(2s − 1). We show that Gn contains a directed cycle. We
have

n(2s − 1) ≡ −x (mod 4)

=⇒ n(0 − 1) ≡ −3 (mod 4)

=⇒ n ≡ 3 (mod 4).

Note that

n− x =
−x

2s − 1
− x =

−x− x(2s − 1)

2s − 1
= 2s

−x

2s − 1
= 2sn.

Now,

fD(n) =
n− x

4
= 2s−2n.

Subsequent iterates of fD will cancel out the factor 2s−2. Thus, for some i, fD
i(n) = n

and so Gn contains a directed cycle.
Corollary 6.1 says that many sets {0, 1, x} are not NADS. In particular, it rules

out sets in which x is divisible by 3, 7, 31, etc. Besides numbers of the form 2s − 1,
s ≥ 2, there are many other nonallowable factors of x. For example, if any of the
integers

73, 85, 89, 337, 451, 1103, 1205, 1285, 2089

divides x, then it is possible to show that, for a carefully chosen value of n, Gn

contains a directed cycle. This proof technique is not fully satisfying since it does
little to elucidate why one integer is a nonallowable factor and another is not. A
better approach is presented in the following corollary to Theorem 5.1.
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Corollary 6.2. Suppose x0 is an integer. If ∃β ∈ {00, 0, 0x0}∗ such that
(β)2 �= 0 and 2|β| − 1 | (β)2, then x0 is a nonallowable factor.

Proof. Notice there are no restrictions put on the integer x0. Let x be a negative
integer with x ≡ 3 (mod 4) and x0 | x. We must show that {0, 1, x} is not an NADS.
Let α be the string formed by changing every occurrence of x0 in β to x. It is easy
to see that (α)2 = x

x0
(β)2, α ∈ {00, 0, 0x}∗, and |α| = |β|. Now,

2|β| − 1 | (β)2

=⇒ 2|β| − 1 | x

x0
(β)2

=⇒ 2|β| − 1 | (α)2

=⇒ 2|α| − 1 | (α)2.

Since α ∈ {00, 01, 0, 0x}∗ and (α)2 �= 0, by Theorem 5.1 we have that {0, 1, x} is not
an NADS.

We can use this result to generate nonallowable factors. All we need to do is find
an integer x0 and a string β ∈ {00, 0, 0x0}∗, where β is not an all-zero string, such
that 2|β| − 1 | (β)2. To do this we first choose a string β′ ∈ {00, 0, 01}∗ that is not an
all-zero string. Now, we find an integer x0 such that 2|β

′| − 1 | x0(β
′)2. The smallest

positive value of x0 that satisfies this relation is

2|β
′| − 1

gcd(2|β′| − 1, (β′)2)
.

We assign x0 this value. If we change each occurrence of 1 in the string β′ to x0,
we get a string β ∈ {00, 0, 0x0}∗ such that (β)2 �= 0 and 2|β| − 1 | (β)2. So, by the
corollary, x0 is a nonallowable factor. Here is a short example. Let β′ = 000010101.
Then |β′| = 9, (β′)2 = 21, and so

x0 =
29 − 1

gcd(29 − 1, 21)
= 73.

Thus, 73 is a nonallowable factor.
More generally, Theorem 5.1 can be used to generate infinite families of non-

NADS, which do not necessarily involve nonallowable factors. We know {0, 1, x} is
not an NADS if we can find a string α ∈ {00, 01, 0, 0x}∗ such that −n(2|α|−1) = (α)2.
If we fix α and solve the resulting integer equation for x, this will give us an infinite
family of non-NADS. For example, suppose we fix α = 01010x0x; then

−n(2|α| − 1) = (01010x0x)2

⇐⇒ −n(28 − 1) = (01010000)2 + x(00000101)2

⇐⇒ −255n = 80 + 5x

⇐⇒ −51n = 16 + x.

Thus, if x ≡ −16 (mod 51), then {0, 1, x} cannot be an NADS.
Some of our first results on infinite families of non-NADS, which were discov-

ered empirically, are unified as corollaries of Theorem 5.1. The following two results
demonstrate this.

Corollary 6.3. If 3−x
4 = 11 · 2i, where i ≥ 0, then {0, 1, x} is not an NADS.
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Proof. We have,

3 − x

4
= 11 · 2i

=⇒ 3 − x = 11 · 2i+2

=⇒ 11 − x = 11 · 2i+2 + 8

=⇒ −11(2i+2 − 1) = 8 + x

=⇒ −11(2i+2 − 1) = (0100x)2.

The length of the string 0100x is 5. If i + 2 ≥ 5, we can prepend zeros to 0100x and
build a string α such that |α| = i+ 2; thus, by Theorem 5.1 we are done. If i+ 2 < 5,
it must be that i = 0, 1, 2.

When i = 0, x = −41 and from the drawing in Figure 5.3 we see G(−41) has a
directed cycle. When i = 1, x = −85 and then G3 is a directed cycle:

3 → 22 → 11 → 24 → 6 → 3.

When i = 2, x = −173 and G3 is also a directed cycle:

3 → 44 → 11 → 46 → 23 → 49 → 12 → 3.

In any case, {0, 1, x} is not an NADS, as required.
Corollary 6.4. Let 3−x

4 = 7 · 2i, where i ≥ 0. Then {0, 1, x} is an NADS if
and only if i ∈ {0, 1}.

Proof. We have

3 − x

4
= 7 · 2i

=⇒ 3 − x = 7 · 2i+2

=⇒ 7 − x = 7 · 2i+2 + 4

=⇒ −7(2i+2 − 1) = 4 + x

=⇒ −7(2i+2 − 1) = (010x)2.

Arguing as in the previous corollary, if i + 2 ≥ 4, then by Theorem 5.1, {0, 1, x} is
not an NADS. If i + 2 < 4, it must be that i = 0, 1.

When i = 0, x = −25 and when i = 1, x = −53. By drawing the graphs G(−25)
and G(−53), it is easy to verify that both of these values give NADSs (this is confirmed
in the appendix).

Not all infinite families of non-NADS are derived from Theorem 5.1. Consider the
set of integers NAF({0, 1}). If this set is ordered from smallest to largest, we some-
times notice large gaps between consecutive elements. One type of gap is described
as follows. For i ≥ 0, let

mi :=

⌊
2i+1 − 1

3

⌋
.

Computing the first few values of mi, we have
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i mi

0 0
1 1 = (1)2
2 2 = (10)2
3 5 = (101)2
4 10 = (1010)2
5 21 = (10101)2
6 42 = (101010)2
7 85 = (1010101)2
...

...

It is easy to see that if a ∈ NAF({0, 1}), then it is never true that mi < a < 2i.
This observation gives us another infinite family.

Theorem 6.5. Let x be an integer such that 4mi − 1 < −x < 3 · 2i for some
i ≥ 0. If there exists n ∈ {1, 2, . . . , �−x/3�} with n ≡ 3 (mod 4), then {0, 1, x} is not
an NADS.

Proof. We can assume x ≡ 3 (mod 4) since, otherwise, {0, 1, x} cannot be an
NADS. Suppose to the contrary that {0, 1, x} is an NADS. Then, in the graph G(x),
there must be a directed path from n to 0. Let n0 be the integer on this path that is
closest to 0 and is congruent to 3 modulo 4. The arc labels on the path from n0 to 0
give the {0, 1, x}-NAF for n0. It must be that n0 = (α‖0x)2 with α ∈ {00, 01, 0}∗ (if
α contained the substring 0x, this would contradict our choice of n0).

Now,

1 ≤ n0 ≤ −x/3

=⇒ 1 ≤ (α‖0x)2 ≤ −x/3

=⇒ 1 ≤ 4(α)2 + x ≤ −x/3

=⇒ 1 − x

4
≤ (α)2 ≤ −x/3 − x

4

=⇒ 1 − x

4
≤ (α)2 ≤ −x/3.

By hypothesis, we have

4mi − 1 < −x and − x < 3 · 2i

=⇒ mi <
1 − x

4
and

−x

3
< 2i.

Thus, for some i ≥ 0, we have

mi < (α)2 < 2i,

which is a contradiction. Thus, {0, 1, x} is not an NADS.
For example, if i = 5, then −(4m5 − 1) = −83 and −3 · 25 = −96. Theorem 6.5

tells us that no value of x with −83 < x < −96 can give an NADS. In addition, the
proof of Theorem 6.5 also gives us some information about the graphs G(x) for such
values of x. For each of these graphs, in the component that contains 0 there can be
no integer congruent to 3 modulo 4 (or, equivalently, no arc label in this component
can be 0x). This property can be observed in G(−85), which is drawn in Figure 6.1.
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Fig. 6.1. G(−85) with arc labels.

7. Infinite families of NADS. If n is a nonnegative integer, w(n) denotes the
number of ones in the usual {0, 1}-radix 2 representation of n (i.e., the Hamming
weight of n). We use the function w(n) to describe two infinite families.

Theorem 7.1. Let x be a negative integer with x ≡ 3 (mod 4). If w( 3−x
4 ) = 1,

then {0, 1, x} is an NADS.
Proof. Suppose {0, 1, x} is not an NADS. Then there is some n ∈ Z

+ for which
the graph Gn contains a directed cycle. We can assume n is a vertex of this cycle.
Let t be the number of vertices in the cycle; then

n → fD(n) → fD
2(n) → · · · → fD

t−1(n) → n.

Let n′ = fD(n). We want to relate w(n′) to w(n). There are four possible residues
of n modulo 4 and, for the residues 0, 1, 2, we can determine w(n′) exactly as follows:

n mod 4 n′ w(n′)

0 n
4 w(n)

1 n−1
4 w(n) − 1

2 n
2 w(n)

If n ≡ 3 (mod 4), we have

n′ =
n− x

4
=

n− 3

4
+

3 − x

4
.
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By hypothesis, w( 3−x
4 ) = 1, and so

w(n′) = w

(
n− 3

4
+

3 − x

4

)

≤ w

(
n− 3

4

)
+ w

(
3 − x

4

)
= w(n) − 2 + 1

= w(n) − 1.

So, in any case, w(n′) ≤ w(n), but if n is odd, then we have the strict inequality
w(n′) < w(n). Applying this inequality to the integers in the cycle of Gn, we see that

w(n) ≥ w(fD(n)) ≥ w(fD
2(n)) ≥ · · · ≥ w(fD

t−1(n)) ≥ w(n).

However, some vertex in this cycle must be congruent to 3 modulo 4. If not, then the
iterates of fD are strictly decreasing on this cycle and we get

n > fD(n) > fD
2(n) > · · · > fD

t−1(n) > n,

which is a contradiction. So, there is some odd vertex in the cycle, which means one
of the inequalities relating the Hamming weights of adjacent vertices is strict. This
implies that w(n) > w(n), which is a contradiction.

So, Gn cannot contain a directed cycle, and hence {0, 1, x} is an NADS.
When x is negative, w( 3−x

4 ) = 1 if and only if 3−x
4 = 2t, t ≥ 0. Letting t =

0, 1, 2, 3, 4, . . . we see that Theorem 7.1 asserts that x = −1,−5,−13,−29,−61, . . .
all yield NADS. Our next result also describes an infinite family using the function
w(n). However, when compared to the previous result, proving that {0, 1, x} is an
NADS for each x in this second infinite family seems to be more difficult.

Theorem 7.2. Let x be a negative integer with x ≡ 3 (mod 4). If w( 3−x
4 ) = 2

and 2s − 1 does not divide x for any s ∈ Z
+, s ≥ 2, then {0, 1, x} is an NADS.

To prove this result we suppose x is a negative integer with x ≡ 3 (mod 4) and
w( 3−x

4 ) = 2. We will argue that if {0, 1, x} is not an NADS, then it must be that
2s − 1 divides x for some s ∈ Z

+, s ≥ 2.
We begin our argument following the proof of Theorem 7.1. Suppose {0, 1, x} is

not an NADS. Then there is some n ∈ Z
+ for which the graph Gn contains a directed

cycle. We can assume n is a vertex of this cycle and, as described in section 5, we can
label the arcs of this cycle using the function gD. Let t be the number of vertices in
the cycle; then

n
gD(n)−−−−→ fD(n)

gD(fD(n))−−−−−−−→ fD
2(n) → · · · → fD

t−1(n)
gD(fD

t−1(n))−−−−−−−−−→ n.

Let n′ = fD(n). We want to relate w(n′) to w(n). There are four possible residues of
n modulo 4, and for the residues 0, 1, 2 we can determine w(n′) exactly as follows:

n mod 4 n′ w(n′)

0 n
4 w(n)

1 n−1
4 w(n) − 1

2 n
2 w(n)
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If n ≡ 3 (mod 4), we have

n′ =
n− x

4
=

n− 3

4
+

3 − x

4
.

By hypothesis, w( 3−x
4 ) = 2, and so

w(n′) = w

(
n− 3

4
+

3 − x

4

)

≤ w

(
n− 3

4

)
+ w

(
3 − x

4

)
= w(n) − 2 + 2

= w(n).

So, in any case, w(n′) ≤ w(n), but if n ≡ 1 (mod 4), then we have the strict inequality
w(n′) < w(n). Applying this inequality to the integers in the cycle of Gn, we see that

w(n) ≥ w(fD(n)) ≥ w(fD
2(n)) ≥ · · · ≥ w(fD

t−1(n)) ≥ w(n).

No vertex in this cycle can be congruent to 1 modulo 4; otherwise, one of the inequali-
ties above would be strict and this would imply w(n) > w(n), which is a contradiction.
Also, at least one vertex in this cycle is congruent to 3 modulo 4; otherwise, by def-
inition of fD, the vertices would form a strictly decreasing integer sequence, which
would imply n > n, which is a contradiction.

Let α be the string formed by concatenating all of the arc labels from the cycle:

α = gD(fD
t−1(n))‖ · · · ‖gD(fD

2(n))‖gD(fD(n))‖gD(n).

Since α is a concatenation of strings from the set {00, 0, 0x}, it is nonadjacent and,
further, for the same reason, every cyclic shift of α is also nonadjacent (i.e., α is
cyclically nonadjacent). Equation (5.3) from section 5 tells us

n = 2|α|fD
t(n) + (α)2.

Since fD
t(n) = n, we have

n = 2|α|n + (α)2.(7.1)

The integer (α)2 is divisible by x. Let

A =
(α)2
x

and a = |α|.

From (7.1) we have

−xA ≡ 0 (mod 2a − 1).(7.2)

Since w( 3−x
4 ) = 2, for some u, v ∈ Z we have

−x = 2u + 2v − 3, u > v ≥ 2,

and now (7.2) implies

(2u + 2v − 3)A ≡ 0 (mod 2a − 1), where u > v ≥ 2.(7.3)
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To finish the proof we need a lemma. Before we can introduce the lemma, we
need a definition.

Definition 7.3. An integer B ∈ Z is length-� cyclically nonadjacent (�-CNA) if
B �= 0, and there is a cyclically nonadjacent string β ∈ {0, 1}� such that (β)2 = B.

Note that, in this definition, the string β may have leading zeros. For example,
21 is length-6 cyclically nonadjacent (6-CNA) since the string 010101 ∈ {0, 1}6 is
cyclically nonadjacent and (010101)2 = 21. However, 21 is not 5-CNA because the
only string in {0, 1}5 giving a representation of 21 is 10101, but the cyclic shift 01011
of this string is not nonadjacent. Now we are ready for the lemma.

Lemma 7.4. If B is �-CNA and the congruence

(2u + 2v − 3)B ≡ 0 (mod 2� − 1)

holds for some u, v ∈ Z, u > v ≥ 2, then either

gcd(u, v − 1) > 1 or gcd(u− 1, v) > 1.

Assuming, for the moment, that Lemma 7.4 is true, our proof of Theorem 7.2
continues as follows. The string α is CNA; therefore so is the string formed by changing

each occurrence of x in α to 1. This establishes that A is a-CNA, because A = (α)2
x .

Now we can apply Lemma 7.4 to (7.3) and deduce, without loss of generality, that
gcd(u, v − 1) > 1. Let s = gcd(u, v − 1). Note that

−x = 2u + 2v − 3 = (2u − 1) + 2(2v−1 − 1).

Since gcd(2u − 1, 2v−1 − 1) = 2gcd(u,v−1) − 1 = 2s − 1, we have that 2s − 1 | x, where
s ∈ Z

+ and s ≥ 2, which is exactly what we wanted to show. (If x was chosen so as to
satisfy all the conditions of Theorem 7.2, then 2s−1 cannot divide x, and thus it must
be that {0, 1, x} is an NADS.) This concludes our proof of Theorem 7.2; however, we
still have to deal with Lemma 7.4.

In proving Lemma 7.4, we will use the following easy result.
Lemma 7.5. For any two nonempty subsets S, T ⊆ {0, 1, . . . , �− 1},∑

s∈S

2s ≡
∑
t∈T

2t (mod 2� − 1)

if and only if S = T .
Proof. We have 0 <

∑
s∈S 2s ≤ 2� − 1, and 0 <

∑
t∈T 2t ≤ 2� − 1. Thus,

∑
s∈S

2s ≡
∑
t∈T

2t (mod 2� − 1)

⇐⇒
∑
s∈S

2s =
∑
t∈T

2t

⇐⇒ S = T.

Proof of Lemma 7.4. We fix some notation that will help describe our proof
of Lemma 7.4. From now on, we let B be an integer satisfying the hypothesis of
Lemma 7.4. B is �-CNA and we let β = b�−1 . . . b1b0 be the string in {0, 1}�, which
establishes this. Further, let S = {i : bi = 1}. For k ∈ Z, define

S + k = {(s + k) mod � : s ∈ S}.
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The set S + k is called a translate of S modulo �. Using this notation, we have

(2u + 2v − 3)B ≡ 0 (mod 2� − 1)

⇐⇒ (2u + 2v)B ≡ 3B (mod 2� − 1)(7.4)

⇐⇒ (S + u) ∪ (S + v) = (S + 1) ∪ S,

where the last equivalence follows from the fact that B is �-CNA and from Lemma
7.5. Because B is �-CNA, the union on the right-hand side of (7.4), and hence also the
left-hand side, is disjoint. We will establish Lemma 7.4 by analyzing this set equality.

We need one more concept. The cyclic order of B is the smallest positive integer
k such that

2kB ≡ B (mod 2� − 1).

We denote this integer by
↪→
ord(B). Such an integer always exists since

2�B ≡ B (mod 2� − 1).

Using the quotient-remainder theorem, it is easy to show that for any m ∈ Z
+,

2mB ≡ B (mod 2� − 1) ⇐⇒ ↪→
ord(B) | m.

Applying this result, we see that
↪→
ord(B) | �. (An equivalent definition of

↪→
ord(B) can

be made by considering the string β. The smallest number of left cyclic shifts that,
when applied to β, results in the string β is exactly

↪→
ord(B).)

We claim that we can assume
↪→
ord(B) = � in the hypotheses of Lemma 7.4. We

justify this claim as follows. Let k =
↪→
ord(B) and suppose k < �. Since k | � we can

write km = � for some positive integer m. Since B is �-CNA we have

B = (2(m−1)k + · · · + 22k + 2k + 1)B′ =
2� − 1

2k − 1
B′,

where B′ = (bk−1 . . . b1b0)2, and B′ is k-CNA. Now, for any positive integer j, we
have

2jB ≡ B (mod 2� − 1)

⇐⇒ 2j
2� − 1

2k − 1
B′ ≡ 2� − 1

2k − 1
B′

(
mod

2� − 1

2k − 1
2k − 1

)
⇐⇒ 2jB′ ≡ B′ (mod 2k − 1),

and so it must be that
↪→
ord(B′) = k (i.e.,

↪→
ord(B′) is as large as possible). Also, we

have

(2u + 2v − 3)B ≡ 0 (mod 2� − 1)

⇐⇒ (2u + 2v − 3)
2� − 1

2k − 1
B′ ≡ 0

(
mod

2� − 1

2k − 1
2k − 1

)
⇐⇒ (2u + 2v − 3)B′ ≡ 0 (mod 2k − 1).

So if we can prove Lemma 7.4 for all B with
↪→
ord(B) as large as possible, then by the

above arguments, it is true for all B.
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Returning to the set equality described in (7.4), recall that S ⊆ {0, 1, . . . , �− 1}.
Since S is a subset of integers, its elements can be ordered from smallest to largest.
From S we define a sequence, d(S), of differences modulo �,

d(S) := (s1 − s0, s2 − s1, . . . , sp−1 − sp−2, s0 − sp−1),

where

S = {s0, s1, . . . , sp−1} with s0 < s1 < · · · < sp−1.

Because B is �-CNA, each of the differences in the sequence d(S) must be at least 2.
The definition of d(S) can be extended to the translates of S. For any k ∈ Z, S + k
can be considered as a subset of {0, 1, . . . , � − 1}, and hence it can also be ordered
from smallest to largest. Thus, d(S + k) can be defined in the same way as d(S). It
is easy to show that d(S + k) is a cyclic shift of d(S). Because of this property there
are at most p different sequences of the form d(S + k), where p = |S|. In fact, we can
show there are exactly p such sequences.

Let

ti := �− si for 0 ≤ i ≤ p− 1.

The smallest element in each of the translates S + t0, S + t1, . . . , S + tp−1 is equal to
0. Thus, for i, j ∈ {0, 1, . . . , p− 1}, we have

d(S + ti) = d(S + tj) ⇐⇒ S + ti = S + tj .

Let i ≥ j. Then we have

S + ti = S + tj

⇐⇒ 2tiB ≡ 2tjB (mod 2� − 1)

⇐⇒ 2ti−tjB ≡ B (mod 2� − 1)

⇐⇒ ↪→
ord(B) | (ti − tj)

⇐⇒ � | (ti − tj)

⇐⇒ ti = tj .

So, each of the sequences d(S + t0), d(S + t1), . . . , d(S + tp−1) is distinct, and hence
there are exactly p different sequences of the form d(S + k), where k ∈ Z.

By applying a lexicographical ordering to the sequences d(S+t0), d(S+t1), . . . , d(S+
tp−1) we can identify a unique smallest sequence. Let t∗ be the value of ti which cor-
responds to this smallest sequence. Note that

(S + u) ∪ (S + v) = (S + 1) ∪ S

⇐⇒ ((S + u) ∪ (S + v)) + t∗ = ((S + 1) ∪ S) + t∗(7.5)

⇐⇒ (S + u + t∗) ∪ (S + v + t∗) = (S + 1 + t∗) ∪ (S + t∗).

We have 0 ∈ S + t∗, so either 0 ∈ S + u + t∗ or 0 ∈ S + v + t∗. Without loss of
generality we can assume 0 ∈ S + v + t∗. We will show that S + v + t∗ = S + t∗.

Let

d(S + t∗) = (d0, d1, d2, . . . , dp−1),
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and note that

S + t∗ = {0, d0, d1 + d0, d2 + d1 + d0, . . . }.

Also, let

d(S + u + t∗) = (u0, u1, u2, . . . , up−1),

d(S + v + t∗) = (v0, v1, v2, . . . , vp−1).

Since d(S + t∗) is a lexicographically smallest sequence of the form d(S + k), where
k ∈ Z, we have

d(S + t∗) ≤ d(S + u + t∗) and d(S + t∗) ≤ d(S + v + t∗).

Recall 0 ∈ S + t∗ and 0 ∈ S + v + t∗. Since 0 ∈ S + t∗, we have 1 ∈ S + 1 + t∗.
By (7.5), either 1 ∈ S + u + t∗ or 1 ∈ S + v + t∗. Suppose 1 ∈ S + v + t∗. Then both
0 and 1 are elements of S + v + t∗. No two elements in any translate of S can have
a difference of 1; otherwise, this contradicts the fact that B is �-CNA. So, it must be
that 1 ∈ S + u + t∗.

We now know the smallest elements in each of the sets S + u + t∗, S + v + t∗,
S + 1 + t∗, S + t∗. The next smallest element of S + t∗ is d0. Again, by (7.5), either
d0 ∈ S + u + t∗ or d0 ∈ S + v + t∗. Suppose d0 ∈ S + u + t∗. Then, since both 1 and
d0 are in S + u + t∗ and 1 is the smallest element of this set, we have

u0 ≤ d0 − 1 < d0.

However, d(S + t∗) ≤ d(S + u+ t∗) implies that d0 ≤ u0, which gives a contradiction.
So, it must be that d0 ∈ S + v + t∗, and hence, d0 + 1 ∈ S + u + t∗.

From our lexicographical ordering we have d0 ≤ v0. Since the smallest element of
S + v + t∗ is 0 and d0 is also in this set, we have

v0 ≤ d0 − 0 = d0.

Hence, v0 = d0. Similarly,

d0 ≤ u0 and u0 ≤ (d0 + 1) − 1 = d0,

and so u0 = d0. From these two equalities, we have that d0 and d0 + 1 are the second
smallest elements of the sets S + v + t∗ and S + u + t∗, respectively. Further, our
lexicographical ordering now implies that d1 ≤ v1 and d1 ≤ u1.

The next smallest element of S + t∗ is d1 + d0. Either d1 + d0 ∈ S + u + t∗ or
d1 + d0 ∈ S + v + t∗. Suppose d1 + d0 ∈ S + u + t∗. This implies that

u1 ≤ (d1 + d0) − (d0 + 1) = d1 − 1 < d1,

which is a contradiction. So, d1 + d0 ∈ S + v+ t∗, and hence, d1 + d0 +1 ∈ S +u+ t∗.
We now have

d1 ≤ v1 and v1 ≤ (d1 + d0 + 1) − (d0 + 1) = d1,

so v1 = d1. Also

d1 ≤ u1 and u1 ≤ (d1 + d0) − d0 = d1,
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and so u1 = d1. Thus we can identify the third smallest elements of the sets S+v+ t∗

and S + u + t∗. Further, we have that d2 ≤ v2 and d2 ≤ u2.
By repeating the previous arguments, we can show that each element of S + t∗,

from smallest to largest, must also be an element of S + v + t∗. Thus, S + v + t∗ =
S + t∗ and so S + v = S. In (7.4), the union operations are both disjoint, and hence
S + v = S implies S + u = S + 1. Now,

S + v = S

=⇒ 2vB ≡ B (mod 2� − 1)

=⇒ ↪→
ord(B) | v

=⇒ � | v.

Similarly, � | (u− 1). Thus gcd(u− 1, v) ≥ � > 1. This proves the lemma.
Looking at an example can help us connect the different steps in the proof of

Theorem 7.2. Suppose x = 3− (2u + 2v) with u > v ≥ 2. If {0, 1, x} is not an NADS,
then ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 ≡ 0 (mod 2|α| − 1). By the definition of x,
it must be that α ∈ {00, 0, 0x}∗. We will suppose α = 0x0x000x0x0x000x, and so
|α| = 16. Now,

(0x0x000x0x0x000x)2 ≡ 0 (mod 216 − 1)

=⇒ x(01010001‖01010001)2 ≡ 0 (mod 216 − 1)

=⇒ (2u + 2v − 3)(28 + 1)(01010001)2 ≡ 0 (mod 216 − 1)

=⇒ (2u + 2v − 3)(01010001)2 ≡ 0 (mod 28 − 1)

=⇒ (2u + 2v) · 81 ≡ (21 + 20) · 81 (mod 28 − 1).

Note that (01010001)2 = 81 is 8-CNA, and
↪→
ord(81) = 8. Let S = {0, 4, 6}; then

d(S) = (4, 2, 2) and d(S + 4) = (2, 2, 4), which is the lexicographically smallest cyclic
shift of d(S). Continuing from our last implication,

=⇒ (S + u) ∪ (S + v) = (S + 1) ∪ S

=⇒ (S + u + 4) ∪ (S + v + 4) = (S + 5) ∪ (S + 4)

=⇒ (S + u + 4) ∪ (S + v + 4) = {1, 3, 5} ∪ {0, 2, 4}.

We can assume that 0 ∈ S + v + 4, and then it must be that 1 ∈ S + u + 4. If
2 ∈ S + u + 4, this would contradict the fact that (2, 2, 4) is the smallest difference
sequence of all translates of S. Thus, 2 ∈ S + v+ 4 and then 3 ∈ S +u+ 4. Similarly,
4 ∈ S + v + 4 and 5 ∈ S + u + 4. Thus,

S + u + 4 = S + 5 and S + v + 4 = S + 4

=⇒ u ≡ 1 (mod 8) and v ≡ 0 (mod 8).

Now, −x = 2u + 2v − 3 = 2(2u−1 − 1) + (2v − 1). Since 28 − 1 | 2u−1 − 1 and
28 − 1 | 2v − 1, we have 28 − 1 | x. So, if {0, 1, x} is not an NADS, then it must be
that x is divisible by a Mersenne number.

If we take u, v ∈ {2, 3, 4, 5, 6, 7, 8} with u �= v and set x = 3 − (2u + 2u) then,
after eliminating multiples of Mersenne numbers, Theorem 7.2 tells us that each of
the values −17,−37,−65,−157,−257,−269,−317 makes {0, 1, x} an NADS.

It may not be immediately clear that there are in fact an infinite number of x
values with no Mersenne divisors and w((3 − x)/4) = 2; however, we can deduce this
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Fig. 8.1. A plot of (−X, c(X)) for 0 ≥ X ≥ −107.

from Lemma 7.4. If x = 3 − (2u + 2v) with u > v ≥ 2, then, applying Lemma 7.4
with B = 1, we see that x has a Mersenne divisor if and only if gcd(u, v − 1) > 1
or gcd(u − 1, v) > 1. So, we can get an infinite family if we take u’s and v’s with
gcd(u, v − 1) = gcd(u− 1, v) = 1. For example, we can take v = 2 and then let u ≥ 4
be any even integer.

Looking at Theorems 7.1 and 7.2, we find that a natural question to ask is if there
is an infinite family of NADS with the property that w( 3−x

4 ) = 3. One of our results
gives a partial answer to this question. If 3−x

4 = 11 · 2i with i ≥ 0, then w( 3−x
4 ) = 3;

however, Corollary 6.3 tells us that such a value of x will never give an NADS.

8. Further work and comments. It is possible to show that for n ∈ Z
+

with n ≤ �−x/3�, the running time of eval-RD(n), as described in Algorithm 4.7,
is O(|x| /3) = O(|x|). Thus, to compute eval-RD(n) for all positive integers in

this range takes time O(|x|2). So, we can decide if {0, 1, x} is an NADS in O(|x|2)
time. The running time can be reduced to O(|x|) if more memory is used, and this
is the approach taken in Algorithm 4.10. However, since the size of the input to
this algorithm is lg |x|, the running time is exponential. It would be interesting to
determine if there is a polynomial-time algorithm for deciding if {0, 1, x} is an NADS.

The “NADS-counting” function is defined as

c(X) := |{x : x ≥ X, {0, 1, x} is an NADS}| .

For example, c(7) = 0, c(3) = 1, and c(−1) = 2. A plot of c(X) for 0 ≥ X ≥ −107

is given in Figure 8.1 and an interesting fractal structure can be observed. The flat
intervals of the plot are the result of Theorem 6.5. The two smooth curves bounding
c(X) in Figure 8.1 are (−X)0.64 and (−X)0.66; these functions were discovered em-
pirically. It would be nice to be able to say something concrete about the asymptotic
behavior of c(X).
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The function fD, defined in (4.1), bears some similarity to the Collatz function,

f(n) =

{
n/2 if n is even,

(3n + 1)/2 if n is odd.

The Collatz function has received considerable study, but its properties are complex
and not well understood. Perhaps this suggests that the study of NADS is also a
difficult problem.

Some of our results on NADS appear to have analogues in Matula’s [5] theory on
basic digit sets. In particular, our Theorem 4.8 corresponds to Matula’s Lemma 6, and
our Theorem 5.1 corresponds to Matula’s Theorem 5. It would be interesting to find
other connections between the two works. It might be that our Theorems 7.1 and 7.2,
which do not appear to have analogues in [5], may suggest new infinite families of
basic digit sets.

Appendix. We list all the values of x from −1 to −104 for which {0, 1, x} is an
NADS:

-1 -5 -13 -17 -25 -29 -37 -53 -61 -65

-113 -121 -125 -137 -145 -149 -157 -233 -241 -253

-257 -265 -269 -277 -281 -305 -317 -325 -437 -481

-485 -493 -505 -509 -517 -521 -533 -541 -557 -565

-601 -605 -613 -629 -641 -653 -673 -821 -869 -913

-937 -977 -989 -1013 -1021 -1025 -1033 -1037 -1045 -1061

-1073 -1081 -1097 -1117 -1133 -1145 -1165 -1265 -1273 -1277

-1289 -1297 -1325 -1345 -1349 -1357 -1621 -1637 -1733 -1745

-1765 -1885 -1933 -1949 -1985 -1993 -2017 -2021 -2033 -2041

-2045 -2053 -2069 -2101 -2105 -2113 -2129 -2137 -2141 -2153

-2161 -2165 -2173 -2185 -2189 -2197 -2237 -2273 -2285 -2293

-2297 -2321 -2353 -2365 -2369 -2381 -2393 -2405 -2425 -2497

-2525 -2533 -2557 -2593 -2609 -2621 -2641 -2645 -2669 -2677

-2693 -3245 -3265 -3337 -3385 -3421 -3509 -3541 -3557 -3629

-3653 -3673 -3761 -3797 -3853 -3877 -3881 -3917 -3925 -3929

-3961 -4001 -4033 -4037 -4085 -4093 -4097 -4105 -4117 -4121

-4133 -4141 -4145 -4153 -4157 -4201 -4205 -4217 -4253 -4261

-4273 -4285 -4297 -4337 -4345 -4349 -4373 -4393 -4397 -4469

-4537 -4541 -4573 -4589 -4597 -4601 -4621 -4633 -4645 -4649

-4661 -4693 -4777 -4801 -5021 -5077 -5093 -5101 -5105 -5113

-5129 -5137 -5153 -5165 -5189 -5197 -5213 -5273 -5281 -5365

-5377 -5381 -5393 -5405 -5437 -5441 -6565 -6613 -6773 -6805

-6929 -6973 -7033 -7277 -7333 -7345 -7381 -7393 -7397 -7465

-7477 -7561 -7597 -7613 -7621 -7649 -7741 -7817 -7865 -7877

-7901 -7949 -8045 -8053 -8065 -8069 -8081 -8093 -8101 -8117

-8129 -8165 -8173 -8177 -8185 -8189 -8201 -8213 -8221 -8233

-8237 -8297 -8305 -8317 -8333 -8341 -8369 -8417 -8429 -8437

-8441 -8453 -8485 -8497 -8501 -8573 -8581 -8593 -8597 -8665

-8669 -8681 -8693 -8717 -8725 -8741 -8753 -8789 -8797 -8825

-8837 -8921 -8977 -9089 -9101 -9133 -9157 -9161 -9181 -9209

-9221 -9245 -9341 -9353 -9421 -9425 -9433 -9461 -9473 -9497

-9505 -9509 -9581 -9665 -9673 -9677 -9697 -9761 -9925 -9997
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AN UPPER BOUND FOR THE d-DIMENSIONAL ANALOGUE OF
HEILBRONN’S TRIANGLE PROBLEM∗

PETER BRASS†

Abstract. In this paper it is shown that for any set of n points selected from the d-dimensional

unit cube, d odd, the volume of the smallest simplex spanned by the set is O(n−(1+ 1
2d

)), which is a
slight improvement on the only known upper bound O(n−1), although still far from the lower bound
Ω(n−d logn).
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1. Introduction and result. Heilbronn’s triangle problem asks for the smallest
value farea min(n) such that any set of n points in the unit square contains three points
that determine a triangle of area at most farea min(n). There is a trivial upper bound
farea min(n) = O( 1

n ), since one can triangulate any set of n points in the plane,
obtaining at least n− 2 triangles (the minimum if the points are in convex position),
which are disjoint and all contained in the unit square, so the smallest of them has
area at most 1

n−2 . There is also a simple lower bound of farea min(n) = Ω( 1
n2 ),

which one gets by selecting a set of n lattice points from the n × n integer lattice
square with the property that no three points are collinear. One such set are the
points (t, t2modn)nt=1 for n prime; the maximum size of such a set, conjectured to
be 2n, is the well-studied “no-three-in-line problem” [BrMP05, section 10.1]. Since a
nondegenerate triangle of integer lattice points has area at least 1

2 , by scaling the set
with a factor 1

n one obtains n points in the unit square with all triangles of area at
least 1

2n2 . This problem attracted the attention of several famous number theorists
[Ro51], [Sch72], [Ro72a], [Ro72b], [Ro73], [Ro76], [KoPS81], who reduced the upper
bound in many steps and finally also increased the lower bound [KoPS82], thereby
disproving Heilbronn’s conjecture (which was farea min(n) = O(n−2)). The currently
best known bounds are

c1
log n

n2
< farea min(n) < c2

ec3
√

logn

n
8
7

from [KoPS81], [KoPS82], for some c1, c2, c3 > 0. Also some exact values of farea min(n)
were determined [Go72], [CoY02], but apart from a simpler proof of the Ω( logn

n2 ) lower
bound [Le00], [BeHL00], and the observation that random choice is quite bad [JiLV02],
[GrJ03], no progress on the Heilbronn triangle problem was made since 1982. The
higher-dimensional analogue, the smallest fvol min

d (n) such that any set of n points
in the d-dimensional unit cube contains d + 1 points that span a simplex of volume
at most fvol min

d (n), was first studied in [Ba01]. There is again a simple lower bound
of Ω( 1

nd ), which can be obtained, e.g., by choosing n points from the n × · · · × n
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lattice cube with no d + 1 in a hyperplane [Ba01]. This was improved in [Le00] to
fvol min
d (n) ≥ c logn

nd , which contains the famous lower bound of [KoPS82] as a special

case for d = 2. But no nontrivial upper bound is known beyond the O( 1
n ) which

follows in any dimension by triangulation. Projection methods do not work, for the
image of a higher-dimensional simplex is not a triangle; just finding one small trian-
gular face of the simplex is not enough to give a bound on the simplex volume. A
bound on the area of the convex hull of d+1-tuples would lift to d-dimensional space,
but already the area of convex fourgons in the plane seems to behave differently than
that of triangles [Sch72]: we do not know any upper bound better than O( 1

n ) for the

area of the smallest spanned fourgon, and the lower bound increases to Ω(n−(1+ 1
k−2 ))

for convex k-gons in the plane [BeHL00].
It is the aim of this note to prove the first nontrivial upper bound on fvol min

d (n).
Theorem 1. Any set of n points in the d-dimensional unit cube determines a

simplex of volume O(n−(1+ 1
2d )) for d ≥ 3 odd.

2. Proof of the theorem. Consider a set of n points in the unit cube. The
maximum number of points that can be selected from the unit cube with pairwise
distance at least 1

t is less than c1t
d. Thus the graph of distances smaller than 1

t does
not contain an independent set of size c1t

d, so by Turán’s theorem any set of n ≥ c1t
d

points in the unit cube will determine at least
(
n
2

)
− ex(n,Kc1td) ≥ c2(

n
td

)2td = c2
n2

td

point-pairs with distance less than 1
t (where ex(n,G) denotes the Turán function of

the graph G).

These point-pairs determine c2
n2

td
directions (which are all distinct, since any

coinciding direction pair generates a simplex of volume 0). These directions can be
interpreted as points on the unit sphere in d-dimensional space. If we choose around
each of these points on the sphere a spherical disc of radius ε, then the sum of the

(d − 1)-dimensional volumes of these discs is c3ε
d−1(n

2

td
). If this is more than (d+1

2 )
times the total area of the sphere, then there is a point on the sphere that belongs
to at least (d+1

2 ) of the discs. So we can choose from any set of n points for any

value of t ≤ (c−1
1 n)

1
d a set of (d+1

2 ) point pairs whose directions differ pairwise by less

than c4(
n2

td
)−

1
d−1 . This defines a graph G1 with (d+1

2 ) edges, so it has at least d + 1
vertices of degree at least one. From this graph G1 we iteratively remove those edges
with both endvertices having degree at least two, until we arrive at a graph G2 in
which each edge has at least one endvertex of degree one. All vertices of degree at
least one in G1 still have degree at least one in G2. So G2 is a graph which consists
of isolated edges and stars, and has at least d + 1 vertices. If d is odd, we can select
from this graph G2 a subgraph G3 of at least d+1

2 edges, with d + 1 vertices. This
simplex spanned by the vertices of G3 is the simplex of small volume claimed in the
theorem. Here we need d to be odd; if d is even, we cannot select d + 1 vertices with
at least d+1

2 edges, e.g., if the graph G2 consists only of isolated edges. Selecting one
vertex and one edge less and adding an arbitrary point gives a bound which is worse
than the trivial bound O( 1

n ).
To bound the volume of the simplex spanned by these d + 1 points, we partition

this point set V (G3) into V (G3) = A∪B, where A consists of the centers of the stars
and one vertex from each isolated edge, and B contains the remaining vertices. Then
A contains at most d+1

2 points, and each point in B is joined by an edge to a point
in A. We build the simplex and bound the volume incrementally, in three stages:

(1) The set A determines a simplex conv(A) of dimension |A|−1 ≤ d−1
2 , and the

(|A|− 1)-dimensional volume of this simplex is at most some constant c5, the
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maximum volume of the intersection of the unit cube by any affine subspace
of dimension at most d−1

2 .
(2) Now we add the first of the remaining points; since this new point is joined

to the previous simplex by an edge of length at most 1
t , the volume of the

new simplex is at most c5
t .

(3) Finally we add all the other (at least d−1
2 ) remaining points from B. Each

of them is joined by an edge of length at most 1
t to a point already in the

simplex; and this edge has an angle less than c4(
n2

td
)−

1
d−1 to a line in the

affine hull of that simplex (the edge joining the point added in stage (2) to
its neighbor in A). So the distance of each new point to the affine hull of the

previous simplex is less than c6
1
t (

n2

td
)−

1
d−1 . Thus after adding the at least

d−1
2 remaining points, the volume of the simplex is at most

c7
1

t
d+1
2

((
n2

td
)−

1
d−1 )

d−1
2 ,

which is

c7
1

t
d+1
2

(
n2

td
)−

1
2 = c7

1

n

t
d
2

t
d+1
2

= c7
1

t
1
2n

.

We choose t as large as possible, t = (c−1
1 n)

1
d , and obtain the theorem.

3. Remarks. This bound is of course only a very weak upper bound if one
compares it to the Ω( logn

nd ) lower bound, but we do not have any better. Unfortunately,
it also does not work for even dimensions; if we do not have a spanning system of
almost parallel edges, which is impossible if d + 1 is odd, then we lose so much
that the trivial upper bound O( 1

n ) is better. It would be interesting to improve the
triangulation argument of the trivial upper bound: is there a function Rd(n) > n1+ε

such that each set of n points in d-dimensional space, in general position, has some
triangulation using at least Rd(n) simplices [EdPW90]? Then fvol min

d (n) < 1
Rd(n) .

But no nontrivial bound is known for that problem, either.
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ENUMERATING TYPICAL CIRCULANT COVERING
PROJECTIONS ONTO A CIRCULANT GRAPH∗

RONGQUAN FENG† , JIN HO KWAK‡ , AND YOUNG SOO KWON‡

Abstract. Enumerating the isomorphism classes of several types of graph covering projections is
one of the central research topics in enumerative topological graph theory (see [S. F. Du, D. Marušič,
and A. O. Waller, J. Combin. Theory Ser. B, 74 (1998), pp. 276–290], [S. F. Du, J. H. Kwak, and
M. Y. Xu, J. Combin. Theory Ser. B, 93 (2005), pp. 73–93], [R. Feng, J. H. Kwak, J. Kim, and J.
Lee, SIAM J. Discrete Math., 11 (1998), pp. 265–272], [R. Feng. and J. H. Kwak, Discrete Math.,
277 (2004), pp. 73–85], [C. D. Godsil and A. D. Hensel, J. Combin. Theory Ser. B., 56 (1992), pp.
205–238], [M. Hofmeister, Discrete Math., 143 (1995), pp. 87–97], [M. Hofmeister, SIAM J. Discrete
Math., 8 (1995), pp. 51–61], [M. Hofmeister, SIAM J. Discrete Math., 11 (1998), pp. 286–292],
[J. H. Kwak, J. Chun, and J. Lee, SIAM J. Discrete Math., 11 (1998), pp. 273–285], [J. H. Kwak
and J. Lee, Canad. J. Math., 42 (1990), pp. 747–761], and [J. H. Kwak and J. Lee, Combinatorial
and Computational Mathematics: Present and Future, (2001), pp. 97–161]). A covering projection
is called circulant if its covering graph is circulant. A covering projection p from a Cayley graph
Cay(A, X) onto another Cay(Q, Y ) is called typical if the map p : A → Q on the vertex sets is a
group homomorphism from A onto Q. In [R. Feng. and J. H. Kwak, Discrete Math., 277 (2004),
pp. 73–85], the authors enumerated the isomorphism classes of typical circulant double covering
projections onto a circulant graph. As a continuation of this work, we enumerate in this paper the
isomorphism classes of those covering projections of any folding number.

Key words. graph covering, enumeration, voltage assignment, circulant graph
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1. Introduction. Throughout this paper, graphs are finite, undirected, simple,
and connected. Let G be a graph with vertex set V (G) and edge set E(G). The
neighborhood of a vertex v ∈ V (G), denoted by N(v), is the set of vertices adjacent
to v. An automorphism of G is a permutation of the vertex set V (G) that preserves
adjacency. The set of automorphisms forms a permutation group, called the automor-
phism group Aut (G) of G. A graph G is vertex-transitive if Aut (G) acts transitively
on the vertex set V (G).

Let A be a finite group and let X be a subset of A such that X = X−1 (called
symmetric) and 1 �∈ X. The Cayley graph G = Cay(A, X) on A relative to X is
the graph having vertex set V (G) = A and edge set E(G) = {{g, gx} | g ∈ A, x ∈
X}. For a Cayley graph G = Cay(A, X), it is clear that Aut (G) contains the left
regular representation L(A) of the group A, and so G is vertex-transitive; and that
G is connected if and only if X generates A. The elements of X are called the
connectors of the graph Cay(A, X). A circulant graph of order n is a Cayley graph
on the additive group Zn = {0, 1, . . . , n− 1}. Circulant graphs are widely applied as
models of telecommunication networks (see [1], [14]). It is clear that a circulant graph
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Cay(Zn, X) is of odd valency if and only if n is even and the order 2 element n
2 ∈ Zn is

a connector, and that if a circulant graph Cay(Zn, X) with X = {±i1,±i2, . . . ,±ik}
is connected, then (i1, i2, . . . , ik, n) = 1, where (i1, i2, . . . , ik, n) denotes the greatest
common divisor of i1, i2, . . . , ik and n. Also, we identify the integers 0, 1, . . . , n − 1
with their residue classes modulo n.

A covering projection (or simply covering) from a graph G̃ to another G is a

surjection p : V (G̃) → V (G) such that p|N(ṽ) : N(ṽ) → N(v) is a bijection for all

vertices v ∈ V (G) and ṽ ∈ p−1(v). Sometimes, a graph G̃ is also called a covering

of G with the projection p : G̃ → G, and it is �-fold if p is �-to-one. The fibre of an
edge or a vertex is its preimage under p. If a covering graph G̃ is circulant, then p is
called a circulant covering. A covering projection p : G̃ → G is regular if there exists
a subgroup B of Aut (G̃) which acts freely on G̃, and an isomorphism i : G̃/B → G

such that i◦ qB = p, where qB : G̃ → G̃/B is the quotient map. In this case, the graph

G̃ is called a regular covering of the graph G. It is clear that every double covering is
regular.

Two coverings, pi : G̃i → G, i = 1, 2, are said to be isomorphic if there exists a
graph isomorphism Φ : G̃1 → G̃2 such that p2 ◦Φ = p1. Such a Φ is called a covering
isomorphism.

Every edge of a graph G gives rise to a pair of oppositely directed edges. By
e−1 = vu, we mean the reverse directed edge to a directed edge e = uv. A directed
edge is also called an arc and the set of arcs of the graph G is denoted by D(G). Let
A be a finite group. Following Gross and Tucker [7], a (ordinary) voltage assignment
φ of G is a function φ : D(G) → A with the property that φ(e−1) = φ(e)−1 for each
e ∈ D(G). The derived graph Gφ from a voltage assignment φ is defined as follows:
V (Gφ) = V (G) ×A, and for each arc e = uv ∈ D(G) and a ∈ A, let there be an arc
(e, a) in D(Gφ) joining vertices (u, a) and (v, aφ(e)). The first coordinate projection
pφ : Gφ → G is a regular covering.

Let C1(G;A) denote the set of all voltage assignments φ : D(G) → A of G. Gross

and Tucker [7] showed that every regular �-fold covering G̃ of a graph G can be derived
from a voltage assignment in C1(G;A) for some finite group A of order �.

A composition of two regular covering projections is not necessarily regular. Al-
though necessary and sufficient conditions for regularity of a composition of two regu-
lar coverings have been known by J. Siagiova in [15], [16], they are not easy to apply.
Since a Cayley graph can be described as a regular covering of a bouquet of circles,
to determine whether a regular covering of a regular covering of a bouquet of circles
G is a regular covering of G is equivalent to determine whether a regular covering of
a Cayley graph is Cayley. This problem can be generalized by asking which regular
coverings of a graph G have a property P when the base graph G has the property P.
For example, Godsil and Hensel [6] considered distance-regularity and Du et al. [2], [3]
dealt with 2-arc-transitivity in place of P; due to the overall difficulty of the problem
they restricted the base graph to a complete graph. In this paper, we take for P
the property of being circulant. Clearly, a circulant graph can have a noncirculant
covering, and a noncirculant graph can have a circulant covering (see [5]). However, it
was shown in [5] that no double covering of a circulant graph of valency 3 is circulant.

This paper is organized as follows. In section 2, we review a typical covering
of a Cayley graph which was introduced by Feng and Kwak [5]. In section 3, the
isomorphism classes of typical circulant prime-fold covering projections onto a cir-
culant graph are enumerated. In section 4, it will be shown that for any composite
number � = �1�2, the number of the isomorphism classes of typical circulant �-fold
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covering projections onto a circulant graph G is the product of the number of the
isomorphism classes of typical circulant �1-fold covering projections onto G and the
number of the isomorphism classes of typical circulant �2-fold covering projections
onto a circulant graph G̃, where G̃ is any typical circulant �1-fold covering of G. As
a result, the isomorphism classes of typical circulant �-fold covering projections onto
a circulant graph can be enumerated for any natural number �. Its application to a
complete graph is also considered. In section 5, it is proved that for any trivalent cir-
culant graph G which is neither K4 nor K3,3, every circulant covering of G is typical.
So the isomorphism classes of any finite-fold circulant connected coverings of G are
completely enumerated.

2. Typical coverings of a Cayley graph. Let 1 → K → A → Q → 1 be
a short exact sequence of finite groups with an epimorphism f : A → Q. In the
following, we identify the group K with the kernel of the epimorphism f . Choose
a symmetric generating set X of the group A with 1 /∈ X and let Cay(A, X) be
the corresponding Cayley graph. As a subgroup of A, the group K acts freely on
the Cayley graph Cay(A, X) (by left multiplication), and the quotient projection
qK : Cay(A, X) → Cay(A, X)/K is a regular covering with covering transformation
group K. Let Y = f(X). Then Y is a symmetric generating set for the group
Q. Furthermore, f induces a covering projection f∗ : Cay(A, X) → Cay(Q, Y ). It
is easy to see that the two graph coverings qK : Cay(A, X) → Cay(A, X)/K and
f∗ : Cay(A, X) → Cay(Q, Y ) can be identified through a graph isomorphism f# :
Cay(A, X)/K → Cay(Q, Y ) defined by aK �→ f∗(a). In other words, f∗ = f# ◦ qK.
So f∗ is a regular covering. Such a covering f∗ : Cay(A, X) → Cay(Q, Y ) is called a
typical covering derived from an epimorphism f . That is, a covering p : Cay(A, X) →
Cay(Q, Y ) is a typical one derived from an epimorphism f : A → Q if the projection
p : A → Q on the vertex sets is the same as the epimorphism f . Thus p(1A) = 1Q
and then p(X) = Y . Note that in a typical covering f∗ : Cay(A, X) → Cay(Q, Y )
derived from an epimorphism f, if there is an x ∈ X ∩ K, or there exist two distinct
elements x and x′ in X such that f(x) = f(x′), then the graph Cay(Q, Y ) cannot be
simple. Therefore, we assume that X ∩ K = ∅ and f(x) �= f(x′) for any x �= x′ in X
in order to deal with only simple graphs throughout this paper.

It is shown in [5] that a circulant covering of a circulant graph is not necessarily
a typical one.

3. Typical circulant coverings of a prime-fold. Let G = Cay(Zn, Y ) be
a connected circulant graph on the group Zn = {0, 1, . . . , n − 1} and let � be any
natural number. In order to enumerate the isomorphism classes of typical circulant �-
fold coverings of the graph G, let us consider a short exact sequence 0 → Z� → Z�n →
Zn → 0 with an epimorphism f : Z�n → Zn. Then α := f(1) must be a generator of
the cyclic group Zn, so that (α, n) = 1. Denote by fα the epimorphism f : Z�n → Zn

such that f(1) = α. Then, for any a ∈ Z�n, we have fα(a) = αa (mod n). Therefore,
the kernel of fα is {0, n, . . . , (�− 1)n}. In what follows, let K = {0, n, . . . , (�− 1)n}.

For a regular covering, all connected components of a covering graph are isomor-
phic as covering graphs. So it is enough to enumerate connected ones. In this section,
let � = p be a prime. The case of p = 2 has been studied already in [5].

Theorem 1 (see [5]). Let G be a connected circulant graph of order n. If the
valency of G is odd, there is no typical circulant double covering of G. If the valency
of G is even, say 2k, then the number of isomorphism classes of typical circulant
connected double coverings of G is 2k − 1 if n is odd, and 2k−1 if n is even.

Throughout this section, let p be an odd prime if not stated otherwise.
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Lemma 2. Any typical covering f∗ : Cay(Zpn, X) → Cay(Zn, Y ) can be de-
rived from an epimorphism f satisfying f(1) = 1. That is, any typical covering
fα∗ : Cay(Zpn, X) → Cay(Zn, Y ) derived from the epimorphism fα is isomorphic
to a typical covering f1∗ : Cay(Zpn, X

′) → Cay(Zn, Y ) derived from the epimorphism
f1.

Proof. Let f∗ : Cay(Zpn, X) → Cay(Zn, Y ) be any typical covering derived from
an epimorphism f : Zpn → Zn and let f(1) = α. First, let (α, p) = 1. Then (α, pn) = 1
because (α, n) = 1. Define Φα(a) = αa for any a ∈ Zpn. The map Φα is clearly an
automorphism of the cyclic group Zpn. Set X ′ = Φα(X). Now, Φα induces a graph
isomorphism from Cay(Zpn, X) to Cay(Zpn, X

′). Let f1 : Zpn → Zn denote the
epimorphism defined by f1(1) = 1 as before. Then, we have f1Φα(a) = f1(αa) =
αa = f(a) for any a ∈ Zpn, which implies f1 ◦ Φα = f . Therefore, the two coverings
f∗ and f1∗ are isomorphic via the covering isomorphism Φα. Furthermore, since
f1(X

′) = f1(Φα(X)) = f(X) = Y , X ′ ∩ {0, n, . . . , (p − 1)n} = ∅ and f1(x) �= f1(x
′)

for any x �= x′ in X ′, the covering f1∗ : Cay(Zpn, X
′) → Cay(Zn, Y ) is also a typical

one.
If (α, p) �= 1, or equivalently, p|α, then (p, n) = 1 because (α, n) = 1. Let

α′ = α + n, then (α′, pn) = 1. Define Φα′ : Zpn → Zpn by Φα′(a) = α′a for
any a ∈ Zpn. Then Φα′ is an automorphism of the cyclic group Zpn. Set X ′ =
Φα′(X). By repeating the same process as the previous case, one can show that
the covering f∗ : Cay(Zpn, X) → Cay(Zn, Y ) is isomorphic to the typical covering
f1∗ : Cay(Zpn, X

′) → Cay(Zn, Y ).
Following Lemma 2, one may assume that every typical circulant p-fold covering

of a circulant graph G = Cay(Zn, Y ) is derived from the epimorphism f : Zpn → Zn

defined by f(1) = 1 throughout this section. Therefore, every typical circulant p-fold
covering f∗ : Cay(Zpn, X) → Cay(Zn, Y ) can be obtained by choosing a generating
set X of Zpn so that f(X) = Y and f |X : X → Y is injective. In what follows, we
define a voltage assignment to derive a typical circulant p-fold covering.

Let G = Cay(Zn, Y ) be a circulant graph. Assume that Y = {±i1,±i2, . . . ,±ik}
or {±i1,±i2, . . . ,±ik,

n
2 } according as the valency of G is even 2k or odd 2k + 1,

where 0 < i1, i2, . . . , ik <
⌊
n+1

2

⌋
. To construct a typical circulant p-fold covering of

G, we define a voltage assignment φ : D(G) → Zp = {0, 1, . . . , p − 1} as follows: Let
δ = (δ1, δ2, . . . , δk) ∈ Z

k
p be any k-tuple. For any arc e = (a, a + iα) in D(G) with a

connector iα, define

φ(e) =

{
δα if a < a + iα,
δα + 1 if a > a + iα,

(1)

and φ(e−1) = −φ(e). If the valency of G is odd 2k + 1, then we define in addition

φ(e) =

{
1
2 (p− 1) if a < a + n

2 ,
1
2 (p− 1) + 1 if a > a + n

2 ,
(2)

for any arc e = (a, a+ n
2 ) determined by the connector n

2 . In this case, we say that φ
is of type (δ1, δ2, . . . , δk). Such a voltage assignment φ defined by the (1) and (2) is
called typical.

Now assume that φ is a typical voltage assignment of type (δ1, δ2, . . . , δk). Set X =
{±j1,±j2, . . . ,±jk} or X = {±j1,±j2, . . . ,±jk,

pn
2 } depending on Y = {±i1,±i2,

. . . ,±ik} or {±i1,±i2, . . . ,±ik,
n
2 }, respectively, where jα = iα + δαn, 1 ≤ α ≤ k. It

is clear that f(X) = Y and Cay(Zpn, X) is a typical circulant p-fold covering of the
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graph G. Define Φ : V (Gφ) → Zpn by Φ(a,m) = a + mn, where a ∈ V (G) = Zn =
{0, 1, . . . , n − 1} and m ∈ Zp = {0, 1, . . . , p − 1}. It is clear that Φ is a bijection.
Moreover, if two vertices (a1,m1) and (a2,m2) are adjacent in the graph Gφ, then a1

and a2 are adjacent in G and m2 = m1 +φ(a1a2). Let the arc a1a2 be determined by
some connector iα ∈ Y . Then, as elements in Zpn,

a2 − a1 =

{
iα if a1 < a2,
−n + iα if a1 > a2

and m2 − m1 = φ(a1a2) =

{
δα if a1 < a2,
δα + 1 if a1 > a2.

So Φ(a2,m2)−Φ(a1,m1) = (a2−a1)+(m2−m1)n = iα+δαn = jα. Thus the two
vertices Φ(a1,m1) and Φ(a2,m2) are adjacent in the graph Cay(Zpn, X). Moreover,
the two graphs Gφ and Cay(Zpn, X) have the same number of edges. Thus Φ is a graph
isomorphism from Gφ to Cay(Zpn, X). Furthermore, we have f∗ ◦ Φ(a,m) = f(a +
mn) = a = pφ(a,m) for any (a,m) ∈ V (Gφ), implying f∗ ◦ Φ = pφ. Therefore, the
two covering projections pφ and f∗ are isomorphic through the covering isomorphism
Φ.

Conversely, if a typical circulant p-fold covering f∗ : Cay(Zpn, X) → Cay(Zn, Y )
is given with X = {±j1,±j2, . . . ,±jk} or X = {±j1,±j2, . . . ,±jk,

pn
2 }, then f(X) =

Y = {±i1,±i2, . . . ,±ik} or f(X) = {±i1,±i2, . . . ,±ik,
n
2 }. Thus, for any α =

1, 2, . . . , k, jα − iα ∈ K and then jα = iα + δαn for some δα ∈ Zp with 0 < i� <
⌊
n+1

2

⌋
for suitable reordering of the subscripts. By chasing the reverse direction of the previ-
ous paragraph, one can show that f∗ is isomorphic to the covering projection pφ, where
φ is a typical voltage assignment of type (δ1, δ2, . . . , δk). So far, we have proved that
a covering projection onto the circulant graph G = Cay(Zn, Y ) is a typical circulant
p-fold one if and only if it is isomorphic to one of the covering projection pφ, where φ is
a typical voltage assignment of type (δ1, δ2, . . . , δk) for some δ = (δ1, δ2, . . . , δk) ∈ Z

k
p.

This gives the proof of the first part of the following lemma.
Lemma 3. Any typical circulant p-fold covering of a circulant graph G can be de-

rived from a typical voltage assignment. Furthermore, there exist exactly p�
d
2 � typical

voltage assignments in C1(G; Zp), where d is the valency of G.
Proof. From the definition of a typical voltage assignment, the voltages of the arcs

determined by any fixed connector iα are completely determined by φ(0, iα). Since
φ(0, iα) ∈ Zp has p choices and there are 
d

2� such connectors iα, 1 ≤ α ≤ 
d
2�, there

exist p�
d
2 � typical voltage assignments in C1(G; Zp).

Kwak and Lee [12] obtained an algebraic characterization of two coverings of a
graph G to be isomorphic. The following lemma is a special case of their characteri-
zation.

Lemma 4. Let φ and ψ be typical voltage assignments in C1(G; Zp). Then, two
typical circulant p-fold coverings pφ : Gφ → G and pψ : Gψ → G are isomorphic if and
only if there exists a function g : V (G) → Zp such that ψ(uv) = −g(u)+φ(uv)+ g(v)
for each uv ∈ D(G).

Now, let p divide n and let φ be a typical voltage assignment of G = Cay(Zn, Y ).
Since the graph G is assumed to be connected, at least one generator in Y is not
divisible by p. Without any loss of generality, one may assume that i1 is not divisible
by p. For each λ ∈ Zp, define a new voltage assignment φλ : D(G) → Zp by φλ(e) =
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φ(e) + i−1
1 iαλ for any arc e = (a, a + iα) determined by iα and φλ(e−1) = −φλ(e).

Such an assignment φλ is well-defined because (i1, p) = 1. Clearly, φ0 = φ and
φλ is also a typical voltage assignment in C1(G; Zp). Define g : V (G) → Zp by
g(u) = i−1

1 λu (mod p). Then, φλ(uv) = −g(u)+φ(uv)+ g(v) for any uv ∈ D(G). So,
the two coverings pφλ

and pφ are isomorphic by Lemma 4.
Lemma 5. Let G = Cay(Zn, Y ) be a circulant graph, and let φ, ψ be any two typ-

ical voltage assignments in C1(G; Zp). Then, two coverings pφ and pψ are isomorphic
if and only if

(1) ψ = φ when (p, n) = 1, and
(2) ψ = φλ for some λ ∈ Zp when (p, n) = p.
Proof. The sufficiency is already shown. For necessity, suppose that pφ and pψ are

isomorphic, but φ �= ψ. Then, there exists an arc u0v0 such that ψ(u0v0) �= φ(u0v0).
Set ψ(u0v0)− φ(u0v0) = ξ. Let the arc u0v0 be determined by a connector iα. Then,
for any other arc uv determined by the same connector iα, ψ(uv)−φ(uv) = ξ because
both φ and ψ are typical. So, g(v) − g(u) = ξ for the function g in Lemma 4.

Case 1. Let (p, n) = 1. The length of every cycle of G determined by the
connector iα is not divided by p (in fact, its length is n/(n, iα)). If a sequence of
vertices u0, u1, . . . , us−1, u0 is one of such cycles of length s = n/(n, iα), then

g(u1) − g(u0) = ξ,
g(u2) − g(u1) = ξ,

...
g(u0) − g(us−1) = ξ.

Adding these s equations together, one can get that 0 = sξ in Zp, which is impossible
since (s, p) = 1 and ξ �= 0. It implies that if (p, n) = 1, then two typical p-fold
coverings pφ and pψ are isomorphic only when ψ = φ.

Case 2. Let p|n. Suppose that the connector iα is divisible by p. Note that
the graph G has at least one connector which is not divided by p because p|n and

G is connected. Choose a connector iβ such that (p, iβ) = 1. Set s1 =
iβ

(iα,iβ) and

t1 = iα
(iα,iβ) . Then, (p, s1) = 1 and p|t1 because p does not divide (iα, iβ). Now, we

have a sequence of vertices in the graph G,

0, iα, 2iα, . . . , (s1 − 1)iα, s1iα = t1iβ , (t1 − 1)iβ , . . . , 2iβ , iβ , 0.

Therefore,

g(iα) − g(0) = g(2iα) − g(iα) = · · · = g(s1iα) − g((s1 − 1)iα) = ξ,

which implies g(s1iα) − g(0) = s1ξ �= 0, and

g(iβ) − g(0) = g(2iβ) − g(iβ) = · · · = g(t1iβ) − g((t1 − 1)iβ) = ψ((0, iβ)) − φ((0, iβ)),

which implies g(t1iβ) − g(0) = t1(ψ((0, iβ)) − φ((0, iβ))) = 0, a contradiction. There-
fore, the connector iα cannot be divisible by p.

Without any loss of generality, one may assume that iα = i1. For any other
connector iγ ∈ Y , set s2 =

iγ
(i1,iγ) and t2 = i1

(i1,iγ) . The same procedure as above to

the sequence of vertices

0, i1, 2i1, . . . , (s2 − 1)i1, s2i1 = t2iγ , (t2 − 1)iγ , . . . , 2iγ , iγ , 0
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gives s2ξ = g(s2i1)− g(0) = g(t2iγ)− g(0) = t2(ψ((0, iγ))− φ((0, iγ))), which implies
ψ((0, iγ)) − φ((0, iγ)) = i−1

1 iγξ. Therefore, ψ = φξ.
From Lemmas 3 and 5, one can show easily the following theorem.
Theorem 6. Let G = Cay(Zn, Y ) be a connected circulant graph of order n.

Then, for any odd prime p, the number of isomorphism classes of typical circulant
(connected or not) p-fold coverings of G is p�

d
2 � if (p, n) = 1, and is p�

d
2 �−1 if p|n,

where d is the valency of G.
The following lemma shows how one can enumerate the isomorphism classes of

typical circulant connected p-fold coverings of G.
Lemma 7. Let G = Cay(Zn, Y ) be a connected circulant graph and let p be an

odd prime.
(1) If p|n, then every typical circulant p-fold covering of G is connected, and
(2) if (p, n) = 1, then there exists one and only one disconnected typical circulant

p-fold covering of G.
Proof. Let G̃ = Cay(Zpn, X) be a typical circulant p-fold covering of G. Write X

= {±j1,±j2, . . . ,±jk} or {±j1,±j2, . . . ,±jk,
pn
2 } according to Y = {±i1,±i2, . . . ,±ik}

or {±i1,±i2, . . . ,±ik,
n
2 } and let μ = (pn, j1, j2, . . . , jk).

(1) Let p|n. Since G is connected, (i1, i2, . . . , ik, n) = 1 and so at least one
connector of i1, i2, . . . , ik is not divisible by p, say i1. Since j1 = i1 + δ1n for some
δ1 ∈ Zp, (p, j1) = 1 and then (p, μ) = 1. Because μ|pn and μ|jα for all 1 ≤ α ≤ k, we

have μ|n and μ|iα for all 1 ≤ α ≤ k. It implies that μ = 1 and G̃ is connected.
(2) Let (p, n) = 1. For any integer i, exactly one integer from the set S =

{i, i + n, . . . , i + (p − 1)n} is divisible by p. So, for any connector iα, 1 ≤ α ≤ k, we
can choose the unique δα ∈ Zp such that p|(iα+δαn). Let a typical voltage assignment
φ be defined to be of type (δ1, δ2, . . . , δk). Then, Gφ is disconnected. Conversely, let

G̃ be a disconnected typical circulant p-fold covering of G. If (p, μ) = 1, then one
can prove that μ = 1 as in case (1), a contradiction. Consequently, p|μ and every jα
(1 ≤ α ≤ k) must be divided by p. That is, jα = iα + δαn, where δα is the unique

element in Zp such that p|(iα + δαn). Therefore, G̃ is the same as the covering graph
Gφ constructed above.

Now, by Theorem 6 and Lemma 7, we have the following theorem.
Theorem 8. Let G = Cay(Zn, Y ) be a connected circulant graph of order n.

Then, for any odd prime p, the number of isomorphism classes of typical circulant
connected p-fold coverings of G is p�

d
2 � − 1 if (p, n) = 1, and is p�

d
2 �−1 otherwise,

where d is the valency of G.
Note that the above theorem does not hold for even prime p = 2. In particular,

there are no typical circulant double coverings of a circulant graph G if its valency d
is odd. (See Theorem 1.)

4. Typical circulant coverings of any finite-fold. In this section, we enu-
merate the isomorphism classes of typical circulant �-fold coverings for any positive
integer �. All coverings in this section are assumed to be connected ones.

Lemma 9. The composition of any two typical circulant covering projections is
typical. Conversely, for a composite number � = �1�2, any typical circulant �-fold
covering projection is a composition of a typical circulant �1-fold covering projection
and a typical circulant �2-fold covering projection.

Proof. The first statement is clear. Now suppose that f∗ : Cay(Z�n, X) →
Cay(Zn, Y ) is a typical circulant covering derived from an epimorphism f : Z�n → Zn.
Let f(1) = α. Then (α, n) = 1 and f(a) = αa (mod n). Define two homomorphisms
f1 : Z�n → Z�2n and f2 : Z�2n → Zn by f1(1) = 1 and f2(1) = α, respectively, i.e.,
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f1(a) = a (mod �2n) and f2(b) = αb (mod n) for any a ∈ Z�n and any b ∈ Z�2n.
Then, f = f2 ◦ f1 and both f1 and f2 are epimorphisms. Let Z = f1(X), then it
is easy to check that f1∗ : Cay(Z�n, X) → Cay(Z�2n, Z) is a typical circulant �1-fold
covering derived from the epimorphism f1 and f2∗ : Cay(Z�2n, Z) → Cay(Zn, Y ) is a
typical circulant �2-fold covering derived from the epimorphism f2, and that f∗ is the
composition of f1∗ and f2∗.

Lemma 10. Let f∗ : Cay(Z�n, X1) → Cay(Zn, Y ) and h∗ : Cay(Z�n, X2) →
Cay(Zn, Y ) be two isomorphic typical circulant �-fold coverings of the same graph.
Then, there is a graph isomorphism Φ : Cay(Z�n, X1) → Cay(Z�n, X2) such that
h∗ ◦ Φ = f∗ and Φ(X1) = X2. Moreover, the restriction of Φ on the vertex set Z�n is
an automorphism of the cyclic group Z�n.

Proof. Let two typical circulant coverings f∗ and h∗ be isomorphic through a
covering isomorphism Ψ : Cay(Z�n, X1) → Cay(Z�n, X2). Since h∗(Ψ(0)) = f∗(0) = 0,
Ψ(0) ∈ {0, n, . . . , (� − 1)n}, the kernel of the epimorphism h. Let Ψ(0) = tn. Define
Φ = R−tn ◦ Ψ, where R−tn : Z�n → Z�n is defined by R−tn(a) = a − tn for a ∈ Z�n.
Then R−tn is an automorphism of the graph Cay(Z�n, X2). Therefore, Φ is a graph
isomorphism from Cay(Z�n, X1) to Cay(Z�n, X2) and Φ(0) = 0. For any a ∈ Z�n, we
have h∗◦Φ(a) = h∗◦R−tn◦Ψ(a) = h∗(Ψ(a)−tn) = h∗Ψ(a) = f∗(a). Thus h∗◦Φ = f∗.
Furthermore, Φ(N(0)) = N(0), which implies Φ(X1) = X2. For any two connectors
jα1 , jα2 ∈ X1 (not necessarily distinct), (Φ(jα1

),Φ(jα1
+ jα2

)) = Φ((jα1
, jα1

+ jα2
)) is

an arc in the graph Cay(Z�n, X2). Therefore, there exists a connector j′α2
∈ X1 such

that Φ(jα1 + jα2) = Φ(jα1) + Φ(j′α2
). From

f∗(jα1) + f∗(jα2) = f∗(jα1 + jα2) = h∗(Φ(jα1 + jα2)) = h∗(Φ(jα1) + Φ(j′α2
))

= h∗ ◦ Φ(jα1) + h∗ ◦ Φ(j′α2
)

= f∗(jα1) + f∗(j
′
α2

),

we get f∗(jα2
) = f∗(j

′
α2

) which implies jα2
= j′α2

. Thus Φ(jα1
+jα2

) = Φ(jα1
)+Φ(jα2

)
for any jα1 , jα2 ∈ X1. Since Z�n is generated by X1, Φ(a+ a′) = Φ(a) + Φ(a′) for any
a, a′ ∈ Z�n. Thus, the restriction of Φ on Z�n is an automorphism of Z�n.

In what follows, when two typical circulant �-fold coverings f∗ : Cay(Z�n, X1) →
Cay(Zn, Y ) and h∗ : Cay(Z�n, X2) → Cay(Zn, Y ) are isomorphic through a cover-
ing isomorphism Φ : Cay(Z�n, X1) → Cay(Z�n, X2), we always assume that Φ(0) =
0, Φ(X1) = X2 and the restriction of Φ on the vertex set Z�n is an automor-
phism of the group Z�n. For a composite number � = �1�2, as in the proof of
Lemma 9, we assume that f∗ is the composition of typical circulant coverings f1∗ :
Cay(Z�n, X1) → Cay(Z�2n, Z1) and f2∗ : Cay(Z�2n, Z1) → Cay(Zn, Y ) and h∗ is the
composition of typical circulant coverings h1∗ : Cay(Z�n, X2) → Cay(Z�2n, Z2) and
h2∗ : Cay(Z�2n, Z2) → Cay(Zn, Y ) such that f1(1) = 1, f2(1) = f(1) and h1(1) = 1,
h2(1) = h(1), where Z1 = f1(X1) and Z2 = h1(X2). Then, h1∗ ◦ Φ : Cay(Z�n, X1) →
Cay(Z�2n, Z2) is also a typical covering, because h1◦Φ : Z�n → Z�2n is an epimorphism
and h1 ◦ Φ(X1) = h1(X2) = Z2 (see Figure 1).

Lemma 11. For any two typical circulant �-fold coverings f∗ : Cay(Z�n, X1) →
Cay(Zn, Y ) and h∗ : Cay(Z�n, X2) → Cay(Zn, Y ) of the same graph, they are isomor-
phic through a covering isomorphism Φ : Cay(Z�n, X1) → Cay(Z�n, X2) if and only
if the typical circulant coverings f2∗ and h2∗ are isomorphic through some covering
isomorphism Φ′ : Cay(Z�2n, Z1) → Cay(Z�2n, Z2), and the typical circulant coverings
Φ′ ◦ f1∗ and h1∗ are isomorphic through the covering isomorphism Φ.

Proof. If f2∗ and h2∗ are isomorphic through a covering isomorphism
Φ′ : Cay(Z�2n, Z1) → Cay(Z�2n, Z2), and Φ′ ◦ f1∗ and h1∗ are isomorphic through
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Fig. 1. Two isomorphic typical circulant �-fold coverings for � = �1�2.

a covering isomorphism Φ : Cay(Z�n, X1) → Cay(Z�n, X2), then f2∗ = h2∗ ◦ Φ′ and
Φ′ ◦ f1∗ = h1∗ ◦ Φ. Thus,

h∗ ◦ Φ = h2∗ ◦ h1∗ ◦ Φ = h2∗ ◦ Φ′ ◦ f1∗ = f2∗ ◦ f1∗ = f∗.

So, f∗ and h∗ are isomorphic through the covering isomorphism Φ.
Suppose that two typical circulant �-fold coverings f∗ : Cay(Z�n, X1) → Cay(Zn, Y )

and h∗ : Cay(Z�n, X2) → Cay(Zn, Y ) are isomorphic through a covering isomor-
phism Φ : Cay(Z�n, X1) → Cay(Z�n, X2). Define Φ′ : Z�2n → Z�2n by Φ′(b) =
Φ(b) (mod �2n) for any b ∈ Z�2n. Then Φ′ is an automorphism of the group Z�2n

since the restriction of Φ on Z�n is an automorphism of the group Z�n. Thus, for any
a ∈ Z�n, we have

Φ′ ◦ f1∗(a) = Φ′(a (mod �2n)) = Φ(a) (mod �2n) = h1∗ ◦ Φ(a),

which gives Φ′ ◦ f1∗ = h1∗ ◦ Φ. Therefore Φ′(Z1) = Φ′(f1∗(X1)) = h1∗(Φ(X1)) =
h1∗(X2) = Z2. So Φ′ is also a graph isomorphism from Cay(Z�2n, Z1) to Cay(Z�2n, Z2).
Moreover, for any b ∈ Z�2n, h2∗ ◦ Φ′(b) = h(1) · Φ′(b) = h∗ ◦ Φ(b) = f∗(b) = f2∗(b),
i.e., h2∗ ◦ Φ′ = f2∗. Hence, f2∗ and h2∗ are isomorphic through the covering iso-
morphism Φ′. We know that Φ′ ◦ f1∗ = h1∗ ◦ Φ is also a typical circulant covering
from Cay(Z�n, X1) to Cay(Z�2n, Z2), so Φ′ ◦ f1∗ and h1∗ are isomorphic through the
covering isomorphism Φ (see Figure 1).

By using Lemma 11, one can prove the following theorem.
Theorem 12. Let � = �1�2 be any composite number and let G be a connected

circulant graph. If G̃ is any typical circulant connected �2-fold covering of G, then the
number of isomorphism classes of typical circulant connected �-fold coverings of G is
the product of the number of isomorphism classes of typical circulant connected �1-fold
coverings of the graph G̃ and the number of isomorphism classes of typical circulant
connected �2-fold coverings of G.

If � is even and the valency of the circulant graph G is odd, then G has no typical
circulant �-fold covering because G has no typical circulant double covering. By using
Theorems 1, 8, and 12 repeatedly, one can now enumerate the isomorphism classes of
any finite-fold typical circulant connected coverings of a circulant graph.
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Theorem 13. Let � = pr11 pr22 · · · prss be the prime factorization of any positive
integer �, and let G be a circulant graph of order n and valency d. Then the number
N of isomorphism classes of typical circulant connected �-fold coverings of G is as
follows:

N =

⎧⎪⎨
⎪⎩

0 if � is even and d is odd,
s∏

i=1

Ni otherwise,

where

Ni =

⎧⎨
⎩ p

ri(� d
2 �−1)

i if pi|n,

p
(ri−1)(� d

2 �−1)
i (p

� d
2 �

i − 1) if (pi, n) = 1.

Note that the number N of isomorphism classes of typical circulant connected �-
fold coverings of G in Theorem 13 depends only on the folding number �, the order n,
and the valency d of the base graph G = Cay(Zn, Y ). It means that it is independent
of the choice of a set Y of connectors if |Y | = d.

Corollary 14. Let G be a connected circulant graph of order n and valency
d. For any prime p and any natural number r, the number of isomorphism classes
of typical circulant connected pr-fold coverings of G is 0 when d is odd and p = 2.
Otherwise, this number is pr(�

d
2 �−1) if p|n, and is p(r−1)(� d

2 �−1)(p�
d
2 �−1) if (p, n) = 1.

Corollary 15. Let G be a connected circulant graph of order n and valency d.
For any two distinct primes p and q, the number N of isomorphism classes of typical
circulant connected pq-fold coverings of G is 0 when d is odd and one of p and q is 2.
Otherwise, the number N is

N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p�
d
2 �−1q�

d
2 �−1 if pq|n,

p�
d
2 �−1(q�

d
2 � − 1) if p|n but (q, n) = 1,

(p�
d
2 � − 1)q�

d
2 �−1 if q|n but (p, n) = 1,

(p�
d
2 � − 1)(q�

d
2 � − 1) if (pq, n) = 1.

For G = Kn, the complete graph of order n, the following result follows immedi-
ately.

Corollary 16. Let � = pr11 pr22 · · · prss be the prime factorization of any positive
integer �. Then there is no typical circulant connected �-fold covering of Kn when both
� and n are even, otherwise the number of isomorphism classes of typical circulant
connected �-fold coverings of Kn is

∏s
i=1 Ni, where

Ni =

⎧⎨
⎩ p

ri(�n−1
2 �−1)

i if pi|n,

p
(ri−1)(�n−1

2 �−1)
i (p

�n−1
2 �

i − 1) if (pi, n) = 1.

The number of isomorphism classes of typical circulant connected �-fold coverings
of the complete graph Kn for small � and n is listed in Table 1.

5. Coverings of a trivalent circulant graph. Recall [5] that a circulant cov-
ering of a circulant graph is not necessarily a typical one. It is natural to ask which
circulant coverings of a circulant graph are typical. A partial answer to this question
will be given in this section.
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Table 1

The number of isomorphism classes of typical circulant connected �-fold coverings of the com-
plete graph Kn for small � and small n.

n 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
� = 2 1 0 3 0 7 0 15 0 31 0 63 0
� = 3 1 2 8 3 26 26 27 80 242 81 728 728
� = 4 1 0 6 0 28 0 120 0 496 0 2016 0 · · ·
� = 5 4 4 5 24 124 124 624 125 3124 3124 15624 15624
� = 6 1 0 24 0 182 0 405 0 7502 0 45864 0

...
...

Let G = Cay(Zn, Y ) be a trivalent circulant graph with Y = {±i, n
2 }. One can

check easily that if G �= K4 or K3,3 then any edge of G determined by the connector
i is contained in a unique 4-cycle but an edge determined by the connector n

2 is
contained in exactly two 4-cycles.

Let G = Cay(Zn, Y ) be neither K4 nor K3,3 and let p : Cay(Z�n, X) → Cay(Zn, Y )
be a circulant connected �-fold covering with X = {±j, �n

2 }. Then p maps a 4-cycle

in the covering graph Cay(Z�n, X) to a 4-cycle in G. Therefore, any edge (a, a + �n
2 )

of the covering graph determined by the connector �n
2 is mapped to an edge of G de-

termined by the connector n
2 . That is, for any a ∈ Z�n, we have p(a+ �n

2 ) = p(a)+ n
2 .

Since the labels of the vertices of the graph G can be translated, without any loss of
generality, one can assume that p(0) = 0 and then p( �n2 ) = n

2 . Thus p(N(0)) = N(0)
which gives p({j,−j}) = {i,−i}. If p(j) = i, then p(N(j)) = N(i). Since p(0) = 0
and p(j + �n

2 ) = p(j) + n
2 = i + n

2 , we have p(2j) = 2i. By the same process, one

can show that p(αj) = αi for any integer α. For any ak = αkj + εk
�n
2 ∈ Z�n, where

εk ∈ F2 = {0, 1}, k = 1, 2,

p(a1 +a2) = p

(
(α1 + α2)j + (ε1 + ε2)

�n

2

)
= (α1 +α2)i+(ε1 +ε2)

n

2
= p(a1)+p(a2).

So p is an epimorphism from Z�n onto Zn. Similarly, one can show that p is an
epimorphism too if p(j) = −i. This proves the following theorem.

Theorem 17. Let G be a trivalent circulant graph but G �= K4 or K3,3. Then
every circulant connected covering of G is typical.

The following corollary is immediate from Theorems 13 and 17.
Corollary 18. Let � = pr11 pr22 · · · prss be the prime factorization of a positive

integer �, and let G be a trivalent circulant graph of order n but G �= K4 or K3,3. If �
is even, then G has no circulant connected �-fold covering. If � is odd, then the number
of isomorphism classes of circulant connected �-fold coverings of G is

∏s
i=1 Ni, where

Ni = 1 or pi − 1 corresponding to pi|n or (pi, n) = 1, respectively.
Example 1. Let G1 = K4 = Cay(Z4, {1, 2, 3}) and G2 = K3,3 = Cay(Z6, {1, 3, 5}).

Define covering projections p1 : Cay(Z12, {1, 6, 11}) → G1 by p1(4k) = 0, p1(4k+1) =
2, p1(4k+2) = 3 and p1(4k+3) = 1 for k = 0, 1, 2, and p2 : Cay(Z18, {1, 9, 17}) → G2

by p2(6k) = 0, p2(6k + 1) = 3, p2(6k + 2) = 4, p2(6k + 3) = 1, p2(6k + 4) = 2, and
p2(6k+5) = 5 for k = 0, 1, 2. Then both p1 and p2 are circulant covering projections
with connected covering graphs. Since p1(1+1) = 3 and p1(1)+p1(1) = 2+2 = 0, p1

is not a group homomorphism. Thus the covering projection p1 is not typical. Simi-
larly, one can show that the covering projection p2 is not typical either. Furthermore,
it can be checked that neither p1 nor p2 is isomorphic to a typical circulant covering
projection.
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In Lemma 4 of [1], the authors incorrectly rephrased the characterization theorem
of two isomorphic graph coverings given in [3] for a regular covering case. This should
be corrected as follows.

Lemma 4′. Let φ and ψ be typical voltage assignments in C1(G; Zp). Then, two
typical circulant p-fold coverings pφ : Gφ → G and pψ : Gψ → G are isomorphic if
and only if there exists a function g : V (G) → Sp such that ψ(uv) = g(v)φ(uv)g(u)−1

in Sp for each uv ∈ D(G), where Sp is the symmetric group on the elements of Zp

and Zp is considered as the left regular subgroup of Sp.
However, if the voltage assignments φ and ψ in C1(G; Zp) are assumed to be

trivial on a spanning tree of a graph G, two coverings pφ : Gφ → G and pψ : Gψ → G
are isomorphic if and only if there exists an automorphism σ ∈ Aut (Zp) such that
φ(uv)σ = ψ(uv) for every arc uv of G (see [2, 4]).

Because of the error in Lemma 4, Lemma 5 of [1] is also incorrect. Instead of
these two lemmas, we use a minor extension of Lemma 10 for our enumeration, which
can be stated as follows.

Lemma 10′. Let G = Cay(Zn, Y ) be a connected circulant graph. For any natural
number � (not necessarily prime), let f, g : Z�n → Zn be two group epimorphisms.
Then two connected typical coverings f∗ : Cay(Z�n, X1) → G and g∗ : Cay(Z�n, X2) →
G are isomorphic if and only if there exists an automorphism Φ ∈ Aut (Z�n) such that
g ◦ Φ = f and Φ(X1) = X2.

The necessity of Lemma 10′ is proved in [1] and the sufficiency is clear.
Based on Lemmas 2, 3, and 7 in [1] and Lemma 10′, Theorem 8 in [1], which

counts the connected typical circulant prime-fold coverings, should be corrected as
follows.

Theorem 8′. For any odd prime p, the number of isomorphism classes of con-
nected typical circulant p-fold coverings of G = Cay(Zn, Y ) is 1

p−1 (p�
d
2 �−1) if (p, n) =

1 and is p�
d
2 �−1 otherwise, where d is the valency of G.

Proof. Let Y = {±i1,±i2, . . . ,±ik} or {±i1,±i2, . . . ,±ik,
n
2 } according to whether

the valency d of G is even 2k or odd 2k + 1, where 0 < i1, i2, . . . , ik <
⌊
n+1

2

⌋
. Then,

by Lemma 3, any typical circulant p-fold covering of G can be derived from a typi-
cal voltage assignment, or from a k-tuple (δ1, δ2, . . . , δk) ∈ Z

k
p, with the assumption

that any typical covering projection sends 1 in Zpn to 1 in Zn by Lemma 2. Let Δ
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denote the set of k-tuples (δ1, δ2, . . . , δk) ∈ Z
k
p which induce connected p-fold cover-

ings of G. Then |Δ| = p�
d
2 � − 1 if (p, n) = 1 and |Δ| = p�

d
2 � if p|n by Lemma 7.

Furthermore, by Lemma 10′, any two k-tuples (δ1, δ2, . . . , δk) and (δ′1, δ
′
2, . . . , δ

′
k) in

Δ induce isomorphic coverings if and only if there exists a Φ ∈ Aut (Zpn) such that
Φ(ij + δjn) = ij + δ′jn for every j = 1, 2, . . . , k. In this case, Φ becomes a covering
isomorphism between induced coverings and Φ(1) = 1+an for some a = 0, 1, . . . , p−1.
Note that a map Φ defined by Φ(1) = 1 + an for some a = 0, 1, . . . , p− 1 is an auto-
morphism of Zpn if and only if (pn, 1 + an) = 1. Let S = {Φ ∈ Aut (Zpn) | Φ(1) ≡
1(mod n)}. Then, S is a subgroup of Aut (Zpn). Define an S-action on Δ by
Φ(δ1, δ2, . . . , δk) = (δ′1, δ

′
2, . . . , δ

′
k) for any Φ ∈ S and (δ1, δ2, . . . , δk) ∈ Δ, where δ′j is

uniquely determined by the relation Φ(ij + δjn) = ij + δ′jn for every j = 1, 2, . . . , k.
This action is well defined and the number of isomorphism classes of connected typ-
ical circulant p-fold coverings of G is the number of orbits under the S-action on Δ.
Let an arbitrary δ = (δ1, δ2, . . . , δk) ∈ Δ be given. Since no Φ ∈ S fixes the k-tuple
(i1+δ1n, i2+δ2n, . . . , ik+δkn) except the identity Φ, the orbit size of δ equals the car-
dinality |S|, that is, the number of automorphisms Φ of Zpn such that Φ(1) = 1 + an
for some a = 0, 1, . . . , p−1. As the first case, let (p, n) = 1. Then, gcd(pn, 1+an) = 1
except exactly one of a = 0, 1, . . . p−1. Hence, the orbit size of δ is p−1. Since δ ∈ Δ
is given arbitrarily, it gives the proof of the case (p, n) = 1. As the remaining case, let
p|n. Then, for each a = 0, 1, . . . p − 1, we get gcd(1 + an, pn) = 1. Hence, the orbit
size of δ is p. This completes the proof.

Comparing with the old enumeration in Theorem 8 in [1], the number of isomor-
phism classes of connected typical circulant p-fold coverings of G = Cay(Zn, Y ) is
corrected as the multiple of the old value by 1

p−1 when (p, n) = 1 in Theorem 8′. The
following corrections will be listed as the last part of this manuscript.

Since Lemma 7 in [1] counts the number of disconnected typical circulant p-
fold coverings of G = Cay(Zn, Y ), one can get the number of isomorphism classes of
(connected or not) typical circulant p-fold coverings of G with the help of Theorem 8′.
This provides a correct version of Theorem 6 in [1].

Now, Theorem 13 in [1], which counts the connected typical circulant �-fold cov-
erings for any composite number �, can be revised as follows.

Theorem 13′. Let � = pr11 pr22 · · · prss be the prime factorization of a positive
integer � and let G be a connected circulant graph of order n and valency d. Then the
number N of isomorphism classes of connected typical circulant �-fold coverings of G
is

N =

⎧⎪⎨
⎪⎩

0 if � is even and d is odd,
s∏

i=1

Ni otherwise,

where

Ni =

⎧⎨
⎩

p
ri(� d

2 �−1)
i if pi|n,

p
(ri−1)(� d

2 �−1)
i

(
p
� d

2 �
i − 1

)
/(pi − 1) if (pi, n) = 1.

Corollaries 14, 15, 16, and 18 and Table 1 should be revised as follows.
Corollary 14′. Let G be a connected circulant graph of order n and valency

d. For any prime p and any natural number r, the number of isomorphism classes
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Table 0.1

The number of isomorphism classes of connected typical circulant �-fold coverings of the com-
plete graph Kn for small � and small n

n 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
� = 2 1 0 3 0 7 0 15 0 31 0 63 0 · · ·
� = 3 1 1 4 3 13 13 27 40 121 81 364 364
� = 4 1 0 6 0 28 0 120 0 496 0 2016 0
� = 5 1 1 5 6 31 31 131 125 321 321 3906 3906
� = 6 1 0 12 0 91 0 405 0 3751 0 22932 0 · · ·

...
...

...

of connected typical circulant pr-fold coverings of G is 0 when p = 2 and d is odd.
Otherwise, this number is pr(�

d
2 �−1) if p|n, and is p(r−1)(� d

2 �−1)(p�
d
2 � − 1)/(p − 1) if

(p, n) = 1.
Corollary 15′. Let G be a connected circulant graph of order n and valency

d. For any two distinct primes p and q, the number N of isomorphism classes of
connected typical circulant pq-fold coverings of G is 0 when d is odd and one of p and
q is 2. Otherwise, the number N is

N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p�
d
2 �−1q�

d
2 �−1 if pq|n,

p�
d
2 �−1(q�

d
2 � − 1)/(q − 1) if p|n but (q, n) = 1,

(p�
d
2 � − 1)q�

d
2 �−1/(p− 1) if q|n but (p, n) = 1,

(p�
d
2 � − 1)(q�

d
2 � − 1)/((p− 1)(q − 1)) if (pq, n) = 1.

Corollary 16′. Let � = pr11 pr22 · · · prss be the prime factorization of a positive
integer �. Then no connected typical circulant �-fold covering of Kn exists when both
� and n are even. Otherwise the number of isomorphism classes of connected typical
circulant �-fold coverings of Kn is

∏s
i=1 Ni, where

Ni =

⎧⎨
⎩

p
ri(�n−1

2 �−1)
i if pi|n,

p
(ri−1)(�n−1

2 �−1)
i

(
p
�n−1

2 �
i − 1

)
/(pi − 1) if (pi, n) = 1.

Corollary 18′. Let G be a connected circulant trivalent graph of order n but
G �= K4 or K3,3. If � is even, then G has no connected circulant �-fold coverings. If
� is odd, then G has only one connected circulant �-fold covering up to isomorphism.

All statements in [1] that were not mentioned remain valid.
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Abstract. For a graph G, an L(2, 1)-labeling of G with span k is a mapping L → {0, 1, 2, . . . , k}
such that adjacent vertices are assigned integers which differ by at least 2, vertices at distance two
are assigned integers which differ by at least 1, and the image of L includes 0 and k. The minimum
span over all L(2, 1)-labelings of G is denoted λ(G), and each L(2, 1)-labeling with span λ(G) is
called a λ-labeling. For h ∈ {1, . . . , k − 1}, h is a hole of L if and only if h is not in the image of L.
The minimum number of holes over all λ-labelings is denoted ρ(G), and the minimum k for which
there exists a surjective L(2, 1)-labeling onto {0, 1, . . . , k} is denoted μ(G). This paper extends the
work of Fishburn and Roberts on ρ and μ through the investigation of an equivalence relation on the
set of λ-labelings with ρ holes. In particular, we establish that ρ ≤ Δ. We analyze the structure of
those graphs for which ρ ∈ {Δ−1,Δ}, and we show that μ = λ+1 whenever λ is less than the order
of the graph. Finally, we give constructions of connected graphs with ρ = Δ and order t(Δ + 1),
1 ≤ t ≤ Δ.
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1. Introduction. The L(2, 1)-labeling problem is a vertex-labeling analog of
Hale’s channel assignment problem [14] which seeks to minimize the range of frequen-
cies used while at the same time ensuring that transmitters which are sufficiently
close together are assigned transmission frequencies which differ by no less than a
prescribed amount.

Let G be a simple graph with vertex set V (G) and edge set E(G). For fixed
positive integer k, an L(2, 1)-labeling of G with span k is a mapping L from V (G) into
{0, 1, 2, . . . , k} such that any two vertices which are adjacent are assigned integers
which differ by at least 2, any two vertices which are distance two apart are assigned
integers which differ by at least 1, and the integers 0 and k are each assigned to at
least one vertex. We denote the span k of L by s(L), and for each vertex v ∈ V (G),
we refer to L(v) as the label of v assigned by L. The minimum span among all L(2, 1)-
labelings of G is called the λ-number of G, denoted λ(G). Any L(2, 1)-labeling which
achieves a span of λ(G) is called a λ-labeling of G.

For an L(2, 1)-labeling L of G and for integer h such that 0 < h < s(L), h is a
hole of L if and only if h is not assigned by L to any vertex v in V (G). The minimum
number of holes over all λ-labelings of G is called the hole index of G, and is denoted
ρ(G). If there exists a λ-labeling L of G with no holes, then L is called a no-hole λ-
labeling of G and G is said to be λ-full-colorable. Alternatively, G is λ-full-colorable if
and only if there exists a surjective λ-labeling of G. If there exists an L(2, 1)-labeling
of G (not necessarily a λ-labeling) with no holes, then the minimum span over all
such L(2, 1)-labelings of G is denoted μ(G). Clearly, μ(G) ≥ λ(G), and μ(G) = λ(G)
if and only if ρ(G) = 0.
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The L(2, 1)-labeling was introduced by Griggs and Yeh [13] as an extension of T -
colorings (see [16]). There, they considered the λ-numbers of graphs in various classes
such as trees, cycles, and paths, and they investigated the relationship between λ(G)
and other graph invariants such as Δ(G) and χ(G). Since then, many other authors
have extended these lines of study, exploring the λ-numbers of the n-cube [19], chordal
graphs [17], various products of graphs [10, 11, 15], as well as exploring the relationship
between λ(G) and other invariants such as the size of G [9] and the path covering
number of Gc (the complement of G) [12]. Generalizations of L(2, 1)-labelings have
also been considered; see [2, 4, 8, 10, 11, 18].

Recently, attention has turned to the study of graphs G for which ρ(G) = 0.
Fishburn and Roberts [6, 7] in particular have shown that ρ(G) = 0 if |V (G)| =
λ(G) + 1, and that ρ(G) = 0 if G is any tree distinct from the claw K1,n. They have
constructed a number of graphs G with ρ(G) > 0, and, in the event that ρ(G) > 0,
they have shown that λ(G) + ρ(G) is an upper bound for μ(G) if μ(G) exists.

In this paper, we continue the study of ρ(G) with emphasis on ρ(G) > 0. Section
2 provides notation, definitions, and an equivalence class on the set of λ-labelings of
G with ρ(G) holes which will facilitate our discussion. We consider the relationship
between ρ(G) and Δ(G) (section 3) and the relationships among ρ(G), μ(G), and
λ(G) (section 4). In section 5, we explore the structure of graphs with the property
ρ(G) = Δ(G).

2. Definitions and preliminary results. The sum G1 + G2 of two graphs
G1 = (V1, E1) and G2 = (V2, E2) is the graph G = (V,E) with V = V1

⋃
V2 and

E = E1

⋃
E2.

Let L be an L(2, 1)-labeling of G. Then Mi(G,L) = {v ∈ V (G)|L(v) = i} and
mi(G,L) = |Mi(G,L)|.

Let L be a λ-labeling of G. Suppose 0 < h1 < h2 < h3 < · · · < hw < λ(G) are
the holes of L. Then for k, 1 ≤ k ≤ w− 1, the set of integers strictly between hk and
hk+1 shall be called island k of L, denoted Ik(L). Similarly, island 0 of L, denoted
I0(L), and island w of L, denoted Iw(L), shall, respectively, mean {0, 1, 2, . . . , h1 −1}
and {hw + 1, hw + 2, . . . , λ(G)}. For 0 ≤ k ≤ w, the smallest element of Ik(L) shall
be called the left coast of Ik(L) (denoted lc(Ik(L))) and the largest element of Ik(L)
shall be called the right coast of Ik(L) (denoted rc(Ik(L))). Integers which are the
left coast or right coast of some island will be called coastal labels. The interior
of Ik(L), denoted int(Ik(L)), shall mean Ik(L) − {lc(Ik(L)),rc(Ik(L))}. The set of
coastal labels in island Ik(L) will be denoted C(Ik(L)). In the case of the equivalent
conditions |C(Ik(L))| = 1, |Ik(L)| = 1, and lc(Ik(L)) = rc(Ik(L)), we shall refer to
Ik(L) as an atoll.

For any island Ij(L) = {x, x+ 1, . . . , x+ z}, we let Zj(L) denote the sequence of
sets of vertices (Mx(G,L),Mx+1(G,L), . . . ,Mx+z(G,L)). We also define Z(L) to be
the sequence (Z0(L), Z1(L), Z2(L), . . . , Zw(L)).

For any graph G, let Λρ(G) be the collection of all λ-labelings of G with ρ(G)
holes. Also, let L(G, t) be the collection of L(2, 1)-labelings of G with span t. It is
clear that if L ∈ L(G, t), then the labeling L′ = t−L is also in L(G, t). We therefore
observe that v ∈ Mi(G,L) if and only if v ∈ Mt−i(G,L′).

We next define and illustrate two classes of vertex labelings of G, elements of
which follow from a given labeling L ∈ Λρ(G).

For any L ∈ Λρ(G) and any island Ij(L), define

φj(L)(v) =

{
L(v) if L(v) /∈ Ij(L),

rc(Ij(L)) − i if L(v) = lc(Ij(L)) + i ∈ Ij(L).
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Fig. 2.1. L(2, 1)-labeling of K1,1,2.

We call this labeling of the vertices of G an intra-island relabeling at L, and note that
φj(L) is easily seen to be an element of Λρ(G) with holes identical to the holes of
L. It therefore follows that the composition of any number of intra-island relabelings
at L is an element of Λρ(G). We observe that the components of Zj(φj(L)) are the
components of Zj(L) in opposite order. (For k �= j, Zk(φj(L)) = Zk(L).) We also
observe that the relation Φ on Λρ(G), given by (L1, L2) ∈ Φ if and only if L2 is a finite
composition of intra-island relabelings at L1, is an equivalence relation. Moreover, the
cardinality of the equivalence class containing L is 2ρ(G)+1−a, where a is the number
of atolls of L.

For any L ∈ Λρ(G) and for a fixed j, 0 ≤ j ≤ ρ(G) − 1, define

ψj(L)(v) =

⎧⎨
⎩

L(v) if L(v) /∈ Ij(L)
⋃
Ij+1(L)

L(v) − (lc(Ij+1(L)) − lc(Ij(L))) if L(v) ∈ Ij+1(L)
L(v) + rc(Ij+1(L)) − lc(Ij+1(L)) + 2 if L(v) ∈ Ij(L).

We call this labeling of G an inter-island relabeling at L, and note that ψj(L) is an
element of Λρ(G) with the following properties:

1. ψj(L) has a hole at lc(Ij(L))+rc(Ij+1(L))−lc(Ij+1(L)) + 1;
2. Zj+1(ψj(L)) = Zj(L);
3. Zj(ψj(L)) = Zj+1(L).

We also note that since ψj(L) ∈ Λρ(G), it follows that the composition of any finite
number of inter-island relabelings at L is an element of Λρ(G) as well.

Example 2.1. Consider the graph G = K1,1,2 along with an L(2, 1)-labeling L as
given in Figure 2.1.

Since it is easily seen that λ(G) = 5 and ρ(G) = 2, then L ∈ Λρ(G) with islands
I0(L) = {0}, I1(L) = {2} and I2(L) = {4, 5}. Thus,

ψ1(L)(v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if v = v1,
5 if v = v2,
2 if v = v3,
3 if v = v4,

and the islands of ψ1(L) are {0}, {2, 3}, and {5}.
Additionally,

φ2(L)(v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if v = v1,
2 if v = v2,
5 if v = v3,
4 if v = v4.

We next note that for any finite composition ψ(L) of inter-island relabelings at L,
there exists a permutation θ of {0, 1, 2, . . . , ρ(G)} such that

Z(ψ(L)) = (Zθ−1(0)(L), Zθ−1(1)(L), . . . , Zθ−1(ρ(G))(L)).
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And, conversely, for every permutation θ of {0, 1, 2, . . . , ρ(G)}, there exists a finite
composition ψ(L) of inter-island relabelings at L such that Z(ψ(L)) = (Zθ−1(0)(L),
Zθ−1(1)(L), . . . , Zθ−1(ρ(G))(L)). It follows that for any L ∈ Λρ(G) with islands I0(L),
I1(L), . . . , Iρ(G)(L), there is a composition ψ of inter-island relabelings at L with
islands I0(ψ(L)), I1(ψ(L)), . . . , Iρ(G)(ψ(L)) such that |I0(ψ(L))| ≤ |I1(ψ(L))| ≤ · · · ≤
|Iρ(G)(ψ(L))|. Thus, without losing the generality of G, we shall assume |I0(L)| ≤
|I1(L)| ≤ · · · ≤ |Iρ(G)(L)| when convenient.

Example 2.2. Let G be a graph with ρ(G) = 2 and let L ∈ Λρ(G). Let ψ(L) =
ψ0 ◦ ψ1(L). Then

Z(L) = (Z0(L), Z1(L), Z2(L))

and

Z(ψ(L)) = (Z2(L), Z0(L), Z1(L)).

It is easy to see that the relation Ψ on Λρ(G), given by (L1, L2) ∈ Ψ if and only
if L2 = ψ(L1) for some finite composition ψ of inter-island relabelings at L1, is an
equivalence relation. Moreover, the cardinality of each equivalence class under Ψ is
(ρ(G) + 1)!.

Finally, we observe that the relation Ω on Λρ(G), given by (L1, L2) ∈ Ω if and only
if L2 = ω(L1) for some finite composition ω of inter- and/or intra-island relabelings
at L1, is an equivalence relation, and that there are (ρ(G) + 1)!2ρ(G)+1−a members in
each equivalence class containing L1, where a is the number of atolls of L1.

Example 2.3. If G = K2,3, then λ(G) = 5 and ρ(G) = 1. Furthermore, every
λ-labeling of G is in Λρ(G), each such labeling induces 2 islands (one with cardinality
two and one with cardinality three), and |Λρ(G)| = 24. Finally, for L ∈ Λρ(G),
|[L]Φ| = 4, |[L]Ψ| = 2, and |[L]Ω| = 8.

Example 2.4. If G = K2 + K4, then λ(G) = 6 and ρ(G) = 1. The graph G has
720 different λ-labelings, of which 144 are in Λρ(G). Among the islands in Λρ(G), 48
induce 2 islands of cardinality 3 each, and the other 96 labelings induce 2 islands with
cardinalities 1 and 5. We are not aware of the existence of a connected graph having
ρ(G) ≥ 1 which has two labelings which induce islands having different cardinalities
as illustrated in the analysis of the disconnected graph K2 + K4.

We close this section with a definition and related theorem which will prove useful
in section 4.

Let H be a graph. Then a path covering of H is a set of vertex-disjoint paths in H
which cover V (H). The path-covering number of H, denoted c(H), is the minimum
cardinality over all path coverings of H.

Theorem 2.5 ([12]). Suppose G is a graph with |V (G)| = n. Then
1. λ(G) = n + c(Gc) − 2 if c(Gc) ≥ 2
2. λ(G) ≤ n− 1 if c(Gc) = 1.

3. Relating ρ(G) and Δ(G). In this section, we make use of configurations of
islands to explore the relationship between ρ(G) and Δ(G).

Lemma 3.1. Let G be a graph with ρ(G) ≥ 1, let L ∈ Λρ(G) and let 0 ≤ i < j ≤
ρ(G). Suppose x ∈ {lc(Ii(L)),rc(Ii(L))} and y ∈ {lc(Ij(L)),rc(Ij(L))}. Then

1. for each v ∈ Mx(G,L), there exists a unique vertex w ∈ My(G,L) such that
w and v are adjacent, and

2. mx(G,L) = my(G,L).



212 JOHN P. GEORGES AND DAVID W. MAURO

•• ••

•

•

30 05

1

4


........................................
.........................................
.......................................

.........................................
.........................................

........................................
.......................................

.....................................................................................................

Fig. 3.1. Graph G with ρ(G) = 0.

Proof. Through some finite composition ω of inter- and/or intra-island relabelings
at L, we may construct an element ω(L) of Λρ(G) such that for some α, α is a hole
of ω(L), Mx(G,L) = Mα−1(G,ω(L)), and My(G,L) = Mα+1(G,ω(L)).

Proof of (1). Select v ∈ Mα−1(G,ω(L)), and suppose to the contrary that for
every vertex w ∈ Mα+1(G,ω(L)), {v, w} /∈ E(G). Select vertex w′ ∈ Mα+1(G,ω(L)).
If |Mα+1(G,ω(L))| ≥ 2, we produce an L(2, 1)-labeling L′ of G with ρ(G) − 1 holes

L′(u) =

{
ω(L)(u) if u �= w′,

ω(L)(u) − 1 if u = w′,

contradicting that ω(L) is a λ-labeling with the minimum number of holes. On the
other hand, if |Mα+1(G,ω(L))| = 1, then we produce an L(2, 1)-labeling L′ of G with
span λ(G) − 1,

L′(u) =

{
ω(L)(u) if ω(L)(u) ≤ α− 1,

ω(L)(u) − 1 otherwise,

contradicting that ω(L) is a λ-labeling. Thus, for each v ∈ Mx(G,L), there exists
vertex w ∈ My(G,L) such that w and v are adjacent. Uniqueness of w follows from
the distance 2 condition.

Proof of (2) follows immediately from (1).
Example 3.2. Consider the graph G and L(2, 1)-labeling L of G given in Figure

3.1. It is easily verified that L is a λ-labeling of G with one hole at 2; hence ρ(G) ≤ 1.
Since 1 = m5(G,L) �= m0(G,L) = 2, Lemma 3.1 implies that ρ(G) < 1. Hence, there
must exist a λ-labeling of G with ρ(G) = 0.

When there is no chance of confusion, we may hereafter suppress the functional
dependence of the various island notations on L. Likewise, we may suppress the
functional dependence of the notations Mi(G,L) and mi(G,L) on G and L.

Lemma 3.3. Let G be a graph with ρ(G) ≥ 1 and let L ∈ Λρ(G). Then Δ(G) ≥∑ρ(G)
j=1 |C(Ij)| ≥ ρ(G).

Proof. Let v be a vertex with label rc(I0) under L. Then from Lemma 3.1, it
follows that for 1 ≤ j ≤ ρ(G) and for y in {lc(Ij),rc(Ij)}, v is adjacent to some vertex

in My. Thus, Δ(G) ≥ d(v) ≥
∑ρ(G)

j=1 |C(Ij)| ≥
∑ρ(G)

j=1 1 = ρ(G).
Recalling that L exists in Λρ(G) such that |I0| ≤ |I1| ≤ |I2| ≤ · · · ≤ |Iρ(G)|, we

note that the greatest lower bound for Δ(G) afforded by
∑ρ(G)

j=1 |C(Ij)| occurs at such
L. We also note that the following result is an immediate consequence of Lemma 3.3.

Theorem 3.4. For any graph G, ρ(G) ≤ Δ(G).
For the remainder of this section, we shall consider the structures of graphs as-

sociated with ρ(G) = Δ(G) and ρ(G) = Δ(G) − 1, with particular attention paid to
Δ-regular graphs.

Theorem 3.5. Let G be a graph with ρ(G) = Δ(G) and let L ∈ Λρ(G). Then
1. every island of L is an atoll; particularly, Ij = {2j} for 0 ≤ j ≤ Δ(G).
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2. λ(G) = 2Δ(G).
3. G is Δ-regular and |V (G)| ≡ 0 mod (Δ(G) + 1).
4. For every j, 0 ≤ j ≤ Δ(G), M2j is a dominating set of vertices in G.

Proof. With no loss of generality, we assume |I0| ≤ |I1| ≤ |I2| ≤ · · · ≤ |IΔ(G)|.
Proof of (1). By the monotonicity of the cardinality of the islands, it suf-

fices to show that |IΔ(G)| = 1. Suppose to the contrary that |IΔ(G)| ≥ 2. Then∑Δ(G)
i=1 |C(Ii)| ≥ 2 +

∑Δ(G)−1
i=1 |C(Ii)| ≥ 2 +

∑Δ(G)−1
i=1 1 ≥ Δ(G) + 1, contradicting

Lemma 3.3. Since each island is thus an atoll and no two holes are consecutive [see
Lemma 2.2 in [12]], then Ij = {2j} for 0 ≤ j ≤ Δ(G).

Proof of (2). From (1), rc(IΔ(G)) = 2Δ(G). But λ(G) = rc(Iρ(G)) = rc(IΔ(G)),
since Δ(G) = ρ(G).

Proof of (3). Since each vertex of G is assigned a coastal label under L, the result
follows from Lemma 3.1.

Proof of (4). For each fixed j, 0 ≤ j ≤ Δ(G), and each i �= j, 0 ≤ i ≤ Δ(G), each
vertex in M2i is adjacent to some vertex in M2j by Lemma 3.1.

We note that in the next section, additional consideration will be given to the
structure of graphs in the case Δ(G) = ρ(G).

Theorem 3.6. Let G be a graph with Δ(G) ≥ 1 and ρ(G) = Δ(G) − 1. Then
2Δ(G) − 1 ≤ λ(G) ≤ 2Δ(G). Furthermore, if λ(G) = 2Δ(G), then

1. If Δ(G) = 1, then G = mK2 + nK1 where m,n ≥ 1.
2. If Δ(G) = 2, then G = nC4 or H+K1 where H is a graph with ρ(H) = Δ(G).
3. If Δ(G) ≥ 3, then G = H + K1 where H is a graph with ρ(H) = Δ(G).

Proof. To show that 2Δ(G)−1 ≤ λ(G), we note that since K1,Δ(G) is a subgraph
of G, every L(2, 1)-labeling L uses at least Δ(G) + 1 distinct labels. Since ρ(G) =
Δ(G) − 1, it follows that s(L) ≥ 2Δ(G) − 1.

We next show that λ(G) ≤ 2Δ(G). For any graph G, if Δ(G) = 1 (resp. 2),
then λ(G) = 2 (resp. ≤ 4). In the case Δ(G) ≥ 3, suppose to the contrary that
λ(G) ≥ 2Δ(G) + 1, and let L ∈ Λρ(G) with |I0(L)| ≤ |I1(L)| ≤ |I2(L)| ≤ · · · ≤
|IΔ(G)−1(L)|. We observe that |IΔ(G)−2(L)| = 1; otherwise,

∑Δ(G)−1
i=1 |C(Ii(L))| ≥

4 +
∑Δ(G)−3

i=1 |C(Ii(L))| ≥ 4 + (Δ(G) − 3) = Δ(G) + 1, contradicting Lemma 3.3.
Since it follows that Ij(L) = {2j} for 0 ≤ j ≤ Δ(G)−2, then IΔ(G)−1(L) = {2Δ(G)−
2, 2Δ(G) − 1, . . . , λ(G)}. But λ(G) ≥ 2Δ(G) + 1, implying that |IΔ(G)−1(L)| ≥ 4
and hence |C(IΔ(G)−1(L))| = 2. Therefore, by the arbitrariness of L, every element
of Λρ(G) induces Δ(G) islands, exactly Δ(G) − 1 of which are atolls.

By Lemma 3.1, each vertex in M0(G,L) has degree Δ(G) and is thus adjacent

only to vertices with labels in
⋃Δ(G)−1

i=1 C(Ii(L)). This implies that no vertex with
label 0 is adjacent to a vertex with label 2Δ(G)−1. It similarly follows that no vertex
with label 2 is adjacent to any vertex with label 2Δ(G) − 1. Therefore, given fixed
v0 ∈ M2Δ(G)−1(G,L), we may produce a new λ-labeling L′ of G as follows:

L′(v) =

{
L(v) if v �= v0,

1 if v = v0.

If m2Δ(G)−1(G,L) ≥ 2, then L′ has Δ(G) − 2 < ρ(G) holes, a contradiction of
the minimality of ρ(G). If m2Δ(G)−1(G,L) = 1, then L′ is in Λρ(G) and induces
Δ(G) islands of which exactly Δ(G) − 2 are atolls. But this contradicts the earlier
observation that every element of Λρ(G) induces Δ(G) islands, exactly Δ(G) − 1 of
which are atolls. These contradictions imply that λ(G) ≤ 2Δ(G).

We now turn to parts (1), (2), and (3). Suppose λ(G) = 2Δ(G), with ρ(G) =
2Δ(G) − 1.
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Proof of (1). Obvious.

Proof of (2). If Δ(G) = 2, then λ(G) = 4 and ρ(G) = 1. If L ∈ Λρ(G), then L
induces the following islands:

I0 = {0}, I1 = {2, 3, 4}, or

I0 = {0, 1, 2}, I1 = {4}, or

I0 = {0, 1}, I1{3, 4}.
In the first of these cases, every vertex in M0 has degree 2, and, by Lemma 3.1, is
adjacent to some vertex in M2 and some vertex in M4. Thus, no vertex in M3 is
adjacent to a vertex in M0. Moreover, since no vertex in M3 can be adjacent to a
vertex in M2 or M4, then each vertex in M3 is isolated. Now fix v ∈ M3. If m3 ≥ 2,
then we can produce a new λ-labeling L′ of G with no holes by relabeling v with 1,
contradicting the minimality of ρ(G). Therefore m3 = 1, whence G = H +K1, where
H = (V (G) − {v}, E(G)) is a graph with ρ(H) = Δ(G) = 2. A similar argument can
be applied to the case I0 = {0, 1, 2}, I1 = {4}.

If I0 = {0, 1} and I1 = {3, 4}, then

1. every vertex in M0 is adjacent to some vertex in M3 and some vertex in M4;

2. every vertex in M1 is adjacent to some vertex in M3 and some vertex in M4;

3. every vertex in M3 is adjacent to some vertex in M0 and some vertex in M1; and

4. every vertex in M4 is adjacent to some vertex in M0 and some vertex in M1.

Thus, G is a 2-regular graph and hence is a sum of cycles. Furthermore, since L has
a hole at two, each cycle of G has length 4k, k ≥ 1. However, for any k ≥ 2, it can
be easily shown that a cycle of length 4k has a λ-labeling with no holes. Thus k = 1.

Proof of (3). Suppose Δ(G) ≥ 3, ρ(G) = Δ(G) − 1, and λ(G) = 2Δ(G). Let
L ∈ Λρ(G) with |I0| ≤ |I1| ≤ |I2| ≤ · · · ≤ |IΔ(G)−1|. Since λ(G) = 2Δ(G) and
lc(IΔ(G)−2) ≥ 2Δ(G) − 4, either |IΔ(G)−2| = |IΔ(G)−1| = 2 or |IΔ(G)−2| = 1 and
|IΔ(G)−1| = 3. In the former case, each vertex in M0 has degree Δ(G) + 1 by Lemma
3.1, a contradiction. In the latter case, Ij is an atoll for 0 ≤ j ≤ Δ(G) − 2, and
IΔ(G)−1 = {2Δ(G) − 2, 2Δ(G) − 1, 2Δ(G)}. Therefore, by arguments identical to
those given for the first case of (2), M2Δ(G)−1 contains exactly one vertex v, and that
vertex is isolated. Thus G = H +K1 where H = (V (G)− {v}, E(G)) is a graph with
ρ(H) = Δ(G).

Theorem 3.7. For arbitrary k ≥ 1, there is no k-regular graph G with ρ(G) =
k − 1 except for k = 2 and G = nC4, n ≥ 1.

Proof. Suppose k ≥ 3 and let G be k-regular with ρ(G) = k − 1. By Theorem
3.6(3), λ(G) = 2k−1 since G has no isolated vertex. Let L ∈ Λρ(G) with |I0| ≤ |I1| ≤
|I2| ≤ · · · ≤ |Ik−1|. Then Ij = {2j} for 0 ≤ j ≤ k−2 and Ik−1 = {2k−2, 2k−1}. Let
v ∈ M2k−2. Then v can be adjacent only to vertices with labels in Ij , 0 ≤ j ≤ k − 2,
implying d(v) = k − 1, a contradiction to the k-regularity of G. The cases k = 1, 2
follow from inspection.

Corollary 3.8. Let G be a graph with δ(G) ≥ 1. If δ(G) ≤ Δ(G) − 2, then
ρ(G) ≤ Δ(G) − 2.

Proof. By Theorem 3.4, ρ(G) ≤ Δ(G). If ρ(G) = Δ(G), then by Theorem
3.5, G is Δ(G)-regular, and δ(G) = Δ(G). So, suppose ρ(G) = Δ(G) − 1. Then
by Theorem 3.6, λ(G) ≤ 2Δ(G). If λ(G) = 2Δ(G), then by Theorem 3.6 and the
assumption δ(G) ≥ 1, it follows that Δ(G) = 2, implying the contradiction δ(G)−2 ≤
0. Therefore λ(G) = 2Δ(G) − 1. Arguing as above, let L ∈ Λρ(G) with |I0| ≤ |I1| ≤
|I2| ≤ · · · ≤ |IΔ(G)−1|. Then every island under L is necessarily an atoll except
IΔ(G)−1 = {2Δ(G) − 2, 2Δ(G) − 1}. So, for v ∈ M2Δ(G)−2, d(v) = Δ(G) − 1 by
Lemma 3.1, a contradiction to the assumption δ(G) ≤ Δ(G) − 2.
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Theorem 3.9. Let G be k-regular and let L ∈ Λρ(G) with |I0| ≤ |I1| ≤ · · · ≤
|Iρ(G)|. Then

1. If |Iρ(G)| = 1, then ρ(G) = k and λ(G) = 2k.
2. If |Iρ(G)| = 2, then ρ(G) ≥ 1, |Ij | = 2 for all 0 ≤ j ≤ ρ(G), k = 2ρ(G), and

λ(G) = 3ρ(G) + 1 = 3
2k + 1.

3. If |Iρ(G)| ≥ 3, then k ≥ 2, ρ(G) ≤ k − 2, and λ(G) ≥ k + 2 + ρ(G).
Proof. (1) There are ρ(G)+1 islands of L, each of which is an atoll since |Iρ(G)| =

1. Thus, by Lemma 3.1, k = ρ(G), from which it follows from Theorem 3.5 that
λ(G) = 2k.

Proof of (2). If ρ(G) = 0, then I0 = {0, 1}, implying the contradiction that
λ(G) = 1. So ρ(G) ≥ 1. We now show that |Ij | = 2 for all 0 ≤ j ≤ ρ(G) by showing
that |I0| = 2.

We observe that each island under L contains only coastal labels since |Iρ(G)| = 2.
Let w be a vertex with L(w) ∈ Iρ(G). Since G is k-regular, Lemma 3.1 implies
that for every label l ∈ Ij �= Iρ(G), w is adjacent to some vertex labeled l. Hence,∑ρ(G)−1

i=0 |Ii| = k. By similar consideration of a vertex v with L(v) ∈ I0, we have∑ρ(G)
i=1 |Ii| = k. Thus, by the two summations, |I0| = |Iρ(G)| = 2.

Since |Ij | = 2 for all j, 0 ≤ j ≤ ρ(G), we have Ij = {3j, 3j + 1}. Hence, λ(G) =
3ρ(G) + 1. But as indicated above, for v a vertex with L(v) = 0, v has neighbors

with labels precisely the elements of
⋃ρ(G)

i=1 Ii. Hence, k = |
⋃ρ(G)

i=1 Ii| = 2ρ(G), so
λ(G) = 3

2k + 1.
Proof of (3). Since Iρ(G) ≥ 3, the label λ(G) − 1 is an interior label. Thus, for

vertex v with L(v) = λ(G) − 1, the neighbors of v are assigned distinct labels not in
{λ(G) − 2, λ(G) − 1, λ(G)}, implying that L assigns at least d(v) + 3 = k + 3 labels.
Hence, λ(G) ≥ (k + 3 + ρ(G)) − 1 = k + 2 + ρ(G).

To show that ρ(G) ≤ k − 2, we note by Theorem 3.4 that ρ(G) ≤ k. Since not
every island of L is an atoll, then ρ(G) �= k by Theorem 3.5. The result follows by
Theorem 3.7 and the observation that |Iρ(G)| ≥ 3 implies that G cannot be a sum of
4-cycles.

We note that Kn and the complete multipartite graphs K2,2,...,2 satisfy Theorem
3.9(1) and (2), respectively. In regard to Theorem 3.9(3), the bound k + 2 + ρ(G)
is not necessarily sharp. For example, we argue as follows that there is no 5-regular
graph G such that ρ(G) = 3 and λ(G) = 10. Suppose to the contrary that such
a graph exists. Let L ∈ Λρ(G) such that |I0| ≤ |I1| ≤ |I2| ≤ |I3|. Then |I0| ≤ 2
(for otherwise λ(G) > 10). If |I0| = 2, then I0 = {0, 1}, I1 = {3, 4}, I2 = {6, 7} and
I3 = {9, 10}. Hence, by Lemma 3.1, each vertex v has degree 6, a contradiction.
Thus, |I0| = 1. Noting that |I1| ≤ 2, if |I1| = 2, then I0 = {0}, I1 = {2, 3}, I2 = {5, 6}
and I3 = {8, 9, 10}. Hence, by Lemma 3.1, each vertex v with L(v) = 0 has degree
6, another contradiction. Thus |I1| = 1. Now, |I2| is either 1, 2, or 3. If |I2| = 3,
then I0 = {0}, I1 = {2}, I2 = {4, 5, 6}, and I3 = {8, 9, 10}. Thus, by Lemma 3.1,
each vertex v with L(v) = 0 has neighbors with labels 2, 4, 6, 8, and 10. But by the
distance 1 condition and the 5-regularity of G, each vertex w with L(w) = 9 has a
neighbor with label 0, a contradiction. A similar argument which focuses on vertices
with labels 0 and 8 demonstrates that |I2| cannot be 2. Hence, |I2| = 1. In this case,
we have I0 = {0}, I1 = {2}, I2 = {4}, and I3 = {6, 7, 8, 9, 10}. So, by Lemma 3.1 and
the 5-regularity of G, each vertex v with L(v) �= 0 has a neighbor labeled 0. Thus,
M0 is a dominating set, and |V (G)| = 6m0 (since G is 5-regular). Since m0 = m10

by Lemma 3.1, M10 is a dominating set as well. Therefore, since M9 �= φ, there are
adjacent vertices with respective labels 9 and 10, a contradiction.
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We have been unable to find a 5-regular graph G with ρ(G) = 3. We conjecture
that if G is a k-regular graph with ρ(G) ≥ 1, then ρ(G) divides k.

4. Relating ρ(G), λ(G), and μ(G). For purposes of this discussion, it will
be convenient to consider the two cases λ(G) ≥ n − 1 and λ(G) ≤ n − 2, where
n = |V (G)|. We begin with the case λ(G) ≥ n− 1.

Theorem 4.1. Let G be a graph with order n and λ(G) ≥ n− 1. Then
1. ρ(G) = c(Gc) − 1 = λ(G) − (n− 1), and
2. for L ∈ Λρ(G), mi(G,L) = 0 or 1.

Proof of (1). Since λ(G) ≥ n − 1, it follows from Theorem 2.5 that c(Gc) − 1 =
λ(G) − (n− 1).

Let C be a path covering of Gc with minimum order. Then C induces a λ-labeling
of G with c(Gc) − 1 holes (see [12]). Hence, ρ(G) ≤ c(Gc) − 1 = λ(G) − (n− 1).

Now let L ∈ Λρ(G) and let H(L) and N(L) denote the set of holes of L and the
set of labels assigned by L, respectively. We observe that |H(L)| = ρ(G) and that
|H(L)|+|N(L)|−1 = λ(G). Thus, λ(G) = (n−1)+(c(Gc)−1) = |H(L)|+|N(L)|−1 =
ρ(G) + |N(L)| − 1 ≤ ρ(G) + n− 1, giving ρ(G) ≥ λ(G) − (n− 1).

Proof of (2). Select L ∈ Λρ(G). We have seen λ(G) = n + c(Gc) − 2 = |N(L)| +
ρ(G) − 1. It thus follows that n = |N(L)| by (1).

Corollary 4.2. Let G be a graph with order n and λ(G) ≥ n− 1. Then
1. c(Gc) ≤ Δ(G) + 1, and
2. ρ(G) ≤ χ(G) − 1.

Proof.
1. By Theorems 4.1 and 3.4, c(Gc) − 1 = ρ(G) ≤ Δ(G).
2. For any graph G, c(Gc) ≤ χ(G). The result follows by Theorem 4.1.

We now turn our attention to graphs G with λ(G) ≤ n − 2, and consider the
upper bound on the invariant μ(G) given by Fishburn and Roberts in the following
theorem.

Theorem 4.3. See 7. If G is a graph such that ρ(G) ≥ 1 and λ(G) ≤ n−2, then
μ(G) ≤ λ(G) + ρ(G).

It is easily seen that for ρ(G) ≥ 1, a lower bound for μ(G) is λ(G) + 1. Thus by
Theorem 4.3, μ(G) = λ(G) + 1 if ρ(G) = 1. It is also immediate from Theorem 3.4
that an alternative upper bound for μ(G) is λ(G) + Δ(G).

We now improve the upper bound of λ(G) + ρ(G) in the cases ρ(G) = Δ(G) − 1
and ρ(G) = Δ(G).

Theorem 4.4. Suppose G is a graph with order n, λ(G) ≤ n − 2, and ρ(G) =
Δ(G) ≥ 1. Then μ(G) = λ(G) + 1.

Proof. By Theorem 3.5, G is Δ-regular with λ(G) = 2Δ, and for each L in Λρ(G),
L induces Δ + 1 islands I0, I1, . . . , IΔ, where Ii is the atoll {2i}. By Lemma 3.1 and
Theorem 3.5(3), then n = m0(Δ + 1), implying 2Δ ≤ m0(Δ + 1) − 2. This gives
m0 ≥ 2.

By Lemma 3.1, we may denote the m0 elements of M2i by v1,2i, v2,2i, . . . , vm0,2i

where, with no loss of generality, vj,2i is adjacent to vj,2i+2. In particular, with j fixed
equal to 1, v1,0, v1,2, v1,4, . . . , v1,2Δ is a path in G. It now suffices to produce a no-hole
L(2, 1)-labeling L∗ of G with span 2Δ + 1 = λ(G) + 1, which we do as follows:

L∗(v) =

{
L(v) + 1 if v = v1,2i for some i,
L(v) otherwise.

Theorem 4.5. Suppose G is a graph with order n, λ(G) ≤ n − 2, and ρ(G) =
Δ(G) − 1. Then
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1. μ(G) = λ(G) if Δ(G) = 1;
2. μ(G) = λ(G) + 1 if Δ(G) ≥ 2.

Proof. By Theorem 3.6, 2Δ(G) − 1 ≤ λ(G) ≤ 2Δ(G). We first consider the case
λ(G) = 2Δ(G).

Case 1: λ(G) = 2Δ(G).

If Δ(G) = 1, then ρ(G) = 0, implying μ(G) = λ(G).

If Δ(G) = 2, then by Theorem 3.6(2), G is isomorphic to either mC4 (for some
positive integer m) or H + K1 where ρ(H) = Δ(G) = 2. In the former case, λ(G) =
4 ≤ n−2 = 4m−2, implying m ≥ 2. By labeling the vertices of m−1 copies of C4 with
integers 0, 3, 1, 4, and labeling the vertices in the remaining copy of C4 with integers 1,
4, 2, 5, we produce a no-hole L(2, 1)-labeling of H with span 5 = λ(G)+1. Thus, there
exists a no-hole labeling of G with span λ(G) + 1 as well. But ρ(G) = Δ(G)− 1 = 1,
so μ(G) > λ(G). This implies μ(G) = λ(G) + 1. In the latter case, Fishburn and
Roberts [6] show that H is necessarily isomorphic to mC3 + kC6 for some integers
m, k ≥ 0. Since 4 = λ(G) ≤ n − 2 = (3m + 6k + 1) − 2, it follows that m ≥ 2 or
k ≥ 1. In either event, it is easy to establish a no-hole L(2, 1)-labeling of H with span
5 = λ(G) + 1, from which it follows as above that μ(G) = λ(G) + 1.

If Δ(G) ≥ 3, then by Theorem 3.6(3), G is isomorphic H + K1 where ρ(H) =
Δ(G). But Δ(G) = Δ(H), so by Theorem 3.5, λ(H) = 2Δ(H) and |V (H)| =
w(Δ(H) + 1) for some w ≥ 1. Hence, since λ(H) = λ(G) ≤ n − 2, we have
2Δ(H) ≤ n − 2 = |V (H)| + 1 − 2 = w(Δ(H) + 1) − 1, implying w ≥ 2. This
implies λ(H) ≤ |V (H)| − 2. By Theorem 4.4, μ(H) = λ(H) + 1 = λ(G) + 1, which
implies that H (and therefore G) have no-hole labelings with span λ(G) + 1. But
ρ(G) = Δ(G) − 1 > 1, so μ(G) > λ(G). Thus μ(G) = λ(G) + 1.

We now turn to the case λ(G) = 2Δ(G) − 1. Let L ∈ Λρ(G), where |I0| ≤
|I1| ≤ · · · ≤ |Iρ|. Then Ij = {2j} for 0 ≤ j ≤ ρ − 1 and Iρ = {2ρ, 2ρ + 1} =
{2Δ(G)− 2, 2Δ(G)− 1}. Hence, L assigns ρ(G) + 2 = Δ(G) + 1 distinct labels, each
of which is coastal. By Lemma 3.1, mi = m0 for every label i assigned by L. Therefore
n = m0(Δ(G)+1), giving λ(G) = 2Δ(G)−1 ≤ n−2 = m0(Δ(G)+1)−2, which implies
m0 ≥ 2. For 0 ≤ i ≤ Δ(G)− 1, let M2i = {v1,2i, v2,2i, . . . , vm0,2i}. By Lemma 3.1 and
without loss of generality, we may suppose vj,2i is adjacent to vj,2i+2, 1 ≤ j ≤ m0,
0 ≤ i ≤ Δ(G)− 2. In particular, with j fixed equal to 1, v1,0, v1,2, v1,4, . . . , v1,2Δ(G)−2

is a path in G. It now suffices to produce a no-hole L(2, 1)-labeling L∗ of G with span
λ(G) + 1 = 2Δ(G), which we perform as follows:

L∗(v) =

{
L(v) if v = v1,2i for some i, 0 ≤ i ≤ Δ(G) − 1,

L(v) + 1 otherwise.

5. On the structure of graphs G with ρ(G) = Δ(G). As shown in Theorem
3.5, for each graph G with ρ(G) = Δ(G) and each L ∈ Λρ(G),

1. G is Δ-regular with |V (G)| ≡ 0 mod (Δ(G) + 1);

2. λ(G) = 2Δ(G);

3. M2j(G,L) is a dominating set for each j, 0 ≤ j ≤ Δ(G);

4. Ij = {2j} for each j, 0 ≤ j ≤ Δ(G).

Let GΔ,t be the collection of connected graphs G with ρ(G) = Δ(G) = Δ and order
t(Δ + 1) (implying m2j(G,L) = t for every L ∈ Λρ(G) and each j, 0 ≤ j ≤ Δ(G).)
Let BΔ,t be the subcollection of graphs in GΔ,t which are bipartite. We note that
GΔ,1 = {KΔ+1}. We thus restrict our attention to the case t ≥ 2, with particular
emphasis on t = 2.
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In [7], Fishburn and Roberts construct connected graphs G with λ(G) = 2m,
|V (G)| = 2(m + 1), and ρ(G) = m, for m ≥ 2. We note that for m = 2, the
constructed graph is isomorphic to C6, and for m ≥ 3, the constructed graph is not
bipartite. Thus, it follows that for Δ ≥ 2, B2,2, and GΔ,2 are not empty. We also note
that B2,2 = G2,2.

The following lemma will assist in characterizing BΔ,2 for all Δ ≥ 2.

Lemma 5.1. If G is a connected Δ-regular graph of order 2(Δ+1), then G ∈ GΔ,2

or λ(G) = 2Δ + 1.

Proof. Since Gc is a (Δ + 1)-regular graph on 2(Δ + 1) vertices, then by Dirac’s
theorem [5], Gc has a Hamilton path. Hence, by Theorem 2.5, λ(G) ≤ |V (G)| − 1 =
2Δ + 1. It suffices to show that if λ(G) ≤ 2Δ, then G ∈ GΔ,2.

Let L be an arbitrary L(2, 1)-labeling of G with span s(L), λ(G) ≤ s(L) ≤ 2Δ. If
v and w are vertices in V (G) such that L(v) = L(w) = l, then {v, w} is a dominating
set due to the distance conditions and regularity and order of G. Hence, there exists
no vertex with label l − 1 or l + 1, which in turn implies mi + mi+1 ≤ 2 for each i,

0 ≤ i ≤ s(L) − 1. Therefore, |V (G)| = 2Δ + 2 ≤ 2� s(L)+2
2 	, giving s(L) ≥ 2Δ. Since

L was arbitrary, λ(G) ≥ 2Δ as well, giving λ(G) = 2Δ.

Now let L be an arbitrary λ-labeling of G. To see that L necessarily has Δ holes,
we note that since λ(G) = 2Δ, then |V (G)| = 2Δ+2 = (m0 +m1)+(m2 +m3)+ · · ·+
(m2Δ−2 +m2Δ−1)+m2Δ = m0 +(m1 +m2)+(m3 +m4)+ · · ·+(m2Δ−1 +m2Δ). Since
mi+mi+1 ≤ 2 as above, then mi+mi+1 = 2 for all i, 0 ≤ i ≤ 2Δ−1, and m0,mΔ = 2
as well. Hence, for 0 ≤ i ≤ 2Δ − 2, (mi+2 + mi+1) − (mi+1 + mi) = mi+2 −mi = 0,
which gives mi = 2 for even i and mi = 0 for odd i.

Now, for Δ ≥ 2, let ΔB be a connected Δ-regular bipartite graph with order
2(Δ + 1). It is easy to see that ΔB can be obtained by deleting a perfect matching
from KΔ+1,Δ+1, and is unique up to isomorphism.

Theorem 5.2. For Δ ≥ 2, BΔ,2 = {ΔB}.
Proof. Since ΔB has diameter 3, then for every vertex v ∈ V (ΔB), there ex-

ists a unique vertex w ∈ V (ΔB) such that d(v, w) = 3. Hence there exists an
L(2, 1)-labeling of ΔB with span 2Δ. Thus, by Lemma 5.1, ΔB ∈ GΔ,2, implying

ΔB ∈ BΔ,2.

From Theorem 5.2 and the discussion preceding Lemma 5.1, it follows that
|Gm,2| ≥ 2 for m ≥ 3. We further note that B3,2 = {Q3}.

To determine G3,2, we consider the four nonisomorphic connected 3-regular graphs
of order 8 (see [1]) as shown in Figure 5.1.

The graph in Figure 5.1(a) is the graph constructed by Fishburn and Roberts,
while the graph in Figure 5.1(b) is Q3. Each is clearly in G3,2. On the other hand,
if G ∈ GΔ,2, then V (G) can be partitioned into Δ(G) + 1 sets containing precisely 2
vertices which are exactly distance 3 apart. Since the diameter of the graph in Figure
5.1(d) is 2, its λ-number is 7 by Lemma 5.1. And since, in Figure 5.1(c), there is a
vertex which is at most distance 2 from every other vertex, that graph is not in G3,2.
It follows from Lemma 5.1 that the λ-number of this graph is 7 as well.

We next introduce a particular graph construction which will aid in characterizing
GΔ,2.

5.1. The S-exchange of the sum of two graphs. Let G be a graph with
V (G) = {v0, v1, v2, . . . , vn−1} and for i = 1, 2, let φi be a graph isomorphism from G to
graph Gi where φi(vj) = vj,i. Let e = {vr, vs} ∈ E(G). Then the e-exchange of graph
G1 +G2, denoted Xe(G1 +G2), is the graph with vertex set V (G1 +G2) and edge set
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Fig. 5.1. Four nonisomorphic connected 3-regular graphs of order 8.

(E(G1+G2)−{φ1(e), φ2(e)})
⋃
T (e), where T (e) = {{vr,1, vs,2}, {vr,2, vs,1}}. Further-

more, if S ⊆ E(G), then the S-exchange of graph G1+G2, denoted XS(G1+G2), is the
graph with vertex set V (G1 +G2) and edge set (E(G1 +G2)−

⋃
e∈S{φ1(e), φ2(e)})

⋃
(
⋃

e∈S T (e)).
By way of illustration, we note that if G is isomorphic to K3 and S = E(G),

then XS(G1 + G2) is isomorphic to C6. Additionally, if G is isomorphic to K4 and e
is any edge in E(G), then Xe(G1 + G2) is isomorphic to the graph in Figure 5.1(a).
We also note that for any v ∈ V (G), if S(v) = {e ∈ E(G)|e is incident to v}, then
XS(v)(G1 + G2) is isomorphic to G1 + G2.

Theorem 5.3. Let H be a connected Δ-regular graph with order 2(Δ + 1). Then
H ∈ GΔ,2 if and only if there exists S ⊆ E(KΔ+1) such that H is isomorphic to
XS(KΔ+1 + KΔ+1).

Proof. (⇒). Let H ∈ GΔ,2 and let L be a λ-labeling of H. Then for 0 ≤ i ≤ 2Δ,
mi = 0 if i is odd and mi = 2 if i is even. Let v0,1 and v0,2 denote the two vertices in
V (H) with label 0 under L. For i = 1, 2 and for 1 ≤ j ≤ Δ, let vj,i be the vertex in
V (H) which has label 2j and which is adjacent to v0,i. Also let Hi be the subgraph
of H induced by {v0,i, v1,i, . . . , vΔ,i} and let W be the edge set of Hc

1 . (We note that
H1 is isomorphic to H2.) Setting S = φ−1

1 (W ) (where φ1 is the graph isomorphism
from G to G1 such that φ(vi) = vi,1, where G = KΔ+1 and V (G) = {v0, v1, . . . , vΔ}),
we easily see that H is isomorphic to XS(KΔ+1 + KΔ+1).

(⇐). Suppose S ⊆ E(KΔ+1) such that H is isomorphic to XS(KΔ+1 + KΔ+1).
Let L be the L(2, 1)-labeling of H such that L(vj,i) = 2j for i = 1, 2. Since the span
of L is 2Δ < 2Δ + 1, Lemma 5.1 implies that H ∈ GΔ,2.

It is easily seen that the graphs in Figures 5.1(a) and 5.1(b) are S-exchanges of
K4 +K4, where, in the latter case, |S| = 2 (for independent edges) and in the former
case, |S| = 1.

To this point, we have restricted our attention to elements of GΔ,t for t = 2. Using
two new graph constructions, we next extend the discussion to 2 < t ≤ Δ(G).

The graph Ωr. For r ≥ 1, let X = rKr and Y = rK1. We form a new graph
Ωr by joining the vertices of Y to certain vertices of X. Formally, let V (Ωr) =
V (X)

⋃
V (Y ) where

1. V (X) =
⋃r−1

i=0 Bi, Bi = {bi,j |0 ≤ j ≤ r − 1}, and
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Fig. 5.2. The graph Ω3.

2. V (Y ) = {a0, a1, ..., ar−1}.
Let E(Ωr) = R

⋃
S, where

3. R =
⋃r−1

i=0 Ri, where Ri = {{bi,j , bi,k}|0 ≤ j < k ≤ r − 1}, and

4. S =
⋃r−1

i=0 Si, where Si = {{ai, bm,i}|0 ≤ m ≤ r − 1}.
We note that Ω1 is isomorphic to K2, and Ω2 is isomorphic to C6. We illustrate Ω3

in Figure 5.2.
We make the following observations about the structure of Ωr:

Obs. 1) Ωr is r-regular and has order r2 + r; |V (X)| = r2 and |V (Y )| = r;
Obs. 2) for 0 ≤ i, j ≤ r − 1, d(aj , ai) = 3 for j �= i;
Obs. 3) for 0 ≤ i, j, k, l ≤ r − 1

d(bi,j , bk,l) =

⎧⎨
⎩

1 if i = k and j �= l,
2 if i �= k and j = l,
3 otherwise;

Obs. 4) For 0 ≤ i, j, k ≤ r − 1,

d(ai, bj,k) =

{
1 if i = k,
2 otherwise.

Lemma 5.4. Let L be an L(2, 1)-labeling of Ωr. Then
1. for every y ∈ V (Y ) and every x ∈ V (X), L(x) �= L(y);
2. for 0 ≤ t ≤ s(L) − 1, mt + mt+1 ≤ r.

Proof. By Obs. 4, (1) follows.
To show (2), suppose to the contrary that there exists t, 0 ≤ t ≤ s(L) − 1, such

that mt + mt+1 ≥ r + 1. From Obs. 2, 3, 4, either every vertex labeled t (resp.
t + 1) is in V (X) or every vertex labeled t (resp. t + 1) is in V (Y ). Furthermore, if
every vertex in Mt

⋃
Mt+1 is in V (Y ), then we have the contradiction that r + 1 ≤

mt +mt+1 ≤ |V (Y )| = r. Similarly, if every vertex in Mt

⋃
Mt+1 is in V (X), then by

the pigeon-hole principle, there exist two vertices bi,j , bk,l in Mt

⋃
Mt+1 where i = k.

Thus, bi,j and bk,l are adjacent, a contradiction of the assumption that their labels
under L differ by at most 1. We have therefore established that either Mt ⊆ V (Y )
and Mt+1 ⊆ V (X) or Mt ⊆ V (X) and Mt+1 ⊆ V (Y ).

Suppose the former. Let st = {i|ai ∈ Mt} and let st+1 = {k|bj,k ∈ Mt+1 for
some j}. We observe that |st| = mt, and from Obs. 3, |st+1| = mt+1. Noting that st
and st+1 are subsets of {0, 1, 2, . . . , r − 1}, |st| + |st+1| = mt + mt+1 ≥ r + 1 implies
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st
⋂
st+1 �= φ. Thus, for some integers y, z, 0 ≤ y, z ≤ r − 1, there exist adjacent

vertices ay and bz,y in Mt

⋃
Mt+1, a contradiction of the distance one condition on L.

A similar argument can be made in the latter case.
Theorem 5.5. For r ≥ 1, Ωr ∈ Gr,r.
Proof. We first establish that λ(Ωr) = 2r. Suppose λ(Ωr) < 2r. Let L be an

L(2, 1)-labeling of Ωr with span 2r − 1. By Obs. 1, r2 + r = |V (Ωr)| =
∑2r−1

i=0 mi.

However, by Lemma 5.4,
∑2r−1

i=0 mi =
∑r−1

j=0(m2j + m2j+1) ≤ r2, a contradiction.
Hence, λ(Ωr) ≥ 2r. To show that λ(Ωr) = 2r, let Bk = {bi,j |(j − i) ≡ k mod r},
0 ≤ k ≤ r − 1. Noting that |Bk| = r and that vertices in Bk are pairwise distance 3
apart, we produce an L(2, 1)-labeling L of Ωr as follows:

L(v) =

{
2k if v ∈ Bk,
2r otherwise.

To show ρ(Ωr) = r, let L∗ be any λ-labeling of Ωr. Then r2 + r =
∑2r

i=0 mi =

m2r +
∑2r−1

i=0 mi. By Lemma 5.4,
∑2r−1

i=0 mi ≤ r2, implying m2r = r. By Obs. 1 (the
r-regularity of Ωr in particular), M2r is therefore a dominating set. Thus, m2r−1 = 0.
Proceeding by induction, it is easily seen that for 0 ≤ j ≤ 2r,

mj =

{
r if j is even,
0 if j is odd.

Hence, ρ(Ωr) = r.
Theorem 5.5 establishes the fact that Gr,r is nonempty. Earlier discussions have

demonstrated that Gr,1 = {Kr+1}, and that for r ≥ 2, Gr,2 is nonempty. The question
is thus raised: for what values of t is Gr,t nonempty?

To see that such graphs exist for arbitrary t < r, we introduce one last graph
construction.

The graph Ωr,t. Fix integers t and r such that 1 ≤ t ≤ r. Let X = tKr and let
Y = tK1. We form a new graph Ωr,t by joining the vertices in Y to certain vertices
in X. Formally, let V (Ωr,t) equal V (X)

⋃
V (Y ), where

1. V (X) =
⋃t−1

i=0 Bi, Bi = {bi,j |0 ≤ j ≤ r − 1}, and
2. V (Y ) = {a0, a1, ..., at−1}.

Let E(Ωr,t) = R
⋃
S
⋃
T , where

3. R =
⋃t−1

i=0 Ri where Ri = {{bi,j , bi,k}|0 ≤ j < k ≤ r − 1}, and

4. S =
⋃t−1

i=0 Si, where Si = {{ai, bm,i}|0 ≤ m ≤ t− 1}, and

5. T =
⋃t−1

i=0 Ti, where Ti = {{ai, bi,j}|t ≤ j ≤ r − 1}.
We illustrate Ω4,2 in Figure 5.3.

We note that Ω2,1 is isomorphic to K3, and in general Ωr,1 is isomorphic to Kr+1.
We also note that Ωr = Ωr,r, and that Ω3,2 is isomorphic to the graph in Figure
5.1(a).

Arguments similar to those used in the analysis of Ωr demonstrate that Ωr,t is a
graph G with ρ(G) = r and m2i(G,L) = t for L ∈ Λρ(G).

We observe that the edges of Ωr,t may be manipulated to produce other graphs G
with ρ(G) = r and mi(G,L) = t for L ∈ Λρ(G). Such a graph is illustrated in Figure
5.4 for r = 4, t = 2.

We point out that the graphs in Figures 5.3 and 5.4 can be constructed as S-
exchanges of K5 + K5.

We have been unable to establish that Gr,t is nonempty for t > r, and conjecture
that Gr,t = φ for all t > r.
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•b0,3 • b0,2 •b1,3 • b1,2
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Fig. 5.3. The graph Ω4,2.
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Fig. 5.4. Graph G with ρ(G) = 4 and mi(G,L) = 0 or 2 for L ∈ Λ(G, ρ).

6. Closing remarks. We have offered several conjectures about the structure
of nonfull colorable graphs in earlier sections of this paper. Throughout our investi-
gations of graphs G with positive ρ(G) we found none with λ(G) > 2Δ(G). Thus, we
conjecture that if λ(G) > 2Δ(G), then ρ(G) = 0.
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Abstract. Extending results of Christie and Irving, we examine the action of reversals and
transpositions on finite strings over an alphabet of size k. We show that determining reversal,
transposition, or signed reversal distance between two strings over a finite alphabet is NP-hard, while
for “dense” instances we give a polynomial-time approximation scheme. We also give a number of
extremal results, as well as investigating the distance between random strings and the problem of
sorting a string over a finite alphabet.

Key words. strings, sorting, genome comparison, reversals, transpositions, NP-complete prob-
lems, MAX-SNP hardness, approximation algorithms
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Introduction. As a result of interest in both modelling large-scale genome
changes and fundamental questions on the combinatorics of sequences, rearrange-
ment operations, including transpositions, reversals, and signed reversals, have re-
cently been the focus of intense combinatorial, algorithmic, and complexity-theoretic
study. These superficially similar sequence operations turn out to have significantly
different properties. Most previous work has concentrated on applying sequence op-
erations to permutations. However, the analysis of operations on strings over finite
alphabets was raised by Pevzner and Waterman [26] and investigated by Christie and
Irving [9]. The study of sequence operations on strings may also be of some practical
interest; for a recent example, see, for instance, Skaletsky et al. [27] on the roles played
by palindromes and repetitive segments in the Y-chromosome.

The operations under consideration all act on strings α = a1 · · · an of length
|α| = n. The reversal Rij , where i < j, reverses the substring ai · · · aj , so that

Rij(a1 · · · an) = a1 · · · ai−1ajaj−1 · · · aiaj+1 · · · an.

The transposition Tijk, where i < j < k, exchanges the substrings ai · · · aj and
aj+1 · · · ak, so

Tijk(a1 · · · an) = a1 · · · ai−1aj+1 · · · akai · · · ajak+1 · · · an.

The pancake flip or prefix reversal Pi reverses the substring a1 · · · ai, so

Pi(a1 · · · an) = aiai−1 · · · a1ai+1 · · · an.

Signed reversals work on strings where each character has an orientation: we use a to
denote the opposite orientation of a, and note that a = a. The signed reversal Sij is
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the same as Rij , except that the reversed elements change orientation:

Sij(a1, . . . , an) = a1 · · · ai−1aj aj−1 · · · aiaj+1 · · · an.

As the collections of reversals, transpositions, and pancake flips each generate
the symmetric group Sn and are closed under taking inverses, they therefore induce
metrics drev, dtr, dpf on Sn, where dX(α, β) is the minimum length of a sequence
of operations of type X transforming α to β. Signed reversals generate the larger
hyperoctahedral group of signed permutations and define a metric drev. All these
metrics can be defined for strings over finite alphabets, provided we restrict ourselves
to compatible pairs, namely pairs of strings that have the same number of occurrences
of each symbol.

Extremal investigation of sequence operations has concentrated on the diame-
ter of the symmetric (or, for signed reversals, hyperoctahedral) group. Bafna and
Pevzner [2] showed that the reversal diameter of Sn is n− 1, while Meidanis, Walter,
and Dias [25] showed that the signed reversal diameter of the group of signed per-
mutations is at most n + 1. For transpositions, Bafna and Pevzner [3] showed that
the diameter lies between n/2 + 1 and 3n/4. Eriksson et al. [10] improved the upper
bound to �(2n− 2)/3� for n ≥ 9. For pancake flips, Gates and Papadimitriou [14]
showed that the diameter lies between 17n/16 and (5n + 5)/3; Heydari and Sudbor-
ough [19] improved the lower bound to 15n/14. Christie and Irving [9] investigated
these problems for the set of binary strings: they showed that the maximum rever-
sal and transposition distances between two compatible binary strings of length n is
�n/2�, and noted that there does not appear to be an easy generalization of these
results to strings over alphabets of size k > 2. In section 1, we prove such a gener-
alization for reversal distance between strings over alphabets of size k; furthermore,
we determine the diameter of every equivalence class of strings (under the relation of
compatibility).

In section 2, we consider the distance between random strings. Two randomly
chosen permutations are typically reversal distance Θ(n) apart [2]. We show that
strings from a k-letter alphabet with fixed fractions of letters of each type are typically
at reversal distance Θ(n/ log n). Our arguments extend to any other class of string
operations with a bounded number of cutpoints at each step and a linear bound on
diameter in the permutation case, such as transpositions or pancake flips.

The complexity of calculating the distance between two permutations depends on
the type of operations used. Caprara [7] showed that determining reversal distance
is NP-hard, while Berman and Karpinski [6] (see also [22]) showed that the prob-
lem is MAX-SNP hard. The signed reversal distance, by contrast, can be found in
polynomial time: algorithms were given by Hannenhalli and Pevzner [17], Berman
and Hannenhalli [4], and Kaplan, Shamir, and Tarjan [21]. The complexity of find-
ing transposition distance between permutations remains open. For binary strings,
Christie and Irving [9] showed that reversal distance remains NP-hard for binary
strings, but left open the difficulty of finding transposition distance. In section 3, we
show that signed reversal distance and transposition distance are both NP-hard for
binary strings (and hence for strings over any finite alphabet). This is the first hard-
ness result for transposition distance; together with the difficulty of signed reversal
distance, it suggests that these problems may be harder over finite alphabets.

In section 4, we turn to the problem of approximating the distance between pairs
of strings. Karpinski [22] showed that it is NP-hard to approximate the reversal dis-
tance between two permutations to within any factor less than 1237/1236. A number
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of authors have given approximation algorithms: Kececioglu and Sankoff [23] gave a 2-
approximation algorithm, Bafna and Pevzner [2] gave a 1.75-approximation algorithm,
Christie [8] gave a 1.5-approximation algorithm, and recently, Berman, Hannenhalli,
and Karpinski [5] gave a 1.375-approximation algorithm. Bafna and Pevzner [3] have
also given a 1.5-approximation algorithm for transposition distance. For strings over
a finite alphabet, Pevzner and Waterman [26, Problem 4], raised the problem of find-
ing an approximation algorithm for determining reversal distance. It follows from
Karpinski’s results [22] and the results of section 2 that it is NP-hard to approxi-
mate reversal distance between strings to within any factor better than 1237/1236.
However, we show that for dense instances (pairs of strings at distance Ω(n)) there
is a polynomial-time approximation scheme. Similar results hold for approximating
signed reversal, prefix reversal, or transposition distance between two strings, and
we conjecture that analogous results should hold for calculating the distance between
permutations.

For permutations, a sorting algorithm suffices to determine the distance between
an arbitrary pair of strings—just relabel the entries of both so that one string is
sorted. For strings over a finite alphabet this equivalence fails, and sorting is strictly
a special case of finding distance. In section 5, we show that the number of reversals
required to sort a ternary string can be found in polynomial time. We also give some
elementary bounds on reversal sorting over an arbitrary finite alphabet; these restrict
any instance of sorting to a finite range of values. We conjecture that, for fixed k,
these problems can be solved for k-ary alphabets in polynomial time.

Notation. Our alphabet will generally be the set [k] = {1, 2, . . . , k}. We consider
strings over this alphabet, elements α ∈ [k]∗. We write |α| for the length of a string.
We write L(a1, . . . , ak) for the set of strings of length n with exactly ai occurrences of
i for each i. (Note that the set of permutations can be thought of as L(1, 1, . . . , 1).)

1. Reversal diameter for finite alphabets. Our approach to finding the re-
versal diameter of L(a1, . . . , ak) is straightforward: we present an algorithm that turns
one element of L(a1, . . . , ak) into any other in at most the desired number of reversals,
and we also present a pair of elements of L(a1, . . . , ak) that are provably at least the
desired number of reversals apart. In order to prove the lower bound, we introduce
an invariant of strings, tilt, which is linear in a certain sense and which cannot be
changed very much by a single reversal. Bafna and Pevzner [2] looked at properties of
a difference graph to prove lower bounds on reversal distance between permutations,
and Christie and Irving [9] gave algorithmic upper bounds on the reversal distance
between pairs of binary strings. However, both the graph we use to compute tilt and
the algorithm we give for our upper bound are different from earlier work.

Given a graph G with vertex set V ⊂ Z
+ and an edge-weight function w :

(
V
2

)
→

Z, define the tilt of G to be

t(G) =
∑

i odd, j even

w({i, j})εij , where εij =

{
1, i < j,

−1, i > j.

Tilt is linear in the following sense: when G and H are weighted graphs on the same
vertex set G, let G + H denote the weighted graph on V whose edge weight function
is the sum of those of G and H. Then

t(G + H) = t(G) + t(H).
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� �

� �a
1

b

−1

c
1

d

−1

Fig. 1. A typical alternating square.

An alternating square C on vertices abcd is the weighted graph obtained from the
closed walk abcda by giving the edges ab and cd weight 1 and the edges bc and da
weight −1 (when the edges are not distinct, the weights are summed; however, we
exclude loops).

Lemma 1. If C is an alternating square, then |t(C)| ≤ 2.
Proof. Label C as shown in Figure 1. We argue by contradiction, first assuming

that t(C) ≤ −3; the other case can be argued symmetrically.
When t(C) ≤ −3, at least 3 edges must contribute −1 to t(C). Without loss of

generality let them be ab, bc, and cd. When a is even,
• b > a and b is odd, hence
• c > b and c is even, hence
• d > c and d is odd.

Thus the edge da contributes +1 and t(C) = −2. A similar argument applies when a
is odd.

Why is this relevant? Given a string α = α1 · · ·αn ∈ [k]n, define the associated
weighted graph G(α) to have vertex set [k] and edge weights

w({i, j}) = |{l : {αl, αl+1} = {i, j}}| .

That is, w(e) counts the number of times the edge e is used, in either direction, by
the walk α. We ignore loops, however. When the reversal Rij is applied to α, the
transitions αi−1αi and αjαj+1 are replaced by αi−1αj and αiαj+1, while all other
transitions remain unchanged. Thus

G(Rij(α)) = G(α) + C,

where C is an alternating square on vertices αiαj+1αjαi−1. It follows that if β is
obtained from α by a sequence of d reversals, then

G(β) = G(α) + C1 + C2 + · · · + Cd,

where C1, . . . , Cd are alternating squares. Linearity of tilt and Lemma 1 now yield
the following.

Lemma 2. When α, β ∈ L(a1, . . . , ak),

drev (α, β) ≥ 1

2

∣∣t (G(α) −G(β)
)∣∣ .

We use this to determine the diameter of L(a1, . . . , ak).
Theorem 3. The reversal diameter of L(a1, . . . , ak) ⊆ [k]n is n− maxi ai.
Proof. Without loss of generality, we assume a1 ≥ a2 ≥ · · · ≥ ak. For the upper

bound, we give a procedure for successively modifying two strings α = α1 · · ·αn

and β = β1 · · ·βk in L(a1, . . . , ak) until both are the same. Because reversals are
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(a)

0 1 2 3 4 k−2 k−1 k k+1

� � � � � � � � �

� � � 1

1 1 1

2a2−1 2a4−1 2ak−1−1

(b)

0 1 2 3 4 5 k−1 k k+1

� � � � � � � � �

� � �1

1 1 1

2a3−1 2a5−1 2ak−1

Fig. 2. Multiplicities of edges joining vertices of opposite parity in (a) G(α′) and (b) G(β′)
(when k is odd).

involutions on [k]n, we can produce a sequence of the same total length carrying α to
β.

Let α(0) = α and β(0) = β. Given α(i) and β(i), let j be the smallest index such

that α
(i)
j 
= β

(i)
j .

• If β
(i)
j 
= 1, pick a j′ > j such that α

(i)
j′ = β

(i)
j . Let α(i+1) = Rj,j′(α

(i)) and

let β(i+1) = β(i).

• If β
(i)
j = 1 (and thus α

(i)
j 
= 1), pick a j′ > j such that β

(i)
j′ = α

(i)
j . Let

β(i+1) = Rj,j′(β
(i)) and let α(i+1) = α(i).

For each i, let γ(i) be the initial segment on which α(i) and β(i) agree. Note that |γ(i)|
is strictly increasing in i, and that furthermore |{j : γ

(i)
j 
= 1}| is strictly increasing

in i. This process must therefore stop after at most

|{j : α
(0)
j 
= 1}| = n− a1

steps.

For the lower bound, we give two strings α, β ∈ L(a1, . . . , ak) at distance at least
n− a1. We actually apply Lemma 2 to α′ = 0α(k + 1) and β′ = 0β(k + 1); since any
sequence of reversals taking α to β also takes α′ to β′, drev (α, β) ≥ drev (α′, β′).

When k is odd, take

α′ = 0(21)a21a1−a2 · · · (k − 1 k − 2)ak−1(k − 2)ak−2−ak−1kak(k + 1)

and

β′ = 01a1(32)a32a2−a3 · · · (k k − 1)ak(k − 1)ak−1−ak(k + 1).

The edges joining vertices of opposite parity determine tilt; these are shown with
their multiplicities in Figure 2 (recall that both ij and ji substrings contribute to
w({i, j})). As all relevant edges in G(α′) increase from odd to even and all relevant
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edges in G(β′) increase from even to odd,

t
(
G(α′) −G(β′)

)
= (2a2 − 1) + 1 + (2a4 − 1) + 1 + · · · + (2ak−1 − 1) + 1

+ 1 + (2a3 − 1) + 1 + (2a5 − 1) + · · · + 1 + (2ak − 1)

= 2

k∑
i=2

ai = 2(n− a1).

Lemma 2 now gives the desired lower bound on drev (α, β).

When k is even, the strings

0(21)a21a1−a2 · · · (k k − 1)ak(k − 1)ak−1−ak(k + 1),

01a1(32)a32a2−a3 · · · (k − 1 k − 2)ak−1(k − 2)ak−2−ak−1kak(k + 1)

yield the same bound.

Remark. As we noted earlier, permutations are simply L(1, 1, . . . , 1). In this case,
our argument gives a new proof that the reversal diameter of Sn is n − 1. If the
symbols appearing in α and β are relabeled so that β is taken to 123 · · ·n, then α is
taken to 315274 · · · (with ending depending on the parity of n). Bafna and Pevzner [2]
showed that this permutation and its inverse are the only permutations at distance
n− 1 from the identity.

We do not have an analogue of Theorem 3 for transpositions.

Problem 1. What is the transposition diameter of L(a1, . . . , ak)?

There are similar problems for signed reversals, prefix reversals, etc.

2. Distance between random strings. The diameter of Sn is Θ(n) for each of
the families of transformations we are considering: reversals [24], transpositions [3, 10],
pancake flips [14]. The distance between randomly chosen permutations can quickly
be seen to be Θ(n) with high probability, since each family has a bounded number
of cuts per transformation and two random permutations have only about Poisson(2)
adjacencies in common.

For strings taken from a finite alphabet with a positive fraction of the string de-
voted to each letter, we have shown above that the diameter under reversals is linear.
Cutpoint arguments clearly imply the same for the other families of operations. In
this section we show that the distance between random strings σ1, σ2 in the same
component of [k]n is typically much smaller: only Θ(n/ log n). First, both σ1 and σ2

are partitioned into substrings of length approximately c log n. With high probability,
most of the resulting pieces appear about the same number of times in σ1 and σ2.
For each family of operations considered, these substrings can be arranged and any
remaining letters aligned in O(n/ log n) operations. Furthermore, with high probabil-
ity σ1 and σ2 have no common substrings of length C log n, where C > c, and thus at
least n/(C log n) cuts must be made.

Most of this section examines the anatomy of pairs of random strings. Our con-
clusions about distances between typical pairs can be drawn for any collection of
operations with boundedly many cutpoints per operation.

Let p = (p1, . . . , pk) be a rational probability vector satisfying p1 ≥ p2 ≥ · · · ≥ pk
and let hi = − log pi. For α = α1 · · ·αm ∈ [k]∗, let h(α) =

∑m
i=1 hαi be the entropy

of α. We also set H = H(p) =
∑

i∈[k] pihi, the entropy of p.
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Given a c > 0, define the c-threshold set, Ac, to consist of all words α =
α1 . . . αm ∈ [k]∗ such that h(α) ≥ c log n, but h(α1 . . . αm′) < c log n for m′ < m.
(Much of the notation in this section conceals dependence on n.)

The following are immediate from definitions.

For α ∈ Ac, c log n ≤ h(α) < c log n + hk.(1)

For α ∈ Ac,
c log n

hk
≤ |α| ≤

⌈
c log n

h1

⌉
.(2)

nc ≤ |Ac| <
nc

pk
.(3)

We also note that ∑
α∈Ac

e−h(α) = 1.(4)

This simply states that for the random process α1α2 . . . , in which the αi are chosen
independently according to p, the stopping time

T = min{m : h(α1α2 . . . αm) ≥ c log n}

has Pr(T < ∞) = 1.
The next lemma will be useful as we decompose strings into short pieces.
Lemma 4. Let Lc =

∑
α∈Ac

|α|e−h(α) be the expected value of the length of a
random α ∈ Ac determined by successive i.i.d. choices of letters according to p. Then

Lc =
c log n

H
(1 + o (1)) .

Proof. Consider characters α1, α2, . . . chosen independently from [k] according to
p. For each i, E[hαi ] = H; let σ2 = Var[hαi ].

Let α− = α1 · · ·αm− and α+ = α1 · · ·αm+ be the initial strings of lengths
m− =

⌈
c logn

H − (log n)2/3
⌉

and m+ =
⌈
c logn

H + (logn)2/3
⌉
, respectively, and let

α = α1 . . . α|α| ∈ Ac. The definition of Ac and Chebyshev’s inequality now give

Pr
[
|α| ≤ m−] = Pr

[
h(α−) ≥ c log n

]
= Pr

[
h(X−) −Hm− > H(log n)2/3 + O(1)

]
(5)

≤ σ2m−

(H(log n)2/3 + O(1))2
= O((log n)−1/3).

Similarly,

Pr
[
|α| > m+

]
= Pr

[
h(X+) < c log n

]
= Pr

[
h(X+) −Hm+ < −H(log n)2/3 + O(1)

]
(6)

≤ σ2m+

(H(log n)2/3 + O(1))2
= O((log n)−1/3).
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Since (2), (5), and (6) show that |α| is within O((log n)2/3) of c log n/H with proba-
bility at least 1 −O((log n)−1/3) and is always within a bounded factor of c log n, we
have

Ln =
(
1 −O((log n)−1/3)

)(
c log n

H
+ O((log n)2/3)

)
+ O

(
log n

(log n)1/3

)

=
c log n

H
(1 + o(1)) .

In what follows, we always let n → ∞ in such a way that p1n, . . . , pkn are all
integral.

Theorem 5. Fix ε > 0. When σ1 and σ2 are chosen independently and uniformly
from L(p1n, . . . , pkn), then, with probability approaching 1 as n → ∞, σ1 and σ2 can
be broken into identical collections of at most (1 + ε)( Hn

logn ) substrings.
Proof. We first consider two strings, ρ1 and ρ2, each consisting of n letters chosen

independently from [k] according to p. We show that ρ1 and ρ2 can be broken
into words of approximately equal probability in such a way that both strings have
approximately equal numbers of each type of word. We then modify ρ1 and ρ2 slightly
to obtain σ1 and σ2, each uniformly distributed in L(a1, . . . , ak); as these modifications
do not affect very many pieces, all discrepancies can be broken into singletons.

Fix a δ ∈ (0, 1) such that 1
1−δ < 1 + ε, and call α ∈ [k]∗ substantial when

α ∈ A1−δ. Each ρj , j = 1, 2, can be broken uniquely into disjoint substantial words,

starting from the left and proceeding down the string. We call those words βj
1, β

j
2, . . . .

(We can regard each ρj as the initial segment of length n from an infinite string chosen

according to p, and we extract the βj
i from this infinite string. Thus βj

i is defined for
all i.) Let

N =
n

L1−δ
−
√
n.

We claim that, with high probability, each ρj contains at least N substantial words,
while the first N substantial words of each ρj cover at least N−

√
n(log n)2 characters.

Chebyshev’s inequality, together with (2), gives

Pr
[
|βj

1| + · · · + |βj
N | > n

]
≤ Pr

[
|βj

1| + · · · + |βj
N | −NL1−δ > L1−δ

√
n
]

≤ N(O((log n)2))

nL2
1−δ

= O((log n)−1) = o(1)

and

Pr
[
|βj

1| + · · · + |βj
N | < n−

√
n(log n)2

]
≤ Pr

[
|βj

1| + · · · + |βj
N | −NL1−δ < −

√
n(log n)2(1 + o(1))

]
≤ O(N(log n)2)

n(log n)4
= O((log n)−3) = o(1).

For each α ∈ A1−δ, let Nα,j be the number of pieces of type α among the first N
substantial words of ρj . We use the following Chernoff-type inequality (see Janson,
�Luczak, and Rucinski [20, p. 26]: if X ∼ binomial(n, p), then for t > 0,

Pr[|X − EX| > t] ≤ 2 exp

(
− t2

np + t
3

)
.
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Since Nα,j is binomial(N, e−h(α)),

Pr[|Nα,j − E(Nα,j)| ≥ nδ/2 log n]

≤ 2 exp

⎛
⎝− nδ(log n)2

2
(

Hn(1+o(1))
(1−δ) log n

(
1

n1−δ

)
+ nδ/2 logn

3

)
⎞
⎠

= 2 exp
(
−Ω

(
(log n)3

))
= o

(
1

n1−δ

)
.

Now sum over α ∈ A1−δ and j = 1, 2. Equation (3) implies

Pr

[
max
α,i

|Nα,i − E(Nα,i)| < nδ/2 log n

]
→ 1 as n → ∞.

Thus, we can with high probability match up all except

nδ/2 log n|A1−δ| = O
(
n1−δ/2 log n

)
of the first N substantial words in ρ1 with (distinct) counterparts among the first N
substantial words of ρ2.

We now modify ρ1 and ρ2 to obtain uniformly distributed elements σ1 and σ2 of
L(a1, . . . , ak). For i ∈ [k], let Ni,j denote the number of i’s in ρj . Since Ni,j is a
binomial(n, pi) random variable, Chebyshev gives

Pr
[
|Ni,j − pin| >

√
n log n

]
≤ pi(1 − pi)n

(log n)2n
= O((log n)−2),

so

Pr

[
max
i,j

|Ni,j − pin| <
√
n log n

]
→ 1 as n → ∞.

To generate σ1 and σ2, we must reallocate some sites containing overrepresented char-
acters to currently underrepresented ones. Take as many sites as necessary uniformly
from each overrepresented letter, and fill the entire collection of sites thus selected
with an assignment of the appropriate multiset of characters uniformly chosen from
the possible assignments. With high probability, we need only change O(

√
n log n)

characters—and thus will break at most that many of the substantial-word matches
we built between ρ1 and ρ2.

Now break all unmatched substantial words (including those past position N that
were never considered, those among the first N that we tried to match but failed, and
those whose matches were broken by character modifications) in both σ1 and σ2 into
single characters. Let N∗ be the resulting number of fragments in each string. With
high probability as n → ∞,

N∗ = N + O
(√

n(log n)2 + n1−δ/2(log n)2 +
√
n(log n)2

)
=

Hn

(1 − δ) log n
(1 + o(1)) ≤ (1 + ε)Hn

for n sufficiently large.
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Theorem 6. Fix δ > 0. Choose σ1 and σ2 independently and uniformly from
L(p1n, . . . , pkn). For i = 1, 2, let Si be the multiset of all substrings of σi that belong
to A1+δ. Then

Pr[|S1 ∩ S2| ≥ n1−δ(log n)] → 0 as n → ∞.

Proof. For α ∈ [k]∗, let qα be the probability that α occurs as an initial substring
of a string σ chosen uniformly from L(p1n, . . . , pkn). We can generate such a σ by
sampling without replacement from a bag containing pin copies of i. From this it is
easy to see that, for c fixed and α ∈ Ac,

qα ≤
|α|∏
i=1

(
pαi

(
n

n− |α|

))
= e−h(α)(1 + o(1)) ≤ n−c(1 + o(1)).(7)

(The o(1) estimate follows from (3).) Thus the probability that α appears as a sub-
string of σ starting at any given position is also at most n−c(1 + o(1)).

Since there are only n−O(log n) possible starting positions in σ1 for a substring
of weight at least 1 + δ, we trivially have |S1| ≤ n. Similarly, there are n − O(log n)
possible starting positions in σ2 for a substring in A1+δ. Let N be the number of
locations i for which the corresponding substring is an element of S1; clearly N ≥
|S1 ∩ S2|. By (7), for any given S1,

E[N |S1] ≤ n
∑
α∈S1

qα ≤ n1−δ(1 + o(1)),

so

E[N ] ≤ n1−δ(1 + o(1)),

and Markov’s inequality gives

Pr[N > n1−δ log n] = o(1).(8)

The following theorem combines the previous results to give bounds on the dis-
tance between random strings.

Theorem 7. Fix ε > 0, and choose σ1 and σ2 uniformly and independently
from L(p1n, . . . , pkn). Then each of the following statements holds with probability
approaching 1 as n → ∞:

(i) 1−ε
2 ( Hn

logn ) ≤ drev (σ1, σ2) ≤ (1 + ε)( Hn
logn ).

(ii) 1−ε
3 ( Hn

logn ) ≤ dtr (σ1, σ2) ≤ 2(1+ε)
3 ( Hn

logn ).

(iii) (1 − ε)( Hn
logn ) ≤ dpf (σ1, σ2) ≤ 2(1 + ε)( Hn

logn ).
Proof. For the upper bounds, we need only apply results on the diameter of

Sn under the various operations to the decomposition of σ1 and σ2 into at most
N∗ = (1 + ε) Hn

logn identical pieces that Theorem 5 provides with high probability.

Meidanis, Walter, and Dias [24] show that the signed reversal diameter of SN∗ is at
most N∗ +1, while Eriksson et al. [10] bounded the transposition diameter of SN∗ by
�(2N∗ − 2)/3� for N∗ > 9, and Gates and Papadimitriou [14] showed that the signed
pancake-flipping diameter of SN∗ is at most 2N∗ + 3.

The lower bounds are nearly as simple. Fix a δ > 0 such that 1−ε < 1
1+δ . We call

a word α ∈ A1+δ unusual, while a word α ∈ A3 is termed implausible. Equations (3)
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and (7) guarantee that

Pr[σ1 and σ2 share an implausible substring] ≤ n2

(
n3

pk

)(
(1 + o(1))

n3

)2

= O(n−1).

Equation (2) implies that, with probability 1 − O(1/n), all common substrings of
σ1 and σ2 have length at most

⌈
3 log n
h1

⌉
. If we (temporarily) define the weight of a

word α ∈ [k]∗ to be h(α)/ log n, then we can compute as follows. By Theorem 6,
there are, with high probability, fewer than n1−δ log n sites in each string to start
common unusual substrings. Equation (8) now implies that with high probability at
most n1−δ(log n)

⌈
3 log n
h1

⌉
= o(n) characters are contained in common substrings of

weight greater than 1 + δ (and their combined weight is also o(n)). Any sequence of
operations taking σ1 to σ2 must cut the remaining characters into words of weight
less than 1+δ. The entire string, without the unusual common substrings, has weight
(H − o(1))n/ log n, and so there must be at least (1 + o(1)) Hn

(1+δ) log n cuts. A single

reversal makes at most two cuts, a single transposition makes at most three cuts, and
a single pancake flip makes at most one cut, giving the results above.

We conjecture that, in each case, the expected value of d(σ1, σ2)/(n/ log n) tends
to a constant; we also leave open the further problem of determining this constant.

3. Complexity. The complexity of sorting permutations by reversals or trans-
positions has been extensively studied. Kececioglu and Sankoff [23] conjectured that
sorting reversals by permutations (MIN-SBR) is NP-hard, and this was proved by
Caprara [7]. Berman and Karpinski [6] showed that sorting by reversals is MAX-SNP
hard; Karpinski [22] showed that for any ε > 0 it is NP-hard to approximate reversal
distance within a factor 1237/1236 − ε. A number of authors have given approxi-
mation algorithms: Kececioglu and Sankoff [23] gave a 2-approximation algorithm,
Bafna and Pevzner [2] gave a 1.75-approximation algorithm, Christie [8] gave a 1.5-
approximation algorithm, and recently, Berman, Hannenhalli, and Karpinski [5] gave
a 1.375-approximation algorithm.

The problem of sorting signed permutations by reversals turns out to be polyno-
mial time, as was shown by Hannenhalli and Pevzner [17]. Faster algorithms were
found by Berman and Hannenhalli [4] and by Kaplan, Shamir, and Tarjan [21].

The complexity of sorting by transpositions remains unknown, although Bafna
and Pevzner [3] have given a 1.5-approximation algorithm.

Christie and Irving [9] considered the complexity of reversal distance and transpo-
sition distance for strings over finite alphabets. They showed that reversal distance is
NP-hard for binary strings, although a binary string can be sorted in polynomial time.
They also showed that binary strings can be sorted by transpositions in polynomial
time, but left open the complexity of transposition distance.

We begin this section by giving another proof of Christie and Irving’s [9] result
that reversal distance is NP-hard for strings over binary alphabets; this of course
implies that determining reversal distance is NP-hard for any finite alphabet. Using
a similar argument we also show that, surprisingly, signed reversal distance is also
NP-hard for signed strings over finite alphabets. We then prove that sorting by
transpositions is NP-hard for binary strings.

Theorem 8. Reversal distance is NP-hard for binary strings.

Proof. We give a reduction from sorting permutations by reversals. Given a



REVERSALS AND TRANSPOSITIONS OVER FINITE ALPHABETS 235

permutation π = π(1) · · ·π(n), we define the string λ(π) by

λ(π) = (10π(1)1)2n · · · (10π(n)1)2n.

We call the substrings (10π(i)1)2n the blocks of λ(π). Each block consists of 2n sub-
blocks, each of the form 10π(i)1. Clearly, λ(π) can be constructed from π in polynomial
time.

Given permutations π1 and π2, it is easy to see that

drev (λ(π1), λ(π2)) ≤ drev (π1, π2) ,

since a sequence of reversals mapping π1 to π2 maps to a sequence of reversals on
the corresponding sequence of blocks (10π1(j)1)2n in λ(π1) (note that each block is
invariant under reversals).

Now let t = drev (λ(π1), λ(π2)). If t < drev (π1, π2), then consider a sequence of t
reversals taking λ(π1) to λ(π2). Since the reversal diameter of Sn is less than n, we
have t < n. Now consider a block (10π1(i)1)2n. This contains 2n subblocks: since the
t reversals cut the string in at most 2t < 2n places, there must be one subblock Ii
that does not get cut. It follows that Ii must get mapped to a segment of the block
(10π1(i)1)2n = (10π2(i

′)1)2n, where i′ = π−1
2 π1(i).

Thus the segments I1, . . . , In, which occur in order in λ(π1), are rearranged by
the sequence of t reversals to occur in λ(π2) in the order Iπ−1

1 π2(1)
, . . . , Iπ−1

1 π2(n). Con-

sidering the action of the reversals just on the segments I1, . . . , In implies that there
exists a sequence of t reversals which rearranges id to π−1

1 π2. Since drev

(
id, π−1

1 π2

)
=

drev (π1, π2), this is a contradiction.
We therefore have drev (λ(π1), λ(π2)) = drev (π1, π2), and so we have a reduction

from reversal distance for permutations to reversal distance for binary strings.
As noted above, signed permutations can be sorted in polynomial time [17, 4, 21].

By contrast, over finite alphabets, the problem of finding signed reversal distance is
NP-hard.

Theorem 9. Signed reversal distance is NP-hard for binary strings.
Proof. As in the previous theorem, we reduce from MIN-SBR. Given a permuta-

tion π = π(1) · · ·π(n), we encode π by

λ(π) = (10π(1)11 0
π(1)

1)2n · · · (10π(n)11 0
π(n)

1)2n.

Since each block is invariant under reversal,

drev (λ(π1), λ(π2)) ≤ drev (π1, π2) .

Arguing as before, we deduce that

drev (λ(π1), λ(π2)) = drev (π1, π2) .

Thus signed reversal distance is NP-hard.
As we have seen, signed reversal distance is NP-hard for strings with repeated

symbols. We show now that the difficulty remains even if we allow only two occur-
rences of each symbol.

Theorem 10. Signed reversal distance is NP-hard for strings in which there is
at most one positive and one negative occurrence of each symbol.

Proof. We prove this by reduction from MIN-SBR. We start by mapping each
instance π(1) · · ·π(n) to the string S = π(1)π(1) · · ·π(n)π(n). The signed distance
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from this to T = 11 · · ·nn is clearly at most the reversal distance from π(1) · · ·π(n)
to 1 · · ·n (note that ii is reversal-invariant). On the other hand, any sequence of
signed reversals taking S to T yields a corresponding sequence of reversals taking
π(1) · · ·π(n) to 1 · · ·n by restricting attention to the (unsigned) action of the signed
reversals on the elements of S that initially have positive orientation and then ignoring
signs. The two distances are therefore equal and so it is NP-hard to determine signed
reversal distance.

We remark that if only O(log n/ log log n) repeats in total are allowed, then signed
reversal distance is solvable in polynomial time, since we can systematically examine
all possible pairings between symbols of the same type; on the other hand, it is NP-
hard to determine signed reversal distance with Ω(nε) repeats, since we can encode
instances of MIN-SBR of size nε using the methods of Theorem 10 and then pad out
with additional variables occurring once each and in the same order at the end of each
string.

Theorem 11. Transposition distance is NP-hard for binary strings.
Proof. We prove the result first for strings over the alphabet {0, 1, 2, 3} by reduc-

tion from the NP-hard problem 3-PARTITION [13], which we quote here.
INSTANCE: Positive integers n and N and positive integers a1, . . . , a3n, with

N/4 < ai < N/2 for every i.
QUESTION: Is there a partition of the ai into n (multi)sets of size 3, each sum-

ming to N?
The problem 3-PARTITION is strongly NP-hard [13]: that is, there is a polyno-

mial p(n) such that it is still NP-hard when all the ai are at most p(n). Our reduction
is polynomially bounded for instances of this type.

Given an instance of 3-PARTITION with weights a1, . . . , a3n bounded by p(n),
consider the strings

S = 2n+130a1130a213 · · · 30a3n13

and

T = (20N13)n233n+1.

Note that if this instance of 3-PARTITION is solvable, then dtr (S, T ) ≤ 3n, since we
can successively generate each segment 20N132 of T by moving three intervals 0ai1
between an adjacent pair of 2’s. On the other hand, suppose that dtr (S, T ) ≤ 3n. Note
that, among the adjacencies in S, the sequence must destroy n adjacencies of form
22, 3n adjacencies of form 30, 3n adjacencies of form 13, and 2n adjacencies of form
01, a total of 9n adjacencies. It follows that there must be exactly 3n transpositions
in the sequence, and furthermore that no transposition cuts an adjacency 00. The
blocks 0ai of zeros in S are therefore preserved in T and so constitute a solution to
3-partition.

We have shown that dtr (S, T ) = 3n if and only if our instance of 3-PARTITION
has a solution. Since the lengths of S and T are bounded by a polynomial in n, it
follows that it is NP-hard to determine transposition distance over alphabets of size
4.

To show that transposition distance is NP-hard for binary strings, we use an
encoding similar to that in Theorem 8. Given a string ε = ε1 · · · εn with ε ∈ {0, 1, 2, 3},
we encode it as

λ(ε) = (10ε1+11)3n · · · (10εn+11)3n.



REVERSALS AND TRANSPOSITIONS OVER FINITE ALPHABETS 237

For strings ε and ε′ of length n, since dtr (ε, ε′) ≤ n − 1 and each transposition cuts
the string in three places, arguing as before, we find that

dtr (λ(ε), λ(ε′)) = dtr (ε, ε′) .

Composing these two reductions, both of which are polynomially computable for in-
stances whose components are of polynomially bounded magnitude, sends instances of
3-PARTITION to instances of transposition distance for binary strings. We conclude
that transposition distance for binary strings is NP-hard.

Let us note that the reductions from MIN-SBR employed in Theorems 8 and 9
are distance-preserving. Since MIN-SBR is NP-hard to approximate to within any
factor better than 1237/1236 [22], it follows that reversal distance and signed re-
versal distance for binary strings are also NP-hard to approximate to within better
than 1237/1236. We conjecture that, for some ε > 0, it is NP-hard to approximate
transposition distance for binary strings to within a factor better than 1 + ε.

4. An approximation algorithm for dense instances. For many NP-hard
approximation problems, it is also NP-hard to find an approximate solution that is
correct to within a small multiplicative factor. However, it is sometimes easier to
handle dense cases of these problems. For instance, although there is an algorithm
that approximates Max Cut to within a factor 1.138 [15], it is NP-hard to approximate
to within a factor better than 17/16 [18]. On the other hand, for dense instances of
Max Cut (instances G with Ω(|G|2) edges or minimum degree Ω(|G|)), it is possible
to find a polynomial-time approximation scheme [11, 12]. Similar results exist for a
number of other NP-hard problems (see, for instance, [1, 22]).

Our aim in this section is to describe a polynomial-time approximation scheme
for dense instances of reversal distance for strings over a finite alphabet. This requires
us to define a notion of “density” for instances of reversal distance: for c > 0, we say
that an instance (σ, τ) with |σ| = |τ | = n is c-dense if drev (σ, τ) ≥ cn. We show below
that, for any fixed k and any ε > 0, there is a linear time algorithm that approximates
reversal distance between k-ary strings of length n to within an additive error εn. It
follows that, for fixed k, and any c > 0 and ε > 0, there is a linear time algorithm
that approximates reversal distance of c-dense instances to within a factor 1 + ε.

We first prove a simple lemma concerning the effect of deletions on reversal dis-
tance.

Lemma 12. Suppose that σ and τ are compatible strings and that σ′ and τ ′ are
compatible strings obtained by deleting m elements from each string. Then

|drev (σ′, τ ′) − drev (σ, τ) | ≤ 2m.

Proof. To see that

drev (σ, τ) ≤ drev (σ′, τ ′) + 2m,

consider an optimal sequence of reversals taking σ′ to τ ′. These same reversals can
be applied to σ and τ , always placing cuts that occur in sites where letters have been
deleted to the left of those letters. The two-reversal sequence shown below suffices to
move an individual letter to a new location without changing the rest of the string:

A|xB|C → A|B|xC → ABxC.

Thus we can correct the reinserted letters with at most 2m additional reversals. A
similar argument shows that

drev (σ′, τ ′) ≤ drev (σ, τ) + 2m.
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The existence of a polynomial-time approximation scheme follows immediately
from the following theorem.

Theorem 13. For each fixed k and every ε > 0 there is a linear time algorithm
that approximates reversal distance between k-ary strings of length n to within an
additive error of εn and outputs a sequence of reversals achieving this bound.

Proof. The main idea of the proof is to break up the problem instance into “good”
subinstances of a finite number of types, each of which can be sorted optimally. The
subinstances can then be recombined at small cost.

Given ε < 1/10, let K = �100/ε� and let α1, . . . , αL be an enumeration of the
L = kK k-ary strings of length K. Let f : [L] → R

k count the number of each digit
present in the strings αi: thus (f(i))j is equal to the number of times j occurs in αi.

We now build a mapping f̃ : R
L → R

k by setting f̃(a1, . . . , aL) =
∑L

i=1 aif(i). Thus
if we break a string X into segments of length K, obtaining ai segments of type αi

for each i, then f̃(a1, . . . , aL) counts the number of occurrences of each character in
the original string X.

For d ≥ 1, we write Ud for the unit simplex in R
d given by the convex hull of the

origin and the d standard unit basis vectors. Let D = {x1, . . . , xM} ⊆ Uk satisfy the
following two conditions:

(i) D is an ε/4-net in Uk. (That is, every point in Uk is distance less than ε/4
from some xi ∈ D.)

(ii) All the coordinates of each xi ∈ D are rational.

For i = 1, . . . ,M , let Xi = f−1(xi) be the affine subspace in R
L that maps to xi

and let Ei be an ε/4K-net in Xi ∩UL, where we choose Ei so that each point has all
coordinates rational.

By deleting at most (ε/4)n elements from the string σ, we obtain a string σ′ of
length n′ < n such that, for some i, σ′ has (xi)jn

′ occurrences of the digit j for
1 ≤ j ≤ k. Delete the same collection of characters from τ to obtain τ ′. Then σ′

and τ ′ are compatible strings; furthermore, we may assume that both σ′ and τ ′ have
length a multiple of K.

Now break each of σ′ and τ ′ into segments of length K. Deleting at most εn′/4K
segments from each of σ′ and τ ′, we may assume that we have strings σ′′ and τ ′′,
each broken into n′′ ≥ (1 − ε)n′/K segments of length K such that σ′′ has n′′aj
copies of αj and τ ′′ has n′′bj copies of αj for each j, where a and b both belong to
Ei. By the definition of Ei, σ

′′ and τ ′′ are compatible. Furthermore, by Lemma 12,
|drev (σ′′, τ ′′) − drev (σ, τ) | < εn/2.

It is therefore sufficient to solve the following problem to within an additive con-
stant εn.

• INPUT: Two elements a and b of Ei and two compatible strings σ and τ such
that

– |σ| = |τ | = n, where K|n;
– when broken into segments of length K, σ falls into ain/K copies of Si

for each i;
– when broken into words of length K, τ falls into bin/K copies of Si for

each i.
• OUPUT: An optimal sequence of reversals taking σ to τ .

This breaks up into a constant number of separate problems, one for each choice of
a, b ∈ Ei. We show that each of these problems has a good approximation algorithm.

Fix i and let a, b ∈ Ei. Let n0 be an integer such that all entries of n0a and n0b
are integers. Note that we can rearrange the n/K segments of σ and τ into any order
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with at most 4n/K ≤ εn/25 reversals. We can therefore assume that the segments of
σ and τ are in any order we choose, with cost at most εn/25.

For j ≥ 1, let Aj be the collection of strings of length n0jK constructed from
n0jal copies of αl for each l, in any order; similarly, let Bj be the set of strings with
n0jbl copies of αl for each l, again in any order. Let

dj = min{drev (α, β) : α ∈ Aj , b ∈ Bj}.

Clearly, for j, j′ ≥ 1,

dj+j′ ≤ dj + dj′ ,(9)

since strings from Aj and Aj′ can be concatenated to form strings in Aj+j′ . Thus
dj is subadditive and therefore dj/j tends to a limit r∞. Let j0 be large enough so
that |dj/j − r∞| ≤ ε/4 for j ≥ j0, and let α(0) ∈ Aj0 , β(0) ∈ Bj0 be strings with
drev

(
α(0), β(0)

)
= dj0 ≤ j0r∞ + εj0/4.

Now for m ≥ 1, given strings α ∈ Am and β ∈ Bm, we can rearrange α in blocks
of size K to give α′ with �m/j0� copies of α(0) and at most a constant number of
additional segments; similarly, we can rearrange β to get β′ with �m/j0� copies of β(0)

and at most a constant number of additional segments. Each of these rearrangements
takes at most n/K ≤ εn/100 reversals. Furthermore,

drev (α′, β′) ≤
⌊
m

j0

⌋
drev

(
α(0), β(0)

)
+ O(1) =

mdj0
j0

+ O(1),

and we can write down an explicit sequence of reversals taking α to β in this time.
Finally, note that

drev (α, β) ≥ mr∞ ≥ mdj0
j0

− εm

4
≥ mdj0

j0
− εn

K
,

so our approximation is correct to within εn.
The following corollary is an immediate consequence of the theorem.
Corollary 14. For every fixed k and c > 0, there is a polynomial-time approx-

imation scheme for c-dense instances of reversal distance for k-ary strings.
Note that a similar argument gives a polynomial-time approximation scheme for

dense instances of transposition distance over finite alphabets. The same approach
also works for prefix reversals, except that (9) is replaced by

dj+j′ ≤ dj + dj′ + O(1),

as we work on the concatenation AB by first working on A, then reversing the entire
string and working on B. This implies that dj/j approaches some limit r∞ (for
instance, as an easy corollary of a result of Hammersley [16]), and the rest of the
argument goes through with minor modification.

Given these results for strings over finite alphabets, it is natural to ask what
happens for permutations. Recall that, for permutations, it suffices to consider MIN-
SBR, the problem of sorting, for which each instance is a single permutation. We say
that a permutation σ of length n is c-dense if there are at least cn integers i with
1 ≤ i < n such that |σ(i) − σ(i + 1)| > 1. It follows that c-dense strings necessarily
require Ω(n) reversals to sort. We conjecture that dense permutations exhibit the
same behavior as dense pairs of strings.
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Conjecture 1. For every c > 0, there is a polynomial-time approximation
scheme for c-dense instances of sorting permutations by reversals.

We also conjecture that similar statements hold for sorting permutations by prefix
reversals and sorting permutations by transpositions.

5. Sorting strings over finite alphabets. Any algorithm for determining the
number of reversals necessary to sort a permutation suffices to determine the reversal
distance between an arbitrary pair of permutations: the distance between π1 and π2

is the same as that between π1π
−1
2 and id. For strings from a finite alphabet, there

is no such correspondence. There is, however, some hope that this special case of the
distance problem might be easier than the full one. Indeed, Christie and Irving [9]
show that the number of reversals required to sort a binary string σ is one less than
the number of 0-blocks in the string 0σ, which can of course easily be determined in
polynomial time. (An i-block is a maximal nonempty substring consisting entirely of
copies of the character i.) We give below a similarly simple criterion for determining
the number of reversals required to sort a ternary string, along with some elementary
bounds over an arbitrary finite alphabet.

For the remainder of this section, we generally prepend a 0 and append a k − 1
to all strings in {0, 1, . . . , k − 1}∗. These added characters are not allowed to move,
but are included when we count blocks. We also generally replace each i-block with a
single copy of the character i in example strings. The string resulting from applying
both operations to σ is called the standard form of σ. Note that the number of
reversals required to sort the standard form of σ is identical to the number required
to sort σ.

We call a reversal optimal if it reduces the number of blocks by 2. Every optimal
reversal is of the form . . . a|b . . . a|b . . . . Conversely, whenever the string contains a
repeated transition—that is, some substring containing two distinct characters occurs
more than twice in the string—an optimal reversal is possible.

It will be convenient to categorize transitions between pairs of consecutive char-
acters by the unordered pair of characters involved. There are then three types of
transitions: 01/10, 02/20, and 12/21. For example, 01212101202 contains three 01/10
transitions, two 02/20 transitions, and five 12/21 transitions.

Define a 02-block to be a maximal substring consisting only of 0’s and 2’s and
containing at least one of each. Call a 02-block odd if it contains an odd number of
blocks of 0’s and 2’s; otherwise, call it even.

Example. The standard form of 0122000002222112111020 is 012021210202, which
has two 02-blocks; the first is odd and the second is even.

Lemma 15. Let σ be a ternary string whose standard form has b blocks. If b is
odd (even), then σ has an even (odd) number of 02/20 transitions, while the numbers
of 01/10 and 12/21 transitions are both odd (even).

Proof. Consider the standard form of σ to be a walk on the vertices {0, 1, 2}.
Since the walk begins at 0 and ends at 2, the vertices 0 and 2 have odd degree, while
vertex 1 has even degree. Thus the numbers of 01/10 and 12/21 transitions are of the
same parity, which is opposite to that of both the number of 02/20 transitions and
the total number of transitions.

We say that a string σ satisfies the matching odd block condition if σ has at least
one 02-block, all 02-blocks of S are odd, and all 02-blocks of S have the same initial
character.

Theorem 16. Let σ be a ternary string containing all 3 possible characters whose
standard form has b blocks. Then the minimal number of reversals required to sort σ
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is
⌈
b−3
2

⌉
, unless σ satisfies the matching odd block condition, in which case sorting σ

requires
⌈
b−3
2

⌉
+ 1 reversals.

Proof. We note first that each reversal can reduce the number of blocks by at
most 2. Thus

⌈
b−3
2

⌉
is necessarily a lower bound for the number of reversals required

to sort σ.
When b is even, Lemma 15 ensures that σ does not satisfy the matching odd block

condition. It is not difficult to sort directly in this case. As long as there are repeated
transitions, perform optimal reversals—which do not change the parity of the block
number. Since there are only 6 possible transitions over the 3-letter alphabet, the
resulting string σ′ has at most 6 transitions. Let b′ be the number of blocks in σ′. As
3 ≤ b′ ≤ 7 and b′ is even, it is true that b′ = 4 or b′ = 6. The only possible structures
for b′ are shown below, along with an optimal reversal sorting of each:

0|10|2 → 0012,

0|21|2 → 0122,

0|10|212 → 001|21|2 → 001122,

0|1210|2 → 001|21|2 → 001122,

0|210|12 → 001|21|2 → 001122.

Hence we can sort σ in b−b′

2 +
⌈
b′−3

2

⌉
=

⌈
b−3
2

⌉
reversals, matching the elementary

lower bound.
Now assume b is odd, but σ does not satisfy the matching odd block condition.

We proceed in order through each of the following steps.
• Use optimal reversals internal to single 02-blocks to reduce any 02-blocks with

4 or more blocks to either 2 or 3 sub-blocks:

· · · 0|20|2 · · · → · · · 0022 · · · .

These reversals do not change the parities of the 02-blocks. After this stage,
all remaining 02 blocks have one of the following forms: 02, 20, 202, or 020.

• Because σ did not originally satisfy the matching odd block condition and we
have not changed the parities or types of any 02-blocks, either there are odd
02-blocks of both types or there are even 02-blocks. In the case that there are
odd 02-blocks with different initial characters, we reduce them via an optimal
reversal to two even 02-blocks:

· · · 02|0 · · · 2|02 · · · → · · · 022 · · · 002 · · · .

After this step, we may assume that there are even 02-blocks present.
• An even 02-block and an odd 02-block can be reduced with an optimal reversal

to a single even 02-block:

· · · 2|02 · · · 2|0 · · · → · · · 22 · · · 200 · · ·

or

· · · 20|2 · · · 0|2 · · · → · · · 200 · · · 22 · · · .

We repeat this step until all remaining odd 02-blocks are eliminated.
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• As long as there are at least three even 02-blocks, some pair must match and
an optimal reversal can eliminate both.

• We now have at most two even 02-blocks remaining. By Lemma 15, the
number of even 02-blocks must be even. If the last two match, they can be
eliminated in a single optimal reversal. If not, we are in one of the cases

0 · · · 02 · · · 20 · · · 2 or 0 · · · 20 · · · 02 · · · 2.

In the first case, the final 2-block must be preceded by a 1-block (since we
have eliminated all other 02 transitions); in the second, the initial 0-block
must be followed by a 1-block. Once we fill in those and the 1-blocks that
must border the even 02-blocks, it becomes clear that for either case there is
an optimal reversal that reverses one of the even 02-blocks, after which both
02-blocks can be eliminated:

0 · · · 02 · · · 1|201 · · · 1|2 or 0|1 · · · 120|1 · · · 02 · · · 2.

Once all 02/20-transitions have been eliminated, there are only 01/10- and 12/21-
transitions. By Lemma 15, there is an odd number of each. Apply optimal reversals
until the number of each is reduced to one. Since the string starts with 0 and ends
with 2, the remaining transitions must be 01 and 12, and the string is sorted.

Finally, assume that σ satisfies the matching odd block condition. An easy case
analysis shows that any string resulting from the application of an optimal reversal to
σ also satisfies the matching odd block condition, and so cannot be completely sorted.
Thus at least one nonoptimal reversal must be used when sorting σ, and the number
of reversals required to do so is strictly greater than b−3

2 .
In order to sort σ, first apply optimal reversals until a string σ′ containing no

repeated transitions is obtained and let b′ be the number of blocks of σ′. We know
that the string σ′ still satisfies the matching odd block condition and thus is not
sorted, so 4 ≤ b′ ≤ 7. We also know the number of 02/20 transitions is even, so by
Lemma 15 the numbers of 01/10 and 12/21 transitions are both odd, and b′ = 7 is
impossible. Thus, b′ = 5. The only possible types of 5-block strings are shown below,
each with an optimal reversal sorting:

0|120|2 → 00|21|2 → 00122,

0|20|12 → 00|21|2 → 00122.

We have sorted σ in
⌈
b−5
2

⌉
+ 2 =

⌈
b−3
2

⌉
+ 1 reversals.

Remark. In the b odd case, naive choices of optimal reversals can get one into trou-
ble. For instance, the string 021021202 does not satisfy the matching odd block con-
dition and so can be sorted in 3 reversals. Applying the optimal reversal 0[210]21202
results in 001221202, which does satisfy the matching odd block condition—and thus
itself requires 3 reversals.

What about strings from larger alphabets? We can combine earlier observations
to determine the number of reversals required to sort a string from a k-ary alphabet
up to a finite error (whose magnitude depends on k).

Theorem 17. Let σ be a k-ary string whose standard form contains all k letters
and has b blocks, and let t be the number of reversals required to sort σ. Then⌈

b− k

2

⌉
≤ t ≤

⌈
b− k

2

⌉
+

k(k − 1)

4
+ 1.
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Proof. The lower bound is clear; each reversal can reduce the number of blocks
by at most 2. For the upper bound, we first use optimal reversals to reduce to a string
σ′ with r blocks and no repeated transitions; r must have the same parity as b. By
Theorem 3, σ′ can be sorted in at most r −

⌈
r
k

⌉
steps. We’ve shown that

t ≤ b− r

2
+

⌈
r − k

2

⌉
+

(
r −

⌈ r
k

⌉
−
⌈
r − k

2

⌉)

≤
⌈
b− k

2

⌉
+

(
1

2
− 1

k

)
r +

k

2
.

Now substitute r ≤
(
k
2

)
+ 1 to obtain the desired inequality.

Conjecture 2. For each fixed k, the number of reversals required to sort k-ary
strings can be determined in time polynomial in string length.

It also seems plausible that there are polynomial-time algorithms for determining
the number of operations required to sort k-ary strings using transpositions or pancake
flips.
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DIRECTED NETWORK DESIGN WITH ORIENTATION
CONSTRAINTS∗

SANJEEV KHANNA† , JOSEPH (SEFFI) NAOR‡ , AND F. BRUCE SHEPHERD§

Abstract. We study directed network design problems with orientation constraints. An orien-
tation constraint on a pair of nodes u and v states that a feasible solution may include at most one
of the arcs (u, v) and (v, u). Such constraints arise naturally in many network design problems, since
link or edge resources such as fiber can be used to support traffic in one of two possible directions
only. Our first result is that the directed network design problem with orientation constraints can
be solved in polynomial time in the case where the requirement function f is positively intersect-
ing supermodular. (The case where there are no orientation constraints follows from the work of
Frank [Acta Sci. Math. (Szeged), 41 (1979), pp. 63–76].) The second main result of the paper is a
4-approximation algorithm for the minimum cost strongly edge-connected subgraph problem with
orientation constraints. Our algorithm shows that the problem of enforcing orientation constraints
can be reduced to the minimum cost 2-edge-connected subgraph problem on undirected graphs.
Finally, we study the problem for general crossing supermodular functions and show the following
bicriteria approximation result. Let k denote the maximum requirement of any set under the given
requirement function f . We give a 2k-approximation algorithm to construct a solution that satisfies
a slightly weaker requirement function, namely, f ′(S) = max{f(S) − 1, 0}.

Key words. connectivity, orientation, submodular flow, approximation algorithms
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1. Introduction. We study directed network design problems in mixed networks
with orientation constraints. We are given a directed graph D = (V,A) and an
undirected graph G = (V,E). Let M = (V,E ∪ A) denote the mixed graph obtained
by taking their union. An orientation of an undirected edge is obtained by replacing
it by one of two possible directed arcs parallel to it. We consider problems which
amalgamate two previously studied models for network design. We wish, at minimum
cost, to fulfill a given connectivity requirement in a network by (a) selecting a subgraph
and (b) orienting its undirected edges. We start by first considering a concrete special
case of such orientation and subgraph selection problems.

Let r ∈ V be a special node, and consider the following two problems, the first
concerning D, the second concerning M . Call a digraph k-edge-connected from r if it
contains k arc-disjoint paths from r to each other node.

(A) Given a cost function on A, find a minimum cost subdigraph (if there is one)
which is k-edge-connected from r.
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(B) Find an orientation (if there is one) of the undirected edges of M which results
in a minimum cost digraph which is k-edge-connected from r.

The polyhedron for problem (A) is described in [6] while that for (B) is derived
from the integrality of submodular flow polyhedra (see, e.g., [9, 24]). One aim of the
present paper is to describe the polyhedron for the following common generalization.

(AB) Find a mixed subgraph M ′ of M and orient the undirected edges of M ′

so that the resulting digraph is k-edge-connected from r, and so that the cost of the
directed edges plus the cost of the orienting the undirected edges of M ′ is minimized.

We study the problem (AB) in the context of the following more general frame-
work.
Input: We are given a directed graph D = (V,A) with a cost function c : A → Z,
a requirement function f defined over all subsets of V , and a collection E of disjoint
constrained arc pairs, each of which induces a digon (i.e., two arcs directed in opposite
directions). Let Ap ⊆ A denote the set of constrained arcs, and for any arc a ∈ Ap,
let a− denote the arc that a is paired with. We are also given nonnegative lower and
upper bound vectors l, u for each pair in E and each arc a.

Goal: Find an optimal solution to the integer program below; here δ+(S) denotes
the set of arcs leaving S ⊆ V :

(I) min
∑
a∈A

caxa,

∑
a∈δ+(S)

xa ≥ f(S) for each S ⊂ V ,(1)

la,a− ≤ xa + xa− ≤ ua,a− for each {a, a−} ∈ E ,(2)

xa ∈ {la, la + 1, . . . , ua} for each a ∈ A.(3)

We refer to constraints (1) as the cut constraints, constraints (2) as the orientation
constraints, and constraints (3) as the integrality constraints. The term orientation
here “arises” from the consideration of constrained pairs with la,a− = ua,a− = 1. In
this case, the choice of the variables xa, xa− amounts to determining the orientation
of an associated undirected edge.

The above framework, without the orientation constraints, already captures a
large number of fundamental combinatorial optimization problems. Some represen-
tative examples include minimum cost branchings, minimum cost k-strongly edge-
connected subgraphs, and the directed Steiner network problem. Many of these prob-
lems are NP-hard, and thus research is often focused on the design of approximation
algorithms for these problems.

In the present paper, we restrict attention to crossing supermodular requirement
functions f . That is, for every X,Y ⊆ V such that X ∩ Y 
= ∅ and X ∪ Y 
= V we
have that

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ).

Directed network design problems with a crossing supermodular requirement function
remain NP-hard. An example of a crossing supermodular function is the function
f(S) = k for all nonempty subsets S ⊂ V ; the associated problem is known as
the minimum cost k-strongly edge-connected subgraph problem. For this case, a
simple 2-approximation algorithm is obtained by solving two minimum cost k-disjoint
arborescence problems (one into and one out from) at an arbitrary node v [5].
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Frank [6] showed that in the special case where the requirement function is also in-
tersecting supermodular, i.e., the above inequality holds whenever X and Y intersect,
the network design problem can be solved optimally in polynomial time. Melko-
nian and Tardos [22] have recently shown that his result can be used to obtain a
2-approximation algorithm for any requirement function which is crossing supermod-
ular.

In undirected graphs, so-called weakly supermodular functions model a broad
class of network design problems, including, for instance, the generalized Steiner tree
problem. Following a line of work [1, 12, 13, 25], Jain [15] devised an ingenious 2-
approximation algorithm for weakly supermodular functions. He proved that every
basic feasible solution to the linear programming relaxation of the problem contains
a variable of value at least a half. Jain’s algorithm finds and rounds such a large
component iteratively until a final integral solution is obtained.

Network design problems in undirected graphs are often much better understood
than their directed counterparts. In particular, techniques for network design prob-
lems on undirected graphs, e.g., the widely used primal-dual approach [1, 12], do
not seem to be easily amenable to directed network design problems. In the work of
Melkonian and Tardos [22] a directed analogue of Jain’s result is given which requires
significant further insight into the combinatorial structure of basic solutions. They
show that every basic solution to a linear programming relaxation of the design prob-
lem contains a variable of value at least a quarter, whenever the requirement function
f is crossing supermodular. We note that the linear programming relaxation for (I)
is polynomially solvable by the ellipsoid method [14].

1.1. Our problems. We study directed network design problems with orienta-
tion constraints (as specified in (I)). We can view these as two-phase problems: finding
a subgraph of an undirected graph, or a mixed graph, and then orienting its edges so
as to satisfy the cut constraints. The cost function associated with the orientation
may in general be asymmetric; i.e., the cost of orienting an edge e = uv from v to
u is different from orienting it from u to v. (An edge can only be oriented in one
direction.) The cost of an orientation is defined to be the sum of the costs of the
orientations of the edges.

Thus, our network design problems combine constraints of two types, subgraph
constraints and orientation constraints. While each type of constraint has been well
studied separately, much less is known for design problems that combine these two
types of constraints simultaneously.

Perhaps the most basic orientation problem with asymmetric costs that involves
both subgraph constraints and orientation constraints is finding, among all subgraphs
of G that admit a strong orientation, one that has a strong orientation of minimum
cost. This problem generalizes two well-known NP-hard problems. If the orienta-
tion cost function is symmetric, then the problem reduces to finding a minimum cost
2-edge-connected subgraph of G. On the other hand, if there are no orientation con-
straints, then the problem reduces to finding a minimum cost strongly edge-connected
subgraph of a directed graph. We note that for both problems, 2-approximation al-
gorithms are known.

One case we study for which a complete solution is given is that where the re-
quirement function is positively intersecting supermodular. This is a generalization of
the problem (AB) defined at the outset of the paper. These results appear in section
3.

Another important case of special interest in our study is the design of strongly
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edge-connected directed graphs with orientation constraints. In this case the re-
quirement function f satisfies f(X) = 1 for every proper nonempty subset X, and
f(V ) = f(∅) = 0.

An interesting special case of the asymmetric orientation problem is when the
constraints (2) in (I) become xa + xa− = 1 for each arc a ∈ A. Equivalently, we
are given an undirected graph and we need to find a minimum cost orientation that
satisfies the requirement function f . A good characterization for the special case of
strong edge-connectivity requirements follows from the classical min-max theorem of
Lucchesi and Younger [21]. A dijoin is a set of arcs in a digraph which intersects
every directed cut δ+(S), i.e., S such that δ−(S) = ∅. For an integer cost vector c,
the Lucchesi–Younger theorem states that the minimum c-cost of a dijoin is equal
to the maximum packing of directed cuts where each arc a is allowed in at most ca
cuts in this packing. This theorem also implies the existence of a polynomial time
algorithm to find the minimum dijoin via the ellipsoid method; see [14] (see [7] for
a combinatorial algorithm). We can find a minimum cost strongly edge-connected
orientation as follows. First, orient each constrained pair in the cheaper of its two
directions to obtain a digraph D′. We must now reverse some of these orientations in
order to make D strongly edge-connected. If A′ is the subset of arcs of D′ which are
flipped, then evidently A′ must be a dijoin. So we could do no better than to choose a
cheapest such dijoin; but does reversing the arcs of a dijoin result in a strongly edge-
connected digraph? In general no, but Lovász [20, Exercise 6.11] and, independently,
Younger [26] proved that any minimal dijoin does indeed have this property. The
orientation problem for general crossing supermodular requirement functions can also
be solved in polynomial time via reductions to submodular flows [3]; see [9, 24]. The
reader is referred to [19, 23] for related work on supermodularity problems.

Orientation constraints arise in many network design problems, since link/edge
resources, such as fiber, are commonly unidirectional (i.e., they support traffic in
only one of the two possible directions at a given time). Asymmetric costs may arise
in many network routing problems. For instance, consider the setting where traffic
demand is being incrementally introduced in an existing network. Load balancing
constraints may favor forcing traffic in opposite directions between a given pair of
switches. Hence when routing new demands, costs on the directed links may increase
proportionately to the amount of existing traffic. Asymmetric costs may also arise
in network planning due to assorted line termination equipment; these are the costs
associated with terminating the two ends of a link.

1.2. Our results. Our first result is that if the requirement function f is pos-
itively intersecting supermodular, then the extreme points of the relaxation to (I)
are integral. This naturally suggests the use of the ellipsoid method together with
an oracle for f to design a polynomial time algorithm for the directed network de-
sign problem with orientation constraints. One caveat is that the linear programming
relaxation need not be solvable in polytime for every positively intersecting supermod-
ular function, although this is the case for most common applications. This is because
usually such functions arise from intersecting supermodular functions by truncating
them to be nonnegative. Recently, however, it was shown that this is not true for all
such functions f [18].

We show that any basic solution for the relaxation of (I) in this case has integral
components. This generalizes the work of Frank [6], who proved the same result for
the variant with no orientation constraints. In fact, we establish this result for the
more general formulation given in (I).
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Our second result is that the minimum cost strongly edge-connected subgraph
problem with orientation constraints has a 4-approximation algorithm. We give a
combinatorial approximation algorithm based on the idea that the problem of en-
forcing orientation constraints can be reduced to the minimum cost 2-edge-connected
subgraph problem. We start with any feasible solution to the minimum cost strongly
edge-connected subgraph problem and use the above reduction to modify the solution
so as to satisfy the violated orientation constraints.

Finally, we study our problem for general crossing supermodular functions and
show the following bicriteria approximation result. Let k denote the maximum require-
ment of any set under the given requirement function f . We give a 2k-approximation
algorithm to construct a solution that satisfies a slightly weaker requirement function,
namely, f ′(S) = max{f(S) − 1, 0}.

2. Preliminaries. We denote a directed graph by D = (V,A). For S ⊆ V ,
denote by δ+(S) (respectively, δ−(S)) the set of arcs with tail in S (respectively,
V − S) and head in V − S (respectively, S).

A pair of subsets X,Y , of a ground set V , is intersecting if X∩Y,X−Y, Y −X 
= ∅.
An intersecting pair X,Y of sets is crossing if X∪Y 
= V and X,Y are noncomparable.
A family F of nonempty subsets of V is intersecting if we have X ∩ Y,X ∪ Y ∈ F for
each intersecting pair X,Y ∈ F . A family is crossing if X ∩ Y,X ∪ Y ∈ F for each
crossing pair X,Y ∈ F . A function f : 2V → Z+ is positively crossing (respectively,
positively intersecting supermodular) on a crossing (respectively, intersecting) family
F if

1. f(V ) = f(∅) = 0,
2. for each crossing (respectively, intersecting) pair X,Y ∈ F such that f(X),

f(Y ) > 0, f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ).
We emphasize that we only require the inequality to hold for X,Y in the support of
f .1

For any ordered pair (u, v) of nodes of V , we define an operator Ψuv as follows.
Given any f : 2V → Q+, Ψuv(f) is a new function such that Ψuv(f)(S) = f(S)− 1 if
u ∈ S, v 
∈ S, and f(S) > 0. Otherwise Ψuv(f)(S) = f(S). The following is proved in
[6] and follows from the submodularity of the in-degree function of a digraph.

Lemma 2.1. If f is positively crossing (respectively, positively intersecting) su-
permodular on F , then Ψuv(f) is also positively crossing (respectively, positively in-
tersecting) supermodular.

Note that this result does not hold for crossing (intersecting) supermodular func-
tions (i.e., without the positive requirement). When f is clear from the context, we
denote by F(uv) the family obtained from F by removing all sets S 
= V, ∅ for which
Ψuv(f)(S) = 0. One easily checks that if f is positively crossing (intersecting) su-
permodular on F , then it is also positively crossing (intersecting) supermodular on
F(uv).

A family S = {Si}mi=1 of proper, nonempty subsets of a finite ground set V is
cross-free if no pair of sets in S cross. The family is laminar if for each pair Si, Sj of
distinct sets in S, we have Si ⊆ Sj , Sj ⊆ Si, or Si ∩ Sj = ∅.

3. Intersecting supermodularity. In this section we study the polyhedron
obtained by relaxing the integrality constraints (3) in (I), i.e., for each a ∈ A, we

1This property has also been referred to as weakly crossing (intersecting) supermodularity in
[6], whereas supermodularity had referred to functions which satisfy condition (2) for all crossing
(intersecting) pairs X,Y in F .
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now require only la ≤ xa ≤ ua. In the following, F denotes an intersecting family of
subsets of V , and f is a positively intersecting supermodular function on F .

Let D be a digraph and E be a disjoint collection of arc pairs, a and a−, each of
which forms a digon, i.e., directed circuit of length two. A quadruple (D, f,F , E) will
be called simply an f-network (or positively intersecting supermodular network ac-
cording to f). A capacitated f -network is a sextuple (D, f,F , E , l, u) where (D, f,F , E)
is an f -network and l, u : A ∪ E → Z+ are assignments of capacities to the arcs and
digons of E .

For any such capacitated f -network and cost vector c, the f-edge-connectivity
problem is to find an optimal solution to (I). Denote by P (D, f,F , E , l, u) the polyhe-
dron defined by the relaxation of (I), that is replacing (3) by la ≤ xa ≤ ua for each
arc a. We assume that the polyhedron in consideration is nonempty; in particular,
note also that it is pointed and hence has vertices. Each extreme point is thus defined
by a system of m linearly independent tight inequalities. We are interested primarily
in integer solutions to such capacitated f -connectivity problem and so our goal is to
show the following theorem.

Theorem 3.1. For any capacitated positively intersecting f-network (D, f,F , E , l,
u), the extreme points of P (D, f,F , E , l, u) are integral.

The special case where there are no orientation constraints follows from Frank [6].
We note that it is easy to construct examples such that there is an unbounded gap
between the cost of optimal solutions to the two versions of the problem with and
without orientation constraints.

This theorem first appeared in [16], where a proof based on a primal analysis of the
extreme points of P (D, f,F , E , l, u) was given. Subsequently, it was communicated
to us (independently by J. Cheriyan and A. Frank) that the result can be proved by
showing that the system of inequalities associated with P (D, f,F , E , l, u) is totally
dual integral (TDI). That is, for every integer vector c, the dual linear program has
an integer optimum. Classical results (due to Hoffman, and Edmonds and Giles)
then immediately imply the theorem. Whereas the original primal proof itself may
be of some use in other settings, the TDI approach for the present result is so simple
and standard we only present this argument here. Moreover, in the meantime, a
strengthening of the original result has appeared in [11]. In particular, they extend
the result to a hypergraph setting and to orientation constraints over larger sets
of possible orientations of hyperedges. They also show that Theorem 3.1 for (not
positively) intersecting supermodularity, follows from the theory of submodular flows
using a reduction of Schrijver [24]. They indicate, however, that they do not know
whether the polyhedron P (D, f,F , E , l, u) for positively intersecting supermodular
functions arises from a submodular flow polyhedron.

We proceed with a proof of Theorem 3.1. Henceforth we let P (D, f,F , E , l, u) be a
positively intersecting supermodular f -connectivity polyhedron and x∗ be an extreme
point. Note that any extreme point has a defining system determined by a triple
S,R+,R−, where S ⊆ F , R = R+ ∪R− ⊆ A ∪ E , and m = |A| = |S| + |R|. That is,
x∗ is the unique solution (in RA) to the system of equalities

1. xa = ua for each a ∈ R+,
2. xa = la for each a ∈ R−,
3. xa + xa− = ua,a− for each {a, a−} ∈ R+,
4. xa + xa− = la,a− for each {a, a−} ∈ R−,
5. x(δ+(S)) = f(S) for each S ∈ S,

and in particular, S,R identify a set of linearly independent rows in the constraint
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matrix for the f -connectivity problem.

We now analyze the structure of such an extreme point x∗ and this (not necessarily
unique) defining system.

Lemma 3.2. If (D, f,F , E , l, u) is a positively intersecting supermodular problem,
then any extreme point x∗ has a defining system such that S is laminar.

Proof. We first produce a defining system which is cross-free. Suppose that S,R
gives a defining system and there exists X,Y ∈ S such that none of X ∩Y,X−Y, Y −
X,V − (X ∪ Y ) is empty. Let xab = x∗([X − Y, Y −X]), xba = x∗([Y −X,X − Y ]),
xio = x∗([X ∩ Y, V − [X ∪ Y ]), xia = x∗([X ∩ Y,X − Y ]), xib = x∗([X ∩ Y, Y −X]),
xb0 = x∗([Y −X,V − (X ∪ Y )]), xa0 = x∗([X − Y, V − (X ∪ Y )]). Then we have

(xab + xio + xa0 + xib) + (xio + xba + xb0 + xia)

= f(X) + f(Y )

≤ f(X ∩ Y ) + f(X ∪ Y )

= (xib + xia + xio) + (xio + xb0 + xa0),

from which we deduce that X ∩ Y,X ∪ Y are also tight for x∗. In fact, we have
xab = xba = 0, and hence the sum of the two constraints X,Y is identical to the sum
of the constraints for X∩Y,X∪Y . Thus, replacing X,Y in S by X∩Y,X∪Y we obtain
another nonsingular constraint matrix and hence a defining system. Applying this
procedure increases the value

∑
S∈S |S|2 and so we iteratively repeat this operation

to obtain a cross-free family.

So we now assume that S is cross-free and suppose that X,Y ∈ S such that
X ∩Y,X−Y, Y −X are all nonempty but X ∪Y = V . Let xab = x∗([X−Y, Y −X]),
xba = x∗([Y − X,X − Y ]), xia = x∗([X ∩ Y,X − Y ]), xib = x∗([X ∩ Y, Y − X]).
For example, xia =

∑
a∈δ+(X∩Y )−δ+(X) xa; in particular, x∗(X) = xab + xib, x

∗(Y ) =
xba + xia. Thus we have

(xab + xib) + (xba + xia)

= f(X) + f(Y )

≤ f(X ∩ Y ) + f(X ∪ Y )

= f(X ∩ Y )

= (xib + xia),

from which we deduce that xab = xba = 0 and that X ∩ Y is again tight for x∗. In
this case, we may replace the set Y in S by X ∩ Y . Let a, b, c be the 0, 1 incidence
vectors of δ+(X), δ+(Y ), δ+(X ∩ Y ), respectively. Note that we have a + c = 2a + b
and hence the resulting system is again defining (i.e., induce a nonsingular matrix)
for the vector x∗.

Applying this procedure decreases the value
∑

S∈S |S| and does not create any
new intersecting pairs. Thus we may repeatedly apply this operation until we obtain
the desired laminar system.

Proof of Theorem 3.1. We now consider a basic solution x∗ and a defining system
S,R for which S is laminar. We show that the constraint matrix associated with the
inequalities for S ∪R is a network matrix. Thus the defining system is determined by
a totally unimodular matrix from which integrality of x∗ follows. We construct a tree
T , following Edmonds and Giles [3], as follows. For each S ∈ S create a node vS . We
also let v∗ denote a “top node.” Now for each maximal set in S, we add an arc from
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vS to v∗ with capacity equal to f(S). For each other set S, let S′ be the minimal set
containing S. We then add an arc from vS to vS′ of capacity f(S).

Now for each arc a = (u, v) in D, let S (S′) denote the minimal (maximal) set of
S such that a ∈ δ+(S). Let va ∈ T be the head of the unique arc out of vS′ . Thus the
arcs of the directed path Pa in T from vS to va is in one-to-one correspondence with
the cuts of S that contain a. Note also, that if there exists a−, then it also has such a
directed path Pa− whose head is the same node va. Thus if {a, a−} is in the set R+,
then we add a new node ua and new arc (va, ua) with the capacity ua,a− , accordingly.
Similarly, for constraints in R− (note that {a, a−} cannot be in both!). Finally, if
a is in some upper or lower bound constraint, we may similarly add a new node wa

hanging from vS with capacity la or ua accordingly. This completes the definition of
the tree T .

Finally, let D′ be the digraph on V (T ) obtained as follows. For each arc a as
above, we include an arc from vS or wa (depending on whether a is in a bound
constraint) to va or ua (depending on whether a is in some orientation constraint).
It is clear that the defining system induced by S ∪ R is obtained from the network
matrix for T,D′ and right-hand sides given by capacities on the arcs in T . Since the
resulting constraint matrix is totally unimodular, the proof is complete.

4. Strong connectivity. We present here a combinatorial 4-approximation al-
gorithm for the problem of strong edge-connectivity with orientation constraints.
(Henceforth, we drop the term “edge” and refer only to strong connectivity.) This
is an important NP-hard special case of (I) that is not captured by our study in
section 3—the requirement function for this problem is crossing supermodular. For
clarity of presentation, we assume that any parallel arcs form a digon, and any such
pair is involved in an orientation constraint; that is, the pair appears in E . However,
our algorithm extends trivially to the general case. In what follows, we assume that
the input directed graph is D = (V,A) and the optimal solution is a directed graph
D∗ = (V,A∗). We use OPT to denote the cost of the optimal directed graph D∗. We
say that an arc (u, v) in a directed graph D = (V,A) is simple if (v, u) 
∈ A, and we
say that it is nonsimple otherwise. A directed cycle is called nontrivial if it is a simple
cycle of length at least three.

At the center of our approach is a procedure that takes as input any strongly
connected subgraph of D, possibly violating some orientation constraints, and reduces
the problem of “amending” its violated orientation constraints to that of finding a
minimum cost 2-edge-connected subgraph in an undirected graph. In fact, the precise
problem we reduce it to is a minimum cost augmentation of a spanning tree to a 2-
edge-connected subgraph. For the latter problem, a 2-approximation algorithm [5, 17]
is known. We now describe our algorithm in detail.

1. Pick any node r and compute a minimum cost in-branching to r, say, T1, as
well as a minimum cost out-branching from r, say, T2. Consider the directed
graph D1 = (V,A1) induced by T1 ∪ T2. Clearly, D1 is strongly connected
and its cost is at most 2 · OPT. Assume without loss of generality that D1

is minimal.
2. The set of simple arcs A′ ⊆ A1 induces a collection of strongly connected

components C1, C2, . . . , Ck (see Lemma 4.1). Shrink each component Ci to
a single node xi and construct a directed graph D2 = (X,A2), where X =
{x1, . . . , xk}. An arc (xi, xj) ∈ A2 if and only if D1 contained some arc (u, v)
with u ∈ Xi, v ∈ Xj . The minimality of D1 implies that D2 is minimally
strongly connected as well.
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3. Replacing each nonsimple pair of arcs by an undirected edge evidently re-
sults in a tree by minimality. Thus, D2 has k − 1 nonsimple arc pairs
(a1, b1), . . . , (ak−1, bk−1). It is convenient to view D2 as an undirected tree
T = (X,ET ), such that T contains an edge ei for each pair (ai, bi). Let
(Xi, X̄i) be the partition of node set X induced by removal of a pair (ai, bi).
Associate with any such partition a cut (Si, S̄i) in D1, where Si =

⋃
xj∈Xi

V (Cj).
We refer to these cuts as the fundamental cuts of D1. We say that an arc a hits
a fundamental cut if a ∈ δ+(Si)∪ δ+(S̄i). For each fundamental cut, A∗ \A1

contains an arc a ∈ δ+(Si) ∪ δ+(S̄i) (see Lemma 4.2). Thus, the minimum
cost Z of a set of arcs in A \ A2 that hits all fundamental cuts of D1 (call it
the fundamental directed cut cover of D1) is no more than OPT. Finding an
optimal fundamental directed cut cover is NP-hard, but a 2-approximation
can be easily obtained through the undirected version of the problem (see
Lemma 4.3). Let A3 be a set of arcs obtained in this fashion. Since Z is at
most OPT, the cost of A3 is at most 2 ·OPT. Let D3 = (V,A1 ∪A3) be the
directed graph obtained by adding arcs in A3 to the directed graph D1. The
total cost of arcs in D3 is at most 4 · OPT.

4. The final step is to show that the directed graph D3 above can be modified into
another directed graph D4 = (V,A4) such that (i) D4 is strongly connected,
(ii) A4 ⊆ (A2∪A3), and (iii) all arcs in D4 are simple. To achieve this we use
the necessary and sufficient conditions for the existence of a strong orientation
of a mixed graph given by Boesch and Tindell [2] (see Lemma 4.4). The costs
of steps (1) and (3) are no more than 2 · OPT each. Therefore we now have
a 4-approximation to our problem.

Lemma 4.1. In any minimally strongly connected directed graph H, the set of
simple arcs induces a collection of strongly connected components.

Proof. It suffices to show that every simple arc lies on a directed cycle that consists
only of simple arcs. Consider any simple arc (u, v) and a path P (v, u) from v to u in
H. By the minimality of H, every arc on P (v, u) must be simple. The lemma then
follows.

Lemma 4.2. A∗ \A1 hits every fundamental cut of D1.

Proof. Suppose not. Then there is a cut (Si, S̄i) such that A∗ has at most one
arc (from the pair {ai, bi}) that crosses the cut. This contradicts that D∗ is strongly
connected.

Lemma 4.3. There is a 2-approximation algorithm for the minimum cost funda-
mental directed cut cover problem.

Proof. We solve this problem by a reduction to the minimum cost 2-edge-
connected subgraph problem. Let B be the set of arcs A\A2. Consider the undirected
graph H = (X,E) obtained as follows. There is an edge xixj ∈ E if and only if there
is an arc in B that connects some node in Xi to Xj or vice versa. Moreover, the cost
of this edge is equal to the minimum cost such arc. Also, for each edge in ET , we
include an edge of cost 0 in H.

We now claim that the problem of finding a minimum cost fundamental directed
cut cover of D1 is equivalent to finding a minimum cost 2-edge-connected subgraph
H ′ = (X,E′) of H. To see this, consider any fundamental directed cut cover Â. Then,
the set of undirected edges in H, obtained from the arcs in Â along with the edges in
E0, has the property that every cut in H has at least two edges crossing it. Moreover,
the cost of this collection of edges is no more than the cost of the fundamental directed
cut cover Â. In the other direction, let us consider a 2-edge-connected subgraph Ê
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of H. Since exactly one edge in E0 crosses a cut in H, there must be at least one
additional edge in Ê crossing any cut. Thus, the directed arcs corresponding to the
edges in Ê form a fundamental cut cover of D1.

Since the zero cost edges induce a spanning tree, the minimum cost 2-edge-
connected subgraph problem we need to solve is essentially a minimum cost aug-
mentation of a spanning tree to a 2-edge-connected subgraph. For this problem, a
2-approximation algorithm is known [5, 17]. It then suffices to use this algorithm
to get a 2-approximation algorithm for the minimum cost fundamental directed cut
cover problem.

Lemma 4.4. The directed graph D3 obtained at the end of step (3) of the algo-
rithm can be modified into a directed graph D4 such that D4 is strongly connected and
contained in D3 and does not contain any nonsimple arcs.

Proof. The lemma essentially follows from the necessary and sufficient conditions
of Boesch and Tindell [2] for the existence of a strong orientation of a mixed graph.
The Boesch–Tindell (BT) conditions state that a mixed graph whose underlying graph
is 2-edge-connected has a strong orientation if and only if it does not contain a directed
cut, i.e., a cut where all edges are directed in the same direction. Note that the
underlying graph of D3 is 2-edge-connected, and since A2 spans D3, every cut contains
an undirected edge and therefore there are no directed cuts in D3.

For completeness, we sketch here a short proof that does not use the BT con-
ditions directly. The only nonsimple arcs (or undirected edges) in D3 are the ones
corresponding to the pairs (ai, bi). We remove from D3, one by one, exactly one arc
from each such pair while keeping it strongly connected. Consider a leaf xi in T .
There must be an arc in A3 of the form (xi, xj) or (xj , xi) that hits the fundamental
cut (xi, X \ {xi}). Assume without loss of generality that it is of the form (xi, xj).
Consider the directed path from xj to xi in D2, consisting only of nonsimple arcs,
and remove every nonsimple arc that is oriented in a direction opposite to this path.
Contract the resulting cycle and repeat this procedure on a leaf of the resulting tree
T ′. It is easy to verify that the procedure continues until the resulting tree reduces
to a single node, corresponding to the graph D4 above.

5. Crossing supermodularity. We now focus our attention on general crossing
supermodular functions. While simple constant factor approximation algorithms are
known in the absence of orientation constraints [22], the problem seems to become
much harder in the presence of orientation constraints. Although we do not resolve
this question here, we make some progress toward solving our original problem (I) for
crossing supermodular functions. We establish the following result.

Theorem 5.1. Let OPT denote the optimal cost of a fractional solution to the
problem (I) with a crossing supermodular function f defined on a crossing family F .
Let p = maxS f(S) denote the maximum requirement of any set. Then, there is a
polynomial time algorithm that finds an integral solution of cost 2p · OPT satisfying
the weaker requirement function f ′ defined as f ′(S) = max{f(S) − 1, 0}.

An immediate corollary of the above theorem is that we can find a solution to a
(k − 1)-strong edge-connectivity problem with orientation constraints at a cost that
is no more than 2k times the optimal cost for k-strong edge-connectivity. We devote
the rest of this section to the proof of Theorem 5.1.

A key step in our algorithm finds a minimum cost orientation of a graph for
general crossing supermodular requirement functions. That is, it solves problem (I)
in the case where the orientation constraints are equalities. As mentioned earlier, this
problem can be solved in polynomial time via reductions to submodular flows; see
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[9, 24]. (In [10] an orientation theorem is given for the more general class of so-called
crossing G-supermodular functions.) We briefly explain how this is done, following
[9].

First, choose the cheaper arc from each pair of arcs, a and a−, appearing in an
orientation constraint xa + xa− = 1, yielding a directed graph denoted by D1 =
(V,A1). Clearly, the cost of A1 is a lower bound on the cost of an optimal solution.
Then, find a minimum cost collection of arcs (u, v) ∈ A1, such that if they are flipped,
i.e., (u, v) is replaced by (v, u), then a directed graph satisfying the requirement
function f is obtained. Call such a set of arcs an f-flip set.

Minimum cost f -flip sets can be optimally computed by a reduction to the mini-
mum cost submodular flow problem, which is itself solvable in polynomial time. It is
easily seen that a set A2 is an f -flip set if and only if its incidence vector x satisfies,
for every proper subset S,

|δ+(S)| + x(δ−(S)) − x(δ+(S)) ≥ f(S).

Define a new function g where

g(S) = −f(S) + |δ+(S)|.

Since f is crossing supermodular, we get that g is submodular. Therefore, finding a
minimum cost f -flip set is equivalent to solving the submodular flow problem min{cx :
x ≥ 0, x(δ+(S)) − x(δ−(S)) ≤ g(S) for each proper subset S}.

We now go back to the proof of Theorem 5.1. Let D be our digraph and f be
a crossing supermodular function on the family F . Let p = maxS(f(S) − 1). Define

f ′(S) = � f(S)
1+1/p for each set S. It is easy to verify that f ′(S) = f(S)− 1 if f(S) > 0,

and that f ′ is also crossing supermodular on F . Let OPT(f), or OPT if the context
is clear, denote the cost of an optimal solution x∗ to problem (I) for a requirement
function f .

1. Define ua to be �px∗(a)�. Clearly, ua + ua− ≤ p + 1. Also, define fp(S) =
p · f(S) to be a new crossing supermodular function.

2. We now solve two separate intersecting supermodular LPs, corresponding to
fp, with upper bounds just defined. These LPs are obtained by splitting the
“requiring” sets into F1 = {F ∈ F : v ∈ F} and F2 = F − F1 where v is
an arbitrarily chosen node. The first we may solve directly; the latter is not
actually intersecting and so we work with the intersecting family {V −S : S ∈
F2}. For the second family we must also work with the function f∗ defined
by f∗(S) = f(V − S) and use the digraph with the arcs reversed (see [22]).
By Theorem 3.1, any basic solution for these LPs is integral. We may thus
find two such vectors z1, z2 in polynomial time. Actually, since these LPs do
not have orientation constraints, we can also find integral optimal solutions
using Frank’s approach ([6]; see also [24]). Now define a new vector z by
setting za = max{z1

a, z
2
a} for each a ∈ A. Clearly z is integral, satisfies fp,

and costs no more than 2 · OPT(fp) ≤ 2p · OPT(f).
3. By setting y = 1

pz we obtain a solution for the original function f which

is (1/p)-integral and has cost at most 2OPT. The solution y violates any
orientation constraint by at most a factor of 1 + 1/p. We scale down all
violating arc pairs to satisfy the constraint xa + xa− = 1. We also uniformly
scale up any arc pairs with 1/p ≤ xa + xa− < 1 to satisfy xa + xa− = 1. The
resulting solution clearly satisfies the function f ′ and has a cost that is at
most 2p · OPT.
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4. At this point, since all orientation constraints are tight, we can find an integral
solution of no greater cost.

We can view the above algorithm as a process in which we tighten the orientation
constraints, while bounding the increase in cost. However, we can guarantee only that
the cut constraints are “almost” satisfied. We conjecture that the following approach,
similar to that of Jain [15] and Melkonian and Tardos [22] can yield a constant factor
approximation algorithm for crossing supermodular requirement functions. Let x∗ be
an optimal (basic) solution to the linear relaxation of (I) in the case where f is crossing
supermodular. We conjecture that there exists a pair of arcs a, a− ∈ A, for which
the orientation constraint is not tight, yet x∗(a) + x∗(a−) is greater than a constant,
say, 1/4. If this conjecture is correct, then we can make the orientation constraint on
a and a− tight and resolve the problem. We repeat this until we obtain a solution
in which all orientation constraints are tight. The cost of this solution increases by
only a constant factor with respect to x∗. Once all orientation constraints are tight,
as before, we can find an integral solution at no greater cost.
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ON THE POWER OF NONLINEAR SECRET-SHARING∗
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Abstract. A secret-sharing scheme enables a dealer to distribute a secret among n parties
such that only some predefined authorized sets of parties will be able to reconstruct the secret from
their shares. The (monotone) collection of authorized sets is called an access structure, and is freely
identified with its characteristic monotone function f : {0, 1}n → {0, 1}. A family of secret-sharing
schemes is called efficient if the total length of the n shares is polynomial in n. Most previously
known secret-sharing schemes belonged to a class of linear schemes, whose complexity coincides with
the monotone span program size of their access structure. Prior to this work there was no evidence
that nonlinear schemes can be significantly more efficient than linear schemes, and in particular there
were no candidates for schemes efficiently realizing access structures which do not lie in NC.

The main contribution of this work is the construction of two efficient nonlinear schemes: (1)
A scheme with perfect privacy whose access structure is conjectured not to lie in NC, and (2) a
scheme with statistical privacy whose access structure is conjectured not to lie in P/poly. Another
contribution is the study of a class of nonlinear schemes, termed quasi-linear schemes, obtained by
composing linear schemes over different fields. While these schemes are (superpolynomially) more
powerful than linear schemes, we show that they cannot efficiently realize access structures outside
NC.
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uosity
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1. Introduction. Secret-sharing schemes enable a dealer, holding a secret piece
of information, to distribute this secret among n parties such that only some pre-
defined authorized sets of parties can reconstruct the secret from their shares and
others learn nothing about it. The (monotone) collection of authorized sets that can
reconstruct the secret is called an access structure, and is freely identified with its
characteristic monotone function f : {0, 1}n → {0, 1}.

The first secret-sharing schemes were introduced by Blakley [14] and Shamir [52].
They constructed threshold schemes, in which the access structure is defined by a
threshold function. General secret-sharing schemes, realizing nonthreshold access
structures, were introduced by Ito, Saito, and Nishizeki [43], where it was shown that
every monotone access structure can be (inefficiently) realized by a secret-sharing
scheme. More efficient schemes for specific types of access structures were presented,
e.g., in [10, 54, 18, 45]. We refer the reader to [53, 58] for extensive surveys on
secret-sharing literature.1
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Originally motivated by the problem of secure information storage, secret-sharing
schemes have found numerous other applications in cryptography and distributed
computing (see [50, 9, 23, 27, 30]). However, secret-sharing is independently interest-
ing as a pure complexity question. The default complexity measure of secret-sharing
schemes is their share size, i.e., the total length of all shares distributed by the dealer.
This is a measure of the amount of communication (or storage) required for sharing
a secret.2 One of the most interesting open questions in this area is to characterize
which access structures can be efficiently realized, i.e., with shares of polynomial size
in the number of parties n. For most access structures, the best known upper bound
on the share size is exponential. However, unlike other concrete complexity measures
such as circuit complexity, one cannot apply simple counting arguments to show that
this must indeed be the case. In fact, given the current knowledge, one cannot even
rule out the possibility that all access structures can be efficiently realized.

Several lower bounds on the share size of secret-sharing were obtained [22, 15, 32,
29, 28]. The strongest current bound is Ω(n2/ log n) [28]. This bound applies to an
explicit access structure. However, as noted above, there is a huge gap between these
lower bounds and the best known upper bounds.

1.1. Linear vs. nonlinear secret-sharing. Most previously known secret-
sharing schemes were linear. In a linear scheme, the secret is viewed as an ele-
ment of a finite field F , and the shares are obtained by applying a linear map-
ping to the secret and several independent random field elements. Linear schemes
may be equivalently defined by requiring that each authorized set reconstructs the
secret by applying a linear function to its shares [6]. For example, the schemes
of [52, 14, 43, 10, 54, 18, 13, 45, 33] are all linear.

The share size in linear schemes over F realizing a monotone function f is propor-
tional to the monotone span program size of f over F . (Span programs are a linear-
algebraic model of computation introduced in [45].) In fact, there is a one-to-one
correspondence between linear secret-sharing schemes and monotone span programs.
The class of functions that have polynomial-size monotone span programs, which co-
incides with those admitting efficient linear secret-sharing schemes, is fairly well un-
derstood: (1) it contains monotone NC1 and even monotone symmetric logspace [10,
11, 45]; (2) it is contained in algebraic NC2 (as follows from [12, 17, 49, 21]), implying
that it is contained in NC3 when log |F | is polynomially bounded; and (3) there are
explicit monotone functions that are provably not in this class [7, 2, 37] (this is proved
without any complexity assumptions).

As opposed to linear secret-sharing schemes, nearly nothing is known for general
(i.e., possibly nonlinear) schemes. Several constructions of nonlinear secret-sharing
schemes have been suggested, both for the threshold case [61, 31, 51] and for general
access structures [35].3 The question of basing verifiable secret-sharing and secure
multiparty computation on nonlinear secret-sharing has been studied in [26]. However,
none of these works provide evidence that nonlinear schemes are significantly more
powerful than their linear counterparts.

The relation between linear and nonlinear complexity has been studied in other
contexts, such as coding and randomness extraction (see [60]). While in some of
these contexts the margins of possible improvement obtained by relaxing the linearity
restriction are provably small, this is not the case for our problem. As discussed

2By default, we ignore the computational complexity of the scheme. However, most of our efficient
constructions are also computationally efficient. We explicitly indicate when this is not the case.

3A nonlinear construction of [19] has been shown to be incorrect by [55].
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above, it is not even known if there exists an access structure that cannot be efficiently
realized by a nonlinear scheme. On the other hand, prior to this work there was no
evidence that nonlinear schemes are significantly more efficient than linear schemes.
In particular, there were no explicit candidates for secret-sharing schemes realizing
access structures which do not lie in NC.

1.2. Our results. We attempt to remedy the above state of affairs. To this end,
we take two different approaches.

Specific candidates. The main contribution of this work is the construction of
specific efficient nonlinear secret-sharing schemes, whose access structures are conjec-
tured to be hard. We present two main schemes, whose access structures are related
to two variants of the quadratic residuosity problem.4 A third scheme, which is a
simplified version of the second, realizes an access structure related to the coprimality
problem.5

The first scheme realizes an access structure whose computational complexity is
equivalent to that of deciding quadratic residuosity modulo a fixed prime, where the
prime modulus may depend only on the number of parties.6 This problem is not
known to be in NC. In particular, assuming that it is indeed not in NC, a separation
of efficient nonlinear schemes from efficient linear schemes follows.

The second scheme realizes a presumably much harder access structure, whose
computational complexity is equivalent to the general quadratic residuosity problem.
The latter is widely conjectured to require superpolynomial (or even exponential) size
circuits, and its intractability is implied by the so-called quadratic residuosity assump-
tion [39], which is commonly relied on in cryptography. In contrast to the first con-
struction, the second construction only meets a more liberal notion of secret-sharing
(with a statistical relaxation of the perfect correctness and privacy requirements; see
section 2), and its reconstruction procedure is computationally inefficient. Yet, the
second scheme demonstrates that the share size in a secret-sharing scheme may be
superpolynomially smaller than the circuit size of its access structure.

As a variant of the second scheme described above, we obtain a scheme whose
access structure is equivalent to the coprimality problem. Similarly to quadratic
residuosity modulo a (fixed) prime, the coprimality problem is in P but is not known
to be in NC. As the second scheme, the third scheme meets only the more liberal
notion of security. However, unlike the second scheme it is also computationally
efficient. Compared to the first scheme, the coprimality problem is more standard
than the problem of deciding quadratic residuosity modulo a fixed prime. The main
properties of the three schemes described above are summarized in Table 1.1.

Our constructions were inspired by a noninteractive private protocol for the
quadratic residuosity problem from [36]. In fact, every protocol in the model of [36, 42]
can be transformed into a secret-sharing scheme for a related access structure.

Quasi-linear schemes. In addition to the above specific candidates, we study a
class of nonlinear schemes, which we term quasi-linear schemes, obtained by composing
linear schemes over (possibly) different fields. Composition of secret-sharing schemes
has been used in previous works (see [10, 20, 59, 47, 27]). However, to the best of our

4The quadratic residuosity problem is that of deciding, given a pair of integers w, u, whether w
is a square modulo u.

5The coprimality problem is that of deciding, given w, u, whether gcd(w, u) = 1.
6While a generalization to quadratic residuosity modulo a fixed composite is possible, this problem

is essentially equivalent in a nonuniform setting to deciding quadratic residuosity modulo a fixed
prime.
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Table 1.1

Summary of our main schemes.

perfect/ access structure computat. Hardness
statistical related to. . . efficient? of access structure

section 3 perfect
quadratic residuosity
modulo a fixed prime

yes
in P

not known to be in NC

section 4 statistical quadratic residuosity no
in NP

conjectured not in P/poly

section 4.2 statistical coprimality yes
in P

not known to be in NC

knowledge this is the first work to explicitly discuss compositions of linear schemes
over different fields. We characterize the complexity of quasi-linear schemes in terms
of Boolean formulas over the basis of monotone span programs. We prove that quasi-
linear schemes cannot realize any access structure outside NC. Specifically, we show
that the class of structures which they can efficiently realize is contained in NC4.
Thus, quasi-linear schemes do not provide the strong (conjectured) results implied by
the specific candidates described above. On a positive note, we show an application of
quasi-linear schemes for the construction of secret-sharing schemes efficiently realizing
monotone span programs over a ring Zu, where u is a square-free composite. A naive
generalization of the construction for monotone span programs over fields [45] fails to
achieve this goal.7 Following our work, it was shown in [8] that quasi-linear schemes
are strictly more powerful than linear schemes, that is, there are explicit functions
that have small quasi-linear schemes; however, they require superpolynomial linear
schemes.

Organization. In section 2 we present some definitions and background. In sec-
tions 3 and 4 we describe our two main constructions of efficient nonlinear schemes,
and discuss the complexity of their access structures. Finally, in section 5 we introduce
and study the class of quasi-linear schemes.

2. Preliminaries. In this section we define secret-sharing schemes, linear secret-
sharing schemes, and span programs, and briefly discuss the connections between these
notions. We end this section with some definitions related to the quadratic residuosity
problem.

Definition 2.1 (access structure). Let {P0, . . . , Pn−1} be a set of parties. A
collection A ⊆ 2{P0,...,Pn−1} is monotone if B ∈ A and B ⊆ C imply C ∈ A. An
access structure is a monotone collection A of nonempty subsets of {P0, . . . , Pn−1}
(that is, A ⊆ 2{P0,...,Pn−1}\{∅}). The sets in A are called the authorized sets. A set B
is called a minimal set of A if B ∈ A, and C �∈ A for every C � B. The minimal sets
of an access structure uniquely define it. Finally, we freely identify an access structure
with its monotone characteristic function fA : {0, 1}n → {0, 1}, whose variables are
denoted x0, . . . , xn−1.

Definition 2.2 (secret-sharing). Let S be a finite set of secrets, where |S| ≥ 2.
An n-party secret-sharing scheme Π with secret-domain S is a randomized mapping
from S to a set of n-tuples S0 × S1 × · · · × Sn−1, where Si is called the share-domain
of Pi. A dealer distributes a secret s ∈ S according to Π by first sampling a vector of
shares (s0, . . . , sn−1) from Π(s), and then privately communicating each share si to

7This result does not follow from [35], which imposes stronger requirements in their definition of
span programs over rings.
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the party Pi. We say that Π realizes an access structure A ⊆ 2{P0,...,Pn−1} (or the cor-
responding monotone function fA : {0, 1}n → {0, 1}) if the following two requirements
hold:
Correctness. The secret s can be reconstructed by any authorized set of parties.

That is, for any set B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there exists a
reconstruction function RecB : Si1 × · · · × Si|B| → S such that for every
s ∈ S,

Pr[ RecB(Π(s)B) = s ] = 1,

where Π(s)B denotes the restriction of Π(s) to its B-entries.
Privacy. Every unauthorized set cannot learn anything about the secret (in the in-

formation theoretic sense) from their shares. Formally, for any set C �∈ A,
for every two secrets a, b ∈ S, and for every possible shares 〈si〉Pi∈C :

Pr[ Π(a)C = 〈si〉Pi∈C ] = Pr[ Π(b)C = 〈si〉Pi∈C ].

The share complexity of the scheme (or complexity for short) is defined as

n−1∑
i=0

log |Si|.

As the mutual information between the secret and the shares of a set of parties
can only grow when we add parties to the set, it suffices to prove the correctness for
minimal authorized sets and the privacy for maximal unauthorized sets.

The above correctness and privacy requirements capture the strict notion of per-
fect secret-sharing, which is the one most commonly referred to in the secret-sharing
literature. We will also consider a relaxed but natural notion of statistical secret-
sharing, in which Π accepts an additional argument k, called the security parameter,
and the perfect correctness and privacy requirements are relaxed to statistical correct-
ness and statistical privacy defined as follows:
Statistical correctness. Any authorized set of parties can reconstruct the secret s

except with negligible probability ε(k). That is, for every authorized B ∈ A
there exists a reconstruction function RecB such that

Pr[ RecB(Π(s)B) = s ] ≥ 1 − ε(k)(2.1)

for some ε(k) ∈ k−ω(1).
Statistical privacy. Any unauthorized set of parties learns only a negligible amount

of information about the secret. That is, for any unauthorized C �∈ A and
two secrets a, b ∈ S,

SD(Π(a, k)C ,Π(b, k)C) ≤ ε(k)(2.2)

for some ε(k) ∈ k−ω(1), where SD(Y0, Y1) denotes the statistical distance
between distributions Y0, Y1 defined as

SD(Y0, Y1) =
1

2

∑
y

|Pr[Y0 = y] − Pr[Y1 = y]|.8

8Equivalently, the statistical distance between Y0 and Y1 may be defined as the maximum, over
all functions A, of the distinguishing advantage |Pr[A(Y0) = 1] − Pr[A(Y1) = 1]|.
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We next define the class of linear secret-sharing schemes. There are several equiv-
alent definitions for these schemes; see [6].

Definition 2.3 (linear secret-sharing). Let F be a finite field. A secret-sharing
scheme Π is said to be linear over F if the following hold:

1. The secret-domain S is a subset of F .
2. There exist d0, . . . , dn−1 such that each share-domain Si is a subspace of the

vector space F di .
3. The randomized mapping Π can be computed as follows. First, the dealer

chooses independent random variables, denoted r1, . . . , r�, each uniformly dis-
tributed over F . Then, each coordinate of each of the n shares is obtained by
taking a linear combination of r1, . . . , r� and the secret s.

We remark that the notions of perfect secret-sharing and statistical secret-sharing
coincide in the case of linear schemes: Any linear scheme that satisfies the weaker
conditions of statistical correctness and privacy satisfies the stronger requirements of
perfect correctness and privacy.

Remark 2.4. Van Dijk [32] describes a generalization of linear schemes which,
following [55], we call multilinear schemes. In a multilinear scheme the secret is
viewed as a collection of elements from a finite field F , and the shares are obtained
by applying a linear mapping to the elements of the secret and several independent
random field elements. Simonis and Ashikhmin [55] show that multilinear schemes
can be somewhat more efficient than linear schemes. However, if we require that the
length of the secret is polynomial in the number of parties, then multilinear schemes
can only be polynomially more efficient than linear schemes.

As for any other concrete complexity measure, we will often implicitly use the
term “scheme” for referring to an infinite family of schemes {Πn}n∈N , parameterized
by the number of parties n. In the statistical case, we require the same negligible
function ε(k) to apply in (2.1) and (2.2) for all Πn in the family. In the linear case,
such a family can have a different underlying field for each n. A family {Πn}n∈N is
efficient if the complexity of Πn is polynomial in n (or the complexity of Πn(k) is
polynomial in n and k in the statistical case). Note that the above definition does not
make any requirement on the computational complexity of the scheme. We say that
the scheme is computationally efficient if both sharing the secret and reconstructing
it can be done in time poly(n,k,log |S|). Finally, the family of access structures {An}
realized by a scheme family {Πn} is naturally identified with a monotone Boolean
function f : {0, 1}∗ → {0, 1} or its characteristic language.

We next define span programs—a linear algebraic model of computation whose
monotone version is equivalent to linear secret-sharing.

Definition 2.5 (span program [45]). A span program over a field F is a triplet

M̂ = 〈M,ρ,�v〉, where M is an r × c matrix over F , the vector �v ∈ F c is a nonzero
row vector called the target vector, and ρ is a labeling of the rows of M by literals
from {x0, x̄0, . . . , xn−1, x̄n−1} (every row is labeled by one literal, and the same literal

can label many rows). A span program M̂ is said to be monotone if all of its rows are
labeled by positive literals.

A span program accepts or rejects an input by the following criterion. For every
input y ∈ {0, 1}n let My denote the submatrix of M consisting of those rows whose

labels are satisfied by the assignment y. The span program M̂ accepts y iff �v is in the
row-span of My (where each row of M is viewed as a vector in F c). A span program
computes a Boolean function f : {0, 1}n → {0, 1} if it accepts exactly those inputs y
such that f(y) = 1. Note that monotone span programs compute monotone functions.
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Finally, the size of M̂ is the number of rows in M .

The complexity of realizing a given access structure by a linear secret-sharing
scheme over F is proportional to the minimal size of a monotone span program over
F computing f . Specifically we refer to the following lemma.

Lemma 2.6 (see [45, 6]). An access structure can be realized by a linear secret-
sharing scheme over F in which the shares include a total of d field elements iff it can
be computed by a monotone span program over F of size d.

It follows from [12, 17, 49, 21] that all functions that have small span programs
are in NC. Specifically, we have the following.

Lemma 2.7. If a function f has a span program over F = GF(q) of size �, then
f has an arithmetic circuit of size poly(�) and depth O(log2 �) over F , implying that
it has a Boolean circuit of size poly(�, log q) and depth O(log2 � log log q).

Quadratic residues. Let Zu be the ring of integers modulo u, whose elements are
identified with the integers {0, 1, . . . , u− 1}. Let Z∗

u denote the multiplicative group
of the elements of Zu that are relatively prime to u, that is, the elements of Z∗

u are
{1 ≤ w < u : gcd(w, u) = 1}. The number of element in Z∗

u is denoted by ϕ(u), and
is referred to as the Euler function of u.

An integer w is said to be a quadratic residue modulo u if gcd(w, u) = 1 and there
exists an integer b such that w ≡ b2 mod u. It is said to be a quadratic nonresidue
modulo u if gcd(w, u) = 1 and there is no integer b such that w ≡ b2 mod u. We will
pay particular attention to the case where the modulus is an odd prime p; thus, w
and b may be viewed as elements of the field Zp. In this case, w ∈ Z∗

p = Zp \ {0} is
said to be a quadratic residue if it is a square of some field element, and a quadratic
nonresidue otherwise. (The element 0 is neither a quadratic residue nor a quadratic
nonresidue.) The quadratic residues form a subgroup of the multiplicative group Z∗

p .
The quadratic residuosity problem is that of deciding, given w and u, whether w is
a quadratic residue modulo u. When u is restricted to be a prime (or given the
factorization of u) this problem can be solved in polynomial time, but is not known
to have an efficient parallel algorithm. When u is arbitrary, this problem is widely
assumed to be intractable; see section 3.1 for more details.

3. An efficient nonlinear scheme: The perfect case. In this section we
construct an efficient nonlinear secret-sharing scheme whose access structure is con-
jectured not to lie in NC. The scheme constructed in this section is perfectly private
and correct. A statistical scheme realizing a computationally harder access structure
will be given in the next section.

Definition 3.1 (the nonquadratic residue modulo prime access structure

(NQRPp)). Let p be an odd prime and m
def
= �log p. We define the n-party ac-

cess structure NQRPp, where n
def
= 2m, by specifying its collection of minimal sets.

The parties of the access structure are denoted by P b
i , where 0 ≤ i < m and b ∈ {0, 1}.

With each w ∈ {0, 1}m (also viewed as an m-bit integer) we naturally associate a set

Bw of size m defined by Bw
def
= {Pwi

i : 0 ≤ i < m}. A set B is a minimal set of
NQRPp if the following hold:

• B =
{
P 0
i , P

1
i

}
for some 0 ≤ i < m, or

• B = Bw for some w such that w is not a quadratic residue modulo p. (That
is, it is either 0 or a quadratic nonresidue.)
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Table 3.1

A secret-sharing scheme for NQRPp.

s = 0 s = 1

P b
0 , where b ∈ {0, 1} r2 + z0 br2 + z0

P b
i , where 1 ≤ i < m, b ∈ {0, 1} zi 2ibr2 + zi

We let NQRP denote a family of access structures such that the nth structure is
NQRPp for some p such that �log p = �n/2 (say, the least such p).9

We next construct a secret-sharing scheme for NQRP.
Theorem 3.2. For every odd prime p there exists a perfect secret-sharing scheme

for NQRPp in which the secret-domain is {0, 1} and the share-domain of each party
is Zp.

Proof. We prove this theorem by describing the secret-sharing scheme.
The dealer chooses at random m− 1 random elements z0, z1, . . . , zm−2 ∈ Zp and

an additional random element r ∈ Z∗
p . Define

zm−1
def
= −

m−2∑
i=0

zi,(3.1)

where here and in the following all arithmetic operations involving ring elements are
performed in Zp. The shares of the parties are specified in Table 3.1. We turn to
prove that this secret-sharing scheme satisfies the correctness and privacy properties
with respect to NQRPp. Let SUMw denote the sum of the m shares held by parties
in Bw. Both the correctness and the privacy proofs will rely on the following lemma.

Lemma 3.3. SUMw = wsr2.
Proof. By (3.1) we obtain the following:
• If s = 0, then

SUMw =

m−1∑
i=0

zi + r2 = r2.

• If s = 1, then

SUMw =

m−1∑
i=0

(zi + wi2
ir2)

=

m−1∑
i=0

zi + r2
m−1∑
i=0

(wi2
i)

= r2w.

Correctness. We separately consider two types of minimal authorized sets B.
• B =

{
P 0
i , P

1
i

}
for some 0 ≤ i < m. In this case, s = 0 iff the shares of P 0

i

and P 1
i are equal. This follows from the fact that 2ir2 �≡ 0 mod p for every i.

• B = Bw for some w such that w is not a quadratic residue. In this case, it
follows from Lemma 3.3 that s = 0 iff SUMw is a quadratic residue (since the
product of a quadratic residue and a nonquadratic residue is a nonquadratic
residue).

9To make the access structure ZPP-uniform, p can be chosen to be the least prime in the interval
[2�n/2�, 2�n/2� + n], or 3 if none exists. However, as for other number-theoretic functions, a random
choice of p may be safer when assuming that NQRP is not in NC.
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Privacy. We need to prove that every unauthorized set C /∈ NQRPp has no
information on the secret. It suffices to prove this claim for every maximal C not in
the access structure. There are two cases to consider.

• C = Bw for some w ∈ {0, 1}m such that w is a quadratic residue. In this
case we claim that, regardless of the value of the secret, the share-vector of
the parties in C is uniformly distributed over the m-tuples of field elements
whose sum is a quadratic residue. Indeed, by Lemma 3.3, if s = 0, then
SUMw = r2, which is a uniformly random quadratic residue. Furthermore,
fixing the choice of r, the choices of zi induce a uniformly random share-vector
among all those which sum to r2. Similarly, if s = 1, then SUMw = r2w.
Since w is a quadratic residue, SUMw is again a uniformly random quadratic
residue determined by r, and the same argument as above applies.

• C = Bw \
{
P

wj

j

}
for some w ∈ {0, 1}m and 0 ≤ j < m. That is, C is a set of

size m−1 such that for exactly one j it contains neither P 0
j nor P 1

j . We claim
that in this case the share-vector of the parties in C is uniformly distributed
in Zm−1

p , regardless of the secret. It suffices to show that for every secret
s ∈ {0, 1}, every possible value of the share-vector from Zm−1

p , and every
fixed r0 ∈ Z∗

p , there exists a unique choice of z0, . . . , zm−2 generating this
value with r = r0. This can be verified by inspection of the corresponding
system of linear equations over Zp.

A generalization of our construction for NQRP is described in Appendix A. This
generalization will uncover what algebraic properties we use in our construction, and
will supply us with a few more examples.

3.1. Does NQRP have an efficient linear secret-sharing scheme? The
access structure NQRP we have realized above is related to the problem of decid-
ing quadratic residuosity modulo a prime. We would like to argue that NQRP is
likely not to be in NC, which would imply in particular that NQRP cannot be ef-
ficiently realized by linear schemes. We start by describing some known facts about
the complexity of the quadratic residuosity problem.

Unlike quadratic residuosity modulo a composite, whose intractability is com-
monly assumed in cryptography (see [39]), quadratic residuosity modulo a prime can
be decided in polynomial time. All known algorithms for this problem are sequen-
tial. It is not known if efficient parallel algorithms for this problem exist; that is,
the situation is similar to the exponentiation function and the gcd function. There
are two types of known algorithms. The first uses Euler’s criterion, which states that
w is a quadratic residue modulo an odd prime p iff w(p−1)/2 ≡ 1 mod p. Thus, this
algorithm requires modular exponentiation. For a survey of algorithms for exponen-
tiation, see [40]. The second type of algorithm computes the Jacobi symbol in a way
similar to Euclid’s algorithm for computing the gcd. For more details, see, e.g., [3,
Chapter 5]. “Weak” parallel algorithms for checking quadratic residuosity follow
from the algorithms of [34] for computing the Jacobi symbol and the algorithm of [1]
for exponentiation. More precisely, there is (1) an algorithm that runs in O(n/ log
log n) time using O(n1+ε) processors [34], (2) an algorithm that runs in O(log2 n log
log n) time using 2O(n/ logn) processors [34], and (3) an algorithm that runs in O(log3 n)

time using 2O(
√

n logn) processors [1].
The best known polynomial-size circuit for the quadratic residuosity problem has

depth O(n/ log log n) where n = log p [34]. Thus, given the current state of knowledge
on this problem and the related modular exponentiation problem, it is reasonable to
assume that they are not in NC. In fact, this assumption (for the exponentiation
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problem) has been explicitly relied on in [16].
It is easy to see that deciding quadratic residuosity modulo p can be very efficiently

reduced to computing the monotone function defined by NQRPp. However, there is
a major difference between the “standard” algorithmic setting for this problem and
our setting. Our setting is highly nonuniform, in the sense that with each input length
(or number of parties) we associate some fixed prime p. Hence, when computing this
access structure one may use a nonuniform polynomial-size “advice” depending on p.
In algorithmic terms, we allow unlimited preprocessing which depends on the prime
p but not on the other input w. Nevertheless, we do not know how to use this type
of preprocessing to obtain an efficient parallel algorithm for the quadratic residuosity
problem.10 (It is interesting to note, however, that deciding quadratic residuosity
modulo a composite is no more difficult in our setting than deciding quadratic residu-
osity modulo a prime, since the factorization of the composite may be used as advice.)
To conclude, the assumption that NQRP �∈ NC is stronger than the assumption that
the standard quadratic residuosity problem (or modular exponentiation) is not in NC,
although this still seems very reasonable given the current state of knowledge.

In light of the uncertain situation described above, one could hope for an uncon-
ditional superpolynomial lower bound on a size of a monotone span program comput-
ing NQRP. This would be sufficient for proving that NQRP cannot be efficiently
realized by linear schemes and, as noted in the introduction, there are explicit mono-
tone functions for which such bounds are known. However, as we argue next, such
lower bounds are impossible to prove for the NQRP structure, as well as for the
access structures considered in section 4, without proving that NC1 �= P. For a
fixed (m + 1)-bit prime p, the quadratic residuosity function (modulo p) is defined

as fp(x0, . . . , xm−1) = 1 iff
∑m−1

i=0 xi2
i is a quadratic residue modulo p. This func-

tion is not monotone. To define the monotone access structure NQRP we replaced
each literal by two parties, obtaining an access structure with 2m parties. (This is
a standard transformation, e.g., when proving that monotone circuit evaluation is
P-complete [38].) For technical reasons we also added m minterms of size two. It
follows that the monotone formula size of NQRPp is equal, up to an additive O(n)
difference, to the (nonmonotone) formula size of the function fp. Thus, one cannot
expect to prove superpolynomial lower bounds on the size of a monotone span pro-
gram (or even a monotone formula) for NQRP, since they will imply, in particular,
superpolynomial lower bounds on the (nonmonotone) formula size of the quadratic
residuosity function.11

4. An efficient nonlinear scheme: The statistical case. In this section
we construct an efficient nonlinear secret-sharing scheme whose access structure is
as hard as the general quadratic residuosity function. Unlike the previous construc-
tion, the scheme we construct below is only statistically private and correct, and its
reconstruction procedure is computationally inefficient. In section 4.1 we show that
perfect correctness (but not perfect privacy) can be achieved under a number-theoretic
assumption, namely, the extended Riemann hypothesis. We end this section by dis-
cussing a generalization of our construction which applies to the so-called t-residuosity
problem. As a special case, we obtain an efficient scheme whose access structure is
computationally equivalent to the coprimality problem.

10Preprocessing can parallelize the algorithms for exponentiation when the field size and the
exponentiation base are given in advance (see [40]). However, in our case we know in advance the
field size and the exponentiation power.

11The best known lower bound on the formula size for an explicit function is Ω(n3−o(1)) [41].
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Table 4.1

A secret-sharing scheme for NQRm.

s = 0 s = 1

W b
0 , where b ∈ {0, 1} r2 + z0 br2 + z0

W b
i , where 1 ≤ i < m, b ∈ {0, 1} zi 2ibr2 + zi

Ub
i , where 0 ≤ i < m, b ∈ {0, 1} 2ibr′ + zi+m 2ibr′ + zi+m

Definition 4.1 (the nonquadratic residue access structure (NQRm)). Let m

be a positive integer. We define the n-party access structure NQRm, where n
def
= 4m,

by specifying its collection of minimal sets. It will be convenient in what follows to
denote the first 2m parties by W b

i and the last 2m parties by U b
i , where b ∈ {0, 1}

and 0 ≤ i < m. With each pair (w, u), where w, u ∈ {0, 1}m, we naturally associate a
subset of parties Bw,u of size 2m, defined by

Bw,u
def
= {Wwi

i : 0 ≤ i < m} ∪ {Uui
i : 0 ≤ i < m}.

We will freely identify strings w, u as above with integers in the interval [0, 2m − 1].
A set B is a minimal set of NQRm if

1. B =
{
W 0

i ,W
1
i

}
or B =

{
U0
i , U

1
i

}
for some 0 ≤ i < m, or

2. B = Bw,u for some w, u such that w is not a quadratic residue modulo u.
(For technical reasons, we assume here that this condition never holds when
u = 1 and always holds when u = 0 except when w = 1.)

We let NQR denote the family of access structures in which the nth structure is
NQR�n/4�.

We start by observing that the computational complexity of the access structure
NQR is essentially the same as that of the general quadratic residuosity problem.

Claim 4.2. The circuit complexity of NQR is the same, up to an O(n) difference,
as that of the Language

{(w, u) : |w| = |u| and w is a quadratic residue modulo u}.

It follows that, under the quadratic residuosity assumption [39], computing NQR
requires circuits of superpolynomial size. The remainder of this section will be devoted
to proving the existence of an efficient nonlinear secret-sharing scheme for NQR.
Specifically, we show the following theorem.

Theorem 4.3. There exists a statistical secret-sharing scheme for NQRm in
which

• the secret-domain is {0, 1},
• the share size of each party is O(k2+km) (where k is the security parameter),
• the reconstruction error probability is 2−k,
• the privacy level is ε(k) = O(k/2k).

Our secret-sharing scheme for NQRm proceeds as follows. Let D
def
= 24m+3k+1.

In what follows, all arithmetic operations will be performed in ZD. The dealer chooses
z0, z1, . . . , z2m−1 ∈ ZD at random subject to the restriction that they sum to 0. In
addition, it chooses two random integers 1 ≤ r ≤ 2m+k and 1 ≤ r′ ≤ 23(m+k).
Each party receives a single element of ZD, as specified in Table 4.1. For amplifying
the correctness probability, the above distribution procedure should be independently
repeated k times, so that each party receives k elements of ZD. In addition, the
minimal authorized sets of size 2 should be taken care of separately, by independently
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Let SUMw,u be the sum of the 2m shares held by parties in Bw,u.
If gcd(w, u) = 1, then (* w is a quadratic nonresidue modulo u *).

If SUMw,u is a quadratic residue modulo u, then s = 0 else s = 1.
If gcd(w, u) �= 1, then

Let c = gcd(w, u),
If c divides SUMw,u, then s = 1 else s = 0.

Fig. 4.1. Reconstruction procedure for Bw,u in NQRm.

sharing s among each such authorized pair (that is, for each such pair choose an
independent random bit α, and give α to the first party and α ⊕ s to the second).12

This adds only a single bit to the size of each share. The following analysis will mostly
focus on the core of the scheme, as described in Table 4.1.

Statistical correctness. The minimal authorized sets of size 2 were explicitly taken
care of in the above construction. It thus remains to prove the correctness for a subset
Bw,u, where w is not a quadratic residue modulo u. The following lemma, which
can be verified by inspection of Table 4.1, is used to show how to reconstruct the
secret.

Lemma 4.4. Let SUMw,u be the sum of the 2m shares held by parties in Bw,u.
Then, SUMw,u = r2ws + r′u for any 0 ≤ w, u < 2m and secret s ∈ {0, 1}.

Note that by our choice of parameters, the expression r2ws + r′u in Lemma 4.4
is always less than D. We will therefore treat this expression as being evaluated over
the integers.

If r was chosen such that gcd(r, u) = 1, then the correctness would follow from
similar arguments to those of the proof for NQRP (that is, the secret is reconstructed
by checking if the sum of shares is a quadratic residue modulo u). However, since
here u is not fixed, we cannot guarantee that the above condition always holds. Nev-
ertheless, this already implies that the secret can be correctly reconstructed from the
shares in Table 4.1 with a one-sided error probability of at most 1−ϕ(u)/u, which is
bounded away from 1 (that is, it is 1−O(1/ log log u)). The following tighter analysis,
which does not assume that gcd(r, u) = 1, shows that the one-sided error probability
of reconstruction is at most 1/2. Hence, with k independent repetitions the error
probability is at most 2−k. In Figure 4.1 we present the reconstruction procedure and
then prove its correctness.

From now on, we assume that u ≥ 2 (the case that u = 0 and w �= 1 can be
verified separately). Suppose first that gcd(w, u) = c > 1, and let c′ > 1 be a prime
dividing c. In this case, c always divides r2w+ r′u, whereas c divides r2 + r′u implies
that c′ divides r. Thus, with probability at least 1 − 1/c′ ≥ 1/2, the gcd c does not
divide r2 +r′u. It follows that when gcd(w, u) > 1 the case s = 0 can be distinguished
from the case s = 1 with a one-sided error probability of at most 1/2, as described
above.

Now suppose that w is a quadratic nonresidue modulo u. In this case, r2 + r′u ≡
r2 mod u is always a square modulo u. This implies that SUMw,u is a quadratic
residue when s = 0. The following lemma shows that with probability at least 1/2,
this is not the case for r2w + r′u, i.e., when s = 1.

Lemma 4.5. Suppose that w is a quadratic nonresidue modulo u (in particular,

12In fact, as in the previous construction this additional sharing is unnecessary for sets of the

form
{
W 0

i ,W
1
i

}
.
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gcd(w, u) = 1). Then, the probability that r2w is a quadratic residue modulo u is at
most 1/2.

Proof. By the Chinese remainder theorem, a number is a quadratic-residue mod-
ulo u iff it is a quadratic-residue modulo each prime power dividing u. Thus, there
exists a prime power pα dividing u such that w is a quadratic nonresidue modulo pα.
Now, if wr2 is a square modulo u, then it is also a square modulo pα, and so there
exists d such that d2 ≡ wr2 mod pα. We argue that it must be the case that p divides
r. Otherwise, r has an inverse modulo pα and w ≡ (d/r)2 mod pα, contradicting the
fact that w is a quadratic nonresidue modulo pα. The lemma follows by noting that
the probability that p divides r is at most 1/p ≤ 1/2, as required.

This concludes the analysis of the reconstruction procedure described above. Note
that this reconstruction procedure is computationally inefficient if the factorization
of u is unknown.

Statistical privacy. We now prove the privacy of our construction. As before, it
suffices to consider maximal unauthorized sets of two types. The first type consists of
sets C such that |C| < 2m and C does not contain a pair W 0

i ,W
1
i or a pair U0

i , U
1
i .

For such a set C, it can be verified that the shares received by its parties are uniformly
and independently distributed over ZD, regardless of the secret s.

We turn to the more interesting case of a set C = Bw,u such that u ≥ 2 and
w is a quadratic residue modulo u. (The cases u = 1 and u = 0, w = 1 can be
verified separately.) When s = 0 the shares are random subject to the restriction
that their sum is r2 + r′u, and when s = 1 the shares are random subject to the
restriction that their sum is r2w + r′u. Thus, it suffices to show that in this case
SD(r2 + r′u, r2w + r′u) = O(2−k). We prove this using the following lemmas. In
the lemmas we denote by r and r′ the random variables used in the scheme (taking
uniform integral values from the intervals [1, 2m+k] and [1, 23(m+k)], respectively). For
the proof we also use an additional random variable ru which is a uniformly distributed
integer in [0, u− 1].

Lemma 4.6. If w is a quadratic residue modulo u, then the distribution of
(wr2

u) mod u is identical to that of r2
u mod u.

Proof. Since w is a quadratic residue modulo u, there exists b such that gcd(b, u) =
1 and b2 ≡ w mod u. Since wr2

u ≡ (bru)2 mod u, it suffices to show that (bru) mod u
is identically distributed to ru mod u = ru. Finally, since gcd(b, u) = 1, i.e., b has an
inverse modulo u, then Pr[bru ≡ β] = Pr[ru ≡ (β/b)] = 1/u for every value β.

Lemma 4.7. SD(r2 mod u , r2
u mod u) ≤ 2−k.

Proof. Recall that r is chosen uniformly from the interval [1, 2m+k]. If u divides
2m+k, then the above two distributions are identical. Otherwise, the contribution of
each y ∈ [0, u − 1] to this distance is at most 1/2m+k, and since u < 2m the total
contribution is at most 2m/2m+k = 2−k.

From the previous two lemmas, we may conclude that

SD(wr2 mod u, r2 mod u) = O(2−k).(4.1)

Now, define the multisets

V =
{
wr2 mod u : 1 ≤ r ≤ 2m+k

}
and

Z =
{
r2 : 1 ≤ r ≤ 2m+k

}
.
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Let Z ′ be a maximal multiset such that Z ′ ⊆ Z and Z ′ mod u
def
= {z mod u : z ∈

Z ′} ⊆ V . It follows from (4.1) that |Z ′| = (1 − O(2−k))|Z|. Define S = Z ′ ∪
(V \ (Z ′ mod u)). Note that |S| = |V | = 2m+k. We will denote the elements of
S by y1, . . . , y2m+k and the uniform distribution over S by Y . It follows from the
above information that Y satisfies the following: (1) SD(Y, r2) = O(2−k); (2) the
distribution of Y mod u is identical to that of wr2 mod u; and (3) Y ≤ 22(m+k).

We would like to conclude that SD(wr2 + r′u, r2 + r′u) = O(2−k). To this end,
we use the following lemma.

Lemma 4.8. Let y, z be two integers in some interval [0,M ] such that y ≡
z mod u, and let R be uniformly distributed in the interval [1,MK]. Then, SD(y +
Ru , z + Ru) ≤ 1/K.

Proof. The statistical distance is bounded by |y − z|/(uMK) ≤ M/(uMK) <
1/K.

We are now ready to complete the proof of privacy. From Property (1) of Y it
follows that

SD(Y + r′u, r2 + r′u) = O(2−k).(4.2)

From Property (2) of Y , we may assume that yr ≡ wr2 mod u for every 1 ≤ r ≤ 2m+k.
Letting M = 23m+2k and K = 2k, both Y and wr2 are no larger than M , and r′ is
uniform in [1,MK]. Since

SD(Y + r′u,wr2 + r′u) ≤ Er[SD(yr + r′u,wr2 + r′u)]

it follows from Lemma 4.8 that

SD(Y + r′u,wr2 + r′u) ≤ 2−k.(4.3)

Combining (4.2) and (4.3) we get that SD(wr2 + r′u, r2 + r′u) = O(2−k), as required.
As explained above, to reduce the error probability in the reconstruction from

1/2 to 2−k we share the secret independently k times. By standard arguments, this
can only increase the statistical distance to O(k/2k), which is still negligible in k.

4.1. A perfectly correct scheme. In this section we show that under the
extended Riemann hypothesis (ERH), one can obtain a variant of the above scheme
which is perfectly correct, though still only statistically private. (It is open if there is
a scheme with perfect correctness and privacy which efficiently realizes NQR.) The
only required modification is the choice of r: instead of choosing it uniformly from the
interval [1, 2m+k], it is chosen as a random prime from the interval [2m, 2m+k]. Since
u < 2m, this guarantees that r is relatively prime to u, and this in turn is sufficient
to guarantee perfect correctness. We next argue that under the ERH, the resulting
scheme is statistically private.

We will need the following results on the distribution of primes. For more infor-
mation on this subject the reader might consult, e.g., [3, Chapter 8]. For an integer x
let π(x) be the number of primes in the interval [1, x], and for integers x,w, and u let
π(x, u, w) be the number of primes in the interval [1, x] that are congruent to w mod u.
It is known that π(x) ≈ x/ log x. If gcd(w, u) > 1, then every number that is con-
gruent to w mod u is a composite. It turns out that the primes are nearly uniformly
distributed among the other residue classes modulo u. That is, if gcd(w, u) = 1, then
π(x, u, w) ≈ 1

ϕ(u)x/ log x, where ϕ(u) is the Euler function of u.

We will need good bounds on the error terms in the above approximations. The
bounds that can be proved unconditionally are too crude for our purpose, and we will



272 AMOS BEIMEL AND YUVAL ISHAI

need bounds based on the ERH. Proving this famous hypothesis is one of the most
important open questions in mathematics. We will not formulate the statement of this
hypothesis, and only state the following conclusion from the ERH. The estimations
that are used to derive the next theorem are presented in Appendix B, where it is
also shown how to derive Theorem 4.9 from these estimations.

Theorem 4.9. If the ERH holds and gcd(w, u) = 1, then for every x and x′,
where u ≤ x′ ≤

√
x,∣∣∣∣π(x, u, w) − π(x′, u, w)

π(x) − π(x′)
− 1

ϕ(u)

∣∣∣∣ = O

(
log2 x√

x

)
,

where the constant in the “O” notation is an absolute constant independent of w, u,
and x.

Notice that π(x,u,w)−π(x′,u,w)
π(x)−π(x′) is the probability that a uniformly random prime in

the interval [x′, x] is congruent to u modulo w. Thus, the above theorem states that
this probability is close to the probability that a uniformly random element from Z∗

u

is equal to w.
Corollary 4.10. Let u < 2m, U be a random variable distributed uniformly in

Z∗
u, and r be a uniformly chosen prime in the interval [2m, 2m+k]. If the ERH holds,

then SD(U, r mod u) ≤ 2−Ω(k) for every k and m such that k ≥ 3m, and in particular
SD(U2 mod u, r2 mod u) ≤ 2−Ω(k).

Proof.

SD(U, r mod u) =
1

2

∑
y∈Z∗

u

|Pr[U = y] − Pr[r mod u = y]|

≤ ϕ(u) ·O
(

(m + k)2√
2m+k

)

= O

(
2m(m + k)2

20.5(m+k)

)
= 2−Ω(k).

The last equality holds since k ≥ 3m.
To guarantee that the statistical distance decreases exponentially with the security

parameter independently of m, we execute the scheme with k′ = max(k, 3m). Closely
following the privacy proof of the previous protocol (and replacing Lemma 4.7 with
Corollary 4.10), one can show that the scheme is statistically private with ε(k) =
2Ω(−k). The next theorem summarizes the properties of this scheme.

Theorem 4.11. If the ERH holds, then there exists a statistical secret-sharing
scheme for NQRm with perfect correctness in which

• the secret-domain is {0, 1},
• the share size of each party is O(k + m),
• the privacy level is ε(k) = 2−Ω(k).

4.2. Schemes for t-residuosity. The quadratic residuosity problem naturally
generalizes to the t-residuosity problem defined as follows. An integer w is a t-residue
modulo u if gcd(w, u) = 1 and there exists an integer b such that w ≡ bt mod u. The
non-t residue access structure (NtR) is defined as the access structure NQR, with
quadratic residuosity replaced by tth residuosity.

A scheme for NtR can be obtained by the following small modification to the
scheme for NQR: the ring size D is changed to 2(t+2)m+(t+1)k+1, the random string r′

is chosen with uniform distribution from [1, 2(t+1)(t+k)], and in the dealer’s distribution
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procedure we replace r2 by rt. The correctness and privacy of the modified scheme are
argued similarly to the original scheme. These modification also work in the scheme
based on the ERH.

An interesting special case of the general scheme is when t = 1. In the resultant
scheme, Bw,u can reconstruct the secret iff the integers w and u are not coprimes
(i.e., gcd(w, u) > 1). Hence, its access structure is computationally equivalent to the
coprimality problem. Checking if two integers are coprimes is clearly in P, and it is not
known to be in NC. The best parallel algorithms for the coprimality problem compute
the gcd. The question if the gcd can be computed in parallel, that is, with polyloga-
rithmic time and polynomial number of processors, was first raised by Cook [25] and
is still open. Parallel algorithms with sublinear time, namely, O(n/ log n) time, and
polynomial number of processors were presented by [44, 24, 56]. Parallel algorithms
with polylogarithmic time and subexponential number of processors were presented
by [1]. An important feature of this instance of the general construction is that it is
computationally efficient: indeed, reconstruction only requires checking if gcd(w, u)
divides SUMw,u.

5. Quasi-linear secret-sharing. In this section we study a natural extension of
the class of linear secret-sharing schemes to what we call quasi-linear schemes. Quasi-
linear schemes are obtained by composing a finite number of linear secret-sharing
schemes, possibly over different fields.

Towards defining quasi-linear schemes, it will be convenient to use the follow-
ing notation for extending the secret-domain of a given secret-sharing scheme to an
arbitrarily large finite domain.

Definition 5.1. Let Π be a secret-sharing scheme with secret-domain S and
share-domains S0, . . . , Sn−1, let T = {0, 1, . . . , |T | − 1} be any finite secret-domain,
and let � = �log|S| |T |�. Then, by Π̃T we denote the randomized mapping from T

to S�
0 × · · · × S�

n−1 defined as follows. For a secret t ∈ T , let (t1, . . . , t�) denote its

base-|S| representation, where ti ∈ S for all i. The output of Π̃T (t) is obtained by
independently applying Π to each ti and letting the ith entry of the output be the
concatenation of the ith entries from the � outputs of Π.

As can be easily seen, Π̃T defines a secret-sharing scheme realizing the same
access structure as Π, whose secret-domain is T and whose share-complexity is � =
�log|S| |T |� times that of Π. We are now ready to formally define the notion of quasi-
linear schemes.

Definition 5.2 (quasi-linear secret-sharing). An n-party quasi-linear secret-
sharing scheme is recursively defined as follows:

1. Any n-party linear secret-sharing scheme is an n-party quasi-linear scheme.
2. Suppose that Π is an n′-party linear scheme over a field F with share-domains

S0, . . . , Sn′−1, and let Π0, . . . , Πn′−1 be n-party quasi-linear schemes. Then,
define an n-party quasi-linear secret-sharing scheme Π(Π0, . . . , Πn′−1) with
secret-domain F as follows. To share s ∈ F , first apply Π(s) to obtain
shares s0, . . . , sn′−1. Then, identifying each share-domain Si with the set
{0, 1, . . . , |Si| − 1}, independently share each si among the n parties using
Π̃i

Si
.

It is convenient to view an n-party quasi-linear scheme Π as a tree, in which every
node contains a linear secret-sharing scheme. Associating each linear scheme with its
corresponding monotone span program, we may view this tree as a Boolean formula
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ϕΠ over the basis of all monotone span programs (over all finite fields);13 that is, each
gate in the formula computes the Boolean function computed by a monotone span
program. For brevity we refer to such a formula as an MSP-formula.

The following proposition establishes the correspondence between a quasi-linear
scheme and its associated MSP-formula. Its proof is a generalizing of the proof for
the AND-OR-threshold formula construction from [10].

Proposition 5.3. Let Π be a quasi-linear secret-sharing scheme and ϕΠ be the
corresponding MSP-formula. Then, Π realizes the access structure computed by ϕΠ.

The scheme Π(Π0, . . . , Πn′−1) from case (2) in Definition 5.2 is just the standard
definition of composition of Π with Π0, . . . , Πn′−1, thus, a formal proof of Proposi-
tion 5.3 follows, by induction, from, e.g., [47, 48].

Beimel and Weinreb [8] proved that quasi-linear schemes are strictly stronger than
linear schemes. More precisely, they proved that there are explicit functions that have
small quasi-linear schemes; however, they require linear schemes of size nΩ(log n). We
show next that quasi-linear schemes cannot be too powerful. More specifically, if
there is an efficient quasi-linear scheme for f , then f can be computed by a shallow
circuit. The idea of the proof is to consider the corresponding MSP-formula ϕ. We
use a result of [5] showing that a formula ϕ over a general basis can be “balanced” to
obtain an equivalent formula whose depth is small and its size is not too big (this is
a generalization of the well-known result from [57] for bounded fan-in formulae over
the standard basis). An instantiation of this result, which is useful for our purposes,
is quoted in the following lemma.

Lemma 5.4 (see Beigel and Fu [5]). Let ϕ be a MSP-formula. Then, there exists
a MSP-formula ϕ̂ such that (1) ϕ̂ computes the same function as ϕ, (2) the depth of
ϕ̂ is O(log(size(ϕ))), (3) the size of ϕ̂ is size(ϕ)O(1), and (4) each node of ϕ̂ is either
labeled by some span program appearing in ϕ, or is labeled by an AND, OR, or NOT
gate.

Theorem 5.5. Suppose that f is efficiently realized by quasi-linear schemes.
Then, f ∈ NC4.

Proof. Let Π be an efficient quasi-linear scheme realizing f , and let ϕ be the
corresponding MSP-formula. We may assume without loss of generality that the span
program labeling each internal node of ϕ depends on all of its inputs, and has at
least two inputs; otherwise, Π could be simplified into a quasi-linear scheme Π′ whose
MSP-formula ϕ′ satisfies this property. As the number of leaves in such a ϕ is a
lower bound on the complexity of Π (and the degree of each internal node of ϕ is
at least 2), ϕ must be of size poly(n). It also follows that each node v of ϕ must
be labeled by a polynomial-size monotone span program Mv over a field GF(qv) such
that log qv = poly(n).14 By Lemma 2.7, the function fv computed by Mv can be
simulated by a Boolean circuit of size poly(n) and depth O(log3 n). The theorem
follows by applying Lemma 5.4 to ϕ and replacing each node in ϕ̂ by a corresponding
NC3 circuit.

We conclude this section by showing an application of quasi-linear schemes for the
construction of secret-sharing schemes efficiently realizing monotone span programs
over a ring Zu, where u is a square-free composite.15

13An input variable is viewed as a size-1 monotone span program in the variables x0, . . . , xn−1

returning its value.
14The converse does not hold. It is easy to construct a polynomial-size MSP-formula (even a

shallow one) which is efficient in this sense, but whose corresponding quasi-linear scheme is inefficient.
15Span programs over rings are defined in a completely analogous way to span programs over

fields.
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Theorem 5.6. Let M̂ = 〈M,ρ,�v〉 be a monotone span program over Zu, where
u is the product of k distinct primes p1, . . . , pk. Then, there exists a quasi-linear
scheme ΠM realizing the access structure defined by M , whose share-complexity is
size(M) ·

∑k
j=1 �log pj� = O(size(M) · log u).

Proof. The scheme ΠM is defined by the following depth-2 MSP-formula ϕM .
The root contains an AND gate with fan-in k (represented by a size-k monotone
span program over GF(2)). The jth leave, 1 ≤ j ≤ k, contains a monotone span

program M̂j = 〈Mj , ρ, �vj〉 over GF(pj), obtained from M̂ by reducing each of M
and �v entries modulo pj . By Proposition 5.3, to prove that ΠM indeed realizes the

access structure defined by M̂ it suffices to show that ϕM computes the same function
as M̂ . Indeed, if M(x) = 1, then clearly Mj(x) = 1 for all j (as witnessed by the
same linear combination, modulo pj). The converse follows by applying the Chinese
remainder theorem to the k linear combination vectors witnessing that Mj(x) = 1,
where 1 ≤ j ≤ k.16

Example 5.7. Figure 5.1 shows an efficient span program over Zu for testing
whether the input x (viewed as an integer) is coprime to u. Replacing each negative
literal with a new variable, we get a monotone span program for an access structure
whose complexity is equivalent to deciding whether x is coprime to some fixed integer
u.17 Using Theorem 5.6, we get a very efficient quasi-linear scheme for this access
structure. We note that the scheme from section 4.2 is stronger in the sense that it ef-
ficiently applies to the standard coprimality problem (with no fixed inputs). However,
this scheme only realizes the relaxed notion of statistical secret-sharing.

x̄0 0 1 0 0 · · · 0 0 0

x0 1 1 0 0 · · · 0 0 0

x̄1 0 -1 1 0 · · · 0 0 0

x1 2 -1 1 0 · · · 0 0 0
...

...
. . .

...

x̄n−2 0 0 0 0 · · · 0 -1 1

xn−2 2n−2 0 0 0 · · · 0 -1 1

x̄n−1 0 0 0 0 · · · 0 0 -1

xn−1 2n−1 0 0 0 · · · 0 0 -1

target 1 0 0 0 · · · 0 0 0

Fig. 5.1. A span program over Zu testing whether gcd(x, u) = 1.

Appendix A. A generalization of the scheme from section 3. In this
section we show how to generalize the scheme for NQRP to similar access structures.
This generalization will uncover what algebraic properties we use in our construction,
and will supply us with a few more examples.

16If �vj = �0 for some j, then M̂j should accept every input (as witnessed by the trivial combination
of rows). However, in the definition of span programs we require that the target vector is a nonzero
vector. Thus, ΠM has a leaf for every j such that �vj �= �0.

17Whether x is coprime to u can be tested in NC1 given advice depending on u (namely, its
factorization). Hence, there exist efficient linear secret-sharing schemes for this access structure.
Still, the exact efficiency of the quasi-linear scheme is much better. See Example A.2 for an efficient
nonlinear realization which does not rely on the factorization of u.
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Let R = 〈A,+, ∗〉 be a finite ring and B ⊆ A \ {0} be such that G = 〈B, ∗〉
is a group.18 In the sequence, all arithmetic operations involving ring elements are
performed in the ring. We assume that 2 ∗ a �= 0 for every a ∈ R \ {0}. We define the
access structure AR,G in a similar way to NQRP.

Definition A.1 (the access structure AR,G). Let m
def
= �log |R|. We define the

n-party access structure AR,G, where n
def
= 2m, by specifying its collection of minimal

sets. With an integer w ∈ {0, 1}m we naturally associate a set Bw of size m defined
by

Bw
def
= {Pwi

i : 0 ≤ i < m}.

A set B is a minimal set of AR,G if
• B =

{
P 0
i , P

1
i

}
for some 0 ≤ i < m, or

• B = Bw for some w ∈ {0, 1}m such that w /∈ G.
We next show haw to generalize the scheme for NQRP to a scheme for AR,G.
Distribution. The dealer chooses at random m−1 random elements z0, . . . , zm−2 ∈

R and an additional random element r ∈ G. Define zm−1
def
= −

∑m−2
i=0 zi. The shares

of the parties are specified in Table A.1.

Table A.1

A secret-sharing scheme for AR,G.

s = 0 s = 1

P b
0 , where b ∈ {0, 1} r + zi br + zi

P b
i , where 1 ≤ i < m, b ∈ {0, 1} zi 2ibr + zi

The reconstruction is similar to the scheme for NQRP, where if B = Bw for
some w /∈ G, then s = 0 iff SUMw ∈ G. The correctness of this rule follows from the
fact that if w /∈ G and b ∈ G, then w ∗ b /∈ G.

For the security, we only consider the case where C = Bw for some w ∈ G. (The
first case is identical to the scheme for NQRP.) In this case we claim that, regardless
of the value of the secret, the vector-share of the parties in C is a random vector such
that SUMw ∈ G. This is clearly true when s = 0. When s = 1, the sum SUMw is
r
∑m−1

i=0 wi2
i = rw, and since r is a random element of G and w has an inverse in G,

the product is a random element of G.
We next show a few examples of access structures.
Example A.2. Let N be a positive integer, R = 〈ZN ,+, ∗〉, and G = 〈Z∗

N , ∗〉.
In this case, an efficient linear scheme for AR,G exists (see footnote 17). A quasi-
linear scheme for this access structure is described in Example 5.7. However, both
the linear and the quasi-linear schemes require knowing the factorization of N . The
nonlinear scheme does not require knowledge of the factorization, and all the compu-
tations involved are efficient.

Example A.3. Let p be a prime, R = 〈Zp2 ,+, ∗〉,

B =
{
w ∈ Zp2 : wp−1 ≡ 1 mod p2

}
,

and G = 〈B, ∗〉. In this case we do not know if there is a quasi-linear scheme for
AR,G, or even if AR,G is in NC.

18We do not even need all the properties of these algebraic structures.
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Appendix B. Explicit estimates implied by the ERH. The next theorem
gives explicit bounds on the error term in the approximation of the distribution of
the primes.

Theorem B.1. Let li(x)
def
=

∫ x

2
dt

log t . If the ERH holds, then for x ≥ 2657

x

log x + 2
< π(x) <

x

log x− 4
, [3, Theorem 8.8.1](B.1)

and

|π(x) − li(x)| ≤
√
x log x/8π. [3, p. 249](B.2)

Moreover, if the ERH holds, u ≤ x, and gcd(w, u) = 1, then∣∣∣∣π(x, u, w) − li(x)

ϕ(u)

∣∣∣∣ ≤ √
x(log x + 2 log u)(B.3)

≤ 3
√
x log x. [3, Theorem 8.8.18]

We next show how we derive Theorem 4.9 from Theorem B.1. That is, we prove
that if the ERH holds and gcd(w, u) = 1, then for large x and x′, where u ≤ x′ ≤

√
x,∣∣∣∣π(x, u, w) − π(x′, u, w)

π(x) − π(x′)
− 1

ϕ(u)

∣∣∣∣ = O

(
log2 x√

x

)
.

First, by (B.1) and since π(x′) ≤ x′ ≤
√
x,

π(x) − π(x′) >
x

log x + 2
−
√
x >

x

2 log x
.(B.4)

Second, by (B.3), (B.2), and since π(x′) ≤ x′ ≤
√
x,

π(x, u, w) <
li(x)

ϕ(u)
+ O(

√
x log x) <

π(x) − π(x′)

ϕ(u)
+ O(

√
x log x).(B.5)

Therefore, by (B.5) and (B.4),

π(x, u, w) − π(x′, u, w)

π(x) − π(x′)
<

π(x, u, w)

π(x) − π(x′)
≤ 1

ϕ(u)
+ O

( √
x log x

π(x) − π(x′)

)

≤ 1

ϕ(u)
+ O

(
log2 x√

x

)
.

On the other hand, by (B.3), since π(x′, u, w) < x′ ≤
√
x, and by (B.2), and (B.1),

π(x, u, w) − π(x′, u, w) >
li(x)

ϕ(u)
−O(

√
x log x) −

√
x

>
π(x) −

√
x log x/8π − π(x′)

ϕ(u)
−O(

√
x log x)

>
π(x) − π(x′)

ϕ(u)
−O(

√
x log x).(B.6)

Thus, by (B.6) and (B.4)

π(x, u, w) − π(x′, u, w)

π(x) − π(x′)
>

1

ϕ(u)
−O

( √
x log x

π(x) − π(x′)

)
≥ 1

ϕ(u)
−O

(
log2 x√

x

)
.

Acknowledgment. We wish to thank Eric Allender, Daniel Berend, Yuval Gi-
nosar, and Dieter van Melkebeek for helpful discussions and pointers.



278 AMOS BEIMEL AND YUVAL ISHAI

REFERENCES

[1] L. M. Adleman and K. Kompella, Using smoothness to achieve parallelism, in Proceedings
of the 20th Annual ACM Symposium on the Theory of Computing, 1988, pp. 528–538.

[2] L. Babai, A. Gál, and A. Wigderson, Superpolynomial lower bounds for monotone span
programs, Combinatorica, 19 (1999), pp. 301–319.

[3] E. Bach and J. Shalit, Algorithmic Number Theory, Vol. 1. Efficient Algorithms, MIT Press,
Cambridge, MA, 1996.

[4] P. Beguin and A. Cresti, General short computational secret sharing schemes, in Advances
in Cryptology – EUROCRYPT ’95, L. C. Guillou and J. J. Quisquater, eds., Lect. Notes
in Comput. Sci. 921, Springer-Verlag, Berlin, 1995, pp. 194–208.

[5] R. Beigel and B. Fu, Circuits over PP and PL, J. Comput. Syst. Sci., 60 (2000), pp. 422–441.
Preliminary version in the proceedings of the 12th Annual IEEE Conference on Computa-
tional Complexity, 1997, pp. 24–35.

[6] A. Beimel, Secure Schemes for Secret Sharing and Key Distribution, Ph.D. thesis, Technion–
Israel Institute of Technology, Haifa, Israel, 1996.

[7] A. Beimel, A. Gál, and M. Paterson, Lower bounds for monotone span programs, Comput.
Complexity, 6 (1996/1997), pp. 29–45. Conference version: FOCS ’95.

[8] A. Beimel and E. Weinreb, Separating the power of monotone span programs over different
fields, in Proceeding of the 44th Annual IEEE Symposium on Foundations of Computer
Science, Cambridge, MA, 2003, pp. 428–437.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations, in Proceedings of the 20th Annual ACM
Symposium on the Theory of Computing, Chicago, IL, 1988, pp. 1–10.

[10] J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in Ad-
vances in Cryptology – CRYPTO ’88, S. Goldwasser, ed., Lect. Notes in Comput. Sci. 403,
Springer-Verlag, Berlin, 1990, pp. 27–35.

[11] J. Benaloh and S. Rudich, Private communication, 1989.
[12] S. J. Berkowitz, On computing the determinant in small parallel time using a small number

of processors, Inform. Process. Lett., 18 (1984), pp. 147–150.
[13] M. Bertilsson and I. Ingemarsson, A construction of practical secret sharing schemes using

linear block codes, in Advances in Cryptology – AUSCRYPT ’92, J. Seberry and Y. Zheng,
eds., Lect. Notes Comput. Sci. 718, Springer-Verlag, Berlin, 1993, pp. 67–79.

[14] G. R. Blakley, Safeguarding cryptographic keys, in Proceedings of the 1979 AFIPS National
Computer Conference, R. E. Merwin, J. T. Zanca, and M. Smith, eds., Vol. 48 of AFIPS
Conference Proceedings, AFIPS Press, Arlington, VA, 1979, pp. 313–317.

[15] C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, On the information rate of secret
sharing schemes, Theoret. Comput. Sci., 154 (1996), pp. 283–306.

[16] D. Boneh and M. Naor, Timed commitments, in Advances in Cryptology – CRYPTO 2000,
M. Bellare, ed., Lect. Notes Comput. Sci. 1880, Springer-Verlag, Berlin, 2000, pp. 236–254.

[17] A. Borodin, J. von zur. Gathen, and J. Hopcroft, Fast parallel matrix and GCD compu-
tations, Inform. Control, 52 (1982), pp. 241–256.

[18] E. F. Brickell, Some ideal secret sharing schemes, J. Combin. Math. Combin. Comput., 6
(1989), pp. 105–113.

[19] E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes,
J. Cryptology, 4 (1991), pp. 123–134.

[20] E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect
secret sharing schemes, J. Cryptology, 5 (1992), pp. 153–166.

[21] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, Structure and importance of the
logspace-mod class, Math. Systems Theory, 25 (1992), pp. 223–237.

[22] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the size of shares for
secret sharing schemes, J. Cryptology, 6 (1993), pp. 157–168.
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CIRCULAR DISTANCE TWO LABELING AND THE λ-NUMBER
FOR OUTERPLANAR GRAPHS∗

DAPHNE DER-FEN LIU† AND XUDING ZHU‡

Abstract. Let G be a graph. A circular distance two labeling with span k is a function
f : V (G) → {0, 1, 2, . . . , k − 1} such that (1) 2 ≤ |f(u) − f(v)| ≤ k − 2 if u and v are adjacent
and (2) f(u) �= f(v) if u and v are of distance two apart. We denote by λc(G) the smallest span
of a circular distance two labeling for G. Let Δ(G) be the maximum degree of G. We prove, for
any outerplanar graph G with Δ(G) ≥ 15, λc(G) = Δ(G) + 3. It is also shown that there exist
outerplanar graphs G with Δ(G) = 2, 3, 4, 5 for which λc(G) = Δ(G) + 4. Moreover, we prove that
λc(G) ≤ Δ(G) + 5 for any triangulated outerplanar graph, λc(G) ≤ Δ(G) + 7 for any outerplanar
graph, and λc(G) ≤ Δ(G) + 4 for any outerplanar graph with Δ(G) ≥ 11. Immediate consequences
of our results include that λ(G) ≤ Δ(G)+2 for any outerplanar graphs with Δ(G) ≥ 15, where λ(G)
is the minimum k of a k-L(2, 1)-labeling (or distance two labeling) for G.

Key words. circular distance two labeling, distance two labeling, L(2, 1)-labeling, outerplanar
graphs
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1. Introduction. Distance two labeling (or L(2, 1)-labeling) is motivated by the
channel assignment problem (cf. [4]). The task is to assign one nonnegative integral
channel to each of the given transmitters or stations so that interference is avoided
and the span of all the channels used is minimized.

Suppose that we are dealing with two levels of interference—major and minor.
Major interference occurs between two close transmitters. To avoid it, the difference
of the channels assigned to such a pair of transmitters must be at least 2. Minor
interference occurs between two transmitters that share a common close neighbor. To
avoid it, the difference of the channels assigned to such a pair of transmitters must
be at least 1.

Let G = (V,E) be the graph where each vertex represents a transmitter, and two
vertices are adjacent if the corresponding transmitters are close. The above channel
assignment corresponds to an L(2, 1)-labeling of G, which is defined to be a function
f : V (G) → {0, 1, 2, . . .} such that the following are satisfied, where dG(u, v) denotes
the distance between u and v in G:

• |f(x) − f(y)| ≥ 2 if dG(x, y) = 1; and

• |f(x) − f(y)| ≥ 1 if dG(x, y) = 2.

The span of f is defined as span(f) = maxx∈V f(x) − minx∈V f(x). If span(f) = k,
then f is called a k-L(2, 1)-labeling. Without loss of generality, for convenience we
assume that minx∈V f(x) = 0, and hence maxx∈V f(x) = span(f). The numbers
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0, 1, 2, . . . , k are called colors (or labels). The λ-number of G, denoted by λ(G), is the
minimum k such that G admits a k-L(2, 1)-labeling.

A circular distance two labeling with span k (or a k-Lc(2, 1)-labeling) of a graph
G is a function, f : V (G) → {0, 1, 2, . . . , k − 1} such that the following are satisfied:

• |f(x) − f(y)|k ≥ 2 if dG(x, y) = 1, and
• |f(x) − f(y)|k ≥ 1 if dG(x, y) = 2,

where |x− y|k, the modular k circular difference between x, y, is defined as |x− y|k =
min{|x−y|, k−|x−y|}. The circular λ-number of G, denoted by λc(G), is the smallest
k such that G admits a k-Lc(2, 1)-labeling. Circular distance two labelings and the
values of λc(G) for different families of graphs have been studied in [5, 7, 8, 9, 10].

By definition, every (k + 1)-Lc(2, 1)-labeling is a k-L(2, 1)-labeling, and every
k-L(2, 1)-labeling is a (k + 2)-Lc(2, 1)-labeling. Therefore, we have

λ(G) + 1 ≤ λc(G) ≤ λ(G) + 2.(1.1)

The colors in a circular distance two labeling are symmetric in the following sense.
Let f be a k-Lc(2, 1)-labeling of G. Then, for any i ∈ {0, 1, 2, . . . , k− 1}, the function
defined by f∗(u) = f(u) − i (mod k) is also a k-Lc(2, 1)-labeling for G. The colors
in a distance two labeling do not have this property. For instance, the star K1,n

has λ(G) = n + 1, and any optimal L(2, 1)-labeling must assign to the center vertex
either 0 or n + 1. This kind of asymmetry in colors sometimes causes difficulties in
discussion. In this article, we take advantage of the symmetry of colors in a circular
distance two labeling to explore the value of λc(G), which, by (1.1), gives good bounds
for the λ-number of G.

The circular λ-number of graphs is closely related to the circular chromatic num-
ber of edge weighted graphs, a notion introduced by Mohar [11]. An edge weighted
graph with vertex set V is a pair G = (V,A), where A : V × V → R+ ∪ {0} is
a weight assignment to the ordered pairs (u, v) ∈ V × V . For every (u, v), we write
auv = A(u, v). For a positive real number p, denote by Sp ⊂ R2 the circle with perime-
ter p centered at the origin of R2. For any x, y ∈ Sp, let l(x, y) denote the length of the
arc from x to y on Sp, in the clockwise direction. A circular p-coloring of G = (V,A)
is a function c : V → Sp such that l(c(u), c(v)) ≥ auv for every (u, v) ∈ V × V . The
circular chromatic number χc(G) of the graph G = (V,A) is the infimum of all real
numbers p for which there exists a circular p-coloring of G. If auv = avu for every
u, v ∈ V , then the weights are called symmetric.

For any undirected graph G(V,E), we construct a symmetric edge weighted graph
G(2, 1) = (V,A) by the following: (1) for each uv ∈ E(G), let auv = avu = 2; (2) if
u′ and v′ are distance two apart in G, then au′v′ = av′u′ = 1; and (3) auv = 0 for all
other pairs (u, v). It is not hard to verify that the following holds for any graph G [9]:

λc(G) = �χc(G(2, 1))	.

Determining λ(G) is an NP -complete problem, even restricted to special classes
of graphs, such as graphs with diameter 2 [3], planar graphs, bipartite graphs, chordal
graphs, or split graphs (cf. [1]). Research on the parameter λ(G) has been concen-
trated on finding good upper bounds for λ(G). Denote by Δ(G) the maximum degree
of G, or Δ when G is clear in the context. It is easy to see that for any graph G,
λ(G) ≥ Δ+1 and λc(G) ≥ Δ+3. For general upper bounds of λ(G), it was shown in
[3] that for any G, λ(G) ≤ Δ2+2Δ. Chang and Kuo [2] improved this bound by show-
ing that λ(G) ≤ Δ2 + Δ (where the proof actually shows that λc(G) ≤ Δ2 + Δ + 1).
Recently, using the notion of list coloring, Král’ and Škrekovski [6] further improved
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this bound to λ(G) ≤ Δ2 + Δ − 1. A still open conjecture [3] states that λ(G) ≤ Δ2

for any graph G. For special classes of graphs, better upper bounds are known. Below
we list some of the known results on λ(G) for some families of graphs.

Graphs λ(G) Reference
Trees Δ + 1 or Δ + 2 Chang and Kuo [2]

Chordal ≤ 1
4
(Δ + 3)2 Sakai [13]

Diameter two ≤ Δ2 Griggs and Yeh [3]

Planar ≤ 2.5Δ + 90 Molloy and Salavatipour [12]
Outerplanar (OP) ≤ Δ + 8 Bodlaender et al. [1]
Triangulated OP ≤ Δ + 6 Bodlaender et al. [1]

A graph is outerplanar if it can be embedded in the plane in such a way that all
the vertices lie on the infinite face. We call such an embedding an outerplane graph.
An outerplanar graph is triangulated if it is 2-connected (i.e., without cut-vertices)
and can be drawn as an outerplane graph such that each finite face is a triangle. In
searching for the λ-number of outerplanar graphs, Bodlaender et al. [1] proposed the
following.

Conjecture 1. For any outerplanar graph G, λ(G) ≤ Δ + 2.

The main result of this article is the following.

Theorem 1. For any outerplanar graph G with Δ ≥ 15, λc(G) = Δ + 3.

By (1.1), an immediate consequence of Theorem 1 is the confirmation of Conjec-
ture 1 for outerplanar graphs with large maximum degree.

Corollary 2. For any outerplanar graph G with Δ ≥ 15, λ(G) ≤ Δ + 2.

For outerplanar graphs with smaller maximum degree, we prove the following two
results.

Theorem 3. Suppose G is an outerplanar graph. Then λc(G) ≤ Δ(G) + 7.
Moreover, if G is triangulated, then λc(G) ≤ Δ(G) + 5.

Theorem 4. If G is an outerplanar graph and Δ(G) ≥ 11, then λc(G) ≤ Δ(G)+
4.

Combining Theorem 3 with (1.1), we are able to improve the bounds of the λ-
number for outerplanar graphs obtained in [1].

Note that the condition Δ(G) ≥ 15 in Theorem 1 cannot be simply removed. In
the last section of this article, we demonstrate the existence of outerplanar graphs G
with Δ(G) = 2, 3, 4, 5 and λc(G) = Δ(G) + 4.

2. Structure of outerplanar graphs. Let G be an outerplanar graph. Then
G can be transformed into a triangulated outerplane graph GT by adding some edges.
We call GT a triangulation of G. There may exist many triangulations of G; however,
we denote by GT an arbitrary but fixed triangulation.

Let G be a triangulated outerplane graph. We define a level function l on V (G),
by recursion, such that l(u) 
= l(v) if u ∼ v. Initially, choose an edge e = u1u2 on
the infinite face and let l(u1) = 1 and l(u2) = 2; we call e the root edge and u1, u2

the root vertices. Let X = {v ∈ V (G) : l(v) is defined}. While X 
= V (G), choose a
triangle (u, v, w) such that v, w ∈ X and u ∈ V (G) −X. Assume l(v) > l(w) (since
v ∼ w, by inductive hypothesis l(v) 
= l(w)). Let l(u) = l(v) + 1. The vertices w, v
are called the major parent and the minor parent of u and are denoted by w = f(u)
and v = m(u), respectively. It is easy to verify that, at each step, the subgraph G[X]
of G induced by X is a triangulated outerplane graph. This implies that if, at some
step, u ∈ V (G) −X is contained in a triangle (u, v, w) such that v, w ∈ X, then the
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triangle is unique. Hence, for any nonroot vertex u, the functions l(u), m(u) and f(u)
are well defined. The following lemma follows from the definitions.

Lemma 5. If u and m(u) are nonroot vertices, then f(u) ∈ {m(m(u)), f(m(u))}.
If u′ 
= u are two nonroot vertices, then {f(u),m(u)} 
= {f(u′),m(u′)}.

If v is a parent of u, then u is called a child of v. If v is the major (respectively,
minor) parent of u, then u is called a major (respectively, minor) child of v. If
m(u) = m(u′), then u and u′ are siblings. Note that a vertex may have many children.
However, the following lemma shows that each vertex has at most one sibling and at
most two children of the same level.

Lemma 6. Suppose G is a triangulated outerplanar graph with level function l.
Let v be a vertex and i a positive integer. Then v has at most two children u with
l(u) − l(v) = i. In particular, v has at most two minor children and at most one
sibling.

Proof. Let Wi = {x : x is a child of v with l(x) = l(v) + i}. We prove by
induction on i that |Wi| ≤ 2. If u ∈ W1, then m(u) = v. If v is a root vertex, then
it follows from the definition that |W1| ≤ 1. If v is a nonroot vertex, by Lemma 5,
f(u) ∈ {f(v),m(v)}. Hence, the parents of u are either {v, f(v)} or {v,m(v)}. By
Lemma 5, there is at most one vertex whose parents are {v, f(v)} and at most one
vertex whose parents are {v,m(v)}. Therefore |W1| ≤ 2. Assume |Wk| ≤ 2 for some
k ≥ 1. If u ∈ Wk+1, then v = f(u) and m(u) ∈ Wk. Since |Wk| ≤ 2, it follows from
Lemma 5 that |Wk+1| ≤ 2.

If u′ and u are siblings, then u and u′ are both minor children of m(u) = m(u′),
of level l(m(u)) + 1. As m(u) has at most two children with level l(m(u)) + 1, we
conclude that each vertex has at most one sibling.

If G is a nontriangulated outerplanar graph, then we define the level function
l on a triangulation GT of G, and view l as a function on G. Similarly, parents,
children and siblings are defined according to l in the same manner. Note that as G
is nontriangulated, a vertex u may not be adjacent to its parents.

Next, we define a lexicographic ordering ≺ on V (G) by the following:
• u1 ≺ u2.
• If m(u) ≺ m(u′), then u ≺ u′. If m(u) = m(u′), then u ≺ u′ if and only if

f(u) ≺ f(u′).
By Lemma 5, ≺ is a linear ordering on V (G). Throughout this article, we write

V (G) as V (G) = {v1, v2, . . . , vn}, where vi ≺ vj if and only if i < j. In particular,
v1 = u1, v2 = u2 are the two root vertices.

Let t be an integer, 1 ≤ t ≤ n. Denote Vt = {v1, v2, . . . , vt}. Let w ∈ V . We
denote the number of neighbors of w in Vt by s[w, t], that is,

s[w, t] = |{vj : j ≤ t, vj ∼ w}|.

Observe that for any nonroot vertex w = vb of an outerplanar graph G, if f(w) =
vi and m(w) = vj , then i < j < b, s[w, i] ≤ 1, and s[w, j] = s[w, b] ≤ 2. Moreover, we
have the following.

Lemma 7. Let G be an outerplanar graph and GT a triangulation of G. Let
w ∈ V (G). Suppose w ∼ vt in GT .

(1) If s[w, t] ≥ 5, then w = f(vt).
(2) If s[w, t] ≥ 7, then f(m(vt)) = w.
(3) If s[w, t] ≥ 9, then f(m(m(vt))) = w.
(4) If m(vt) = vt′ , then s[w, t] − s[w, t′] ≤ 2.
(5) If w = f(vl) = f(vt), and vl ∼ vt for some l, then |s[w, t] − s[w, l]| ≤ 2.
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Proof. The neighbors of w in GT , in the ordering ≺, are, first, the parents of w;
second, the minor children of w; and finally, the major children of w. Note that w has
only two parents and, by Lemma 6, at most two minor children. Hence, if s[w, t] ≥ 5,
then vt must be a major child of w; i.e., w = f(vt). So (1) holds.

The rest of the lemma can be proved similarly, and we omit the details.

3. Proofs of Theorems 3 and 4. Suppose G is an outerplanar graph with
vertex set V = {v1, v2, . . . , vn}, ordered as in section 2. To prove Theorems 1, 3, and
4, it suffices to find a k-Lc(2, 1)-labeling for G, with the corresponding desired value
of k. We regard the colors {0, 1, 2, . . . , k−1} on a circular palette, and all calculations
are taken modulo k. Let C be a proper subset of colors on this color palette. A
segment of C is a maximal interval of consecutive colors of C, i.e., a set I of colors of
the form I = {j, j+1, . . . , l} such that I ⊂ C and j−1, l+1 
∈ C. The colors between
two consecutive segments are called a gap of C. As we are working on a circular color
palette (i.e., modulo k), the number of gaps is the same as the number of segments.

Let C be a proper subset of {0, 1, 2, . . . , k − 1}. A color j is called attaching to
C if j + 1 or j − 1 belongs to C. A color j is called a filling color of C if both j + 1
and j − 1 belong to C. Denote by A(C) and F (C), respectively, the set of attaching
colors and the set of filling colors of C.

Proposition 8. Let C be a proper subset of {0, 1, 2, . . . , k − 1} (mod k).
(1) If x ∈ F (C) − C, then {x} is a (singleton) gap of C.
(2) If x ∈ C −A(C), then {x} is a (singleton) segment of C.
For all the proofs of Theorems 1, 3, and 4, we define a sequential labeling for G,

according to the ordering v1, v2, . . . , vn.
Suppose that φ is a partial labeling for Vt−1 (i.e., φ is an assignment of colors to

Vt−1 which can be extended to a k-Lc(2, 1)-labeling for G). For any b ≥ t, a color j
is legal for vb if for all u ∈ Vt−1, the following hold:

• if u ∼ vb, then j 
∈ {φ(u), φ(u) ± 1}; and
• if dG(u, vb) = 2, then j 
= φ(u).

At each step, we extend φ from Vt−1 to Vt by assigning a legal color to vt. A color
is forbidden for vt if it is not legal for vt. We denote by Forb(vt) the set of forbidden
colors for vt.

For u ∈ Vt−1, set

C[u, t− 1] = {φ(u), φ(u) + 1, φ(u) − 1} ∪ {φ(vj) : j ≤ t− 1, vj ∼ u}.

Lemma 9. Let G be an outerplanar graph. Suppose φ is a partial labeling for
Vt−1. Then the following hold:

(1) Forb(vt) ⊆ C[m(vt), t− 1] ∪ C[f(vt), t− 1].
(2) C[m(vt), t − 1] ⊆ {φ(m(vt)), φ(m(vt)) ± 1, φ(m(m(vt))), φ(f(m(vt))), φ(x)},

where x is a possible colored sibling of vt.
(3) If f(m(vt)) = f(vt), then the vertex x in (2) does not exist, and hence

|C[m(vt), t− 1]| ≤ 5.
(4) |Forb(vt) − C[f(vt), t− 1]| ≤ 5.
(5) If f(m(vt)) = f(vt), then |Forb(vt) − C[f(vt), t− 1]| ≤ 4.
(6) If G is triangulated, then

C[m(vt), t− 1] − C[f(vt), t− 1] ⊆ {φ(m(vt)) ± 1, φ(x)},

and |Forb(vt)−C[f(vt), t− 1]| ≤ 3, where x is a possible colored sibling of vt.
(7) If G is triangulated and f(m(vt)) = f(vt), then |Forb(vt)−C[f(vt), t−1]| ≤ 2.
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Proof. By the ordering ≺, the only possible colored neighbors of vt are f(vt) and
m(vt). Assume u is a colored vertex for which dG(u, vt) = 2. Let z be a common
neighbor of u and vt. If z is colored, then z ∈ {f(vt),m(vt)} and hence u ∈ C[f(vt), t−
1]∪C[m(vt), t− 1]. If z is not colored yet, then both u and vt are parents of z; hence
u ∈ {f(vt),m(vt)}. Therefore (1) is true.

If vi ∼ m(vt) and i < t, then vi is either a parent of m(vt) or a sibling of vt.
Hence (2) is true.

If f(m(vt)) = f(vt) and x is a sibling of vt, then f(x) = m(m(vt)) and hence
vt ≺ x; i.e., x is not colored yet. So (3) holds.

Note that since f(vt) is also a parent of m(vt), we have

φ(f(vt)) ∈ {φ(m(m(vt))), φ(f(m(vt)))}.

By (2), |C[m(vt), t− 1] − C[f(vt), t− 1]| ≤ 5. This verifies (4).

If f(m(vt)) = f(vt), then (5) follows from (1)–(4).

If G is triangulated, then {φ(m(vt)), φ(m(m(vt))), φ(f(m(vt)))} ⊆ C[f(vt), t−1].
Hence, (6) follows from (1) and (2). Moreover, if f(m(vt)) = f(vt), then (7) follows
from (1), (3), and (6).

Proof of Theorem 3. We first consider the case that G is triangulated. By Lemma
9 (6), |C[m(vt), t− 1]−C[f(vt), t− 1]| ≤ 3. As |C[f(vt), t− 1]| ≤ Δ + 2, by Lemma 9
(1), |Forb(vt)| ≤ Δ+5. If we had Δ+6 colors, then we would always have had a legal
color for vt. However, we are given only k = Δ + 5 colors. So our aim is to reduce
the number of forbidden colors of vt by 1. To accomplish this, we define a sequential
coloring scheme such that the following property R1 is satisfied at each step.

R1. If t ≥ 3, then φ(vt) is an attaching color of C[f(vt), t− 1] or C[m(vt), t− 1].

Note that the coloring scheme is based upon the ordering ≺; however, if x and y
constitute a pair of siblings, then we consider the coloring of x and y simultaneously.
Observe that it follows from the definition of the ordering ≺ that x and y are two
consecutive vertices in ≺.

Initially: Let φ(v1) = 0, φ(v2) = 2, and φ(v3) = 4, so R1 is true.

Inductively: Suppose that φ has colored Vt−1 such that R1 is satisfied at each
step, and we want to color the vertex vt. Assume vt does not have a sibling. By
Lemma 9 (6), we have |Forb(vt)| ≤ |C[f(vt), t − 1]| + 2 ≤ Δ + 4. As we are given
Δ + 5 colors, there exists some j ∈ A(Forb(vt)) − Forb(vt). Let φ(vt) = j. Then R1
is satisfied.

Assume vt has a sibling x. Then we color vt and x in one step. Let m(x) =
m(vt) = vj for some vj ∈ Vt−1. Assume that f(x) = f(vj) and f(vt) = m(vj) (the
other case, f(x) = m(vj) and f(vt) = f(vj), can be proved similarly). By inductive
hypothesis, φ(vj) is attaching to C[m(vj), j − 1] or C[f(vj), j − 1].

If φ(vj) is attaching to C[m(vj), j − 1], then we first color x by a legal color
attaching to Forb(x). This can be done because x has no colored sibling and hence
|Forb(x)| ≤ Δ + 4 (by Lemma 9 (6) and |C[f(vt), t − 1]| ≤ Δ + 2). Next, we find a
legal color for vt. Because m(vj) = f(vt) and φ(vj) is attaching to C[m(vj), j−1], we
conclude that at least one of φ(vj)+1 and φ(vj)−1 is in C[f(vt), t−1]. By Lemma 9
(6), we have |C[m(vt), t− 1]−C[f(vt), t− 1]| ≤ 2, and so |Forb(vt)| ≤ Δ + 4. Hence,
there is a legal color for vt that is attaching to Forb(vt), and R1 is satisfied.

If φ(vj) is attaching to C[f(vj), j − 1], then we color vt before x. The discussion
is the same as in the previous paragraph. This completes the proof for the existence
of a coloring with at most Δ + 5 colors for a triangulated outerplanar graph.
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The part of Theorem 3 concerning general outerplanar graphs can be proved
similarly, using (4), instead of (6), of Lemma 9. We omit the details.

Proof of Theorem 4. Let G be an outerplanar graph with Δ ≥ 11. Let k = Δ+4.
Similar to the proof of Theorem 3, we give a sequential coloring scheme on the ordering
V (G) = {v1, v2, . . . , vn} using colors from the set {0, 1, 2, . . . , k−1}. With fewer colors,
we need to be more restrictive in bounding the size of Forb(vt).

Suppose φ is a partial k-Lc(2, 1)-labeling for Vt, where t ≥ 3. Let w = f(vt), and
let β be the number of segments in C[w, t]. Observe that

β ≤ |C[w, t]| − 2 = s[w, t] + 1.(3.1)

We call φ a valid partial labeling for Vt if R1–R3 in the following hold:
R1. β ≤ 5.
R2. If s[w, t] ≥ 5, then φ(vt) ∈ C[w, t].
R3. If s[w, t] ≥ 9, then φ(vt) ∈ A(C[w, t]) ∩ C[w, t].
We shall prove that for any 3 ≤ t ≤ n, there is a valid partial labeling for Vt.
Initially: Let φ(v1) = 0, φ(v2) = 2, and φ(v3) = 4. Then R1 is true, while R2

and R3 are vacuous.
Inductively: Assume φ is a valid partial labeling for Vt−1, t ≥ 4. We extend φ

to Vt, by assigning a color to vt, so that φ is a valid partial labeling for Vt.
Assume s[w, t] ≤ 4. Then |C[w, t−1]| ≤ 7 and |Forb(vt)| ≤ 12 (by Lemma 9 (4)).

Let φ(vt) = j for some j 
∈ Forb(vt) (j exists because k = Δ + 4 ≥ 15). By (3.1), R1
holds. R2 and R3 are vacuous.

Assume s[w, t] ≥ 5. We consider two cases.
Case 1. vt 
∼ w. Then s[w, t] = s[w, t − 1] and C[w, t − 1] = C[w, t], regardless

of what legal color will be assigned to vt. By inductive hypothesis for R1, it suffices
to find a legal color for vt so that R2 and R3 hold. Note that we have

Forb(vt) ⊆ {φ(m(vt)), φ(m(vt)) ± 1, φ(m(m(vt))), φ(f(m(vt))), φ(x)},

where x is a possible already-colored sibling of vt. So |Forb(vt)| ≤ 6.
If 5 ≤ s[w, t] < 9, then |C[w, t − 1]| ≥ 8, so there exists some j ∈ C[w, t − 1] −

Forb(vt). Let φ(vt) = j. Then R2 holds, while R3 is vacuous.
If s[w, t] ≥ 9, then |C[w, t− 1]| ≥ 12. By inductive hypothesis for R1, C[w, t− 1]

has at most 5 segments. By Proposition 8, |C[w, t − 1] − A(C[w, t − 1])| ≤ 4. Since
|C[w, t− 1]| ≥ 12, we have |A(C[w, t− 1]) ∩C[w, t− 1]| ≥ 8. As |Forb(vt)| ≤ 6, there
exists some j ∈ A(C[w, t− 1]) ∩C[w, t− 1] which is legal for vt. Let φ(vt) = j. Then
R2 and R3 hold, as C[w, t− 1] = C[w, t].

Case 2. vt ∼ w. Then it suffices to find a legal color for vt such that R1 and R3
hold.

Assume s[w, t] = 5 or 6. Then |C[w, t−1]| = 7 or 8. By Lemma 9 (4), |Forb(vt)| ≤
13. Because k ≥ 15, there exists some color j 
∈ Forb(vt). By inductive hypothesis,
C[w, t− 1] has at most 5 segments. If C[w, t− 1] contains less than 5 segments, then
let φ(vt) = j. So, R1 holds, while R3 is vacuous. Suppose C[w, t− 1] contains exactly
5 segments (so 5 gaps). Since |C[w, t − 1]| ≤ 8 and k ≥ 15, we conclude that there
exists a gap with more than one element, so |A(C[w, t − 1]) − C[w, t − 1]| ≥ 6. By
Lemma 9 (4), there exists some j ∈ A(C[w, t − 1]) − Forb(vt). Let φ(vt) = j. Then
R1 holds, while R3 is vacuous.

Assume s[w, t] ≥ 7. Let vt′ = m(vt). By Lemma 7 (2, 4), f(vt′) = w and
s[w, t′] ≥ 5. By Lemma 9 (5), |Forb(vt) − C[w, t − 1]| ≤ 4. Moreover, by inductive
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hypothesis for R2, φ(vt′) ∈ C[w, t′] ⊆ C[w, t− 1]. Therefore, we conclude that

Forb(vt) − C[w, t− 1] ⊆ {φ(vt′) ± 1, φ(m(vt′))}.

If s[w, t] = 7, 8, then |C[w, t− 1]| = 9, 10, and hence |Forb(vt)| ≤ 13. As k ≥ 15, there
exists some j 
∈ Forb(vt). If C[w, t−1] contains less than 5 segments, let φ(vt) = j. If
C[w, t− 1] has exactly 5 segments (so 5 gaps), by Proposition 8 and k ≥ 15 we have
|A(C[w, t−1])−C[w, t−1]| ≥ 5. Thus, there exists some j ∈ A(C[w, t−1])−Forb(vt),
as |Forb(vt) − C[w, t− 1]| ≤ 3. Let φ(vt) = j. Then R1 holds, while R3 is vacuous.

If 9 ≤ s[w, t] ≤ Δ − 1, then s[w, t′] ≥ 7 and |C[w, t − 1]| ≤ Δ + 1. By Lemma 7
(3), w = f(m(vt′)). By inductive hypothesis for R2, {φ(vt′), φ(m(vt′))} ⊆ C[w, t− 1].
So

Forb(vt) − C[w, t− 1] ⊆ {φ(vt′) ± 1}.(3.2)

Because |C[w, t − 1]| ≤ Δ + 1, k = Δ + 4, and φ(vt′) ∈ C[w, t − 1], we conclude
that A(C[w, t − 1]) − C[w, t − 1] 
⊆ {φ(vt′) ± 1}. Therefore, there exists a color
j ∈ A(C[w, t− 1]) − Forb(vt). Let φ(vt) = j. Then R1 and R3 hold.

If s[w, t] = Δ ≥ 11, then s[w, t′] ≥ 9. Similar to the above, (3.2) holds. Moreover,
by R3, φ(vt′) ∈ A(C[w, t′]) ⊂ A(C[w, t−1]), so one of φ(vt′)±1 belongs to C[w, t−1].
Hence, |Forb(vt)−C[w, t−1]| ≤ 1 and |Forb(vt)| ≤ Δ+3 (because |C[w, t−1]| ≤ Δ+2).
Therefore, there exists some j ∈ A(C[w, t − 1]) − Forb(vt). Let φ(vt) = j. Then R1
and R3 hold.

4. Proof of Theorem 1 and consequences. Similar to the previous section,
we prove Theorem 1 by giving a sequential coloring scheme based upon the ordering
≺. Since we have fewer colors, the sequential coloring scheme is more restrictive. We
use the same notations as in the previous section. Let k = Δ + 3 and assume φ is a
partial k-Lc(2, 1)-labeling for Vt, where t ≥ 3. Let w = f(vt) and let β be the number
of segments in C[w, t]. If w has degree Δ, then let u be its Δth neighbor; otherwise u
does not exist and we simply ignore the parts involving u. Throughout the proof we
call φ a valid partial labeling for Vt if R1–R4 in the following hold.

R1. β ≤ 6; and if w 
∼ m(u) or s[w, t] ≤ 9, then β ≤ 5.
R2. If s[w, t] ≥ 5, then φ(vt) ∈ C[w, t].
R3. If s[w, t] ≥ 11, then φ(vt) ∈ C[w, t] ∩A(C[w, t]).
R4. Assume w has degree Δ (i.e., u exists). If s[w, t] ≥ 10

and vt ≺ m(u), then there exists some j∗ ∈ F (C[w, t]),
which is legal for m(u). Moreover, if w 
∼ m(u), then

j∗ ∈ C[w, t] ∩ F (C[w, t]) and j∗ 
= φ(w).

We prove that for any 3 ≤ t ≤ n, there is a valid partial labeling for Vt.
Initially: Let φ(v1) = 0, φ(v2) = 2, and φ(v3) = 4. Then R1 is true, while R2–R4

are vacuous.
Inductively: Assume that t ≥ 4 and φ is a valid partial labeling for Vt−1.
If s[w, t] ≤ 4, then |C[w, t − 1]| ≤ 7 and |Forb(vt)| ≤ 12 (by Lemma 9 (4)). Let

φ(vt) = j for some j 
∈ Forb(vt) (j exists because k = Δ + 3 ≥ 18). Then R1 follows
by (3.1), while R2–R4 are vacuous.

Assume s[w, t] ≥ 5. We consider two cases.
Case 1. vt 
∼ w. Then C[w, t− 1] = C[w, t], regardless of what color is assigned

to vt. Hence, by inductive hypothesis for R1, it suffices to find a legal color for vt
such that R2–R4 hold.
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By Lemma 9 (1, 2),

Forb(vt) ⊆ {φ(m(vt)), φ(m(vt)) ± 1, φ(m(m(vt))), φ(f(m(vt))), φ(x)},

where x is a possible already-colored sibling of vt. (Note that φ(f(vt)) might be a
forbidden color for vt; however, as f(vt) is a parent of m(vt), so φ(f(vt)) is included
in the set on the right-side above.) Hence, |Forb(vt)| ≤ 6.

Assume 5 ≤ s[w, t] ≤ 9. Then |C[w, t − 1]| = s[w, t] + 3 ≥ 8. Hence, |C[w, t −
1]− Forb(vt)| ≥ 2. Let φ(vt) = j for some j ∈ C[w, t− 1]− Forb(vt). Then R2 holds,
while R3 and R4 are vacuous.

Assume s[w, t] ≥ 10. Let q be the largest index such that q < t and vq ∼ w.
Then s[w, q] = s[w, t]. By Lemma 7 (1), w = f(vq). If u exists and vt ≺ m(u), then
by inductive hypothesis (applied to C[w, vq]) there exists some j∗ ∈ F (C[w, q]) =
F (C[w, t− 1]) which is legal for m(u). We need to find a legal color for vt so that j∗

is kept legal for m(u).
If s[w, t] = 10, then |C[w, t − 1]| = 13. As |Forb(vt)| ≤ 6, there exists some

j ∈ C[w, t − 1] − (Forb(vt) ∪ {j∗, j∗ ± 1}) (note that if u does not exist, we regard
{j∗, j∗ ± 1} = ∅). Let φ(vt) = j. Then j∗ is still legal for m(u), and R2 and R4 hold
(the “moreover” part of R4 follows by inductive hypothesis and C[w, q] = C[w, t]),
while R3 is vacuous.

Assume s[w, t] ≥ 11. Then |C[w, t − 1]| ≥ 14. By Lemma 7, f(m(m(vt))) =
f(m(vt)) = w. By Lemma 9 (3), |Forb(vt)| ≤ 5. By inductive hypothesis, C[w, t− 1]
has at most 6 segments and, by definition, at most 5 of them are singletons. By
Proposition 8, we have |C[w, t− 1] ∩A(C[w, t− 1])| ≥ 9, implying that

| (C[w, t− 1] ∩A(C[w, t− 1])) − {j∗, j∗ ± 1}| ≥ 6.

As |Forb(vt)| ≤ 5, there exists some j ∈ C[w, t−1]∩A(C[w, t))−{j∗, j∗±1}−Forb(vt).
Let φ(vt) = j if vt 
= m(u), and φ(vt) = j∗ if vt = m(u). Then, R2–R4 hold, since
C[w, t] = C[w, t− 1] = C[w, q].

Case 2. vt ∼ w. Then R2 holds, regardless of what color is assigned to vt. So
it suffices to find a legal color for vt that satisfies R1, R3, and R4.

Assume 5 ≤ s[w, t] ≤ 9. Then R3 and R4 are vacuous. Since |C[w, t − 1]| =
|C[w, t]| − 1 = s[w, t] + 2 ≤ 11, by Lemma 9 (4), |Forb(vt) − C[w, t − 1]| ≤ 5. By
inductive hypothesis, C[w, t−1] has at most 5 segments. If C[w, t−1] has less than 5
segments, let φ(vt) = j for some j 
∈ Forb(vt), so R1 holds. If C[w, t− 1] has exactly
5 segments (so 5 gaps), then since |C[w, t − 1]| ≤ 11 and k ≥ 18, we conclude that
there exists a gap with at least two elements, so |A(C[w, t− 1])−C[w, t− 1]| ≥ 6. By
Lemma 9 (4), there exists some j ∈ A(C[w, t − 1]) − Forb(vt). Let φ(vt) = j. Then
R1 holds.

Assume s[w, t] ≥ 10. Let vt′ = m(vt) and vt′′ = m(vt′). Then t′, t′′ < t. By
Lemma 7, s[w, t′] ≥ 8, s[w, t′′] ≥ 6, and w = f(vt′) = f(vt′′). By inductive hypothesis
for R2, we have {φ(vt′), φ(vt′′)} ⊆ C[w, t− 1]. Therefore, by Lemma 9 (1, 2, 3, 5), we
have

Forb(vt) − C[w, t− 1] ⊆ {φ(vt′) ± 1}.(4.1)

Lemma 10. Let φ be a valid partial labeling for Vt−1. If vt ∼ w, s[w, t] ≥ 10, and
|C[w, t− 1]| ≤ 15, then A(C[w, t)) − Forb(vt) 
= ∅.

Proof. Assume |C[w, t−1]| ≤ 15. For any segment {j, j+1, . . . , j′} of C[w, t−1],
we have {j − 1, j′ + 1} ⊆ A(C[w, t− 1]) − C[w, t− 1] (note that j − 1 
= j′ + 1 since



290 DAPHNE DER-FEN LIU AND XUDING ZHU

k ≥ 18). If C[w, t−1] has more than one segment, then |A(C[w, t−1])−C[w, t)| ≥ 3.
By (4.1), A(C[w, t− 1]) − Forb(vt) 
= ∅.

Assume C[w, t−1] has only one segment, say C[w, t−1] = {j, j+1, . . . , j′}. Then
A(C[w, t−1])−C[w, t−1] = {j−1, j′ +1}. As φ(vt′) ∈ C[w, t−1] (see the line above
4.1), it follows that {j−1, j′+1} 
= {φ(vt′))±1}. Therefore A(C[w, t−1])−Forb(vt) 
=
∅.

If u exists, then u = vb, m(u) = vb′ , m(vb′) = vb′′ for some b′′ < b′ < b, and
s[w, b] = Δ ≥ 15. By Lemma 7, s[w, b′] ≥ 13, s[w, b′′] ≥ 11, and f(vb′) = f(vb′′) = w.

Assume s[w, t] = 10. Then R3 is vacuous, s[w, t− 1] ≤ 9, and |C[w, t− 1]| = 12.
We consider two subcases.

Subcase 2.A. s[w, t] = 10 and u does not exist or m(u) 
∼ w. By Lemma 10,
there exists some j ∈ A(C[w, t− 1]) − Forb(vt).

Let φ(vt) = j. Then R1 holds by inductive hypothesis. If u does not exist, then
R4 is vacuous, and we are done.

Assume u exists and m(u) = vb′ 
∼ w. It suffices to verify R4, that is, to find
some j∗ ∈ F (C[w, t])∩C[w, t]−{φ(w)} such that j∗ is legal for vb′ . As s[w, vb′′ ] ≥ 11,
vt ≺ vb′′ (i.e., vb′′ has not been colored yet). Because vb′ 
∼ w, for j∗ to be legal for vb′

it suffices that j∗ 
∈ {φ(w), φ(m(vb′′))}. Note that any segment of C[w, t] has at most
two ends, and all the colors in the segment except the ends are in F (C[w, t]). Because
C[w, t] has at most 5 segments and |C[w, t]| = 13, we have |C[w, t] ∩ F (C[w, t])| ≥ 3.
Hence, there exists some j∗ ∈ C[w, t] ∩ F (C[w, t]) − {φ(w), φ(m(vb′′))} such that j∗

is legal for m(u). So R4 is satisfied.
Subcase 2.B. s[w, t] = 10, u exists, and m(u) ∼ w. In contrast to Subcase 2.A,

we first fix j∗ and then label vt such that R1, R2, and R4 are satisfied.
Suppose C[w, t − 1] contains a singleton gap {i}. That is, i ∈ F (C[w, t − 1]) −

C[w, t − 1]. Let j∗ = i. We need to show there exists a legal color for vt so that
j∗ is kept legal for m(u). As |C[w, t − 1]| = 12 and {j∗} is a gap of C[w, t − 1]
(so C[w, t − 1] contains at least two segments), by (4.1) and an argument similar
to the proof of Lemma 10, there exists some j ∈ A(C[w, t − 1]) − Forb(vt) − {j∗}.
Let φ(vt) = j. Then R1 holds by inductive hypothesis. Because s[w, b′] ≥ 13 and
s[w, t] = 10, by Lemma 7 (5), we have vt 
∼ vb′ . Hence j∗ is legal for vb′ = m(u), and
R4 holds.

Now suppose that every gap in C[w, t − 1] contains at least two elements. Note
that C[w, t − 1] contains at most 5 segments, as s[w, t − 1] ≤ 9. If there is only one
gap, say {j, j + 1, . . . , j + i}, then since |C[w, t− 1]| = 12 and k ≥ 18, we have i ≥ 5.
It follows from (4.1) that j + 1 or j + i − 1 is legal for vt. If there are at least two
gaps, then since each gap contains at least two elements, it is easy to verify (again,
using (4.1)) that there is a gap {j, j + 1, . . . , j + i} such that j + 1 or j + i− 1 is legal
for vt. Accordingly, let φ(vt) = j + 1 or j + i− 1, and let j∗ = j or j + i, respectively.
Then j∗ satisfies R4. Moreover, C[w, t] contains at most 6 segments. So R1 holds.
This completes the proof for the case s[w, t] = 10.

Assume s[w, t] = 11, 12, so |C[w, t− 1]| = 13, 14. Assume u exists and m(u) ∼ w.
By inductive hypothesis for R4, there exists some j∗ ∈ F (C[w, t−1]) which is legal for
m(u). Then j∗ must be a singleton gap of C[w, t− 1] = C[w, t− 1], since m(u) ∼ w.
This implies that C[w, t− 1] contains at least two gaps. We claim

A(C[w, t− 1]) − C[w, t− 1] − {φ(vt′) ± 1, j∗} 
= ∅.(4.2)

If C[w, t−1] has more than two gaps, then |A(C[w, t−1])−C[w, t−1]| ≥ 4. Therefore,
(4.2) holds. If C[w, t−1] has exactly two gaps, then |A(C[w, t))−C[w, t−1]−{j∗}| = 2,
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since k ≥ 18. Note that A(C[w, t)) − C[w, t − 1] − {j∗} 
= {φ(vt′) ± 1}, as φ(vt′) ∈
C[w, t− 1]. So (4.2) holds.

Let φ(vt) = j for some j ∈ A(C[w, t − 1]) − C[w, t − 1] − {φ(vt′) ± 1, j∗}. This
justifies R1 and R3 (since φ(vt) ∈ C[w, t]). Moreover, since j 
∈ {j∗, j∗ ± 1} (as
{j∗ ± 1} ⊆ C[w, t− 1]), j∗ is still a legal color for m(u). So R4 holds.

Now assume that u does not exist, or u exists but m(u) 
∼ w. As |C[w, t−1]| ≤ 14,
by Lemma 10 there exists some j ∈ A(C[w, t − 1]) − Forb(vt). Let φ(vt) = j. Then
R1 and R3 hold. If u does not exist, then R4 is vacuous. If u exists but m(u) 
∼ w,
then by inductive hypothesis for R4, there exists some legal color j∗ for m(u) such
that {j∗, j∗ ± 1} ⊆ C[w, t − 1]. So j 
∈ {j∗, j∗ ± 1}, and j∗ is still a legal color for
m(u). Hence, R4 holds.

Assume 13 ≤ s[w, t] ≤ Δ − 1. Then vt 
= u. As s[w, t′] ≥ 11, by inductive
hypothesis and R3, φ(vt′) ∈ A(C[w, t′]) ∩ C[w, t′] ⊆ A(C[w, t − 1]) ∩ C[w, t − 1].
Combining this with (4.1), we have |Forb(vt) − C[w, t− 1]| ≤ 1.

Suppose vt ≺ m(u). If s[w, t] ≤ Δ−2, then |C[w, t−1]| ≤ Δ. Because k = Δ+3,
|Forb(vt) − C[w, t − 1]| ≤ 1, and j∗ ∈ F (C[w, t − 1]), we conclude that there exists
some j ∈ A(C[w, t − 1]) − Forb(vt) − {j∗}. Let φ(vt) = j. Then R1, R3 (since
φ(vt) ∈ C[w, t]), and R4 hold.

If s[w, t] = Δ − 1, then m(u) 
∼ w (as vt ≺ m(u)), and |C[w, t − 1]| = Δ + 1.
By inductive hypothesis, {j∗, j∗ ± 1} ⊆ C[w, t − 1]. Therefore, there exists some
j ∈ A(C[w, t − 1]) − Forb(vt), as k = Δ + 3. Let φ(vt) = j. Then R1, R3, and R4
hold.

Suppose vt = m(u). Let φ(vt) = j∗. Then R1, R3, and R4 hold.
Suppose m(u) ≺ vt. Then s[w, t] = Δ − 1 and |C[w, t − 1]| = Δ + 1. Because

|Forb(vt) − C[w, t − 1]| ≤ 1, |C[w, t)| = Δ + 1, and k = Δ + 3, there exists some
j ∈ A(C[w, t)) − Forb(vt). Let φ(vt) = j. Then R1, R3, and R4 hold.

Assume s[w, t] = Δ ≥ 15. Then, vt = u. By inductive hypothesis, φ(vt′) =
j∗ ∈ F (C[w, t − 1]) ∩ C[w, t − 1]. By (4.1), we have Forb(vt) = C[w, t − 1]. As
|C[w, t−1]| = Δ+2 and k = Δ+3, we conclude that there is an attaching legal color
for vt.

In each of these cases, R2 holds by definition. This completes the proof of the
validity of the coloring scheme.

The following corollary follows from (1.1) and Theorems 1, 3, and 4.
Corollary 11.

λ(G) ≤

⎧⎪⎪⎨
⎪⎪⎩

Δ + 2 if G is outerplanar with Δ(G) ≥ 15;
Δ + 3 if G is outerplanar with Δ(G) ≥ 11;
Δ + 6 if G is outerplanar;
Δ + 4 if G is triangulated outerplanar.

For outerplanar graphs with small maximum degrees, the equality of Theorem 1
does not always hold.

Theorem 12. Let G1, G2, G3, G4 be the graphs as shown in Figure 1 (ignore the
labels of vertices of G4 for the moment). Then Δ(Gi) = i+1, and λc(Gi) = Δ(Gi) + 4.

Proof. The proofs for G1, G2, G3, and λc(G4) ≤ Δ(G4)+4 are straightforward. It
is more complicated but routine to verify that λc(G4) > Δ(G4) + 3 = 8. One method
to accomplish this is (1) to prove that, by considering several cases, the labels (see
Figure 1) for the “middle” induced subgraph H form a unique 8-Lc(2, 1)-labeling for
H; then (2) to show that this unique labeling cannot be extended to the vertices w
and w′. We omit the details.
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Fig. 1. Graphs G1, G2, G3, and G4.

Theorem 12 indicates that a condition like Δ(G) ≥ 15 is necessary for Theorem
1. Indeed, the authors of this article suspect that the condition might be replaced by
Δ(G) ≥ d for some 6 ≤ d < 15. Finding the smallest such integer d for Theorem 1
would be an interesting problem for further research.
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REPEATED ANGLES IN THREE AND FOUR DIMENSIONS∗
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Abstract. We show that the maximum number of occurrences of a given angle in a set of
n points in R

3 is O(n7/3) and that a right angle can actually occur Ω(n7/3) times. We then show
that the maximum number of occurrences of any angle different from π/2 in a set of n points in R

4

is O(n5/2β(n)), where β(n) = 2O(α(n)2) and α(n) is the inverse Ackermann function.
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1. Introduction. In this paper we consider the following problem: Given a
set P of n points in R

d and some fixed 0 < α < π, how many times can the angle α
occur among triplets of points of P? That is, how many triplets p, q, r ∈ P are there
such that ∠pqr = α? (We identify the triplet (p, q, r) with (r, q, p), and count them
as only one angle.) The trivial upper bound is O(n3), which is the number of triplets,
and a simple construction gives a lower bound of Ω(n2) repeated angles.

In the plane, Pach and Sharir [4] have shown that the number of occurrences of a
fixed angle among n points is O(n2 log n) and that this lower bound can be achieved

for every angle α = arctan a
√
m

b , where a, b, and m are positive integers.

In R
3, the best known upper bound, O(n8/3), is due to Conway et al. [3]; see also

[1, section 6.2]. We improve this bound to O(n7/3) and show that this bound is tight
in case α = π/2.

In R
4, there is a construction of n points that determine Θ(n3) right angles [1,

section 6.2, problems 7 and 8], but for other angles α �= π/2, there is a subcubic bound

of O(n3− 1
25 ), due to Purdy [6]; see [1, section 6.2]. We improve this bound by showing

that the maximum number of repeated angles α /∈ {0, π
2 , π} in a set of n points in R

4

is O(n5/2β(n)), where β(n) = 2O(α(n)2) and α(n) is the inverse Ackermann function.

So far, the only lower bound in R
3 and R

4 that we have for α /∈ {0, π
2 , π} is

the trivial bound Ω(n2), and the planar bound Ω(n2 log n) for the above-mentioned
special values of α.

As it turns out, the main difficulty in upper bounding the number of repeated
angles lies in the possibility that the same angle instance is counted many times.
Specifically, if p ∈ P is incident to two rays that form an angle α, and if there are
t points of P on each ray, then the same angle occurs t2 times among t2 triplets
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Fig. 1. For a given point r and line �, only two points q ∈ � can be the apex of an angle
∠pqr = α, with p ∈ � too.

of points of P . In particular, if t = Ω(n) we obtain the trivial lower bound Ω(n2)
mentioned above.

We overcome this difficulty by using the trade-off, due to Szemerédi and Trot-
ter [7], between the number of rays containing many points and the number of points
on each ray. The more points per ray, the fewer rays. More precisely, we have the
following theorem.

Theorem 1.1 (see Szemerédi and Trotter [7]). Let P be a set of n points in the
plane. Then the number of lines containing at least t points of P is O(n2/t3 + n/t),
and the number of incidences between these lines and the points of P is O(n2/t2+n).

We note that the Szemerédi–Trotter theorem is stated for points and lines in the
plane, but it can easily be extended to higher dimensions by projecting the given
points and lines onto some generic plane. See [5, 7] for details.

2. Repeated angles in R
3: Upper bound.

Theorem 2.1. Let P ⊂ R
3 be a set of n points and let 0 < α < π be fixed. Then

the number of triplets (p, q, r) ∈ P 3 of distinct points satisfying ∠pqr = α is O(n7/3).
Proof. Denote the number of such triplets by A(P ). Let L be the set of lines

spanned by P . Partition L into m = �log n� classes L1, L2, . . . , Lm, so that the class Li

includes all the lines of L that contain at least 2i and at most 2i+1 − 1 points of P
for i = 1, . . . ,m. We use in the proof the threshold value k = � 1

3 log n�.
We say that an angle ∠pqr is supported by the lines �1 and �2 if �1 = pq and

�2 = qr. For 1 ≤ j ≤ i ≤ m, let Ai,j denote the number of angles supported by one
line from Li and another line from Lj , that is,

Ai,j =
∣∣∣{(p, q, r) ∈ P 3

∣∣ ∠pqr = α, pq ∈ Li, and qr ∈ Lj

}∣∣∣,
and let Ai =

∑i
j=1 Ai,j (recall that we identify triplets (p, q, r) with their reverses

(r, q, p)). We have A(P ) ≤
∑m

i=1 Ai =
∑k

i=1 Ai +
∑m

i=k+1 Ai. We shall bound sepa-

rately the terms A′ =
∑k

i=1 Ai and A′′ =
∑m

i=k+1 Ai.
To bound A′′, we use the following easy but crucial observation. For each point

r ∈ P and a line � ∈ L, there are at most two points q ∈ � ∩ P such that r, q, and
some third point, p, on � form an angle α; see Figure 1. For each angle ∠pqr = α that
is counted in A′′, with pq ∈ Li, for some i > k, and qr ∈ Lj , for some j ≤ i, we charge
the triplet (p, q, r) to the pair (r, �), where � = pq. The preceding observation implies
that if � contains t points of P , where 2i ≤ t < 2i+1, then the number of triplets that
charge (r, �) is at most 2t, that is, at most twice the number of points of P on �. This,
in turn, implies that for a fixed r ∈ P and for all lines � containing 2k+1 points or
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more, the number of triplets that charge the pairs (r, �) is at most twice the number
of incidences between the points of P and these lines. Hence, using Theorem 1.1, we
have

A′′ = O(n(n22−2k + n)) = O(n32−2k + n2) = O(n7/3).

We next bound A′. Let j ≤ i ≤ k be fixed. We bound the number of angles
in Ai,j in the following different way. Put s = 2i and t = 2j . For a point p ∈ P ,
let ξp (resp., ηp) denote the number of rays emanating from p and contained in lines
of Li (resp., Lj).

∑
p∈P ξp is twice the number of incidences between the points of P

and the lines of Li, since each such incidence, (p, �) ∈ P × Li, contributes exactly 2
to this sum by generating two opposite rays, that are counted in ξp. As noted above,
applying Theorem 1.1 to the lines of Li, each containing Θ(s) points, implies that

∑
p∈P

ξp = O

(
n2

s2
+ n

)
= O

(
n2

s2

)
,(2.1)

where the last equality follows from the fact that s = O(n1/3). Similarly, we have

∑
p∈P

ηp = O

(
n2

t2

)
.(2.2)

Let σp denote the unit sphere centered at p. Map each ray emanating from p
and contained in a line of Li or Lj to its intersection point with σp. We thus obtain
two sets Cp and Dp of ξp and ηp points, respectively, on the sphere σp, and we want
to count the number of pairs in Cp ×Dp at spherical distance exactly α. Each such
pair corresponds to a pair of rays that emanate from p and subtend the angle α, so
that one ray contains O(s) points of P and the other contains O(t) points. Hence
each such pair generates O(st) occurrences of the angle α among point triplets of P .
The number of such pairs in Cp × Dp is equal to the number of incidences between
ξp points and ηp congruent circles on σp and is thus bounded by O((ξpηp)

2/3 +ξp+ηp)
(see, e.g., [2]). Multiplying this by O(st), and summing over all points p, we get

Ai,j ≤ st
∑
p∈P

O((ξpηp)
2/3 + ξp + ηp)

= O

⎛
⎝st

∑
p∈P

(ξpηp)
2/3 + st

∑
p∈P

ξp + st
∑
p∈P

ηp

⎞
⎠ .

Using (2.1) and (2.2), the last two terms can be bounded by

O

(
st

(
n2

s2
+

n2

t2

))
= O

(
n2t

s
+

n2s

t

)
= O

(
n2s

t

)
,

since we have assumed that s ≥ t. It remains to bound the first term. We observe
that ηp = O(n/t) for each p ∈ P , because all the rays emanating from p are pairwise
disjoint (excluding the common point p). Combining this with Hölder’s inequality
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and with the estimates (2.1) and (2.2), we thus have∑
p∈P

(ξpηp)
2/3 = (O(n/t))

1/3
∑
p∈P

ξ2/3
p η1/3

p

= O

⎛
⎜⎝n1/3t−1/3

⎛
⎝∑

p∈P

ξp

⎞
⎠

2/3 ⎛
⎝∑

p∈P

ηp

⎞
⎠

1/3
⎞
⎟⎠

= O

(
n1/3t−1/3

(
n2

s2

)2/3 (
n2

t2

)1/3
)

= O
(
n7/3s−4/3t−1

)
.

This yields

Ai,j = O

(
n7/3s−1/3 +

n2s

t

)
= O

(
n7/32−i/3 + n22i−j

)
.(2.3)

We then sum this bound over all Ai,j ’s that contribute to A′, to obtain

A′ =

k∑
i=1

i∑
j=1

Ai,j

=

k∑
i=1

i∑
j=1

O
(
n7/32−i/3 + n22i−j

)

= O

⎛
⎝n7/3

k∑
i=1

i∑
j=1

2−i/3 + n2
k∑

i=1

i∑
j=1

2i−j

⎞
⎠

= O

(
n7/3

k∑
i=1

i2−i/3 + n2
k∑

i=1

2i

)

= O
(
n7/3 + n22k

)
= O

(
n7/3

)
.

Hence the number of repeated angles in P is at most A′ + A′′ = O(n7/3).

3. Repeated angles in R
3: Lower bound. In this section we show that the

set P of vertices of the n1/3×n1/3×n1/3 cubic lattice section determine Ω(n7/3) right
angles. The proof outline is as follows. The points of P determine O(n2/3) distinct
distances. Hence, if we take all the spheres centered at points of P and containing at
least one point of P , we get at most O(n5/3) spheres. For simplicity we consider only
the spheres fully contained in the bounding cube of P . On each sphere we obtain
many right angles as follows. Take a pair of antipodal points p, r ∈ P and another
point q ∈ P on the sphere. Then ∠pqr = π/2. On average there are m = Ω(n1/3)
points on the sphere. There are m/2 choices of an (unordered) antipodal pair (p, r),
and m− 2 choices of a third point q, yielding about m2/2 = Ω(n2/3) right angles per
sphere on average. Multiplying this bound by the number of spheres, O(n5/3), we
obtain that P determines Ω(n7/3) right angles.
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In more detail, we have the next theorem.
Theorem 3.1. Let P = {1, . . . , 
n1/3�}3. Then the number of triplets (p, q, r) ∈

P 3 such that ∠pqr = π/2 is Ω(n7/3).
Proof. For simplicity we assume that n is a cubic integer and a multiple of 5, so

that all the quantities that appear in the proof are integers. This assumption does
not change the order of magnitude of the lower bound.

Let Q = { 2
5n

1/3 + 1, . . . , 3
5n

1/3}3 be the middle 1
5n

1/3 × 1
5n

1/3 × 1
5n

1/3 portion
of P . We have |Q| = n

125 = Θ(n). For each pair of points in Q, the square of the

distance between them is an integer of magnitude at most 3
25n

2/3. Hence there are at

most 3
25n

2/3 = O(n2/3) distinct distances between the points of Q. For every point
o ∈ Q we take the spheres centered at o and containing at least one point p ∈ Q.
There are O(n2/3) such spheres. We repeat this for all points of Q and let S denote
the resulting set of spheres. We have |S| = O(n5/3). The choice of Q guarantees that,
for every point p ∈ P on a sphere σ ∈ S, the point on σ antipodal to p is also in P .

For each σ ∈ S, let mσ = |P ∩ σ| denote the number of lattice points on σ.

We observe that
∑

σ∈S mσ ≥ 2
(|Q|

2

)
= Ω(n2), since in this sum we count every pair

p, p′ ∈ Q exactly twice—once with p at the center of the sphere and p′ on the sphere
itself and once the other way around. Similarly,

∑
σ∈S mσ ≤ |Q| · |P | = O(n2), so this

sum is Θ(n2). Let σ ∈ S be one of the spheres and let p, q, r ∈ σ∩P be three distinct
points such that p and r are antipodal points of σ. Then ∠pqr = π/2. There are
mσ/2 choices of an antipodal pair p, r ∈ σ ∩ P and mσ − 2 choices of a third point q,
yielding mσ(mσ − 2)/2 right angles on σ. The lower bound on the number of right
angles in P is obtained by summing over all the spheres of S. Note that each pair
of points can be antipodal on at most one sphere; hence every angle is counted only
once. This gives a lower bound of

1

2

∑
σ∈S

mσ(mσ − 2) ≥ 1

2 |S|

(∑
σ∈S

mσ

)2

−
∑
σ∈S

mσ =
1

2 |S|Θ(n4) − Θ(n2),

where we have used the Cauchy–Schwarz inequality. Substituting |S| = O(n5/3) in
the inequality gives Ω(n7/3) right angles determined by the points of P .

Remark. It is an interesting open problem whether the same lower bound also
holds for other angles �= π/2.

4. Repeated angles in R
4. Recall that there is a construction of n points in R

4

that determine Θ(n3) right angles, but for other angles α �= π/2, there is a subcubic

upper bound of O(n3− 1
25 ), due to Purdy [6]; see [1, section 6.2]. In this section we

improve this upper bound and derive the following result.
Theorem 4.1. Let P ⊂ R

4 be a set of n points and let α /∈ {0, π/2, π} be fixed.
Then the number of triplets (p, q, r) ∈ P 3 of distinct points satisfying ∠pqr = α is

O(n5/2β(n)), where β(n) = 2cα
2(n) for some constant c > 0, and where α(n) is the

extremely slowly growing inverse Ackermann function.
Proof. The machinery of section 2 can be easily extended to four dimensions as

follows. We use the same partition of the set L of lines spanned by P into �log n�
classes, where the ith class consists of all lines that contain at least 2i and at most
2i+1 − 1 points of P . The values A(P ), Ai,j , and Ai are defined as in the three-
dimensional case. Unlike the case of R

3, we use the threshold value k = � 1
4 log n�

and obtain A(P ) = A′ + A′′, where A′ =
∑

i≤k Ai and A′′ =
∑

i>k Ai. Bounding A′′

proceeds exactly as before and yields A′′ = O(n32−2k) = O(n5/2).
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For A′, we bound each of the Ai,j terms separately. We set s = 2i and t = 2j .
As before, for each p ∈ P , we take the unit 3-sphere σp centered at p, intersect the
rays emanating from p and contained in the lines of Li and Lj with σp, and reduce
the problem to that of counting repeated distances on the sphere σp, all equal to the
spherical distance α. Each such incidence defines a pair of rays at angle α emanating
from p, which contribute O(st) angles to our count. The number of repeated distances
on σp is equal to the number of incidences between ξp points and ηp congruent copies
of the sphere S

2 scaled according to the spherical distance α. If α �= π/2, then these
copies of S

2 are not great spheres on σp, which easily implies that three distinct copies
intersect in at most two points (and not in a common circle, as may happen if they
are great spheres).

We can then apply the analysis of [2, section 6] for the number of incidences
between points and unit spheres in R

3. Since our spheres lie on a 3-sphere rather than
in Euclidean 3-space, the analysis of [2] requires some easy modifications. For example,
we can project σp onto R

3, using stereographic projection. The ηp 2-spheres on σp

are then mapped to 2-spheres in R
3, not necessarily of equal radius. Nevertheless, the

analysis in [2] carries over to this situation. The two main properties that the analysis
uses are that the incidence graph between the projected points and spheres does not
contain K3,3 and that the size of the vertical decomposition of an arrangement of
r projected spheres is O(r3β(r)), and, as is easily verified, both properties hold for
the projected spheres and points.

We conclude that the number of incidences between ξp points and ηp 2-spheres

on σp is O((ξpηp)
3/4β(ξp, ηp)+ξp+ηp), where β(m,n) = 2c

′α2(m3/n) for some constant
c′ > 0 independent of m and n, and where α(·) is the inverse Ackermann function.

Put β(n) = β(n, 1) = 2c
′α2(n3). Since α(·) is very slowly growing, we have α(n3) =

O(α(n)) and consequently β(n) ≤ 2cα
2(n) for an appropriate constant c > 0 depending

only on c′. Note that β(m,n) is ascending in m and descending in n, hence β(ξp, ηp) ≤
β(n, 1) (unless ηp = 0, but in that case we trivially have 0 angle instances from Ai,j

at the apex p). Plugging this bound into an appropriately modified variant of the
analysis of section 2 gives

Ai,j = O

⎛
⎝st

∑
p∈P

(ξpηp)
3/4β(ξp, ηp) + st

∑
p∈P

ξp + st
∑
p∈P

ηp

⎞
⎠

= O

⎛
⎝st

∑
p∈P

(ξpηp)
3/4β(n, 1) + st

∑
p∈P

ξp + st
∑
p∈P

ηp

⎞
⎠

= O

⎛
⎝stβ(n)

∑
p∈P

(ξpηp)
3/4 +

n2t

s
+

n2s

t

⎞
⎠ .

As above, we have

∑
p∈P

(ξpηp)
3/4 = (O(n/t))

1/2
∑
p∈P

ξ3/4
p η1/4

p

= O

⎛
⎜⎝n1/2t−1/2

⎛
⎝∑

p∈P

ξp

⎞
⎠

3/4 ⎛
⎝∑

p∈P

ηp

⎞
⎠

1/4
⎞
⎟⎠
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= O

(
n1/2t−1/2

(
n2

s2

)3/4 (
n2

t2

)1/4
)

= O
(
n5/2s−3/2t−1

)
and thus

Ai,j = O
(
n5/2β(n)2−i/2 + n22i−j

)
.(4.1)

Finally we sum over all the relevant Ai,j ’s to obtain

A′ = O

⎛
⎝n5/2β(n)

k∑
i=1

i∑
j=1

2−i/2 + n2
k∑

i=1

i∑
j=1

2i−j

⎞
⎠

= O
(
n5/2β(n) + n22k

)
= O

(
n5/2β(n)

)
.

Hence the number of repeated angles in R
4 is O(n5/2β(n)).

Remarks. The lower bound construction for R
3 can be easily extended to R

4

to yield a lower bound of Ω(n5/2) right angles, but this bound is very weak, since,
as mentioned, right angles can be repeated Θ(n3) times in R

4. An interesting open
problem is to match the upper bound of Theorem 4.1 by a lower bound close to
Ω(n5/2). As mentioned in the introduction, the only lower bounds that we have so
far (for α �= π/2) are Ω(n2) and Ω(n2 log n) for the special values of α used in [4].
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upper and lower bounds on H(n) with explicit constructions.
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1. Introduction. For n ∈ Z
+, let H(n) denote the number of ordered factor-

izations of n, by which we mean expressions of n as the product of integers ri ≥ 2
where the order of factors is essential. Equivalently, H(n) is the number of tuples
(r1, r2, . . . , rk) with ri ≥ 2 and

∏
ri = n, without restrictions on k. H(1) = 1 by

convention, the only factorization being () with k = 0. H(20) = 8, the factorizations
being (20), (10,2), (5,4), (5,2,2), (4,5), (2,10), (2,5,2), (2,2,5). Newberg and Naor [3]
use H(n) as a lower bound for an application in computational biology.

Define

ρ = ζ−1(2) ≈ 1.72864724,

where ζ is the Riemann zeta function, so that

∞∑
n=1

1

nρ
= 2

and, more usefully,

∞∑
n=2

1

nρ
= 1.

Hille [2] showed the existence of a constant c such that H(n) ≤ cnρ; Chor, Lemke,
and Mador [1] improved this to c = 1:

H(n) ≤ nρ.(1)

Hille also gave an existential lower bound: for all ε > 0,

lim sup
n

H(n)

nρ−ε
= ∞.(2)

Newberg and Naor show an explicit construction lower bounding H(n) with n logc n
for some c. Chor, Lemke, and Mador gave explicit constructions for certain values of
ε.

In this note we give simplified proofs of both upper and lower bounds.
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http://www.siam.org/journals/sidma/19-2/44586.html
†IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (dcopper@us.ibm.com).
‡Bar Ilan University, Ramat Gan 52900, Israel (moshe@cs.biu.ac.il).

301



302 DON COPPERSMITH AND MOSHE LEWENSTEIN

2. Upper bound. The upper bound H(n) ≤ nρ is proved by induction on n.
The base case n = 1 is satisfied. Suppose the result is true for all n′ < n. We count
the ordered factorizations of n according to their first element r1, which is a factor of
n larger than 1. The remainder (r2, . . . , rk) is an ordered factorization of n/r1. So we
have

H(n) =
∑

d|n,d>1

H(n/d).

By induction,

H(n/d) ≤ (n/d)ρ,

so that

H(n) =
∑

d|n,d>1

H(n/d) ≤
∑

d|n,d>1

nρ

dρ
< nρ

∑
d>1

1

dρ

= nρ(ζ(ρ) − 1) = nρ(2 − 1) = nρ,

completing the induction. In fact, we see that the inequality is strict for n > 1.

3. Lower bound. For α = ρ− ε we will give a family of integers n for which

lim sup
n

H(n)/nα = ∞.

Because ζ(t) is strictly monotone decreasing in t, we know

ζ(α) =

∞∑
1

1

nα
> 2.

There is a finite integer b for which already

b∑
1

1

nα
> 2.

Use monotonicity again to claim there is γ with α < γ < ρ satisfying

b∑
1

1

nγ
= 2

or, more usefully,

b∑
2

1

nγ
= 1.

Fix such α, b, γ.
Now select a large integer t. For k = 2, 3, . . . , b, we define

ck = �t/kγ�.

Set u =
∑

ck so that 0 ≤ t− u ≤ b− 2. Define

n =

b∏
k=2

kck .
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We will compare H(n) to nα. Among the ordered factorizations counted by H(n)
are the orderings of (c2 copies of 2, . . . , cb copies of b). The number of such orderings
is given by the multinomial coefficient

v(n) =
u!∏b

k=2 ck!
.

From Stirling’s approximation,

v(n) =
∏
k

(
u

ck

)ck

×
√

2πu∏
(2πck)

× [1 + o(1)],

where the o(1) term goes to 0 with increasing ck and hence with increasing n.
To estimate the first product, recall ck ≤ t/kγ , so that

∏
k

(
u

ck

)ck

≥
∏
k

(
ukγ

t

)ck

= (u/t)u

(∏
k

kck

)γ

.

We have (u/t)u ≥ e−(t−u) ≥ e−b+2, while the other factor is simply nγ . So our first
product is at least e−b+2nγ .

The second product is √
2πu∏
(2πck)

.

Notice that log n =
∑

ck log k, which implies that logn <
∑

(ck log b). Hence,
u =

∑
ck > (log n/ log b). On the other hand, for any k, ck <

∑
(ck log k) = logn.

Therefore, for some constant cb we can lower bound the second product as follows:√
2πu∏
(2πck)

> cb(log n)−(b−2)/2.

Summarizing,

H(n) ≥ v(n) ≥ nγ(log n)−(b−2)/2cb(1 + o(1)).

Since γ > α, we have

lim sup
n

H(n)/nα = ∞,

as required.
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A STRONGLY POLYNOMIAL CUT CANCELING ALGORITHM FOR
MINIMUM COST SUBMODULAR FLOW∗

SATORU IWATA† , S. THOMAS MCCORMICK‡ , AND MAIKO SHIGENO§

Abstract. This paper presents a new strongly polynomial cut canceling algorithm for minimum
cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for
ordinary min-cost flow. The algorithm scales a relaxed optimality parameter and creates a second,
inner relaxation that is a kind of submodular max flow problem. The outer relaxation uses a novel
technique for relaxing the submodular constraints that allows our previous proof techniques to work.
The algorithm uses the min cuts from the max flow subproblem as the relaxed most positive cuts it
chooses to cancel. We show that this algorithm needs to cancel only O(n3) cuts per scaling phase,
where n is the number of nodes. Furthermore, we show how to slightly modify this algorithm to get
a strongly polynomial running time. Finally, we briefly show how to extend this algorithm to the
separable convex cost case and that the same technique can be used to construct a polynomial time
maximum mean cut canceling algorithm for submodular flow.

Key words. combinatorial optimization, strongly polynomial time algorithm, submodular func-
tion, network flow
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1. Introduction. A fundamental problem in combinatorial optimization is min-
cost network flow (MCF). It can be modeled as a linear program with guaranteed
integral optimal solutions (with integral data), and many polynomial and strongly
polynomial algorithms for it exist (see Ahuja, Magnanti, and Orlin [1] for background).
Researchers in mathematical programming have developed a series of extensions of
MCF having integral optimal solutions (see Schrijver [40]).

Often the proofs of integrality are existential rather than algorithmic. We have
long been interested in finding a generic (strongly) polynomial algorithm for such
problems, i.e., one that is easily extended from the MCF case to more general cases.
Finding such an algorithm would allow us to better understand which features of MCF
algorithms depend on special structure and which ones are more general. We hope
that it would also allow researchers to be able to find algorithms for more general
problems more quickly than in the past.

Natural classes of generic algorithm to consider are the classes of (primal) cycle
canceling algorithms and (dual) cut canceling algorithms. These are natural in the
sense that they take improving steps coming from the linear algebra of the constraints,
and their sense of “improvement” depends only on the local effect on the objective
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value. It is (in theory) easy to figure out what these objects should look like for more
general models than MCF.

A natural first step in applying such a research program is to consider the case of
submodular flow (SF), formally defined in section 2. This problem very much resembles
ordinary MCF, except that the usual conservation constraints have been relaxed into
constraints on the total violation of conservation on any node subset. SF was shown
to enjoy integral optimal solutions by Edmonds and Giles [4]. Early algorithmic
contributions came from [3, 9, 10, 13]. Our algorithm uses many ideas from these
papers. The first strongly polynomial algorithm for SF is due to Frank and Tardos
[11], who generalized the strongly polynomial MCF algorithm by Tardos [43] to a fairly
wide class of combinatorial optimization problems. A more direct generalization of
the Tardos algorithm was presented by Fujishige, Röck, and Zimmermann [18] with
the aid of the tree-projection method by Fujishige [15].

Unfortunately it has been surprisingly difficult to extend known MCF cycle and
cut canceling algorithms to SF. One of the most attractive MCF canceling algorithms
is the min mean cycle canceling algorithm of Goldberg and Tarjan [20] (and its dual,
the max mean cut canceling algorithm of Ervolina and McCormick [5]). Cui and
Fujishige [2] were able to show finiteness of this algorithm for SF, but no polynomial
bound. McCormick, Ervolina, and Zhou [35] show that it is unlikely that a straightfor-
ward generalization of either min mean cycle or max mean cut canceling is polynomial
for SF. In 1999 Wallacher and Zimmermann [44] devised a weakly polynomial cycle
canceling algorithm for SF based on the min ratio approach by Zimmermann [45].
This algorithm is provably not strongly polynomial, even for networks [36].

Another possibility, developed and analyzed in [42], is to cancel cycles or cuts
which maximize the violation of complementary slackness with respect to a relaxed
optimality parameter, the relaxed min/max canceling algorithms. These algorithms
allow for a simpler computation of the cycle or cut to cancel, but otherwise enjoy the
relatively simple analysis of min mean cycle/max mean cut canceling.

The same authors found a way to generalize relaxed min cycle canceling to SF
[28], which led to nearly the fastest weakly polynomial running time for SF. This
algorithm leads to the same strongly polynomial bound as the fastest known one
by Fujishige, Röck, and Zimmermann [18], and it can also be extended to SF with
separable convex costs. The same ideas can be further extended to solve separable
convex cost problems over any totally unimodular system [29].

However, in some circumstances cut canceling appears to be more generalizable
than cycle canceling. One recent example of this is the problem of submodular func-
tion minimization (SFM; see [32] for a survey). One of the two basic SFM algorithms,
by Iwata, Fleischer, and Fujishige [25], is a direct descendent of the cut canceling
algorithm in the present paper, whereas no cycle canceling SFM algorithm is known.
Hence it is important to also generalize cut canceling MCF algorithms to SF.

This paper extends the relaxed most positive cut (MPC) canceling algorithm for
MCF of [42] in a nontrivial way to SF. Section 3 develops the concepts of dual approx-
imate optimality we will need, and section 4 develops the main weakly polynomial
algorithm. The algorithm runs in O(n6h log(nU)) time, where n is the number of
vertices, h is the time for computing an exchange capacity, and U is the maximum
absolute value of capacities. The next three sections generalize this algorithm in three
directions: to a strongly polynomial algorithm (section 5), to the case of separable
convex costs (section 6), and to a max mean cut variant (section 7). The total running
time bound of the strongly polynomial algorithm is O(n8h log n). Finally, in section 8,
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we describe how to apply our algorithms to the SF problem with crossing submodular
functions.

The only other polynomial cut canceling algorithm we know for SF is the most
helpful total cut canceling algorithm of [33]. However, that algorithm is provably not
strongly polynomial [6], and it needs an oracle to compute exchange capacities for a
derived submodular function, which appears to be difficult to derive from an oracle
for the original submodular function. By contrast, the present algorithm can compute
exchange capacities in derived networks using only an oracle for the original function,
and is the first dual strongly polynomial algorithm for SF that we know of. Our
algorithm also appears to be the first strongly polynomial algorithm (primal or dual)
for SF that avoids scaling or rounding the data. The original version of this paper [26]
developed the first strongly polynomial cut canceling algorithm for SF. Subsequently,
Fleischer, Iwata, and McCormick (FIM) [7] derived a new strongly polynomial SF
algorithm which improves the running time of the capacity scaling algorithm for SF
in [24] by incorporating the cut canceling technique developed in the present paper.
The FIM algorithm improves the cut canceling SF algorithm of this paper by updating
dual prices using shortest path distances coming from a modified form of Dijkstra’s
algorithm to effectively cancel many cuts at once. The FIM algorithm improves
both the weakly and the strongly polynomial bounds of this paper by a factor of
n2. The strongly polynomial bound matches the current best-known bound, and
the weakly polynomial bound is better than any previously known algorithm for the
SF problem when costs are large but capacities are not (again showing that cut
canceling algorithms are sometimes superior). The FIM SF algorithm then led to the
IFF SFM algorithm [25], which solved one of the most important and long-standing
open problems in combinatorial optimization. This development validates our claim
that this research program can lead to quicker algorithm development, as the IFF
algorithm followed the FIM algorithm relatively quickly, despite SFM seeming to be
quite different from SF.

2. Submodular flow. An instance of submodular flow looks much like an in-
stance of MCF. We are given a directed graph G = (N,A) with node set N of car-
dinality n and arc set A of cardinality m. We are also given lower and upper bounds
�, u ∈ RA on the arcs and costs c ∈ RA on the arcs.

We need some notation to talk about relaxed conservation. If w ∈ RX and Y ⊆ X,
then we abbreviate

∑
y∈Y wy by w(Y ) as usual. For node subset S, define Δ+S as

{i → j ∈ A | i ∈ S, j /∈ S}, Δ−S as {i → j ∈ A | i /∈ S, j ∈ S}, and ΔS = Δ+S∪Δ−S.
We say that arc a crosses S if a ∈ ΔS. If ϕ is a flow on the arcs (i.e., ϕ ∈ RA), for
i ∈ N define the boundary ∂ϕ(i) of ϕ at i to be ϕ(Δ+{i}) − ϕ(Δ−{i}), i.e., the net
flow out of i. Thus ∂ϕ is a vector in RN . We extend ∂ϕ to node subsets S ⊆ N as
usual via ∂ϕ(S) =

∑
i∈S ∂ϕ(i) = ϕ(Δ+S) − ϕ(Δ−S), which equals the net flow out

of S. Later we will consider several auxiliary networks whose arc sets are supersets
of A, so we will often subscript ∂ and Δ by the set of arcs we want them to include
at that point.

Usual MCF conservation requires that ∂ϕ(i) = 0 for all i ∈ N , which implies that
∂ϕ(S) = 0 for all S ⊆ N . From this perspective it is natural to relax this constraint
to ∂ϕ(S) ≤ f(S) for some set function f : D → R on some set family D ⊆ 2N with
∅, N ∈ D. Since ∂ϕ(∅) = ∂ϕ(N) = 0 for any flow ϕ, we can and will assume that
f(∅) = f(N) = 0.
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For such a set function f , the base polyhedron B(f) is defined by

B(f) = {x | x ∈ RN , x(N) = f(N) = 0, ∀S ∈ D : x(S) ≤ f(S)}.

A vector in B(f) is called a base. This is defined so that ∂ϕ(S) ≤ f(S) for all S ∈ D
is equivalent to requiring that ∂ϕ ∈ B(f). Then the (primal) optimization problem
we would like to solve is the following:

Minimize
∑
a∈A

caϕa

subject to �a ≤ ϕa ≤ ua (a ∈ A),(2.1)

∂ϕ ∈ B(f).

This is a linear program with an exponential number of constraints. Note that for
general D and f , B(f) could be empty, and/or (2.1) could have fractional optimal
solutions.

In order to ensure that B(f) 	= ∅ and that we have integral optimal solutions, it
is necessary to require some structure on D and f . For S, T ⊆ N , we say that S and
T intersect if S ∩ T 	= ∅, and cross if they intersect and also have S ∪ T 	= N . We say
that D is a ring (resp., intersecting, crossing) family if S∩T, S∪T are also in D for all
(resp., intersecting, crossing) pairs S, T ∈ D (note that a ring family is a distributive
lattice). We say that f is a ring (resp., intersecting, crossing) submodular on D if D
is a ring (resp., intersecting, crossing) family, and for all (resp., intersecting, crossing)
pairs S, T ∈ D we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).(2.2)

Note that every ring family is also an intersecting and crossing family, and so every
ring submodular f is also intersecting and crossing submodular.

Edmonds and Giles [4] originally formulated the SF problem for crossing sub-
modular functions, which can have empty base polyhedra. Fujishige [14] provided a
necessary and sufficient condition for B(f) to be nonempty. This condition can be
checked efficiently by the bi-truncation algorithm of Frank and Tardos [12]. When f
is crossing submodular on D and B(f) 	= ∅, then (2.1) is an SF problem. Edmonds
and Giles showed that submodular flow problems are totally dual integral (TDI), and
so always have integral optimal solutions with integer data.

Furthermore, Fujishige [14] showed that a nonempty base polyhedron B(f) of a
crossing submodular function f on a crossing family D is identical to a base polyhedron
B(f̃) of a ring submodular function f̃ on a ring family D̃ that contains D, which
was already implicit in Frank [9]. Therefore, theorems and algorithms concerning
geometric properties of the base polyhedra of ring submodular functions carry over
to crossing submodular functions.

The cut canceling algorithms presented in this paper rely only on geometric prop-
erties such as the exchange capacity (defined in section 3). This allows us to assume
throughout most of the paper that D is a ring family and that f is ring submodular
on D. We sketch out the minor modifications needed to our algorithms to make them
work for the crossing submodular case in section 8.

The base polyhedron of a ring submodular function is always nonempty. Techni-
cally, the dual problem to (2.1) should have an exponential number of dual variables,
one for each subset of N . However, it is possible and much more convenient to sim-
plify these to dual variables on nodes, or node potentials π ∈ RN . For arc a = i → j,
we define the reduced cost on a by cπa = ca + πi − πj .
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Node potentials are widely used in MCF algorithms, where they arise naturally as
LP dual variables. The first use that we are aware of of node potentials as a simpler
substitute for the dual variables for the set constraints in submodular problems is
made by Iri and Tomizawa [23] for the independent assignment problem. The weight
splitting in the weighted matroid intersection algorithm of Frank [8] plays essentially
the same role as the node potentials. These two equivalent matroid optimization
problems are special cases of the 0-1 SF problem, for which Frank [9] devised an
efficient combinatorial algorithm using node potentials.

We need some further concepts to characterize optimality for (2.1). If ϕ is a flow
with boundary x = ∂ϕ such that x ∈ B(f), then we say that subset S is ϕ-tight, or
x-tight, or just tight if x(S) (= ∂ϕ(S)) = f(S). Ring submodularity implies that the
union and intersection of tight sets are also tight.

If π is a set of node potentials with distinct values v1 > v2 > · · · > vh, then the
kth level set of π is Lπ

k ≡ {i ∈ N | πi ≥ vk}, k = 1, 2, . . . , h. It will be convenient to
let Lπ

0 = ∅. Note that ∅ = Lπ
0 ⊂ Lπ

1 ⊂ Lπ
2 ⊂ · · · ⊂ Lπ

h = N . Suppose Lπ
k ∈ D for

k = 0, 1, . . . , h, and define a function fπ : D → R by

fπ(S) =

h∑
k=1

{f((S ∩ Lπ
k ) ∪ Lπ

k−1) − f(Lπ
k−1)} (S ∈ D).

Then fπ is ring submodular, fπ ≤ f , and if S nests with each Lπ
k (either S ⊆ Lπ

k or
Lπ
k ⊆ S), then fπ(S) = f(S). Also, x is in B(fπ) if and only if x ∈ B(f) and every

Lπ
k is x-tight for f , which is true if and only if x maximizes πT y over y ∈ B(f) (see

[16, Theorem 3.15]).
Cunningham and Frank [3] established an optimality criterion of the SF problem

in terms of node potentials, which can be reformulated as follows. See also [16,
Theorem 5.3] for a direct proof.

Theorem 2.1. An SF ϕ is optimal if and only if there exists a node potential
π : N → R such that

cπa > 0 ⇒ ϕa = �a,

cπa < 0 ⇒ ϕa = ua,

and ∂ϕ ∈ B(fπ).
Thus two equivalent ways to state the “submodular part” of the optimality con-

dition are to require that an optimal ϕ and π satisfy that each Lπ
k is ϕ-tight, or that

∂ϕ maximizes the objective πT y over y ∈ B(f).

3. Dual approximate optimality. We first cover the details of how to check
node potentials π for optimality. We then show how to adapt checking exact optimal-
ity to checking a new kind of approximate optimality. This checking routine will form
the core of our cut canceling algorithm, as it will produce the cuts that we cancel.
For this paper a cut is just a nonempty, proper subset S ∈ D of N . We cancel a cut
by increasing πi by some step length β for i ∈ S, which has the effect of increasing cπa
on Δ+S, decreasing cπa on Δ−S, and changing the level sets of π.

Given a node potential π, we define modified bounds �π and uπ as follows. If
cπa < 0, then �πa = uπ

a = �a; if cπa = 0, then �πa = �a and uπ
a = ua; if cπa > 0, then

�πa = uπ
a = ua. Then Theorem 2.1 implies that π is optimal if and only if there is a

feasible flow in the network Gπ with bounds �π, uπ, and fπ.
For the proof of correctness of our algorithm we will need some details of how

feasibility of Gπ is checked. We do this using a variant of an algorithm of Frank [10]
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that we call the feasibility algorithm. It starts with any initial base x ∈ B(fπ) and any
initial ϕ satisfying �π and uπ. We now define a residual network on N . If ϕij > �πij ,
then we have a backward residual arc j → i with residual capacity rij = ϕij − �πij ; if
ϕij < uπ

ij , then we have a forward residual arc i → j with rji = uπ
ij − ϕij . To deal

with relaxed conservation, for every i, j ∈ N with i 	= j and x ∈ B(f), we define the
exchange capacity w.r.t. x as

r̃(x, i, j) = max{α | x + αχi − αχj ∈ B(f)};

thus r̃(x, i, j) > 0 means that there is no x-tight set containing i but not j. If we
compute exchange capacity relative to fπ instead of f , then we denote it by r̃π. Since
fπ ≤ f , we have r̃π(x, i, j) ≤ r̃(x, i, j). Make a jumping arc j → i with capacity
r̃(x, i, j) whenever r̃(x, i, j) > 0. Note that S is x-tight if and only if there are no
jumping arcs w.r.t. x entering S. The residual network for π contains only the jumping
arcs w.r.t. r̃π. Also, [3, Theorem 7] shows that for any node potentials π ∈ RN and
i, j ∈ N with πi = πj , the exchange capacity r̃π(x, i, j) for fπ is determined by a set
S that nests with the Lπ

k so that r̃π(x, i, j) = fπ(S)−x(S) = f(S)−x(S) ≥ r̃(x, i, j),
and hence r̃π(x, i, j) = r̃(x, i, j).

The feasibility algorithm finds directed residual paths from N+ = {i ∈ N | xi >
∂ϕ(i)} to N− = {i ∈ N | xi < ∂ϕ(i)} with a minimum number of arcs in the residual
network. On each path it augments flow ϕ on the residual arcs, and modifies x as per
the jumping arcs, which monotonically reduces the difference of x and ∂ϕ. By using a
lexicographic selection rule, the algorithm terminates in finite time. At termination,
either x coincides with ∂ϕ, which implies the optimality of π, or there is no directed
path from N+ to N−.

In this last case, define T ⊆ N as the set of nodes from which N− is reachable
by directed residual paths. No jumping arcs enter T , so it must belong to D, it must
be tight for the final x, and it must contain all i with xi < ∂ϕ(i). Furthermore, we
have ϕ(Δ+T ) = �π(Δ+T ) and ϕ(Δ−T ) = uπ(Δ−T ). Thus we get

V π(T ) ≡ �π(Δ+
AT ) − uπ(Δ−

AT ) − fπ(T ) = ∂ϕ(T ) − x(T ) > 0.(3.1)

We call a node subset S with V π(S) > 0 a positive cut. Similar reasoning shows that
for any other S ∈ D, we have V π(S) ≤ ∂ϕ(S) − x(S) ≤ ∂ϕ(T ) − x(T ) = V π(T ),
proving that T is an MPC. Intuitively, V π(T ) measures how far away from optimality
π is. We summarize as follows.

Lemma 3.1. Node potentials π are optimal if and only if there are no positive
cuts w.r.t. π. When π is not optimal, the output of the feasibility algorithm is an
MPC.

We denote the running time of the feasibility algorithm by FA. As usual, we
assume that we have an oracle to compute exchange capacities and denote its running
time by h. Computing an exchange capacity is an SFM on a distributive lattice,
which can be done via the ellipsoid method [21] or by combinatorial methods [25, 41]
in strongly polynomial time. Cunningham and Frank [3, Theorem 7] show how to
derive an oracle for computing exchange capacities for fπ from an oracle for f with
the same running time. Fujishige and Zhang [17] (see also [27]) show how to extend
the push-relabel algorithm of Goldberg and Tarjan [19] to get FA = O(n3h).

Unfortunately, even for min-cost flow, an example of Hassin [22] shows that it
may be necessary to cancel an exponential number of MPCs to achieve optimality. In
[42] we get around this difficulty for MCF by relaxing the optimality conditions by a
parameter δ > 0, and applying scaling to δ. It then turns out that only a polynomial
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number of relaxed MPCs need to be canceled for a given value of the parameter, and
only a polynomial number of scaled subproblems need to be solved.

Until now it has been difficult to find a relaxation in the SF case that would allow
the same analysis to apply. Here we introduce a new relaxation that works. We relax
the modified bounds on the arcs in A by widening them by δ just as in [5]. Define
�π,δa = �πa − δ and uπ,δ

a = uπ
a + δ for every arc a ∈ A.

We also need to relax the submodular bounds on conservation by some function
of δ. Define fπ,δ(S) = fπ(S) + δ|S| · |N − S|, which is closely related to a relaxation
introduced in [24]. Since |S| · |N − S| is submodular, fπ,δ is submodular.

We can now define the relaxed cut value of S as

V π,δ(S) = �π,δ(Δ+
AS) − uπ,δ(Δ−

AS) − fπ,δ(S).

We say that node potential π is δ-optimal if V π,δ(S) ≤ 0 holds for every cut S. Thus
π is 0-optimal if and only if it is optimal.

To check if π is δ-optimal, we need to see if there is a feasible flow in the network
with bounds �π,δ, uπ,δ, and fπ,δ. It turns out to be more convenient to move the δ
relaxation off fπ,δ onto a new set of arcs. Define Ĝπ = (N,A ∪E) to be the directed
graph obtained from G by adding E = {i → j | i, j ∈ N, i 	= j} to the arc set. Extend
the bounds �π, uπ, �π,δ, and uπ,δ from A to E by setting �πe = uπ

e = 0, �π,δe = 0,
and uπ,δ

e = δ for every e ∈ E. For convenience set I = A ∪ E and m′ = |A ∪ E| =
m + n(n− 1).

Now checking �π,δ, uπ,δ, and fπ,δ for feasibility on G (with arc set A) is equivalent

to checking �π,δ, uπ,δ, and fπ for feasibility on Ĝπ (with arc set I = A ∪ E). Also,
the relaxed cut value on G can be re-expressed as

V π,δ(S) = �π,δ(Δ+
I S) − uπ,δ(Δ−

I S) − fπ(S).

If there is a feasible SF in Ĝπ, then π is δ-optimal. Otherwise, the feasibility algorithm
gives us a node subset T that maximizes V π,δ(S), a relaxed MPC, or δ-MPC. When
π is not δ-optimal, the feasibility algorithm also gives us an optimal “max flow” ϕ on
Ĝπ and a base x in B(fπ) such that xi ≤ ∂Iϕ(i) for i ∈ T and xi ≥ ∂Iϕ(i) for i /∈ T .

We also need to consider max mean cuts. The mean value of cut S is

V
π
(S) ≡ V π(S)

|ΔAS| + |S| · |N − S| .

A max mean cut attains the maximum in δ(π) ≡ maxS V
π
(S). By standard LP

duality arguments, δ(π) also equals the minimum δ such that there is a feasible

flow in Ĝπ with bounds �π,δ, uπ,δ, and fπ. Define U to be the maximum ab-
solute value of any �a, ua, or f({i}). A max mean cut can be computed using

O(min{m′, log(nU)
1+log log(nU)−log log n}) calls to the feasibility algorithm in the framework

of discrete Newton’s algorithm; see McCormick and Ervolina [34] or Radzik [37, 38].

4. Cut cancellation. We will start out with δ large and drive δ towards zero,
since π is 0-optimal if and only if it is optimal. The next lemma says that δ need not
start out too big, and need not end up too small. Its proof is similar to [5, Lemma 5.1].

Lemma 4.1. Suppose that �, u, and f are integral. Then any node potentials π are
2U -optimal. Moreover, when δ < 1/m′, any δ-optimal node potentials are optimal.

Our relaxed δ-MPC canceling algorithm will start with δ = 2U and will execute
scaling phases, where each phase first sets δ := δ/2. The input to a phase will be a
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2δ-optimal set of node potentials from the previous phase, and its output will be a
δ-optimal set of node potentials. Lemma 4.1 says that after O(log(nU)) scaling phases
we have δ < 1/m′ and we are optimal. Within a scaling phase we use the feasibility
algorithm to find a δ-MPC T . We then cancel T by adding a constant step length β
to πi for each node in T to get π′.

In ordinary min-cost flow we choose the step length β based on the first arc in A,
whose reduced cost hits zero (as long as the associated flow is within the bounds; see
[42, Figure 2]). This bound on β is

η ≡ min

{
min{|cπa | | a ∈ Δ+

AT, c
π
a < 0, ϕa ≥ �a}

min{cπa | a ∈ Δ−
AT, c

π
a > 0, ϕa ≤ ua}

}
.

(Note that optimality of T implies that every arc a with ϕa ≥ �a has negative reduced
cost, and every arc a with ϕa ≤ ua has positive reduced cost.)

Here we must also worry about the level set structure of π changing during the
cancel, which is equivalent to the reduced cost of a jumping arc reaching zero. We
need to increase flows on jumping arcs leaving T so that the Lπ′

k will be tight. We try
to do this by decreasing flow on arcs of Δ−

ET , all of which have flow δ since T is tight.
If the exchange capacity of such an arc is at most δ we can do this. Otherwise, this
E-arc will determine β, and the large exchange capacity will allow us to show that
the algorithm makes sufficient progress.

These considerations lead to the subroutine AdjustFlow below. It takes as
input the optimal max flow ϕ from the feasibility algorithm, and its associated base
x ∈ B(fπ). It computes an update ψ ∈ RE to ϕ and base x′ so that x′ will be the
base associated with ϕ′ ≡ ϕ − ψ. Note that in AdjustFlow we always compute
r̃(x, i, j) w.r.t. f , never w.r.t. fπ, so that jumping arcs are w.r.t. f , not fπ. We call
an arc that determines β a determining arc.

Algorithm AdjustFlow:

begin
ψe = 0 for e ∈ E;
H := {j → i | i ∈ T, j ∈ N − T, 0 < πj − πi < η};
while H 	= ∅ do
begin

x′ := x− ∂Eψ;
select e = j → i ∈ H with minimum πj − πi;
set H := H − {e};
if r̃(x′, i, j) < δ then ψe := r̃(x′, i, j);
else return β := πj − πi [β is determined by jumping arc j → i];

end
return β := η [β is determined by the A-arc determining η];

end.

The full description of canceling a cut is now: Use the feasibility algorithm to find
δ-MPC T , max flow ϕ, and base x. Run AdjustFlow to modify ϕ to ϕ′ = ϕ − ψ
and x to x′ = x − ∂Eψ, and to choose β. Finally, increase πi by β for all i ∈ T . A
scaling phase cancels δ-MPCs in this manner until π is δ-optimal. The next results
show that canceling a δ-MPC cannot increase the δ-MPC value, and that V π,δ(S) will
decrease by at least δ under some circumstances.

Lemma 4.2. Suppose we cancel a δ-MPC T for π to get a node potential π′.
Then V π′,δ(S) ≤ V π,δ(T ) holds for any cut S.
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Proof. It is easy to show, similar to [42, Lemma 5.3], that �π
′,δ

a ≤ ϕa ≤ uπ′,δ
a

holds for every a ∈ A. As a result of AdjustFlow, we obtain a flow ψ ∈ RE with
0 ≤ ψe < δ for e ∈ E. Put ϕ′

a = ϕa for a ∈ A and ϕ′
e = ϕe − ψe for e ∈ E. To prove

that ϕ′ is feasible for B(fπ′
) we need the following.

Claim: x′ = x− ∂Eψ ∈ B(fπ′
).

Proof. If the initial H = ∅ in AdjustFlow (i.e., πj > πi implies that πj ≥
πi + η), then ψ ≡ 0 and so x′ = x. In this case it can be shown that fπ′

(S) =
fπ(S ∩ T ) + fπ(S ∪ T ) − fπ(T ). Since x(T ) = x′(T ) = fπ(T ), we have x′(S) =
x′(S ∩ T ) + x′(S ∪ T ) − x′(T ) ≤ fπ(S ∩ T ) + fπ(S ∪ T ) − fπ(T ) = fπ′

(S).
Suppose instead that the initial H is nonempty. Here we know at least that

x′ ∈ B(f) (since ψji is never bigger than r̃(x′, i, j)). Denote T ∩ (Lπ
k − Lπ

k−1) by Tk

and (Lπ
k − Lπ

k−1) − T by T k, so that the Tk partition T and the T k partition N − T .

Then a typical level set of π′ looks like L′ = (
⋃q

k=1 Tk) ∪ (
⋃p

k=1 T k) = Lπ
p ∪ (T ∩ Lπ

q )
for some 0 ≤ p < q ≤ h.

Now both T and Lπ
i are ϕ-tight for fπ, so their union and intersection are both

ϕ-tight for fπ. By the same reasoning, T̂i ≡ (T ∩Lπ
i )∪Lπ

i−1 = (
⋃i

k=1 Tk)∪ (
⋃i−1

k=1 T k)

is also ϕ-tight for fπ. Since every arc of H starts in some T j and ends in some Ti

with j < i, no arc of H crosses any T̂i; thus each T̂i is also ϕ′-tight for fπ. Each T̂i

nests with the Lπ
k , so we have fπ(T̂i) = f(T̂i), and thus each T̂i is in fact ϕ′-tight

for f . This implies that the only possible jumping arcs entering level set L′ of π′ are
those from T j to Ti for p < j < i ≤ q. But these jumping arcs all belong to H and

were removed by AdjustFlow. Thus L′ is ϕ′-tight for f , and so x′ ∈ B(fπ′
).

Since ψe > 0 implies ϕe = δ, every e ∈ E satisfies 0 ≤ ϕ′
e ≤ δ. Therefore we have

V π′,δ(S) = �π
′,δ(Δ+

I S) − uπ′,δ(Δ−
I S) − fπ′

(S) (definition of V π′,δ(S))

≤ ∂Iϕ
′(S) − x′(S) (feasibility of ϕ′, x′ ∈ B(fπ′

))
= ∂Iϕ(S) − x(S) (definition of ϕ′, x′)
≤ ∂Iϕ(T ) − x(T ) (T a δ-MPC)
= �π,δ(Δ+

I T ) − uπ,δ(Δ−
I T ) − fπ(T ) (T is ϕ-tight for fπ)

= V π,δ(T ) (definition of V π,δ(T )).

Corollary 4.3. With the same hypothesis and notation as Lemma 4.2, if the
determining arc a ∈ A ∪ E crosses S, then we have V π′,δ(S) ≤ V π,δ(T ) − δ.

Proof. If the determining arc a ∈ A, then �π
′,δ

a +δ = �a ≤ ϕa ≤ ua = uπ′,δ
a −δ, and

hence �π
′,δ(Δ+

I S) − uπ′,δ(Δ−
I S) ≤ ∂Iϕ

′(S) − δ. If a ∈ Δ+
ES, then ϕa = δ = �π

′,δ
a + δ,

and hence �π
′,δ(Δ+

I S) − uπ′,δ(Δ−
I S) ≤ ∂Iϕ

′(S) − δ. If a = j → i ∈ Δ−
ES, then

fπ′
(S) − x′(S) ≥ r̃π

′
(x′, i, j). Now a determining means that π′

i = π′
j , which implies

r̃π
′
(x′, i, j) = r̃(x′, i, j) ≥ δ, and hence fπ′

(S) ≥ x′(S) + δ. In all cases we have
V π′,δ(S) ≤ ∂Iϕ

′(S) − x′(S) − δ, which implies V π′,δ(S) ≤ V π,δ(T ) − δ.
Note that we have two different notions of “closeness to optimality” in this algo-

rithm. At the outer level of scaling phases we drive δ towards zero (and so π towards
optimality), and inside a phase we drive the δ-MPC value towards zero (and so π
towards δ-optimality). Observe that the difference between ∂ϕ and x in the feasibil-
ity algorithm is an inner relaxation of the condition that π is δ-optimal, in that we
keep a flow satisfying the bounds �π,δ and uπ,δ and a base x in B(fπ). As the phase
progresses the difference is driven to zero, until the final flow proves δ-optimality of
the final π.

We can now prove the key lemma in the convergence proof of δ-MPC canceling,
which shows that we must be in a position to apply Corollary 4.3 reasonably often.
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Lemma 4.4. After at most n cut cancellations, the value of a δ-MPC decreases
by at least δ.

Proof. Suppose that the first cancellation has initial node potentials π0 and
cancels δ-MPC T 1 to get π1, the next cancels T 2 to get π2, . . . , and the nth cancels
Tn to get πn. Each cancellation makes at least one arc into a determining arc.
Consider the subgraph of these determining arcs. If a cut creates a determining arc
whose ends are in the same connected component of this subgraph, then this cut must
be crossed by a determining arc from an earlier cut. We can avoid this only if each
new determining arc strictly decreases the number of connected components in the
subgraph. This can happen at most n − 1 times, so it must happen at least once
within n iterations.

Let k be an iteration where T k shares a determining arc with an earlier cut Th. By

Corollary 4.3 applied to T = Th and S = T k, we have V πh−1,δ(Th) ≥ V πh,δ(T k) + δ.

Note that the δ-MPC value at iteration i is V πi−1,δ(T i). If V πh,δ(T k) ≥ V πk−1,δ(T k),

Lemma 4.2 says that V π0,δ(T 1) ≥ V πh−1,δ(Th) ≥ V πh,δ(T k) + δ ≥ V πk−1,δ(T k) + δ ≥
V πn−1,δ(Tn) + δ.

If instead V πh,δ(T k) < V πk−1,δ(T k), then let p be the latest iteration between h

and k with V πp−1,δ(T k) < V πp,δ(T k). The only way for the value of T k to increase like

this is if there is an arc a ∈ A with cπ
p−1

a = 0 that crosses T k in the reverse orientation

to its orientation in T p, or fπp−1,δ(T k) > fπp,δ(T k) holds. Let ϕp be a flow proving
optimality of T p. If a ∈ Δ+

AT
p ∩ Δ−

AT
k (a ∈ Δ−

AT
p ∩ Δ+

AT
k), then we have uπp,δ

a =

ϕp
a + 2δ ≥ ϕp

a + δ (lπ
p,δ

a = ϕp
a − 2δ ≤ ϕp

a − δ). When fπp−1,δ(T k) > fπp,δ(T k) holds,
there exist i, j ∈ N such that i ∈ T k \ T p, j ∈ T p \ T k. It follows from i → j ∈ Δ−

I T
p

and j → i ∈ Δ+
I T

p that ϕp
e = δ = lπ

p,δ
e + δ for e = i → j and ϕp

e′ = 0 = uπp,δ
e′ − δ for

e′ = j → i. In either case, we have lπ
p,δ(Δ+

I T
k)−uπp,δ(Δ−

I T
k) ≤ ∂Iϕ

p(T k)−δ. Thus

equations in the proof of Lemma 4.2 apply, showing that V πp−1,δ(T p)−δ ≥ V πp,δ(T k).

Then Lemma 4.2 and the choice of p say that V π0,δ(T 1) ≥ V πp−1,δ(T p) ≥ V πp,δ(T k)+

δ ≥ V πk−1,δ(T k) + δ ≥ V πn−1,δ(Tn) + δ.

Lemma 4.5. The value of every δ-MPC in a scaling phase is at most m′δ.

Proof. Let ϕ prove the 2δ-optimality of the initial π in a phase, so that ϕ violates
the bounds lπ and uπ by at most 2δ on every arc of A ∪ E, and ϕsi = 0 for all i. To
get an initial flow ϕ0 to begin the next phase that violates the bounds by at most δ,
we need to change ϕ by at most δ on each arc of A∪E. Then if we set ϕ0

si = δ|Δ+
I {i}|

for all i, ϕ0 will satisfy fπ also. The sum
∑

i∈N ϕ0
si is at most m′δ, and this is an

upper bound on the value of the first δ-MPC in this phase. By Lemma 4.2, it is then
also a bound on the value of every δ-MPC in the phase.

Putting Lemmas 4.4 and 4.5 together yields our first bound on the running time
of δ-MPC canceling.

Theorem 4.6. A scaling phase of δ-MPC canceling cancels at most m′n δ-MPCs.
Thus the running time of δ-MPC canceling is

O(n3 log(nU)FA) = O(n6h log(nU)).

Proof. Lemma 4.5 shows that the δ-MPC value of the first cut in a phase is at
most m′δ. It takes at most n iterations to reduce this by δ, so there are at most
m′n = O(n3) iterations per phase. The time per iteration is dominated by computing
a δ-MPC, which is O(FA). The number of phases is O(log(nU)) by Lemma 4.1.
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5. A strongly polynomial bound. We first prove the following lemma. Such
a result was first proved by Tardos [43] for MCF; this version is an extension of dual
versions by Fujishige [15] and Ervolina and McCormick [5].

Lemma 5.1. Suppose that flow ϕ′ proves that π′ is δ′-optimal. If arc a ∈ A
satisfies ϕ′

a < ua− (m′ +1)δ′, then all optimal π∗ have cπ
∗

a ≥ 0. If arc a ∈ A satisfies

ϕ′
a > �a+(m′+1)δ′, then all optimal π∗ have cπ

∗

a ≤ 0. If ∂Iϕ
′(T 0) > fπ0

(T 0)+m′nδ′

for some π0 and some T 0 ∈ D, then there is an E-arc i → j leaving some level set of
π0 such that all optimal π∗ have π∗

i ≤ π∗
j .

Proof. Note that ϕ′ proving δ′-optimality of π′ implies that there is no jumping
arc entering any Lπ′

k for any k. Since x′ ≡ ∂Iϕ
′ ∈ B(fπ′

), this says that x′ is a
π′-maximum base of B(f).

Now change ϕ′, a flow on A ∪ E feasible for �π
′,δ′ and uπ′,δ′ , into flow ϕ̂ on

just A, feasible for �π
′

and uπ′
, by getting rid of ϕ′

e for e ∈ E and by changing
ϕ′
a by at most δ′ on each a ∈ A. Note that this ϕ̂ will not, in general, satisfy

∂Aϕ̂ ∈ B(f), but that ϕ̂ otherwise satisfies all optimality conditions: it satisfies the
bounds and is complementary slack with π′. Define N+ = {i ∈ N | x′

i > ∂Aϕ̂(i)} and
N− = {i ∈ N | x′

i < ∂Aϕ̂(i)} so that

x′(N+) ≤ m′δ′ + ∂Aϕ̂(N+).(5.1)

We now apply the successive shortest path algorithm for submodular flow of
Fujishige [13] starting from ϕ̂. (As originally stated, this algorithm is finite only for
integer data, but the lexicographic techniques of Schönsleben [39] and Lawler and
Martel [31] show that it can be made finite for any data.) This algorithm looks for an
augmenting path from a node i ∈ N+ to a node j ∈ N−, where residual capacities on
A-arcs come from ϕ̂ and residual capacities on jumping arcs come from x′. It chooses
a shortest augmenting path (using the current reduced costs as lengths; such a path
can be shown to always exist) and augments flow along the path, updating π′ by the
shortest path distances and x′ as per the jumping arcs. This update maintains the
properties that the current ϕ̂ satisfies the bounds and is complementary slack with
the current π′, and the current x′ belongs to B(f). The algorithm terminates with
optimal flow ϕ∗ once the boundary of the current ϕ̂ coincides with the current x′. By
(5.1), the total amount of flow pushed by this algorithm is at most m′δ′.

This implies that for each a ∈ A, ϕ̂a differs from ϕ∗
a by at most m′δ′, so ϕ′

a differs
from ϕ∗

a by at most (m′ + 1)δ′. In particular, if ϕ′
a < ua − (m′ + 1)δ′, then ϕ∗

a < ua,
implying that cπ

∗

a ≥ 0, and similarly for ϕ′
a > �a + (m′ + 1)δ′.

Suppose that P is an augmenting path chosen by the algorithm and that flow
is augmented by amount τP along P . Since P has at most n − 1 jumping arcs, the
boundary of any S ⊆ N changes by at most (n− 1)τP due to P . Since

∑
P τP ≤ m′δ′

by (5.1), the total change in ∂Aϕ̂(S) during the algorithm is at most m′(n − 1)δ′.
Since |∂Iϕ′(S)− ∂Aϕ̂(S)| ≤ m′δ′, the total change in ∂Iϕ

′(S) is at most m′nδ′. Thus

∂Iϕ
′(T 0) > fπ0

(T 0) + m′nδ′ implies that ∂Aϕ
∗(T 0) > fπ0

(T 0). This says that some
level set of π0 is not ϕ∗-tight. This implies that there is some E-arc i → j with
π0
i > π0

j but π∗
i ≤ π∗

j .

We now modify our algorithm a little bit. We divide our scaling phases into blocks
of log2(m

′ + 1) phases each. At the beginning of each block we compute a max mean
cut T 0 with mean value δ0 = δ(π0) and cancel T 0 (including calling AdjustFlow).
This ensures that our current flow is δ0-optimal, so we set δ = δ0 and start the block of
scaling phases. It will turn out that only 2m′ blocks are sufficient to attain optimality.
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Theorem 5.2. This modified version of the algorithm takes O(n5 log nFA) =
O(n8h log n) time.

Proof. Let T 0 be the max mean cut canceled at the beginning of the block, with
associated node potential π0, flow ϕ0, and mean value δ0. Complementary slackness
for T 0 implies that ϕ0

a = uπ0

a + δ0 for all a ∈ Δ−
I T

0, that ϕ0
a = �π

0

a − δ0 for all

a ∈ Δ+
AT

0, that ϕ0
a = �π

0

a for all a ∈ Δ+
I T

0, and that ∂Iϕ
0(T 0) = fπ0

(T 0). Let π′,
ϕ′, and δ′ be the similar values after the last phase in the block. Since each scaling
phase cuts δ in half, we have δ′ < δ0/(m′ + 1).

Subtracting ϕ′(Δ+
I T

0) − ϕ′(Δ−
I T

0) − ∂Iϕ
′(T 0) = 0 from V π0

(T 0) yields

(|ΔAT
0| + |T 0| · |N − T 0|)δ0 = V π0

(T 0)

= (�π
0 − ϕ′)(Δ+

I T
0) + (ϕ′ − uπ0

)(Δ−
I T

0)(5.2)

+ (∂Iϕ
′(T 0) − fπ0

(T 0)).

Now apply Lemma 5.1 to ϕ′ and π′. If the term for arc a of (�π
0−ϕ′)(Δ+

AT
0) is at least

δ0 > (m′ + 1)δ′, then we must have that �π
0

a = ua. Therefore ϕ′
a < ua − (m′ + 1)δ′,

and we can conclude that cπ
∗

a ≥ 0. But each a in Δ+
AT

0 had cπ
0

a < 0, so this is a new

sign constraint on cπ. The case for terms of (ϕ′ − uπ0

)(Δ−
AT

0) is similar.
Suppose instead that all the terms in the Δ+

AT
0 and Δ−

AT
0 sums of (5.2) are at

most δ0. The total of all the E-arc terms is at most |T 0| · |N − T 0|δ′. Therefore the
only possibility left to achieve the large left-hand side of (5.2) is to have ∂Iϕ

′(T 0) >

fπ0

(T 0) + (m′n/2)δ′. Lemma 5.1 says that in this case there must be a jumping arc
i → j leaving some level set of π0 such that all optimal π∗ have π∗

i ≤ π∗
j . Since π0

i

was larger than π0
j , this is a new sign restriction on π.

In either case each block imposes a new sign restriction on cπ
∗

a for some I-arc a.
At most 2m′ such sign restrictions can be imposed before π∗ is completely determined,
so after at most 2m′ = O(n2) blocks we must be optimal. Each block requires
log(m′ + 1) = O(logn) scaling phases. The proof of Theorem 4.6 shows that each
scaling phase costs O(n3FA) time exclusive of computing the max mean cut. The
time for computing a max mean cut is O(n2FA), which is not a bottleneck.

6. Separable convex cost submodular flow. This section is devoted to a
straightforward extension of our algorithm to the separable convex cost SF problem.
Of course, the linear case is a special case of the separable convex case, but this
section is easier to understand after seeing the detailed proofs for the linear case of
the previous section.

Let ga : R → R be a convex cost function for an arc a ∈ A. Then the convex
cost SF problem is as follows:

Minimize
∑
a∈A

ga(ϕa)

subject to ∂ϕ ∈ B(f).

(Here we take advantage of the ability to “hide” bounds in convex objective functions.)
We denote by g�a (ξ) and g�a (ξ), respectively, the left derivative and the right derivative
of ga at ξ ∈ R. Then an optimality condition for this problem is as follows.

Theorem 6.1 (see [16, Theorem 12.1]). An SF ϕ is optimal if and only if there
exists node potentials π : N → R such that g�a (ϕa) ≤ πj − πi ≤ g�a (ϕa) for every arc
a = i → j and ∂ϕ ∈ B(fπ).
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We define the modified bounds of a = i → j by

uπ
a = sup{x | g�a (x) ≤ πj − πi}, �πa = inf{x | g�a (x) ≥ πj − πi}.

Then Theorem 6.1 implies that π is optimal if and only if there is a feasible flow in
the network Gπ with bounds �π, uπ, and fπ. From �π and uπ we get �π,δ = �π − δ
and uπ,δ = uπ + δ as before. Using �π,δ and uπ,δ we define δ-MPCs and perform
the δ-MPC canceling algorithm just as in the linear cost case. The preliminary step
length η is given by

η ≡ min

{
min{−g�a (�π,δa ) − πi + πj | a = i → j ∈ Δ+

AT}
min{g�a (uπ,δ

a ) + πi − πj | a = i → j ∈ Δ−
AT}

}
,

and then β is obtained from AdjustFlow.
We start with two technical lemmas showing that key properties of δ-MPC can-

cellation carry over to the separable convex case.
Lemma 6.2. Suppose that T is a δ-MPC w.r.t. π, and we cancel T to get node

potential π′. If a ∈ Δ+T (a ∈ Δ−T ), then �π,δa ≤ uπ′

a (uπ,δ
a ≥ �π

′

a ). When a is the
determining arc, �π,δa ≥ �π

′

a (uπ,δ
a ≤ uπ′

a ).
Proof. If a ∈ Δ+T , we have πi < π′

i, πj = π′
j , and

π′
i − πi = β ≤ πj − πi − g�a (�π,δa ) ⇒ g�(�π,δ) ≤ π′

j − π′
i.

It follows from the definition of uπ′

a that g�a (uπ′

a + ε) + π′
i − π′

j > 0 for any ε > 0.

Hence it holds that g�a (uπ′

a + ε) > −π′
i + π′

j ≥ g�a (�π,δa ), which, together with the

convexity of ga, implies uπ′

a + ε > �π,δa , and thus uπ′

a ≥ �π,δa .
When a ∈ Δ+T is the determining arc, −π′

i + π′
j = g�a (�π,δa ) holds. It follows

from the definition of �π
′

a that g�a (�π
′

a − ε) + π′
i − π′

j < 0 for any ε > 0. Hence we

have g�a (�π,δa ) > g�a (�π
′

a − ε) ≥ g�a (�π
′

a − ε), which, together with the convexity of ga,
implies �π,δa > �π

′

a − ε, and thus �π,δa ≥ �π
′

a . The case a ∈ Δ−T is similar.
Corollary 6.3. Suppose that T is a δ-MPC w.r.t. π, and we cancel T to get

node potential π′. For a max flow ϕ from the feasibility algorithm, we have �π
′,δ ≤

ϕ ≤ uπ′,δ. If a is the determining arc, �π
′,δ

a + δ ≤ ϕa ≤ uπ′,δ
a − δ holds.

Proof. An arc a with �π,δa < �π
′,δ

a belongs to Δ−T , which implies ϕa = uπ,δ
a ≥

�π
′

a = �π
′,δ

a + δ. On the other hand, if uπ,δ
a > uπ′δ

a , the arc a belongs to Δ+T , which
implies ϕa = �π,δa ≤ uπ′

a = uπ′,δ
a − δ. Hence, we have �π

′,δ ≤ ϕ ≤ uπ′,δ. If a ∈ Δ+T
is the determining arc, ϕa ≤ uπ′,δ

a − δ is shown in the previous sentence. From
Lemma 6.2, we have �π

′,δ
a + δ = �π

′

a ≤ �π,δa ≤ ϕa. The case where a ∈ Δ−T is the
determining arc is similar.

It is easy to check that the above lemmas are enough to show that the analogues
of Lemma 4.2, Corollary 4.3, and Lemma 4.4 hold for separable convex costs.

When the ga are general, we must assume that we have an initial ϕ0 and bound B
such that ϕ0 is B-optimal, and the best we can hope for is to compute a solution that
is ε-optimal for some ε > 0 in time polynomial in log(B/ε). But if the ga are convex
piecewise linear with integral breakpoints, then we can compute an exact optimal
solution in polynomial time.

Theorem 6.4. A scaling phase of δ-MPC canceling cancels at most m′n δ-MPCs.
Thus δ-MPC canceling takes O(n3 log(B/ε)FA) = O(n6h log(B/ε)) time to find an ε-
optimal solution. When �, u, and f are integer valued and each ga is a piecewise
linear convex function with integral breakpoints, then δ-MPC canceling finds an exact
optimal solution in O(n6 log(nU)) time.
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Proof. Lemma 4.5 shows that the δ-MPC value of the first cut in a phase is at most
m′δ. It takes at most n iterations to reduce this by δ, so there are at most m′n = O(n3)
iterations per phase. The time per iteration is dominated by computing a δ-MPC,
which is O(FA). When �, u, and f are integer valued and each ga is a piecewise linear
function with integral breakpoints, then a proof similar to [5, Lemma 5.1] shows that
a δ-optimal π with δ < 1/m′ is exactly optimal, so it suffices to choose ε = 1/m′ in
this case.

It is also possible to show, similar to [30], that when each ga is piecewise linear
and quadratic convex, we can compute an exact optimal solution in polynomial time.
Similarly, if each ga is piecewise linear, then we could compute an exact optimal
solution in strongly polynomial time.

7. Max mean cut canceling. This section shows that machinery we developed
for δ-MPC canceling also leads to a polynomial max mean cut canceling algorithm for
SF. We are able to get this algorithm despite the negative result of [35] because we
relax f by adding the arc set E, which is outside the class of algorithms considered
in [35].

At each iteration, the max mean cut canceling algorithm finds a max mean cut T
and calls AdjustFlow with T to get a step length β. We then cancel T by amount β
and repeat until no more positive cuts exist, at which point we are optimal, according
to Lemma 3.1.

Lemma 7.1. Suppose we cancel a max mean cut T w.r.t. π with mean value δ(π)

to get node potential π′. Then V
π′

(S) ≤ V
π
(T ) holds for every cut S.

Proof. Let ϕ be a feasible flow in Ĝπ with data �π,δ(π), uπ,δ(π), and fπ. Since the
step length β is at most η, we have �π

′

a − δ(π) ≤ ϕa ≤ uπ′

a + δ(π) for every a ∈ A.

As a result of AdjustFlow, we obtain a flow ψ ∈ RE with 0 ≤ ψe < δ(π) for
e ∈ E. Put ϕ′

a = ϕa for a ∈ A and ϕ′
e = ϕe − ψe for e ∈ E. As ∂Iϕ ∈ B(fπ), it

follows from the claim in Lemma 4.2 that x′ ≡ ∂Iϕ
′ ∈ B(fπ′

). Since ψe > 0 implies
ϕe = δ(π), every e ∈ E satisfies 0 = �π

′

e ≤ ϕ′
e ≤ δ(π) = uπ′

e + δ(π). Therefore we have

V
π′

(S) =
�π

′
(Δ+

AS) − uπ′
(Δ−

AS) − fπ′
(S)

|ΔAS| + |S| · |N − S| (definition of V
π′

(S))

=
�π

′
(Δ+

I S) − uπ′
(Δ−

I S) − fπ′
(S)

|Δ+
AS| + |Δ−

I S|
(�π

′

e = uπ′

e = 0)

≤ ∂Iϕ
′(S) + δ(π) · |Δ+

AS| + δ(π) · |Δ−
I S| − x′(S)

|Δ+
AS| + |Δ−

I S|
(feasibility of ϕ′)

= δ(π) (∂Iϕ
′(S) = x′(S))

= V
π
(T ) (definition of δ(π)).

Corollary 7.2. With the same hypothesis and notation as Lemma 7.1, if the

determining arc a ∈ A ∪ E crosses S, then we have V
π′

(S) ≤ (1 − 1/m′)V
π
(T ).

Proof. If the determining arc a ∈ A, then �π
′

a = �a ≤ ϕa ≤ ua = uπ′

a , and hence
�π

′
(Δ+

AS) − uπ′
(Δ−

AS) ≤ ϕ′(Δ+
AS) + δ(π) · |Δ+

AS| − ϕ′(Δ−
AS) + δ(π) · |Δ−

AS| − δ(π).

If a ∈ Δ+
ES, then ϕ′

a = δ(π) = �π
′

a + δ(π), and hence �π
′
(Δ+

ES) ≤ ϕ′(Δ+
ES) − δ(π). If

a ∈ Δ−
ES, then, as in the proof of Lemma 4.2, fπ′

(S) ≥ x′(S) + δ(π). In all cases we
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have

V
π′

(S) ≤ ϕ′(Δ+
I S) + δ(π) · |Δ+

AS| − ϕ′(Δ−
I S) + δ(π) · |Δ−

I S| − x′(S) − δ(π)

|Δ+
AS| + |Δ−

I S|

= δ(π) − δ(π)
|Δ+

AS| + |Δ−
I S|

≤ (1 − 1/m′)V
π
(T ).

Now the analogue of Lemma 4.4 follows just as before.

Lemma 7.3. After at most n cut cancellations, the value of a max mean cut
decreases by a factor of at most (1 − 1/m′).

This yields our first bound on the running time of max mean cut canceling.

Theorem 7.4. Max mean cut canceling cancels at most O(m′n log(nU)) =
O(n3 log(nU)) max mean cuts.

Proof. Let π0 be the initial node potential. From Lemma 4.1, δ(π0) ≤ 2U , and if
δ(π) < 1/m′ then π is optimal. Hence there are O(m′n log(nU)) iterations.

The strongly polynomial argument in section 5 applies to max mean cut canceling
as well.

Theorem 7.5. Max mean cut canceling cancels at most O(n5 log n) max mean
cuts and takes O(n10h log n) time.

Proof. Lemma 7.3 shows that after m′n�log(m′+1)� cancellations, δ(π) decreases
by a factor of at most 1/(m′+1). Applying Lemma 5.1 and the proof of Theorem 5.2,
we can newly restrict the sign of a cπ

∗

a for some I-arc a every O(m′n log n) itera-
tions. Therefore after O((m′)2n log n) = O(n5 log n) cancellations, we must be opti-
mal. Since computing a max mean cut requires O(n2FA) = O(n5h) time, we obtain
the claimed complexity.

It seems likely that a faster version of max mean cut canceling could be developed
along the lines of the dual cancel and tighten algorithm of [5], but this seems not so
interesting in light of the faster algorithm of [7]. Also, it appears to be straightforward
to combine the results of this section with the previous section to get a max mean cut
canceling algorithm for the separable convex costs case (as is done in [30]), but again
this seems not so interesting since the algorithm of section 6 is faster.

8. Crossing submodular functions. We return to the original Edmonds and
Giles [4] assumption that f is only crossing submodular on D. Recall that in this case
we can efficiently check whether B(f) = ∅ by the bi-truncation algorithm of Frank
and Tardos [12], and that Fujishige [14] showed that a nonempty base polyhedron
B(f) of a crossing submodular function f on a crossing family D is identical to the

base polyhedron B(f̃) of a submodular function f̃ on a ring family D̃ that contains D.

We used the results in the previous paragraph to partially justify that we could
implement our algorithms using the ring submodular f̃ and D̃ in place of the crossing
submodular f and D. However, it is not yet clear how to compute cut values, exchange
capacities, etc. for f̃ when we are given only an oracle for f .

All of our algorithms are based on applying the feasibility algorithm to various
residual networks. The feasibility algorithm needs an initial base to work with. This
can be computed using the bi-truncation algorithm. It also needs an oracle for com-
puting exchange capacities r̃(x, i, j). Note that r̃(x, i, j) is the minimum value of
f(S)−x(S) over S containing i but not j. The subfamily of members of D containing
i but not j is a ring family on which f is ring submodular, and so it is reasonable to
assume that we have an oracle for computing these exchange capacities.
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This will have the effect of simulating the action of the algorithm on f̃ and D̃,
meaning that the cut values V π in (3.1) will be computed relative to f̃π instead of fπ,

and the feasibility algorithm provides a tight set for f̃π, not for fπ. However, since we
are always computing exchange capacities w.r.t. f and not f̃ , in fact we never need
to compute a value of f̃ during the algorithm (although the analysis uses f̃).
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anonymous referee for suggesting several improvements to the paper.
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Abstract. We consider a class of encoders for constrained systems, which we call block-type-
decodable encoders. For a constrained system presented by a deterministic graph, we design a block-
type-decodable encoder by selecting a subset of states of the graph to be used as encoder states. Such
a subset is known as a set of principal states. Our goal is to find an optimal set of principal states, i.e.,
a set which yields the highest code rate. We study the relationship between optimal sets of principal
states at finite block length and at asymptotically large block length. Specifically, we show that for
a primitive constraint and a large enough block length, any optimal set of principal states is also
asymptotically optimal. Moreover, we give bounds on the block length such that this relationship
holds. We also characterize asymptotically optimal block-type-decodable encoders. Finally, we study
the complexity of various problems related to block-type-decodable encoders.

Key words. constrained systems, block encoders, block-decodable encoders, deterministic en-
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1. Introduction. In most recording channels, arbitrary data is encoded into
constrained sequences to improve the performance of storage systems. A constraint is
presented by a labeled finite directed graph, and a constrained sequence is obtained by
reading the labels of a path in the graph. The best known constraint is the runlength-
limited (RLL(d, k)) constraint, which is the binary constraint that bounds the lengths
of the runs of zeros to be at least d and at most k (see Figure 1.1). This constraint is
used in magnetic tape drives and optical drives to suppress the interference between
adjacent bits and improve the timing recovery system. The constraint that we will
use as an example throughout this paper is the asymmetric-RLL(d0, k0, d1, k1) (see,
e.g., Immink [7, section 4.5]), which requires that the lengths of the runs of zeros are
between d0 and k0 and the lengths of the runs of ones are between d1 and k1.

For a given constraint and a given block length q, we consider fixed-rate encoders
that encode arbitrary user data into constrained blocks of length q such that strings
formed from concatenating consecutive encoded blocks satisfy the constraint. The
precise definitions of the encoders that we consider in this paper are given in sections 2
and 3.

In order to avoid error propagation in the decoding process, many practical ap-
plications use block encoders. Although these encoders are conceptually simplest, we
may be able to achieve higher rates using block-decodable encoders for which error
propagation is still limited to one block. However, the optimal rate is difficult to com-
pute, and an achieving block-decodable encoder is hard to design. Nevertheless, for
some constraints—including the RLL(d, k) constraint—this problem has been shown
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Fig. 1.1. Presentation of RLL(d, k) constraint.

to be equivalent to the problem of designing a deterministic encoder [4], which is much
more tractable.

In this work, we are interested in these three classes of encoders, which we call
block-type-decodable encoders: block, block-decodable, and deterministic encoders.
It is known that the characterization of block-type-decodable encoders can be specified
by subsets of states called the sets of principal states [10].

An optimal set of principal states for a deterministic encoder can be found using
the Franaszek algorithm [4]. Algorithms for computing the optimal sets of principal
states for a block encoder were presented by Freiman and Wyner [5] and Marcus,
Siegel, and Wolf [11]; in this paper, we present a new framework for this problem. We
also give candidates for optimal sets of principal states for a block-decodable encoder,
together with upper and lower bounds on the optimal code rate; this is based on an
integer programming interpretation.

Typically, high code rates require large block lengths. Thus, it is of interest to
study the relationship between the optimal sets of principal states at a finite block
length and those at asymptotically large block length. In [3], for deterministic en-
coders, we showed how to compute an asymptotically optimal set of principal states
and observed that this is sometimes easier than the same problem at a finite block
length. Empirically, this asymptotically optimal set of principal states is a good ap-
proximation to the finite case. In the present paper, we show how to compute an
asymptotically optimal set of principal states for block and block-decodable encoders.
We will establish the relationship between the finite case and the asymptotic case by
showing that for a primitive constraint, there is a q0 such that for any q ≥ q0, any
optimal set of principal states at block length q is also asymptotically optimal. An
upper bound on q0 is given for each class of encoder; empirically, this bound appears
to be small.

Finally, we consider the complexity of designing optimal block-type-decodable
encoders. For deterministic encoders, this is known to be polynomial because the
Franaszek algorithm is polynomial. Ashley, Karabed, and Siegel [1] showed that the
problem of designing block-decodable encoders is NP-complete. In section 8, we show
that the complexity of designing a block encoder is also NP-complete. We further
show that if the number of states is fixed, all of these problems can be solved in
polynomial time.

2. Background. Here we summarize basic definitions in constrained coding
used in this paper. More detail can be found in [10, 7].

A labeled directed graph (or simply a graph) G = (V,E,L) consists of a finite set
of states V = VG, a finite set of edges E = EG where each edge has an initial state
and terminal state in VG, and an edge labeling L = LG : E → Σ where Σ is a finite
alphabet. We will sometimes refer to a label or a sequence of labels of G as a word.
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A constrained system or constraint S = S(G) is the set of finite sequences obtained
by reading the edge labels of a path in a labeled graph G. Such a graph is called a
presentation of the constraint.

Two important properties of a graph are irreducibility and primitivity. A graph
is irreducible if for any given pair u, v of states, there is a path from u to v and a
path from v to u. A graph that is not irreducible is called reducible. Such a graph
consists of nonoverlapping irreducible subgraphs, called irreducible components, and
transitional edges between them. A graph is primitive if there exists a positive integer
� such that for all pairs u, v of states, there are paths from u to v and v to u of length
�. A constrained system is said to be irreducible if it has an irreducible presentation.
Similarly, a constrained system is primitive if it has a primitive presentation. From
the definitions, we can see that primitivity is stronger in the sense that every prim-
itive graph (constrained system) is irreducible. Many practical constraints including
RLL(d, k) are primitive.

Irreducibility and primitivity are properties of the topology of a graph alone but
not its labeling. We now state the definitions of important properties of graph labeling
that are used throughout the paper.

• A labeled graph is deterministic if at each state, all outgoing edges carry
distinct labels. It is well known that every constraint has a deterministic
presentation. Furthermore, for an irreducible constraint, there is a unique
minimal (in terms of the number of states) deterministic presentation, called
the Shannon cover. This presentation is often used as a starting point to
construct a constrained encoder.

• A labeled graph has finite memory if there is an integer N such that all paths
of length N with the same labeling terminate at the same state. The smallest
N for which this holds is called the memory of the graph.

• A labeled graph is lossless if any two distinct paths with the same initial state
and terminal state have different labels. This is the weakest property among
all mentioned properties of labeling.

Let G be a labeled graph. The adjacency matrix A = AG is the |VG|×|VG| matrix
whose entry Au,v is the number of edges from state u to state v in G. We say that a
matrix is irreducible if it is the adjacency matrix of an irreducible graph. Similarly, a
matrix is primitive if it is the adjacency matrix of a primitive graph.

Let G be a labeled graph. The qth power of G, denoted Gq, is the labeled graph
with the same set of states as G, but with one edge for each path of length q in G,
labeled by the word of length q generated by that path. For a constraint S presented
by a labeled graph G, the qth power of S, denoted Sq, is the constraint presented by
Gq. If A is the adjacency matrix of G, it can be shown that the adjacency matrix of
Gq is Aq.

The capacity of a constraint S, denoted cap(S), is defined to be

cap(S) = lim
q→∞

1

q
logN(q;S),

where N(q;S) is the number of words of length q in S. (In this paper, the logarithmic
function has base 2.) The capacity measures the growth rate of the number of words
in S. It is known that cap(Sq) = qcap(S).

To express the capacity in terms of the adjacency matrix of a lossless (in par-
ticular, deterministic) presentation G of S, we need the following notation. For a
square matrix A, we denote by λ(A) the spectral radius of A, that is, the largest of
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the absolute values of the eigenvalues of A. According to the Perron–Frobenius theory
[12], λ(A) is an eigenvalue of A. It is well known that

cap(S) = log λ(AG).

Let S be a constrained system and let n be a positive integer. An (S, n) encoder
is a labeled graph E such that

• each state of E has out-degree n, i.e., n outgoing edges,
• S(E) ⊆ S,
• E is lossless.

The labels of the encoder are sometimes called output labels. A tagged (S, n) encoder
is an (S, n) encoder whose outgoing edges from each state are assigned distinct input
tags from an alphabet of size n, and this defines an encoding function. For an (Sq, n)
encoder, we define the block length to be q and the rate to be (logn)/q. It is known
that cap(S) is an upper bound on the rate of any (Sq, n) encoder.

3. Block-type-decodable encoders. In this paper, we restrict our interest
to block, block-decodable, and deterministic encoders. A block encoder (blk) is a
finite-state encoder such that any two edges have the same input tag if and only if
they have the same output label. A block-decodable encoder (blkdec) is a finite-state
encoder such that any two edges with the same output label have the same input
tag. A deterministic encoder (det) is a finite-state encoder with deterministic output
labeling.

It is easy to see that a block encoder is block decodable, which in turn is deter-
ministic. A block-decodable encoder can be viewed as a deterministic encoder with
a consistent input tag assignment. In this paper, we focus on these three classes of
encoders which we call block-type-decodable encoders.

For a constrained system S, a class of encoders C ∈ {blk,blkdec,det}, and a block
length q, define MC(q) to be the maximum n such that there exists an (Sq, n) encoder
in class C. Suppose that S is irreducible and let G be an irreducible deterministic
presentation of S. For each class C of block-type-decodable encoders, it can be shown
that there exists an (S, n) encoder in class C if and only if there exists such an encoder
which is a subgraph of G. (For block encoder, see [5]. For block-decodable encoder,
this is a special case of [2, Corollary 12.2]. For deterministic encoder, see [4]. For
a unified treatment, see [10].) Thus the problem of designing block-type-decodable
encoders can be solved by choosing a subgraph of G. This can be broken into two
steps: First, choose a set of states, called a set of principal states. (A principal set of
states may be a more appropriate term, but we will follow Franaszek [4] who defined
it for deterministic encoders.) Then choose edges.

The reason for breaking this into two steps is that we often need to design an
(Sq, n) encoder for various block lengths q. Since the graphs Gq have the same set of
states for all q, we may need to solve the first step only once. In fact, the problem
of determining whether a set of principal states is optimal for all large enough q is
one of the main themes of the paper. That is, we study whether the optimal sets of
principal states stabilize and, if so, at what value of q. (A set of principal states is
optimal if it induces an encoder with the highest rate. For a more precise definition,
see below.)

Let MC(q, P ) denote the maximum n such that there exists an (Sq, n) encoder
in class C constructed from the set of principal states P . Therefore we can write
MC(q) = maxP⊆VG

MC(q, P ). Moreover, we say that P achieves MC(q) if MC(q, P ) =
MC(q). We shall later refer to such a set P as an optimal set of principal states.
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In order to quantify the optimality of block-type-decodable encoders, we need the
following notations. Let u and v be any states in a labeled graph G. The follower set
of u in G, denoted FG(u), is the set of all finite words that can be generated from
u in G. We shall use Fq

G(u, v) to denote the set of all words of length q that can be
generated in G by paths that start at u and terminate at v. Similarly, for a set of
states P , Fq

G(u, P ) denotes the set of all words of length q that can be generated in G
by paths that start at u and terminate at a state in P , i.e., Fq

G(u, P ) =
⋃

v∈P Fq
G(u, v).

The states of a labeled graph are naturally endowed with the partial ordering by
inclusion of follower sets: u � v if FG(u) ⊆ FG(v). We say that a set P ⊆ VG is
complete if whenever u is in P and u � v, then v is also in P .

Based on these notations, Freiman and Wyner [5] showed that

Mblk(q) = max
P⊆VG

∣∣∣∣∣
⋂
u∈P

Fq
G(u, P )

∣∣∣∣∣ .
To simplify the search for an optimal P , they further proved that when G has finite
memory less than or equal to q, it suffices to consider sets P which are complete.
In fact, the following proposition shows that this is true for all classes of block-type-
decodable encoders even when the condition that q is greater than the memory is
removed.

Proposition 3.1. Let S be a constrained system with a deterministic presenta-
tion G. Let P ⊆ VG and let P ′ be the smallest complete set such that P ⊆ P ′. Then
for each class C of encoder and block length q, MC(q, P ) ≤ MC(q, P ′).

Proof. Let v ∈ P ′. It suffices to show that there is a state u ∈ P such that
Fq

G(u, P ) ⊆ Fq
G(v, P ′).

Since P ′ is the smallest complete set such that P ⊆ P ′, there must be a state
u ∈ P such that u � v. Let w ∈ Fq

G(u, P ). Since u � v, v can also generate w. Since
G is deterministic, the outgoing edges from u and v labeled by w are unique. Denote
the terminal states of these edges by ū and v̄, respectively. Then ū � v̄ because
u � v. Hence v̄ ∈ P ′ because P ′ is complete and ū ∈ P ⊆ P ′. This implies that
w ∈ Fq

G(v, P ′).
Similar expressions for Mdet(q, P ) and Mdet(q) are due to Franaszek [4]:

Mdet(q, P ) = min
u∈P

|Fq
G(u, P )| = min

u∈P

∑
v∈P

(Aq
G)u,v,(3.1)

Mdet(q) = max
P⊆VG

min
u∈P

∑
v∈P

(Aq
G)u,v.

We do not know of a formula for Mblkdec(q) as simple as those above, but, as with
Mblk(q) and Mdet(q), it is a function of only an arbitrary irreducible deterministic
presentation of the constraint, such as the Shannon cover.

4. Stabilization at large block length. We know from the previous section
that to design a block-type-decodable encoder, we need to choose a set of principal
states. Our goal is to find an optimal set of principal states that maximizes the code
rate. In some cases, it is easier to find such an optimal set of principal states at
asymptotically large block length. Thus it is desirable if we can relate the optimal
sets of principal states at asymptotically large block length to the ones at finite block
length. In this section, we study the relationship between the two.

Recall that for a constraint S with the Shannon cover G, cap(S) = log λ(AG).
When it is clear from the context, we also denote λ(AG) by λ. From the expression



326 PANU CHAICHANAVONG AND BRIAN H. MARCUS

for cap(S), we would expect MC(q, P ) to grow as λq. Thus it is natural to define
Mq

C(P ) = MC(q, P )/λq. Let M∞
C (P ) = limq→∞ Mq

C (P ). In [3, Proposition 3], we
showed that M∞

det(P ) exists for primitive constraints. We shall prove that M∞
blk(P )

and M∞
blkdec(P ) exist for primitive constraints in sections 6 and 7, respectively. We

define M∞
C = maxP⊆VG

M∞
C (P ). We say that a set P is asymptotically optimal if

M∞
C (P ) = M∞

C . Furthermore, define PC(q) and P∞
C to be the collection of optimal

sets of principal states at block length q and the collection of asymptotically optimal
sets of principal states, respectively. Lastly we define M∗

C = limq→∞ MC(q)/λq.
Proposition 4.1. For any class C, if M∞

C (P ) exists for each P ⊆ VG, then the
following hold:

(i) PC(q) ⊆ P∞
C for sufficiently large q.

(ii) M∗
C exists and is equal to M∞

C .
A proof of Proposition 4.1 is given later in this section. A slightly different version

of this proposition for deterministic encoders appears in [3].
Assuming that the condition in Proposition 4.1 is satisfied, it is natural to wonder

when (i) holds. In later sections, we give bounds on q such that this holds for each
class of encoder. In order to establish those bounds and to prove Proposition 4.1, we
need the following lemma. First, define

εC = M∞
C − max

P /∈P∞
C

M∞
C (P ).

Lemma 4.2. If q satisfies

|Mq
C (P ) −M∞

C (P )| < εC
2

(4.1)

for each P ⊆ VG, then PC(q) ⊆ P∞
C .

Proof. Let P ∈ PC(q) and P ∗ ∈ P∞
C . It follows from (4.1) that

M∞
C (P ) +

εC
2

> Mq
C(P ) ≥ Mq

C(P ∗) > M∞
C (P ∗) − εC

2
= M∞

C − εC
2
.

Therefore, M∞
C −M∞

C (P ) < εC , and so P ∈ P∞
C by the definition of εC .

In the case that P∞
C has only one element, the condition in the lemma implies

that PC(q) = P∞
C . This allows us to determine the optimal set of principal states at

large block length, in particular the block length that satisfies the bounds given in
later sections, from the asymptotically optimal set of principal states.

Proof of Proposition 4.1. Suppose that M∞
C (P ) exists for each P ⊆ VG. Then (4.1)

holds for sufficiently large q, and (i) follows by Lemma 4.2.
Since Mq

C(P ) is a convergent sequence for each P ⊆ VG,

M∗
C = lim

q→∞
max
P⊆VG

Mq
C (P ) = max

P⊆VG

lim
q→∞

Mq
C(P ) = M∞

C .

This proves (ii).

5. Stabilization for deterministic encoders. In this section, we study bounds
on q such that Pdet(q) ⊆ P∞

det by utilizing the Perron–Frobenius theory [12]. From
the Perron–Frobenius theory, an irreducible matrix A has a unique largest positive
eigenvalue λ = λ(A). Moreover, the corresponding right and left eigenvectors, r and
l, have all positive entries. In our context, r is a column vector and l is a row vector.
Suppose r and l are normalized so that lr = 1. Define Λ = rl, a rank-one matrix. If
A is primitive, then it follows from the Perron–Frobenius theory that

lim
q→∞

Aq

λq
= Λ.(5.1)
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The following result, which gives a characterization of M∗
det, is a consequence of

[3, Proposition 4] and Proposition 4.1 above.
Proposition 5.1 (see [3]). For each P ⊆ VG, M∞

det(P ) exists. Moreover,
(i) Pdet(q) ⊆ P∞

det for sufficiently large q,
(ii) M∗

det exists and is equal to M∞
det.

Before stating the main result of this section, we provide the definition of the
maximum row sum matrix norm. Let A be an n×n matrix over the complex numbers.
Then ‖A‖∞ is defined as

‖A‖∞ = max
1≤i≤n

n∑
j=1

|Ai,j |.

It can also be written as

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

The following theorem provides a bound on block length q such that an optimal
set of principal states for a deterministic encoder is also asymptotically optimal.

Theorem 5.2. If q satisfies∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

<
εdet

2
,(5.2)

then Pdet(q) ⊆ P∞
det.

Proof. We shall show that if (5.2) holds, then for each P ,

|Mq
det(P ) −M∞

det(P )| < εdet

2
,

and the theorem follows from Lemma 4.2.
Let x = (xu) be the characteristic vector of P , that is, a 0-1 vector of dimension

|VG| such that xu = 1 if u ∈ P and xu = 0 otherwise. Define

y =
Aq

λq
x,

z = Λx.

From (3.1) and (5.1), one can show that [3]

Mq
det(P ) = min

u∈P
yu(5.3)

and

M∞
det(P ) = min

u∈P
zu.(5.4)

Let u and v be states achieving the minimum in (5.3) and (5.4), respectively.
Then yu = Mq

det(P ) and zv = M∞
det(P ). Furthermore, yu ≤ yv and zv ≤ zu. Since x

is a 0-1 vector, ‖x‖∞ = 1. Then it follows from (5.2) that

‖y − z‖∞ =

∥∥∥∥Aq

λq
x − Λx

∥∥∥∥
∞

<
εdet

2
.
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Fig. 5.1. Shannon cover of the asymmetric-RLL(2, 5, 1, 3).
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Fig. 5.2. ‖Aq

λq − Λ‖∞.

This implies that |yu − zu| < εdet/2 and |yv − zv| < εdet/2. We want to show that
|yu − zv| < εdet/2.

Case 1. Suppose yu − zv ≥ εdet/2. Since yu ≤ yv, we have yv − zv ≥ εdet/2, a
contradiction.

Case 2. Suppose yu − zv ≤ −εdet/2. Since zv ≤ zu, we have yu − zu ≤ −εdet/2, a
contradiction.

Thus we conclude that |Mq
det(P ) −M∞

det(P )| < εdet/2.
Example 5.3. The Shannon cover for the asymmetric-RLL(2, 5, 1, 3) constraint is

shown in Figure 5.1.
In contrast to RLL constraints [8, 6], there is no known explicit characterization

of the optimal sets of principal states for the asymmetric-RLL constraint. However,
we can numerically compute Mdet(q), M

∗
det, and the achieving set of principal states

easily. We obtain M∗
det = 0.7563, εdet = 0.0487, and P ∗

det = {1, 2, 3, 4, 1̄, 2̄} is the only
asymptotically optimal set of principal states.

We compute ‖Aq

λq − Λ‖∞ explicitly for small values of q in Figure 5.2. The plot

suggests that ‖Aq

λq − Λ‖∞ < εdet/2 holds for q ≥ 13. Since we do not know whether

‖Aq

λq − Λ‖∞ is decreasing with q, we will compute an upper bound for ‖Aq

λq − Λ‖∞.
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In this example, A is diagonalizable: A = TDT−1, where D = diag[λi] is a
diagonal matrix with λ = |λ1| > |λ2| ≥ · · · ≥ |λ8|. Moreover, the first column of T
and the first row of T−1 are, respectively, the right (r) and left (l) eigenvectors of A
associated with the eigenvalue λ normalized so that lr = 1. Then we have∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
TDqT−1 − rl

∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥
1

λq
T

⎡
⎢⎢⎢⎣

0
λq

2

. . .

λq
8

⎤
⎥⎥⎥⎦T−1

∥∥∥∥∥∥∥∥∥
∞

≤ 1

λq
‖T‖∞

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

0
λq

2

. . .

λq
8

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥
∞

‖T−1‖∞

= ‖T‖∞‖T−1‖∞
(
|λ2|
λ

)q

= (2.8811)(3.8981)

(
1.1271

1.6372

)q

.

If q ≥ 17, then∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

≤ 11.2308(0.6884)17 = 0.0197 < 0.0243 =
εdet

2
.

Therefore P ∗
det is the only optimal set of principal states for q ≥ 17.

In fact, by computing Mdet(q, P ) for 1 ≤ q ≤ 12, one can show that P ∗
det is

optimal for all q and is the only optimal set of principal states precisely when q = 5
and q ≥ 7.

With the motivation from the above example, we offer the following corollary.
Corollary 5.4. Let λi be the distinct eigenvalues of A with λ1 = λ = λ(A).

Let si be the multiplicity of λi. Let T be a transformation matrix which decomposes
A into Jordan canonical form. If

1

λq
‖T‖∞‖T−1‖∞ max

i≥2

si−1∑
k=0

(
q

k

)
|λi|q−k <

εdet

2
,

then Pdet(q) ⊆ P∞
det.

Proof. Let J be the Jordan form of all eigenvalues of A other than λ; then∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
T

[
λq 0
0 Jq

]
T−1 − Λ

∥∥∥∥
∞

=

∥∥∥∥ 1

λq
T

[
0 0
0 Jq

]
T−1

∥∥∥∥
∞

≤ 1

λq
‖T‖∞‖T−1‖∞‖Jq‖∞

=
1

λq
‖T‖∞‖T−1‖∞ max

i≥2
‖Jq

i ‖∞,(5.5)

where Ji is the Jordan (sub)matrix associated with λi.
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The Jordan matrix Ji can have several forms. The one which yields the largest
‖Jq

i ‖∞ is the one with single block

Ji =

⎡
⎢⎢⎢⎢⎢⎣

λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

. . .
...

0 0 0 · · · λi

⎤
⎥⎥⎥⎥⎥⎦
si×si

.

One can show that

Jq
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

λq
i

(
q
1

)
λq−1
i

(
q
2

)
λq−2
i · · ·

(
q

si−1

)
λq−si+1
i

0 λq
i

(
q
1

)
λq−1
i · · ·

(
q

si−2

)
λq−si+2
i

0 0 λq
i · · ·

(
q

si−3

)
λq−si+3
i

...
...

...
. . .

...
0 0 0 · · · λq

i

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore

‖Jq
i ‖∞ =

si−1∑
k=0

(
q

k

)
|λi|q−k.

Then it follows from (5.5) that

∥∥∥∥Aq

λq
− Λ

∥∥∥∥
∞

≤ 1

λq
‖T‖∞‖T−1‖∞ max

i≥2

si−1∑
k=0

(
q

k

)
|λi|q−k,

and the corollary follows from Theorem 5.2.

6. Stabilization for block encoders. In this section, we present an algorithm
which computes Mblk(q) and M∗

blk together with the achieving sets of principal states.
Stabilization of block encoders is also studied.

Let G be a labeled graph. Define TG(w, v) to be the subset of states of G which
are the terminal states of the paths labeled by w starting from state v. (Note that
TG(w, v) has only one state if G is deterministic.)

Definition 6.1. Let G be a labeled graph. We define Ḡ to be the graph with VḠ

being the set of all nonempty subsets of VG, with an edge from U to V labeled by w if
1. for each u ∈ U , there is an outgoing edge with label w,
2.

⋃
u∈U TG(w, u) = V .

We denote by Ā the adjacency matrix of Ḡ.
This graph Ḡ is typically reducible and is closely related to the subset construc-

tion in finite automata theory. Note that S(Ḡ) = S(G). Moreover, Ḡ is always
deterministic.

Example 6.2. The Shannon cover G and the corresponding Ḡ of RLL(1,2) are
shown in Figures 6.1 and 6.2. By viewing each state u as a singleton subset {u}, we
see that G is a subgraph of Ḡ. (This is true for any deterministic graph.)
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Fig. 6.1. Shannon cover G of RLL(1, 2).

Fig. 6.2. Ḡ for RLL(1, 2).

Lemma 6.3.

Gq = (Ḡ)q.

Proof. First observe that the sets of vertices of Gq and (Ḡ)q are the same. Next, we
can see that there is an edge from U to V in Gq if and only if there is a sequence w and
a path of length q labeled by w from every state u ∈ U such that

⋃
u∈U TG(w, u) = V .

The same is true for (Ḡ)q. Because Gq and (Ḡ)q are deterministic by construction,
the edge is unique and we can conclude that Gq = (Ḡ)q.

The next theorem shows how to compute Mblk(q, P ) from Ā.
Theorem 6.4. Let S be a constrained system and let G be a deterministic pre-

sentation of S. Let Ā be the adjacency matrix of Ḡ. Then

Mblk(q, P ) =
∑
U⊆P

Āq
P,U .

Proof. From the definition of Mblk(q, P ), a word that can be counted for Mblk(q, P )
must be generated by an edge from every state in P and the terminal state for this
edge must be in P . Hence,

Mblk(q, P ) =

∣∣∣∣∣∣
⋃

U⊆P

F1
Gq (P,U)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

U⊆P

F1
(Ḡ)q (P,U)

∣∣∣∣∣∣ (by Lemma 6.3)

=

∣∣∣∣∣∣
⋃

U⊆P

Fq

(Ḡ)
(P,U)

∣∣∣∣∣∣ =
∑
U⊆P

Āq
P,U ,

where the last equality follows from the fact that Ḡ is deterministic.
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Lemma 6.5. Let S be a primitive constrained system and let G be the Shannon
cover of S with adjacency matrix A. Then the adjacency matrix Ā of Ḡ has the
following properties:

(i) Ā has a unique largest eigenvalue λ = λ(A).
(ii) The right (r̄) and left (̄l) eigenvectors associated with λ are nonnegative.

Furthermore, if the states of Ḡ are ordered so that the first |VG| states are of the form
{u}, where u ∈ VG (subset of size one), then r̄ and l̄ have the form

r̄ =

[
r
s

]
, l̄ =

[
l 0

]
,

where r and l are the right and left eigenvectors of A associated with λ.
(iii) Suppose r̄ and l̄ are normalized so that l̄r̄ = 1 (equivalently lr = 1), and

define Λ̄ = r̄̄l. Then limq→∞
Āq

λq = Λ̄.
Proof.

(i) Because G is deterministic, G is a subgraph of Ḡ. In particular, G is an
irreducible component of Ḡ. Since G is the Shannon cover of S, there must be a
homing word h for a state in G [10, Lemma 2.10] (i.e., all paths in G that generate
h must terminate in the same state). Let H be another irreducible component of Ḡ.
Then H cannot generate h because any path with label h must end in G. Therefore
S(H) is a proper subset of S. Thus λ(AH) < λ by [9, Corollary 4.4.9]. Since the set
of eigenvalues of Ā is the union of the sets of eigenvalues of the adjacency matrices of
the irreducible components of Ḡ, we conclude that λ is the unique largest eigenvalue
of Ā.

(ii) It is easy to see that Ā has the form

Ā =

[
A 0
C D

]
.

Let l̄ =
[

l̄1 l̄2
]
. Then the left eigenvector equation is[

l̄1A + l̄2C l̄2D
]

= λ
[

l̄1 l̄2
]
.

From (i), λ is larger than all eigenvalues of D. Thus l̄2 = 0. Moreover, l̄1 = l is the
left eigenvector of A corresponding to λ.

On the other hand, let

r̄ =

[
r̄1

r̄2

]
.

Then the right eigenvector equation is[
Ar̄1

C r̄1 + Dr̄2

]
=

[
λr̄1

λr̄2

]
.

This implies that r̄1 = r is the right eigenvector of A associated with λ and

(λI −D)r̄2 = Cr,

r̄2 = (λI −D)−1Cr

= λ−1

(
I +

D

λ
+

D2

λ2
+ · · ·

)
Cr

≥ 0.
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(iii) Ā can be transformed into Jordan canonical form as

Ā =
[

r̄ R
] [ λ 0

0 J

] [
l̄
L

]
,

where J comprises eigenvalues of D and A not equal to λ. From (i), all eigenvalues
of D have magnitude less than λ. Moreover, it can be shown that the Shannon cover
of a primitive constraint is primitive. Thus all eigenvalues of A not equal to λ have
magnitude less than λ. Therefore

Āq = r̄̄lλq + o(λq),

where limq→∞ o(λq)/λq = 0. Then the result follows.
The following gives a characterization of M∗

blk.
Theorem 6.6. Let r̄ and l̄ be as in (iii) of Lemma 6.5. For a primitive constrained

system,

M∞
blk(P ) = r̄P

∑
u∈P

l̄{u}.

Moreover,
(i) Pblk(q) ⊆ P∞

blk for sufficiently large q,
(ii) M∗

blk = maxP⊆VG

(
r̄P

∑
u∈P l̄{u}

)
.

Proof. From Theorem 6.4, Mq
blk(P ) = 1

λq

∑
U⊆P Āq

P,U . Thus from (iii) of Lemma
6.5, we have

M∞
blk(P ) = lim

q→∞
Mq

blk(P ) =
∑
U⊆P

Λ̄P,U = r̄P
∑
U⊆P

l̄U .

Since l̄ = [ l 0 ],

M∞
blk(P ) = r̄P

∑
u∈P

l̄{u}.

Then (i) and (ii) follow from Proposition 4.1.
Theorem 6.7. If q satisfies∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

<
εblk

2
,

then Pblk(q) ⊆ P∞
blk.

Proof. Let P be any set of principal states and let x = (xU ) be a 0-1 vector of
dimension |VḠ| such that xU = 1 if U ⊆ P and xU = 0 otherwise. Then

|Mq
blk(P ) −M∞

blk(P )| =

∣∣∣∣
(
Āq

λq
x

)
P

− (Λ̄x)P

∣∣∣∣
≤

∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

<
εblk

2
.

Then the theorem follows from Lemma 4.2.
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Fig. 6.3. ‖ Āq

λq − Λ̄‖∞.

Example 6.8. Consider the asymmetric-RLL(2, 5, 1, 3) described in Example 5.3.
It is found that M∗

blk = 0.3445 and the only asymptotically optimal sets of principal
states are P ∗

blk1 = {2, 3, 1̄} and P ∗
blk2 = {2, 1̄, 2̄}. The second largest M∞

blk(P ) is 0.3260
when P = {2, 1̄} and {2, 3, 1̄, 2̄}. Therefore εblk = 0.3445 − 0.3260 = 0.0185.

We plot ‖ Āq

λq − Λ̄‖∞ in Figure 6.3. The plot suggests that ‖ Āq

λq − Λ̄‖∞ < εblk/2
for q ≥ 15. This would imply that either P ∗

blk1 or P ∗
blk2 (or both) is an optimal set of

principal states for q ≥ 15.
The set of eigenvalues of Ā comprises the eight eigenvalues of A, all of which

are nonzero and have multiplicity 1, and a zero eigenvalue with large multiplicity.
Computing a transformation matrix for a matrix with an eigenvalue having such a
large multiplicity is unstable; thus the idea in Corollary 5.4 cannot be directly applied.
However, since the Shannon cover G has memory 5, all paths of length q ≥ 5 in G
that carry the same label must terminate at the same state. Therefore, assuming
q ≥ 5, every path of length q in Ḡ must terminate at a state of the form {u} (a
singleton state). Hence, Āq has only eight nonzero columns (that correspond to the
singleton subsets). It follows that the Jordan blocks of Āq that correspond to the zero
eigenvalue become zero. For this reason, when q ≥ 5, we can write

Āq = R̄D̄qL̄ =
[
R 0

] [ D 0
0 0

]q [
L
0

]
,

where D is the diagonal matrix containing the eigenvalues of A, and R and L contain
the right and left eigenvectors of Ā corresponding to these eigenvalues, normalized so
that LR is the identity matrix. Now we apply Theorem 6.7:∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

≤ ‖R̄‖∞‖L̄‖∞
(
|λ2|
λ

)q

= (5.9628)(2.7878)

(
1.1271

1.6372

)q

.

If q ≥ 21, then∥∥∥∥ Āq

λq
− Λ̄

∥∥∥∥
∞

≤ (16.6233)(0.6884)21 = 0.0065 < 0.0092 =
εblk

2
.
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(We remark that ‖R̄‖∞‖L̄‖∞ is not unique; different normalization of L and R gives
different ‖R̄‖∞‖L̄‖∞.)

By explicitly computing Mblk(q, P ) for 1 ≤ q ≤ 30, we find that P ∗
blk1 and P ∗

blk2

are optimal for all q in that range except q = 5. Moreover, they both are the only
optimal sets of principal states when 8 ≤ q ≤ 30.

We can further analyze the block codes L1 and L2 supported by P ∗
blk1 and P ∗

blk2.
One can show that L1 comprises words with prefix 001, 10, or 110, and suffix 100,
1000, or 01. Similarly, L2 comprises words with prefix 001, 0001, or 10, and suffix
100, 01, or 011. Thus, a word w = w1w2 · · ·wq is in L1 if and only if its reversal
wqwq−1 · · ·w1 is in L2. Therefore Mblk(q, P

∗
blk1) = |L1| = |L2| = Mblk(q, P

∗
blk2). We

can now conclude that P ∗
blk1 and P ∗

blk2 are optimal for all q except q = 5 and are the
only optimal sets of principal states when q ≥ 8.

7. Stabilization for block-decodable encoders. Among block-type-decodable
encoders, we know the least about block-decodable encoders. In this section, we
show that M∞

blkdec(P ) and M∗
blkdec exist for any primitive constraint. Computation of

asymptotically optimal sets of principal states is described. We also give a bound on
q such that Pblkdec(q) ⊆ P∞

blkdec.
First consider the following input tag assignment problem. For a given determin-

istic graph G, we wish to find a block-decodable encoder that is a subgraph of G and
has the same set of states as G. We can proceed as follows.

Input tag assignment

Ψ ← set of all edge labels of G
τ ← 1
while (it is possible to choose a set of edge labels ψ = {w1, . . . , wk} ⊆ Ψ

such that each state of G can generate at least one wi)
do assign tag τ to each label in ψ

τ ← τ + 1
Ψ ← Ψ \ ψ

After the assignment, we obtain a desired encoder by keeping outgoing edges with
distinct labels at each state and removing the other edges.

If we choose ψ wisely, the algorithm will give an optimal block-decodable encoder.
Unfortunately, it is not clear how to choose ψ to maximize the number of tags; thus
an algorithm to choose ψ is needed. We will use integer and linear programming to
tackle this problem. Because the upcoming formulation of the integer programming
problem involves many complex notations, we offer the following example to illustrate
the idea.

Example 7.1. Let S be the constrained system presented by G in Figure 7.1. To
simplify the figure, we draw only one edge for parallel edges. For example, state I
has two edges to state J labeled by w3 and w4.

We wish to find an optimal block-decodable encoder for S. First we fix the set of
principal states P = {I, J,K} and compute Mblkdec(1, P ). Consider the subgraph of
G with the set of states P . We divide the labels of this subgraph into groups so that
labels are in the same group if the sets of states that can generate them are equal.
The diagram in Figure 7.2 summarizes this.

From the diagram, only I can generate w3, only I and J can generate u,w4, w5,
and so on. We will denote each region in the diagram by a subset of P ; for example,
the region that contains w2 and w6 is denoted by {I,K}.
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Fig. 7.1. G in Example 7.1.

Fig. 7.2. Partition of labels based on initial states for Example 7.1.

From the input tag assignment algorithm, we choose a set of labels such that each
state in P can generate at least one label. For instance, we can choose {w1} because
every state in P can generate w1. Then we assign tag 1 to all edges labeled by w1. Also,
we can choose {v2, w2} because I and K can generate w2 and J and K can generate
v2. So we assign tag 2 to all edges labeled by v2 and w2. Choosing a set of labels
like this determines a cover of P . For example, choosing {w1} determines {{I, J,K}}.
Also, choosing {v2, w2} determines {{J,K}, {I,K}}. To obtain an optimal encoder,
we only need to choose a set of labels that determines a minimal cover of P , that is,
a cover for which removing a single member destroys the covering property [15].

For the design of codes, it can be seen that only the number of labels in each
region is needed. For this reason, we further simplify the diagram to Figure 7.3.

It can be seen that there are eight minimal covers of P . We denote cover i by a 0-1
vector zi = (zU ) of size 2|P | − 1 = 7 indexed by subsets of P such that zU = 1 if U is
in the cover and zU = 0 otherwise. Let ci denote the number of times that we choose
cover i. Then the input tag assignment problem becomes an integer programming
problem:
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Fig. 7.3. Number of labels based on initial states for Example 7.1.

maximize c1 + c2 + · · · + c8
subject to ci ∈ Z,

ci ≥ 0,

8∑
i=1

cizi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6
c7
c8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
3
2
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(7.1)

A solution to this problem is (ci) = [ 0 1 1 2 0 0 1 1 ]T which gives
Mblkdec(1, P ) =

∑
i ci = 6. This solution can be achieved by assigning tag j to the

edges labeled by vj or wj . Compare this to Mdet(1, P ) = 7 (minimum of the sums of
each circle in Figure 7.3) and Mblk(1, P ) = 1 (the size of the region {I, J,K}).

It can be shown that no other sets of principal states can give Mblkdec(1, P ) = 6.
This can be easily checked by computing Mdet(1, P ). The maximum of Mdet(1, P ) for
P 
= {I, J,K} is 5; thus Mblkdec(1, P ) ≤ 5 for P 
= {I, J,K}.

Now we give a formal description of how to relate the input tag assignment prob-
lem to an integer programming problem. Let G be a deterministic presentation of a
constrained system S. Suppose w is a word and P ⊆ VG; we define

DG(w,P ) = {u ∈ P : w ∈ FG(u, P )}.

We say that two words w1 and w2 are equivalent with respect to P if DG(w1, P ) =
DG(w2, P ). Clearly this is an equivalence relation. Therefore all words can be grouped
into classes; each class is identified with DG(w,P ), a subset of P , where w belongs to
that class. In Example 7.1, this is the same as arranging words in Figure 7.2.

Define dG(q, P ) to be the 2|P | − 1 tuple indexed by nonempty subsets of P : for
each U ⊆ P , dG(q, P )U = |{w : DG(w,P ) = U and |w| = q}|, i.e., the number of
words of length q in class U . In Example 7.1, this dG(q, P ) represents the vector in
the right-hand side of (7.1).

We claim that dG(q, P ) is determined by Āq. To see this, let M be a (2|VG| −
1) × (2|VG| − 1) matrix indexed by the nonempty subsets of VG. For each nonempty



338 PANU CHAICHANAVONG AND BRIAN H. MARCUS

U ⊆ P , let γM (U,P ) =
∑

V⊆P MU,V . In particular when M = Āq, γĀq (U,P ) is the
number of words of length q that can be generated by every state in U with terminal
state in P . Note that γĀq (U,P ) overcounts dG(q, P )U because it also counts words
generated from proper supersets of U . To compute dG(q, P ), define

Δ(M,U, P ) = γM (U,P ) −
∑

{v}⊆P\U
γM (U ∪ {v}, P )

+
∑

{v1,v2}⊆P\U
γM (U ∪ {v1, v2}, P ) − · · · (−1)|P |−|U |γM (P, P ).

Then it follows from the principle of inclusion and exclusion that

dG(q, P )U = Δ(Āq, U, P ).

Define d∞
G (P ) = limq→∞ dG(q, P )/λq. It follows from (iii) of Lemma 6.5 that if S

is primitive and G is the Shannon cover of S, then d∞
G (P ) exists and d∞G (P )U =

Δ(Λ̄, U, P ).
By following the idea in Example 7.1, we view the classes of words as subsets of

P . Then we choose a minimal cover of P which can be represented by the vector z.
Let t = t(|P |) be the number of minimal covers of P . (t = 8 in Example 7.1.) Then
the problem of finding an input tag assignment which achieves Mblkdec(q, P ) becomes
an integer programming problem:

maximize c1 + c2 + · · · + ct,
subject to ci ∈ Z,

ci ≥ 0,
c1z1 + c2z2 + · · · + ctzt ≤ dG(q, P ).

If we delete the first condition, this becomes a linear programming problem. We view
the maximum of the objective function of this relaxed problem as a function μ(x)
whose argument x represents dG(q, P ) above. (x is allowed to be real.) So the value
of μ(x) is

∑t
i=1 ci, where (ci) is a solution to the relaxed problem. This defines μ(x)

for a vector x of fixed dimension. We can generalize the domain of μ to include all
nonnegative real vectors with dimension of the form 2n − 1, 1 ≤ n ≤ |VG|. In this
way, we define μ(dG(q, P )) for any P . We can show the following properties of μ.

Proposition 7.2. Let R≥0 denote the set of nonnegative reals.
(i) μ(ax) = aμ(x) for any a ∈ R≥0.

(ii) |μ(x) − μ(y)| ≤ ‖x − y‖1 for any x,y ∈ R
2n−1
≥0 .

Proof.
(i) Since the case a = 0 is trivially true, we assume that a > 0. Suppose c = (ci)

is a solution to the linear programming problem with input x. Then ac satisfies the
condition of the problem when the input is ax. Thus μ(ax) ≥ a

∑
i ci = aμ(x). Using

the same argument with x replaced by ax and a replaced by 1/a, we can show that
μ(ax) ≤ aμ(x). Therefore μ(ax) = aμ(x).
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(ii) It is sufficient to show this when x and y differ at only one entry; then the
proposition follows from the triangle inequality. Suppose x and y differ at only the
jth entry. Without loss of generality, assume xj > yj . Suppose c is a solution to the

problem when x is the input. Consider the sum
∑t

i=1 ci(zi)j , which must be less than
or equal to xj . If it is less than or equal to yj , then c is also a solution when y is
the input and we have μ(y) = μ(x). If the sum is greater than yj , we find a vector
c′ as follows. Let I = {i : (zi)j = 1}. Let c′ be a vector such that c′i ≥ 0 for all
1 ≤ i ≤ t, c′i = ci for i /∈ I, and

∑
i∈I c

′
i = yj . The vector c′ satisfies the condition

of the problem when y is the input. Therefore μ(x) − μ(y) ≤
∑t

i=1 ci −
∑t

i=1 c
′
i =∑

i∈I ci −
∑

i∈I c
′
i ≤ xj − yj , and the proposition is proved.

We note that from (ii) above, μ is uniformly continuous.
Proposition 7.3.

Mblkdec(q, P ) ≤ μ(dG(q, P )) ≤ Mblkdec(q, P ) + t.

Proof. Recall that Mblkdec(q, P ) is the maximum of the objective function in
the integer programming problem above. Since the domain of the variables is more
restricted (to integers rather than reals), Mblkdec(q, P ) ≤ μ(dG(q, P )).

Suppose that a vector c = (ci) is a solution to the linear programming problem.
Then μ(dG(q, P )) =

∑t
i=1 ci, and �c = (�ci) satisfies the condition in the integer

programming problem. Thus

Mblkdec(q, P ) ≥
t∑

i=1

�ci ≥
t∑

i=1

ci − t = μ(dG(q, P )) − t.

Theorem 7.4. For a primitive constrained system,

M∞
blkdec(P ) = μ(d∞

G (P )).

Moreover,
(i) Pblkdec(q) ⊆ P∞

blkdec for sufficiently large q,
(ii) M∗

blkdec = maxP⊆VG
μ(d∞

G (P )).
Proof.

lim
q→∞

μ(dG(q, P ))

λq
= lim

q→∞
μ

(
dG(q, P )

λq

)
(by (i) of Proposition 7.2)

= μ(d∞
G (P )) (since μ is continuous).

From Proposition 7.3, Mblkdec(q, P )/λq also converges to the same limit. Then (i)
and (ii) follow from Proposition 4.1.

Next we give a bound on q similar to Theorems 5.2 and 6.7. Recall that t(k) is
the number of minimal covers of a set of size k. Define

ρ(G, q) = (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

.

Note that limq→∞ ρ(G, q) = 0 because Āq

λq converges to Λ̄.



340 PANU CHAICHANAVONG AND BRIAN H. MARCUS

Theorem 7.5. If q satisfies ρ(G, q) < εblkdec/2, then Pblkdec(q) ⊆ P∞
blkdec.

Proof. First observe that Δ(Āq,W, P ) can be written as
∑

U,V aU,V Ā
q
U,V , where

aU,V ∈ {0, 1,−1}. Thus for any W ,

dG(q, P )W
λq

− d∞G (P )W =
∑
U,V

aU,V

((
Āq

λq

)
U,V

− Λ̄U,V

)

≤
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ .
Therefore

|Mq
blkdec(P ) −M∞

blkdec(P )|

≤
∣∣∣∣μ(dG(q, P ))

λq
− μ(d∞

G (P ))

∣∣∣∣ +

∣∣∣∣Mblkdec(q, P )

λq
− μ(dG(q, P ))

λq

∣∣∣∣
≤

∣∣∣∣μ
(

dG(q, P )

λq

)
− μ(d∞

G (P ))

∣∣∣∣ +
t(|P |)
λq

≤
∥∥∥∥dG(q, P )

λq
− d∞

G (P )

∥∥∥∥
1

+
t(|P |)
λq

≤ (2|P | − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|P |)
λq

≤ (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

= ρ(G, q) <
εblkdec

2
.

Then the theorem follows from Lemma 4.2.
With the technique described in this section, we can compute upper and lower

bounds for Mblkdec(q, P ). The upper bound comes from the relaxed linear program-
ming problem. The lower bound is obtained by “rounding down” the solution of the
linear programming problem. Thus by checking all sets of principal states, we can
obtain upper and lower bounds for Mblkdec(q). In fact, from Proposition 3.1, it is
sufficient to check all complete sets. Given a deterministic graph G and an integer n,
Marcus, Siegel, and Wolf [11] gave an algorithm to find all complete sets P such that
Mdet(1, P ) ≥ n. Therefore we can design a block-decodable encoder as follows.

Given a deterministic presentation G of the desired constraint S and a block
length q, find an optimal set of principal states Pdet for a deterministic encoder.
Then compute the upper and lower bounds for Mblkdec(q, Pdet); set n to be the lower
bound. For each complete set P such that Mdet(q, P ) ≥ n, compute the upper and
lower bounds for Mblkdec(q, P ). Set the upper and lower bounds for Mblkdec(q) to
be the maximum of the upper bounds and the maximum of the lower bounds for
Mblkdec(q, P ), respectively. In this way, we also have the candidates for the optimal
sets of principal states.
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Example 7.6. By solving the linear programming problem described in this sec-
tion, we find the asymptotically optimal set of principal states for the asymmetric-
RLL(2, 5, 1, 3) to be P ∗

blkdec = {1, 2, 3, 1̄, 2̄} and M∗
blkdec = 0.7076. Moreover, εblkdec =

0.0146.
Next we apply Theorem 7.5 to compute the bound on q such that P ∗

blkdec achieves
Mblkdec(q). Let r̄i and l̄i, 1 ≤ i ≤ 8, be the right and left eigenvectors corresponding
to λi. From [14, Sequence A046165], t(8) = 3731508. Thus

ρ(G, q) = (2|VG| − 1)
∑
U,V

∣∣∣∣∣
(
Āq

λq

)
U,V

− Λ̄U,V

∣∣∣∣∣ +
t(|VG|)
λq

= (255)
1

λq

∑
U,V

∣∣∣∣∣
8∑

i=2

λq
i (r̄i l̄i)U,V

∣∣∣∣∣ +
3731508

λq

≤ (255)
1

λq

∑
U,V

8∑
i=2

|λi|q|(r̄i l̄i)U,V | +
3731508

λq
.

This expression is decreasing with q. If q ≥ 44, then ρ(G, q) ≤ 0.0050 <
εblkdec/2 = 0.0073.

In our construction of the integer programming problem described in this section,
the number of variables depends only on |P |. But dG(q, P ) usually contains many
zeros and thus many minimal covers of P are not necessary. Thus we can formulate
an equivalent problem with a much smaller number of variables, and so the bound on
q given in Theorem 7.5 can be very weak. This is especially true when the constraint
has a lot of structure (e.g., when many follower sets can be ordered by inclusion). For
this example, after neglecting the unnecessary minimal covers, the maximum number
of variables is 14 when P = {1, 2, 3, 4, 1̄, 2̄} while t(8) = 3731508.

Finally we compute bounds on Mblkdec(q), 1 ≤ q ≤ 43, as well as candidates
for the achieving P . We find that P ∗

blkdec is the only optimal set of principal states
for 12 ≤ q ≤ 43. From this computation and the bound on q explained above, we
conclude that P ∗

blkdec is the only optimal set of principal states for q ≥ 12.

8. Complexity of block-type-decodability. We have studied some algorithms
to design block-type-decodable encoders, and the reader may have noticed that find-
ing an optimal deterministic encoder is easier than finding an optimal block encoder,
which in turn is easier than finding an optimal block-decodable encoder. In this sec-
tion, we study the complexity of these problems and show that, in some aspects, this
observation is indeed the case.

Let S be a constrained system with a deterministic presentation G and let n be
a positive integer. For each class C of encoders, we consider three slightly different
problems.

1. Subgraph encoder: We study the complexity of determining whether there
exists an (S, n) encoder in class C which is a subgraph of G. In this case, we aim to
answer whether MC(1) ≥ n. This is the most general and possibly the most important
problem.

2. Fully supported subgraph encoder: We consider the same problem but require
that the set of principal states be VG. This case can be viewed as a subproblem of
the first problem: we fix a set of principal states P and wish to determine whether
MC(1, P ) ≥ n. We will see that this case distinguishes the complexity of computing
block and block-decodable encoders.
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3. |VG| fixed: In a practical encoder design, we usually fix the constraint and
let the block length q vary; thus we study the first problem but consider the number
of states of G to be fixed.

We remark that our goal is to compute MC(1), but the complexity of this problem
is equivalent to the complexity of determining whether MC(1) ≥ n. We consider the
latter problem because it is a decision problem, and hence its complexity class is easier
to determine.

We begin with the problem of determining whether there exists an (S, n) deter-
ministic encoder which is a subgraph of G. This problem can be solved by applying
the Franaszek algorithm [4] to the adjacency matrix A of G and the all-ones vector x.
The algorithm proceeds by iteratively computing x ← min

{⌊
1
nAx

⌋
,x

}
(taken com-

ponentwise) until it converges. If Mdet(1) < n, the algorithm returns a zero vector;
if Mdet(1) ≥ n, the algorithm returns the characteristic vector of the largest set of
principal states P such that Mdet(1, P ) ≥ n. It is easy to see that the algorithm ter-
minates in at most |VG| iterations; in each iteration, the running time is polynomial.
Thus, for the class of deterministic encoders, this problem is solvable in polynomial
time.

From this result, it follows that the other two easier problems on deterministic
encoders are also solvable in polynomial time. For the fully supported subgraph
encoder problem, there exists an (S, n) deterministic encoder with the set of principal
states VG if and only if the Franaszek algorithm terminates in one iteration and returns
the all-ones vector.

Next, we consider the class of block encoders. We will show that the problem of
determining whether there exists an (S, n) block encoder is NP-complete by relating
it to the well-known clique problem. We first describe the clique problem. A k-clique
in an undirected graph is a subgraph with k nodes such that there is an edge between
every two nodes in the clique. The clique problem is to determine whether a graph
contains a clique of a specified size. This problem is known to be NP-complete [13].

Theorem 8.1. Given a labeled graph G and an integer n, the problem of deter-
mining whether there exists an (S(G), n) block encoder which is a subgraph of G is
NP-complete. However, the problem becomes polynomial for every fixed n.

Proof. Given a graph G′ with output labeling and input tagging, it can be verified
in polynomial time whether (i) G′ is a subgraph of G and (ii) G′ is an (S, n) block
encoder. Therefore this problem is in NP. What remains is to show that the clique
problem is polynomial-time reducible to this problem. Given an undirected graph
H = (VH , EH), we construct a labeled directed graph G as follows. Let VG = VH and
assign an edge from state u to state v labeled by v if H has an edge between u and
v. Moreover, assign a self-loop to every state v labeled by v. One can show that H
has an n-clique if and only if there exists an (S, n) block encoder which is a subgraph
of G. Hence we conclude that the block encoder problem is NP-complete.

Suppose that n is fixed; we will show that the problem becomes polynomial.
We choose n words from the set of all words and determine whether they can be
concatenated with each other. If so, we have an (S, n) block encoder. If not, choose
another set of n words. Since there are polynomially many ways to choose n words,
we conclude that the problem is polynomial.

If we require that the set of principal states of our block encoder be VG, this
problem becomes polynomial. To see this, consider the following polynomial-time
algorithm.



STABILIZATION OF BLOCK-TYPE-DECODABILITY PROPERTIES 343

Computation of Mblk(1, VG)
Input: G with VG = {v1, . . . , vm}
L ← F1

G(v1)
for each 2 ≤ i ≤ m

for each w ∈ L
if w /∈ F1

G(vi)
then L ← L \ {w}

Output: |L|

For the third case where the number of states of G is fixed, the block encoder
problem becomes polynomial because we can adapt the above algorithm for each set
of principal states, and there is a fixed number of sets of principal states, namely,
2|VG| − 1.

Finally, we turn to the block-decodability problem. The complexity of this prob-
lem has been studied by Ashley, Karabed, and Siegel [1]; the following theorem is a
special case of [1, Theorem 5.4].

Theorem 8.2 (see [1]). Given a labeled graph G and an integer n, the problem
of determining whether there exists an (S(G), n) block-decodable encoder E which is a
subgraph of G and VE = VG is NP-complete. It is also NP-complete for fixed n ≥ 2.

Thus the fully supported subgraph encoder problem for the block-decodable en-
coder is NP-complete. We will show that the subgraph encoder problem is also NP-
complete by relating it to the fully supported subgraph encoder problem.

Theorem 8.3. Given a labeled graph G and an integer n, the problem of deter-
mining whether there exists an (S(G), n) block-decodable encoder which is a subgraph
of G is NP-complete. It is also NP-complete for fixed n ≥ 2.

Proof. This problem is easily seen to be in NP. We will show that the fully sup-
ported subgraph encoder problem is polynomial-time reducible to this more general
problem. Given a graph H with VH = {v1, . . . , vm}, we construct another graph G
as follows. Let VG = VH , and for each outgoing edge from vi in H, we assign an edge
in G from vi to vi+1 with the same label. (If i = m, we assign an edge from vm to
v1.) Clearly, if there is an (S(H), n) block-decodable encoder E which is a subgraph
of H and VE = VH , then there is an (S(G), n) block-decodable encoder which is a
subgraph of G. On the other hand, if there is an (S(G), n) block-decodable encoder
which is a subgraph of G, this encoder must have the same set of states as G. By using
the corresponding edges in H and the same tag assignment, we obtain an (S(H), n)
block-decodable encoder E which is a subgraph of H and VE = VH .

From Theorems 8.2 and 8.3, the block-decodability problem is generally intractable.
However, if we fix the number of states but let only the number of edges and the size
of the alphabet grow, then the problem becomes more tractable.

Theorem 8.4. Given a constrained system S with a deterministic presentation
G and an integer n, the problem of determining whether there exists an (S, n) block-
decodable encoder is solvable in polynomial time if we fix the number of states of G.

Proof. First we fix a set of principal states P . It is sufficient to show that the
problem of determining whether Mblkdec(1, P ) ≥ n is solvable in polynomial time.
This is because the number of sets of principal states is fixed (= 2|VG| − 1).

In section 7, we showed that the computation of Mblkdec(1, P ) is equivalent to an
integer programming problem. The worst-case number of variables of this problem
(the largest t) depends only on |P |. Hence, we can consider the number of variables
to be fixed.
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Case 1. n > |EG|. Clearly, we can conclude that Mblkdec(1, P ) < n.
Case 2. n ≤ |EG|. If we check the feasibility of all c such that 0 ≤ ci ≤ n,

we can determine whether Mblkdec(1, P ) ≥ n. Since there are (n + 1)t such c, it can
be checked in polynomial time. This is because (n + 1)t ≤ (|EG| + 1)t and t is
fixed.

The complexity of each problem for each class of encoder is summarized in the
following table.

Table 8.1

Complexity of block-type-decodability problems.

Encoder class Subgraph encoder
Fully supported

subgraph encoder
|VG| fixed

Deterministic polynomial polynomial polynomial

Block
NP-complete

(polynomial for any fixed n)
polynomial polynomial

Block-decodable
NP-complete

for fixed n ≥ 2
NP-complete

for fixed n ≥ 2
polynomial
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OPTIMAL AUGMENTATION FOR BIPARTITE COMPONENTWISE
BICONNECTIVITY IN LINEAR TIME∗

TSAN-SHENG HSU† AND MING-YANG KAO‡

Abstract. A graph is componentwise biconnected if every connected component either is an
isolated vertex or is biconnected. We present a linear-time algorithm for the problem of adding the
smallest number of edges to make a bipartite graph componentwise biconnected while preserving
its bipartiteness. This algorithm has immediate applications for protecting sensitive information in
statistical tables.

Key words. biconnectivity, data security, bipartite graph augmentation
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1. Introduction. There is a long history of applications for the problem of
adding edges to a graph in order to satisfy connectivity specifications (see [7, 10, 21]
for recent examples). Correspondingly, the problem has been extensively studied for
making general graphs k-edge connected or k-vertex connected for various values of k
[5, 12, 11, 13, 14, 20, 29, 33] as well as for making vertex subsets suitably connected
[6, 16, 18, 30, 31, 32, 34].

In this paper, we focus on augmenting bipartite graphs. A graph is componentwise
biconnected if every connected component either is biconnected or is an isolated vertex.
This paper presents a linear-time algorithm for the problem of inserting the smallest
number of edges into a given bipartite graph to make it componentwise biconnected
while maintaining its bipartiteness. This problem and related bipartite augmentation
problems arise naturally from research on statistical data security [1, 2, 3, 4, 25]. To
protect sensitive information in a cross tabulated table, it is a common practice to
suppress some of the cells in the table. A basic issue concerning the effectiveness of
this practice is how a table maker can suppress a small number of cells in addition
to the sensitive ones so that the resulting table does not leak significant informa-
tion. This protection problem can be reduced to augmentation problems for bipartite
graphs [8, 17, 22, 23, 24, 26, 27, 28]. In particular, a linear-time algorithm for our
augmentation problem immediately yields a linear-time algorithm for suppressing the
smallest number of additional cells so that no nontrivial information about any indi-
vidual row or column is revealed to an adversary [23].

Figure 1 gives an example to illustrate the relationship between our augmentation
problem and the table protection problem. On the left is a 2-dimensional cross tab-
ulated table with some suppressed cells. On the right is a bipartite suppressed graph
constructed from the table, where the vertices correspond to the columns and rows,
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index a b c d sum

1 21
2 4 3 18
3 7 3 18
4 1 6 17

sum 15 20 11 28 74

a

b

c1

2

3

4 d

Fig. 1. An example of the relationship between graph augmentation and table protection. On
the left is a 2-dimensional cross tabulated table with some suppressed cells. On the right is the
bipartite suppressed graph constructed from the table, where the vertices correspond to the columns
and rows, and the edges correspond to the suppressed cells.

and the edges correspond to the suppressed cells. Note that in the suppressed graph,
row vertex 1 is the only cut vertex. It is proven in [23] that the value of any linear
combination of the cells in a row or column that does not correspond to a cut vertex
cannot be uniquely determined, except for the multiples of the sum of all suppressed
cells in that row or column. Conversely, since vertex 1 is a cut vertex, the values of
some linear combinations that are not multiples of the sum of the suppressed cells in
row 1 can still be inferred from the information available in the table. For instance, let
Ci,j be the cell at the intersection of row i and column j, let S∗,j be the sum of the cells
in column j, and let Si,∗ be the sum of the cells in row i. Then, the value of C1,a+C1,b

must be 8 because it equals S∗,a+S∗,b−
∑4

i=2(Ci,a+Ci,b), the value of
∑3

i=2(Ci,a+Ci,b)
is directly available from the table, and C4,a + C4,b = S∗,4 − C4,c − C4,d.

Section 2 formally states our augmentation problem and discusses some main
results. Section 3 proves an optimal bound on the smallest number of additional
edges needed for the problem. Section 4 gives a linear-time algorithm to solve the
augmentation problem.

2. Problem formulation, main results, and basic concepts. In this paper,
all graphs are undirected and have neither self loops nor multiple edges.

2.1. The augmentation problem. Two vertices of a graph are biconnected if
they are in the same connected component and remain so after the removal of any
single edge or any single vertex other than either of them. A set of vertices is bicon-
nected if every pair of its vertices are biconnected; similarly, a graph is biconnected if
its set of vertices is biconnected. To suit our application of protecting sensitive infor-
mation in statistical tables, this definition for biconnectivity is slightly different from
the one used in standard textbooks. In particular, we define a connected component
of an isolated vertex to be biconnected and one with exactly two vertices to be not
biconnected.

A block of a graph is the induced subgraph of a maximal subset of vertices that
is biconnected. A graph is componentwise biconnected if every connected component
is a block. Throughout this paper, G = (A,B,E) denotes a bipartite graph. A legal
edge of G is an edge in A×B but not in E. A biconnector of G is a set L of legal edges
such that (A,B,E ∪L) is componentwise biconnected. An optimal biconnector is one
with the smallest number of edges. Note that if A = ∅ or B = ∅, G is componentwise
biconnected. If |A| = 1 and B �= ∅ (or |B| = 1 and A �= ∅), G has no biconnector. If
|A| ≥ 2 and |B| ≥ 2, G has a biconnector. In light of these observations, the optimal
biconnector problem is the following: given G = (A,B,E) with |A| ≥ 2 and |B| ≥ 2,



BIPARTITE BICONNECTIVITY AUGMENTATION 347

Fig. 2. The edges of the bipartite graph in this example are drawn as the solid edges. The car-
dinality of an optimal biconnector of this graph is 5. The dashed edges form an optimal biconnector.

find an optimal biconnector of G. An example is illustrated in Figure 2.
The remainder of this paper assumes |A| ≥ 2 and |B| ≥ 2. Also, let n and m be

the numbers of vertices and edges in G, respectively.
Given an edge subset E′ and a vertex subset V ′ of G, G− V ′ denotes G without

the vertices in V ′ and their adjacent edges. G − E′ denotes (A,B,E − E′), i.e., the
resulting G after the edges in E′ are deleted. G ∪E′ denotes (A,B,E ∪E′), i.e., the
resulting G after the edges in E′ are added to G.

2.2. Basic definitions. A cut vertex or edge of a graph is one whose removal
increases the number of connected components. A singular connected component is
one formed by an isolated vertex. A singular block is one with exactly one vertex. An
isolated block is one that is also a connected component. A pendant block is a singular
block consisting of a vertex of degree 1 or a nonsingular block containing exactly one
cut vertex. Let Λ(G) denote the set of pendant blocks of G.

The block tree of G is a tree Ψ(G) defined as follows. D1 denotes the set of
nonsingular blocks of G. D2 is that of singular pendant ones. D3 is that of singular
nonpendant ones. C is that of cut vertices. K is that of cut edges. The vertex
set of Ψ(G) is D1 ∪ D2 ∪ C ∪ K, where D3 is excluded because if {u} ∈ D3, then
u ∈ C. The vertices in Ψ(G) corresponding to D1 ∪ D2 are called the b-vertices;
those corresponding to C ∪ K are the c-vertices. To distinguish between an edge
in G and one in Ψ(G), let 〈y1, y2〉 instead of (y1, y2) denote an edge between two
vertices y1 and y2 in Ψ(G). The edge set of Ψ(G) is the union of the following
sets:

• {〈d1, c〉 | d1 ∈ D1 and c ∈ C such that c ∈ D1};
• {〈c, e〉 | c ∈ C and e ∈ K such that c is an endpoint of e};
• {〈e, d2〉 | e ∈ K and d2 ∈ D2 such that an endpoint of e is in d2}.

Figure 3 illustrates G and its blocks while Figure 4 illustrates its block tree.
Lemma 2.1.

1. Ψ(G) is a tree with O(n) vertices. Its leaves are the |Λ(G)| pendant blocks of
G.

2. For all cut vertices u in G, D(u,G) equals the degree of u in Ψ(G).
Proof. The proof is straightforward and similar to that for similar constructs

[9].
Let Pu,v denote the tree path between two vertices u and v in Ψ(G). Let |Pu,v|

be the number of vertices in Pu,v.
Lemma 2.2. Let Y1 and Y2 be a legal pair of G. Let e be a binding edge for Y1

and Y2. Let G′ = G ∪ {e}.
1. The cut vertices of G corresponding to c-vertices in PY1,Y2

and the vertices
of G in the b-vertices on PY1,Y2 form a new block Ye in G′. The b-vertices of
Ψ(G′) are Ye and those of Ψ(G) not on PY1,Y2 .
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Fig. 3. In this bipartite graph G = (A,B,E), A is the set of shaded vertices, and B the set of
unshaded vertices. The vertices in each block of G are grouped into a dashed circle.
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Fig. 4. This is the block tree of the graph in Figure 3. The boxes are the latter’s nonsingular
blocks and singular pendant ones; the circles are its cut edges and cut vertices.

2. The c-vertices in Ψ(G′) are those in Ψ(G) excluding the ones on PY1,Y2 that
are of degree two in Ψ(G).

3. The edge set of Ψ(G′) is the union of
• the set of edges in Ψ(G) whose two endpoints are still in Ψ(G′);
• {〈u, Ye〉 | u ∈ PY1,Y2

is a cut vertex of G that remains in Ψ(G′)};
• {〈u, Ye〉 | u �∈ PY1,Y2 is a cut vertex of G incident to PY1,Y2 in Ψ(G)}.

4. The number of vertices in Ψ(G′) is at most that for Ψ(G) minus
|PY1,Y2

|−1

2 .
5. If PY1,Y2 contains a b-vertex of degree at least four in Ψ(G) or two vertices

each of degree at least three, then Λ(G′) = Λ(G) − {Y1, Y2}.
Proof. The proof is straightforward and similar to those for similar constructs

[5, 9, 20, 29].

A vertex of G is type A or B if it is in A or B, respectively. A block of G is type
A or B if all of its noncut vertices are in A or B, respectively; a block is type AB if it
has at least one noncut vertex in A and one in B. A legal pair of G is formed by two
distinct elements in Λ(G) paired according to the following rules. Type A may pair
with type B or AB. Type B may pair with type A or AB. Type AB may pair with
all three types. A binding edge for a legal pair is a legal edge between two noncut
vertices, one from each of the two blocks of the pair.



BIPARTITE BICONNECTIVITY AUGMENTATION 349

Lemma 2.3.

1. A noncut vertex is in exactly one block. Each pendant block contains a noncut
vertex.

2. A singular pendant block of G is either type A or B, while a nonsingular
pendant block is type AB and has at least two vertices from A and at least
two from B.

3. There exists a binding edge for each legal pair of G.
Proof. The first two statements are straightforward. We outline the proof of the

third statement. Let G1 and G2 be a legal pair of G. There are three cases depending
on the type of G1.

Case 1: G1 is type A. Then G2 is either type B or type AB. By the first two
statements, there is a vertex u ∈ A such that u ∈ G1 and u �∈ G2. There is also a
vertex v ∈ B such that v ∈ G2 and v �∈ G1. The edge (u, v) is a binding edge.

Case 2: G1 is type B. Then G2 is either type A or type AB. The proof is similar
to that of Case 1.

Case 3: G1 is type AB. Then G2 can be any type. The proof is similar to that
of Case 1.

Let Λ′ ⊆ Λ(G). A legal matching of Λ′ is a set of legal pairs between elements in Λ′

such that each element in Λ′ is in at most one legal pair. A maximum legal matching
of Λ′ is one with the largest cardinality possible. M(Λ′) denotes the cardinality of a
maximum legal matching of Λ′. For a maximum legal matching of Λ′, let

R(Λ′) = |Λ′| − 2M(Λ′),

i.e., the number of elements in Λ′ that are not in the given maximum legal matching.
Note that R(Λ′) is the same for any maximum legal matching of Λ′.

Lemma 2.4.

1. Let W1 and W2 be two disjoint nonempty sets of pendant blocks with M(W1∪
W2) > 0. Then some w1 ∈ W1 and w2 ∈ W2 form a legal pair with M(W1 ∪
W2 − {w1, w2}) = M(W1 ∪W2) − 1.

2. Let nA, nB, and nAB be the numbers of type A, B, and AB pendant blocks
in Λ(G), respectively. Then, R(Λ(G)) = nA + nB + nAB − 2M(Λ(G)) and
M(Λ(G)) = α + β + γ, where α = min{nA, nB}, β = min{|nA − nB |, nAB}
and γ = 
nAB−β

2 �.
Proof. The first statement follows from the fact that W1 ∪ W2 has a maximum

legal matching that contains a legal pair between W1 and W2. The second statement
follows from the fact that a legal matching can be obtained by iteratively applying
any applicable rule below.

• If there are one unpaired type A pendant block and one unpaired type B
pendant block, then we pair a type A pendant block and a type B one.

• If there is no unpaired type B (respectively, A) pendant block and there are
one unpaired type A (respectively, B) pendant block and one unpaired type
AB pendant block, then we pair a type A (respectively, B) pendant block
with a type AB one.

• If all unpaired pendant blocks are type AB, then we pair two such blocks.
We now prove that these rules produce a maximum matching. Assume we run
the above process, and let Λ∗(G) be the set of pendant blocks that is not in the
matching produced. Note that Λ∗(G) consists of pendant blocks of the same type,
since any two pendant blocks of different types can be matched. There are three
cases.
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Case 1: Λ∗(G) consists of only type AB pendant blocks. Note that two type AB
pendant blocks can be matched. Therefore, |Λ∗(G)| = 1. Thus |Λ(G)| is odd and we
have produced a maximum matching.

Case 2: Λ∗(G) consists of only type A pendant blocks. From our matching rules,
a type A pendant block is matched with a type B or AB pendant block whenever
possible. Thus |Λ∗(G)| = nA − nB − nAB . Since type A pendant blocks can only be
matched with type B or AB pendant blocks, we have produced a maximum matching.

Case 3: Λ∗(G) consists of only type B pendant blocks. This case is similar to
Case 2.

For all vertices u ∈ G, D(u,G) denotes the number of connected components in
X − {u} where X is the connected component of G containing u. C(G) denotes the
number of connected components in G that are not blocks. B(G) denotes the number
of edges in an optimal biconnector of G. When G is connected, our target size for an
optimal biconnector is

η(G) = max
u∈G

{D(u,G) + C(G) − 2,M(Λ(G)) + R(Λ(G))}.

2.3. Main results. We first prove a lower bound on the size of an optimal
biconnector and then discuss two main results of this paper.

Lemma 2.5.

1. G is componentwise biconnected if and only if η(G) = 0.
2. B(G) ≥ η(G).

Proof. Statement 1. If G is componentwise biconnected, then Λ(G) = ∅, C(G) = 0,
and D(u,G) = 1 for all vertices u ∈ G. Hence η(G) = 0. We next prove the only-if di-
rection. Since η(G) = 0, M(Λ(G))+R(Λ(G)) = 0. Then, since M(Λ(G)),R(Λ(G)) ≥
0 by definition, M(Λ(G)) = R(Λ(G)) = 0, and Λ(G) = ∅. By Lemma 2.1(1), Ψ(G∗)
is a tree for each connected component G∗ in G. The leaves of Ψ(G∗) are in Λ(G).
Hence Ψ(G∗) is a one-vertex tree. Then G∗ is biconnected, implying that G is com-
ponentwise biconnected.

Statement 2. It suffices to show B(G) ≥ M(Λ(G)) + R(Λ(G)) and B(G) ≥
maxu∈G D(u,G) + C(G) − 2. Let L be an optimal biconnector of G.

To prove B(G) ≥ M(Λ(G))+R(Λ(G)), note that Λ(G∪L) is empty. Thus, every
block in Λ(G) contains an endpoint of an edge in L. Since all the edges in L are legal,
L contains at least M(Λ(G)) + R(Λ(G)) edges.

To prove B(G) ≥ maxu∈G D(u,G)+C(G)−2, we need such an L that the nonblock
connected components of G are all contained in the same connected component of
G ∪ L. If a given L has not yet satisfied this property, then let X1 and X2 be two
nonblock connected components of G that are contained in two different connected
components X ′

1 and X ′
2 of G ∪ L, respectively. Let e1 = (u1, v1) ∈ X ′

1 and e2 =
(u2, v2) ∈ X ′

2 be two edges in L. Such e1 and e2 exist because X1 and X2 are not
biconnected in G, but X ′

1 and X ′
2 are biconnected in G ∪ L. Next, let e′1 = (u1, v2)

and e′2 = (u2, v1). Then, L′ = (L−{e1, e2})∪{e′1, e′2} remains an optimal biconnector
of G. Also, L′ connects X ′

1 − {e1} and X ′
2 − {e2}, which include X1 and X2. An

example is illustrated in Figure 5.
By repeating this endpoint switching process, we can construct a desired L. With

such an L, we proceed to prove B(G) ≥ maxu∈G D(u,G) + C(G)− 2. Since this claim
trivially holds if G is componentwise biconnected, we focus on the case where G
is not componentwise biconnected. Then, D(u,G) is maximized by some u that is
in a nonblock connected component H∗

u. By definition, H∗
u − {u} contains D(u,G)

connected components. There are C(G) nonblock connected components, one of which
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is H∗
u. Thus there are at least C(G)− 1 +D(u,G) connected components in G−{u}.

It is well known that we need to add at least k edges to connected a graph with k+ 1
connected components. Let Hu be the connected component of G ∪ L containing
u. Since G ∪ L is componentwise biconnected, Hu − {u} is connected. Thus |L| ≥
D(u,G) + C(G) − 2, proving our claim.

The next theorem is a main result of this paper.

Theorem 2.6. If G is connected, then B(G) = η(G).

Proof. By Lemma 2.5, B(G) ≥ η(G). For ease of understanding, the proof for
B(G) ≤ η(G) is delayed to Theorem 3.2 in section 3.

The next theorem generalizes Theorem 2.6 to G that may or may not be con-
nected.

• Let C1(G) be the number of connected components of G that are neither
isolated edges nor blocks.

• Let C2(G) be the number of isolated edges; note that C(G) = C1(G) + C2(G).
• Let C3(G) be the number of connected components that are nonsingular

blocks.

Theorem 2.7.

Case M1: C1(G) = 1 and C2(G) = 0. Then B(G) = η(G).

Case M2: C1(G) + C2(G) ≥ 2 and M(Λ(G)) = 0. Then B(G) = η(G).

Case M3: C1(G) + C2(G) ≥ 2 and M(Λ(G)) > 0. Then B(G) = η(G).

Case M4: C1(G) = 0, C2(G) = 1, and C3(G) = 0. Then B(G) = 3.

Case M5: C1(G) = 0, C2(G) = 1, and C3(G) > 0. Then B(G) = 2.

Case M6: C(G) = 0. Then B(G) = 0.

Proof.

Case M1: Let G1 be the connected component of G that is neither an isolated
edge nor a block. Theorem 2.6 applies to the case where G1 contains at least two
vertices in A and at least two in B. Thus, we may assume without loss of generality
that G1 contains exactly one vertex u ∈ A and r vertices v1, v2, . . . , vr ∈ B with
r ≥ 2. Note that η(G) = r. Because |A| > 1 and C2(G) = 0, there is an isolated
vertex w ∈ A or there is a nonsingular block in G containing two vertices w1, w2 ∈ A.
In the former case, {(w, v1), . . . , (w, vr)} is an optimal biconnector; in the latter case,
{(w1, v1)} ∪ {(w2, v2), (w2, v3), . . . , (w2, vr)} is an optimal biconnector.

Case M2: Since M(Λ(G)) = 0, we may assume without loss of generality that
all the pendant blocks are type A. Note that an isolated edge contains two pendant
blocks and that these two pendant blocks are of different types. Hence C2(G) = 0,
C1(G) ≥ 2 and η(G) = |Λ(G)|. Let G0, . . . , GC1(G)−1 be the connected components
of G that are neither isolated edges nor blocks. Since each Gi has more than two
vertices, Gi has a vertex yi ∈ B. Let Wi,1, . . . ,Wi,ri be the pendant blocks of Gi.
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Each Wi,j contains a noncut vertex xi,j ∈ A. The set {(xi,j , yi+1 mod C1(G)) | 0 ≤
i < C1(G) and 1 ≤ j ≤ ri} is a biconnector. By Lemma 2.5(2), this biconnector is
optimal.

Case M3: By Lemma 2.5, B(G) ≥ η(G). To prove the upper bound, let e be a legal
edge of G. Let G′ = G∪{e}. We first show how to choose e so that η(G′) = η(G)−1.
Since M(Λ(G)) > 0, by Lemma 2.4(1), we can find a legal pair w1 and w2 in different
connected components with M(Λ(G)−{w1, w2}) = M(Λ(G))−1. By Lemma 2.3(3),
let e be a binding edge for w1 and w2. Note that Λ(G′) = Λ(G) − {w1, w2},
M(Λ(G′)) = M(Λ(G)) − 1, R(Λ(G′)) = R(Λ(G)), and M(Λ(G′)) + R(Λ(G′)) =
M(Λ(G)) + R(Λ(G)) − 1. Note also that C(G′) = C(G) − 1, and G′ is the graph
obtained from G by adding the edge e. Let u be a vertex in G and let Hu be the con-
nected component containing u. By definition, Hu − {u} contains D(u,G) connected
components. The number of connected components in (Hu − {u}) ∪ {e′} is no larger
than that of Hu−{u} for any edge e′. Hence maxu∈G′ D(u,G′) ≤ maxu∈G D(u,G) and
maxu∈G′ D(u,G′)+C(G′)−2 ≤ maxu∈G D(u,G)+C(G)−2. Thus, η(G′) = η(G)−1.

This process reduces C(G) and M(Λ(G)) by 1 each. We iterate this process until
either (1) C1(G) + C2(G) = 1 or (2) C1(G) + C2(G) ≥ 2 and M(Λ(G)) = 0. In the
latter case, we use Case M2 to complete the proof. In the former case, note that we
add an edge to combine two nonsingular nonbiconnected connected components into
a connected component. This new connected component is neither an isolated edge
nor a block. Thus, C1(G) > 0; i.e., C1(G) = 1 and C2(G) = 0 in the resulting G. We
then use Case M1 to complete the proof of this case.

Case M4: Let (r, c) be the isolated edge. Let r′ ∈ A and c′ ∈ B be two isolated
vertices. Then {(r, c′), (r′, c), (r′, c′)} is an optimal biconnector of G.

Case M5: Let G′ be a connected component that is a nonsingular block in G. G′

has a vertex r ∈ A and a vertex c ∈ B. Let (r′, c′) be the isolated edge of G. Then
{(r, c′), (r′, c)} is an optimal biconnector of G.

Case M6: This case is straightforward.

3. A matching upper bound for a connected G. This section assumes that
G is connected.

A cut vertex u of G is massive if D(u,G)−1 > M(Λ(G))+R(Λ(G)); it is critical
if D(u,G) − 1 = M(Λ(G)) + R(Λ(G)).

Lemma 3.1. Assume |Λ(G)| ≥ 3.
1. G has at most two critical vertices. If it has two, then R(Λ(G)) = 0.
2. G has at most one massive vertex. If it has one, then it has no critical vertex.

Proof. From Lemma 2.1 and the structure of a block tree, if we remove a c-vertex
u from Ψ(G), then the resulting graph consists of D(u,G) connected components
each containing a pendant block in Λ(G). If we remove two c-vertices u and v from
Ψ(G), then the resulting graph contains D(u,G)−2+D(v,G) connected components
each containing a pendant block in Λ(G). Thus, |Λ(G)| ≥ D(u,G) + D(v,G) − 2.
Note that pendant blocks in two distinct connected components are distinct. An
example is illustrated in Figure 6. By similar arguments, if we remove three c-vertices
u, v, and w, then the resulting graph has at least D(u,G) + D(v,G) + D(w,G) − 4
connected components each containing a pendant block in Λ(G). Thus, |Λ(G)| ≥
D(u,G) + D(v,G) + D(w,G) − 4.

Statement 1. To prove the first part by contradiction, assume that G has at least
three critical cut vertices u1, u2 and u3. From the above analysis,

∑3
i=1 D(ui, G) −

4 ≤ |Λ(G)|. By definition, M(Λ(G)) + R(Λ(G)) ≥ |Λ(G)|
2 . Since each ui is critical,

D(ui, G) − 1 = M(Λ(G)) + R(Λ(G)) ≥ |Λ(G)|
2 . Hence

∑3
i=1(D(ui, G) − 1) − 1 =
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Fig. 6. This illustrates the counting argument used in the proof of Lemma 3.1. The figure
shows Ψ(G) with two c-vertices u and v. Here a = D(u,G) and b = D(v,G). We can find a +
b− 2 connected components, i.e., H1, . . . , Ha−1 and R1, . . . , Rb−1 in Ψ(G) − {u, v}, each of which
contains a pendant block.

∑3
i=1 D(ui, G) − 4 ≥ |Λ(G)| + |Λ(G)|

2 − 1. Since |Λ(G)| ≥ 3, |Λ(G)|
2 − 1 > 0 and∑3

i=1(D(ui, G)−1)−1 > |Λ(G)|, reaching a contradiction. Hence G cannot have more
than two critical cut vertices. We now prove the second part of the statement. Assume
that G has exactly two critical cut vertices u1 and u2. From the above analysis,∑2

i=1(D(ui, G) − 1) ≤ |Λ(G)|. Since each ui is critical, D(ui, G) − 1 = M(Λ(G)) +

R(Λ(G)). Hence
∑2

i=1(D(ui, G) − 1) = 2·(M(Λ(G)) + R(Λ(G))). If R(Λ(G)) > 0
were true, then 2·(M(Λ(G)) + R(Λ(G))) > |Λ(G)|, which is a contradiction. Hence,
R(Λ(G)) = 0.

Statement 2. To prove this statement by contradiction, let u1 be a massive vertex,
and let u2 be a critical or massive vertex. From the above analysis,

∑2
i=1(D(ui, G)−

1) ≤ |Λ(G)|. However, D(u1, G) − 1 > M(Λ(G)) + R(Λ(G)) since u1 is massive,
and D(u2, G) − 1 ≥ M(Λ(G)) + R(Λ(G)) since u2 is critical or massive. Thus∑2

i=1(D(ui, G) − 1) > 2·(M(Λ(G)) + R(Λ(G))) ≥ |Λ(G)|, reaching a contradiction.
Hence, this statement holds.

The next theorem is the main result of this section.
Theorem 3.2. B(G) ≤ η(G).
Proof. By Lemma 3.1, we divide the proof into the following five cases. These

cases are proved in sections 3.1–3.5, respectively.
Case S1: |Λ(G)| < 3.
Case S2: |Λ(G)| ≥ 3 and M(Λ(G)) = 0.
Case S3: |Λ(G)| ≥ 3, M(Λ(G)) > 0, and G has two critical vertices.
Case S4: |Λ(G)| ≥ 3, M(Λ(G)) > 0, and G has no massive vertex and at most

one critical vertex.
Case S5: |Λ(G)| ≥ 3, M(Λ(G)) > 0, and G has exactly one massive vertex.

3.1. Case S1 of Theorem 3.2.
Lemma 3.3. For Case S1, Theorem 3.2 holds. Furthermore, given G, an optimal

biconnector can be computed in O(m + n) time.
Proof. By Lemma 2.1, Λ(G) corresponds to leaves in Ψ(G). If |Λ(G)| = 0, then

G is componentwise biconnected and the lemma is true trivially. It is not possible
that |Λ(G)| = 1. Hence assume |Λ(G)| = 2. Then Ψ(G) is a single path, implying
that the degree of every c-vertex in Ψ(G) is 2. Hence D(u,G) + C(G) − 2 = 0 and
η(G) = M(Λ(G)) + R(Λ(G)). There are two cases.

Case 1: M(Λ(G)) + R(Λ(G)) = 1. The two pendant blocks in Λ(G) are a legal
pair. The optimal biconnector consists of the legal edge e between the legal pair. It
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Fig. 7. This illustrates the proof of Lemma 3.3. The two dotted edges form a biconnector.

is clear that G ∪ {e} is biconnected.
Case 2: M(Λ(G))+R(Λ(G)) = 2. The two pendant blocks in Λ(G) are of the same

type. Without loss of generality, assume they are of type A. Let u1 ∈ A be a noncut
vertex from one pendant block. Similarly let u2 ∈ A be a noncut vertex from the other
pendant block. Since we assume |A|, |B| ≥ 2, we can find two vertices w1 ∈ B and
w2 ∈ B. If w1 and w2 are in the same block, then {(w1, u1), (w2, u2)} is a biconnector
for G. If w1 and w2 are in different blocks, then assume the distance between w1

and u1 is longer than the distance between w2 and u1. Then {(w1, u1), (w2, u2)} is a
biconnector for G. An example is illustrated in Figure 7.

3.2. Case S2 of Theorem 3.2.
Lemma 3.4. Theorem 3.2 holds for Case S2.
Proof. Let k = |Λ(G)|. Since M(Λ(G)) = 0, η(G) = k by Lemma 2.1. It suffices

to construct a biconnector L of k edges for G. Let Y1, . . . , Yk be the pendant blocks
of G. Since M(Λ(G)) = 0, Yi = {yi} and we may assume yi ∈ B without loss of
generality. Then G has a cut edge (xi, yi) for each yi, where xi ∈ A. Since |A| ≥ 2
and M(Λ(G)) = 0, there is some xj �= x1. Let G′ be the connected component of
G − {x1} containing xj . Let L be the set of legal edges (yi, x1) for all yi ∈ G′ and
(yi, xj) for all yi �∈ G′. It is straightforward to prove that L is as desired by means of
Lemma 2.2.

3.3. Case S3 of Theorem 3.2. A path v1, . . . , vk in Ψ(G) is branchless if for
all i with 1 < i < k the degree of vi in Ψ(G) is two. Let u1 and u2 be the critical
vertices of G. A leaf clings to ui in Ψ(G) if there is a branchless path between it
and ui.

Lemma 3.5.

1. η(G) = M(Λ(G)) = |Λ(G)|
2 .

2. Ψ(G) has a branchless path between u1 and u2, and exactly |Λ(G)|
2 leaves cling

to u1 only while the other |Λ(G)|
2 leaves cling to u2 only.

3. Λ(G) has a maximum legal matching in which each legal pair is between one
clinging to u1 and one clinging to u2.

Proof.
Statement 1. This statement follows from Lemma 3.1.
Statement 2. From Statement 1, M(Λ(G)) = |Λ(G)|

2 . Hence |Λ(G)| is even. By
a counting argument similar to the one used in the proof of Lemma 3.1(2), there are
at least 2·M(Λ(G)) = |Λ(G)| connected components in G − {u1, u2}, each of which
contains a pendant block. Furthermore, none of these connected components contains
a vertex in the path Pu1,u2

, and each of these connected components contains exactly
one pendant block. Hence each pendant block clings to either u1 or u2, and the path
Pu1,u2 is branchless. An example is illustrated in Figure 8.

Statement 3. For 1 ≤ i ≤ 2, let Wi be the set of pendant blocks clinging to ui.
We now prove Λ(G) has a perfect matching in which each legal pair consists of one
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Fig. 8. This illustrates the counting argument used in the proof of Lemma 3.5. The figure
shows Ψ(G) with two c-vertices u1 and u2. Here a− 1 = M(Λ(G)). We can find 2·a− 2 connected
components, i.e., H1, . . . , Ha−1 and R1, . . . , Ra−1 in Ψ(G) − {u1, u2}, each of which contains a
pendant block.

pendant block from W1 and one from W2. Note that it is easy to see that Λ(G) has at
least one perfect matching. If any perfect matching of Λ(G) does not have the desired
property, then we iteratively modify it as follows until it does.

Assume without loss of generality that the given perfect matching contains a
legal pair t = (t1, t2), both clinging to the same critical vertex u1. Then, there must
exist another legal pair r = (r1, r2) in the perfect matching that both cling to u2.
We replace these two pairs with two new legal pairs as follows. From the matching
procedure applied in the proof of Lemma 2.4, each legal pair either (1) contains a
type AB pendant block or (2) consists of a type A block and a type B block. There
are four cases.

Case 1: t satisfies (1) and r satisfies (1). Without loss of generality, assume t1
and r1 are type AB. Hence we form the new legal pairs (t1, r2) and (r1, t2).

Case 2: t satisfies (1) and r satisfies (2). Without loss of generality, assume t1 is
type AB. We can always find one pendant block in r to match with t2. The pendant
block left in r can always match with t1.

Case 3: t satisfies (2) and r satisfies (1). This case is similar to Case 2.

Case 4: t satisfies (2) and r satisfies (2). Without loss of generality, assume t1
and r1 are type A. Hence we form the new legal pairs (t1, r2) and (r1, t2).

Lemma 3.6. Theorem 3.2 holds for Case S3.

Proof. We add to G a binding edge for each legal pair in the maximum legal
matching of Lemma 3.5. By Lemmas 2.2 and 3.5, the resulting graph is biconnected.

We add |Λ(G)|
2 edges, which by Lemma 3.5(1) is optimal.

3.4. Case S4 of Theorem 3.2. Since |Λ(G)| ≥ 3, we can divide Case S4 into
two subcases:

Case S4-1: Ψ(G) has exactly one vertex of degree at least three.

Case S4-2: Ψ(G) has more than one vertex of degree at least three.

Lemma 3.7. Theorem 3.2 holds for Case S4-1.

Proof. Let x be the vertex in Ψ(G) of degree at least three. There are two cases:

Case 1: x is a b-vertex. Then η(G) = R(Λ(G)) + M(Λ(G)).

Case 2: x is a c-vertex. Since x is not massive, η(G) = D(x,G)− 1 = R(Λ(G)) +
M(Λ(G)) and M(Λ(G)) = 1.
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Fig. 9. This illustrates Case 2 in the proof of Lemma 3.8. The original Ψ(G) is shown on the
left. The rerooted block tree is shown on the right. The leftmost branch of the original Ψ(G) is a
branch. The degree of r∗ is at least three.

In either case, let N1 be a maximum legal matching of Λ(G); next, let N2 be a
set of legal pairs formed by pairing each pendant block not yet matched in N1 with
one already matched. Then, N = N1 ∪ N2 is a set of the smallest number of legal
pairs of G such that each element in Λ(G) is in a pair. We add to G a binding edge
for each pair in N . Since M(Λ(G)) > 0, we add η(G) edges. Since M(Λ(G)) > 0
in Case 1 and M(Λ(G)) = 1 in Case 2, these edges form a desired biconnector by
Lemma 2.2.

To discuss Case S4-2, we further assume that Ψ(G) is rooted at a vertex with at
least two neighbors; however, the degree of a vertex in Ψ(G) still refers to its number
of neighbors instead of children.

The next lemma chooses an advantageous root for Ψ(G) for our augmentation
algorithm. Given a vertex v in Ψ(G), a branch of v, also called a v-branch, is the
subtree of Ψ(G) rooted at a child of v. A chain of v, also called a v-chain, is a
v-branch that contains exactly one leaf in Ψ(G).

Let c∗ be a c-vertex in Ψ(G) of the largest possible degree.
Lemma 3.8. In Case S4-2, we can reroot Ψ(G) at a vertex h such that
1. either h is of degree two and no h-branch is a chain, or h is of degree at least

three;
2. if c∗ is critical, then h = c∗.

Proof. Let r be the current root of Ψ(G). There are three cases.
Case 1: c∗ is not critical, and either r is of degree two and no r-branch is a chain

or r is of degree at least three. We set h = r.
Case 2: c∗ is not critical, r is of degree two, and an r-branch is a chain. Note

that Ψ(G) has a vertex r∗ of degree at least three. We set h = r∗. An example is
illustrated in Figure 9.

Case 3: c∗ is critical. Since |Λ(G)| ≥ 3, c∗ is of degree three or more. We set
h = c∗.

Lemma 3.9. Let h be the root of Ψ(G). In Case S4-2, if h is of degree two and
no h-branch is a chain or if h is of degree at least three, then G has a legal pair w1

and w2 such that
1. Pw1,w2

passes through h and two vertices of degree at least three;
2. M(Λ(G) − {w1, w2}) = M(Λ(G)) − 1.

Proof. There are two cases.
Case 1: The degree of h is two and no h-branch is a chain. Let T ∗ be an h-branch.
Case 2: The degree of h is at least three. Since this is Case S4-2, some descendant

of h has degree at least three. Let T ∗ be the h-branch containing that descendant.
Let W1 be the set of leaves in T ∗. Let W2 = Λ(G)−W1. By Lemma 2.4(1), there

exist a legal pair w1 ∈ W1 and w2 ∈ W2 with M(Λ(G) − {w1, w2}) = M(Λ(G)) − 1.
Then, Pw1,w2 contains h as desired. An example is illustrated in Figure 10.
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h

*T

W1W2

Fig. 10. An iIllustration of Case 2 in the proof of Lemma 3.9. Any path between a leaf in W1

and one in W2 must pass through the root h.

Furthermore, in Case 1, Pw1,w2 contains a vertex of degree at least three in
T ∗ and another in Ψ(G) − T ∗; in Case 2, h itself is of degree at least three, and
Pw1,w2

contains a vertex of degree at least three in T ∗. In both cases, Pw1,w2 is as
desired.

Lemma 3.10. In Case S4-2, we can add a legal edge to G such that

1. the resulting graph G′ satisfies Case S1, S2, S3, or S4;
2. η(G′) = η(G) − 1;
3. if G has a critical vertex, then that vertex remains critical in G′.

Proof. We use Lemma 3.8 to reroot Ψ(G), use Lemma 3.9 to pick a legal pair
w1 and w2, and then add a binding edge for this pair to G. By Lemmas 3.9(1) and
2.2(5), Λ(G′) = Λ(G) − {w1, w2}. By Lemma 3.9(2), M(Λ(G′)) = M(Λ(G)) − 1.
Hence M(Λ(G′)) + R(Λ(G′)) = M(Λ(G)) + R(Λ(G)) − 1. There are two cases.

Case 1: G has no critical vertex. Then, by Lemma 2.2, maxu∈G′ D(u,G′) ≤
maxu∈G D(u,G) ≤ M(Λ(G)) + R(Λ(G)).

Case 2: G has a critical vertex. Then, c∗ is the critical vertex and D(c∗, G) >
maxu �=c∗ D(u,G). By Lemmas 3.8(2), 3.9(1), and 2.2, maxu∈G′ D(u,G′) = maxu∈G

D(u,G) − 1 = M(Λ(G)) + R(Λ(G)). Hence c∗ remains to be a critical vertex.

In either case, maxu∈G′ D(u,G′) − 1 ≤ M(Λ(G′)) + R(Λ(G′)). Then, η(G′) =
η(G) − 1. Also, G′ has no massive vertex and thus satisfies Case S1, S2, S3,
or S4.

Lemma 3.11. Theorem 3.2 holds for Case S4.

Proof. For Case S4-1, we use Lemma 3.7. For Case S4-2, we add one edge to G
at a time using Lemma 3.10 until the resulting graph G′ does not satisfy Case S4-2.
By Lemma 3.10(1), G′ satisfies Case S1, S2, S3, or S4-1. Thus, we apply Lemma 3.3,
3.4, 3.6, or 3.7 to G′ accordingly. By Lemma 3.10(2), the number of edges added is
η(G).

3.5. Case S5 of Theorem 3.2. Let r be the massive cut vertex of G. Let Ψ(G)
be rooted at r.

Lemma 3.12.

1. η(G) = D(r,G) − 1 > M(Λ(G)) + R(Λ(G)) > D(u,G) − 1 for any vertex
u �= r.

2. D(r,G) ≥ 4 and there are at least four r-chains.
3. The tree Ψ(G) contains a legal pair Y1 and Y2 as well as two distinct r-

branches T1 and T2 such that T1 is a chain, Y1 ∈ T1, and Y2 ∈ T2.

Proof.

Statement 1. This statement follows from the definition of Case S5.

Statement 2. Let δ1 be the number of r-chains. Then, D(r,G) ≥ δ1
and |Λ(G)| ≥ 2(D(r,G) − δ1) + δ1. So D(r,G) ≥ δ1 ≥ 2D(r,G) − |Λ(G)|. Let



358 TSAN-SHENG HSU AND MING-YANG KAO

δ2 = (D(r,G) − 1) − (M(Λ(G)) + R(Λ(G))). Because r is massive, δ2 ≥ 1. Note
that |Λ(G)| = 2M(Λ(G)) + R(Λ(G)). Thus D(r,G) ≥ δ1 ≥ 2δ2 + 2 + R(Λ(G)) ≥ 4.

Statement 3. Let T1 be an r-chain. Let Y1 be the leaf of Ψ(G) in T1. Because
M(Λ(G)) > 0, Ψ(G) contains a leaf Y2 �= Y1 that forms a legal pair with Y1. Let T2

be the r-branch that contains Y2. Then, Y1, Y2, T1, and T2 are as desired.
Lemma 3.13. We can add a legal edge to G such that for the resulting graph G′,
1. η(G′) = η(G) − 1;
2. D(r,G′) = D(r,G) − 1.

Proof. Let Y1, Y2, T1, and T2 be as stated in Lemma 3.12(3). The added edge
is a binding edge for Y1 and Y2. By Lemma 2.2, the b-vertices and c-vertices on
PY1,Y2

form a new block Y ′ in G′. Y ′ may or may not be a leaf in Ψ(G′); in either
case, M(Λ(G′)) + R(Λ(G′)) ≤ M(Λ(G)) + R(Λ(G)). Note that PY1,Y2 contains r.
Thus, by Lemmas 2.2 and 3.12(2), r remains a cut vertex in G′ with D(r,G′) =
D(r,G) − 1 while D(v,G′) ≤ D(v,G) for all vertices v �= r. Consequently, η(G′) =
η(G) − 1.

Lemma 3.14. Theorem 3.2 holds for Case S5.
Proof. We add one edge to G at a time using Lemma 3.13 until the resulting

graph G′ satisfies Case S1, S2, S3 or S4. Thus, we apply Lemma 3.3, 3.4, 3.6, or 3.11
accordingly. By Lemma 3.13(1), η(G) edges are added.

4. Computing an optimal biconnector in linear time.
Lemma 4.1. Case S5 in Theorem 3.2 can be reduced in linear time to Case S1,

S2, S3 or S4.
Proof. To implement the reduction, we first define a data structure as follows.

Let Q be the set of leaves of Ψ(G) that are in the r-chains. We set up a counter for
the number of these leaves. We also set up three doubly linked lists containing those
that are types A, B, and AB, respectively.

We set up a counter for the number of r-branches that are not chains. For each
such branch, we set up a doubly linked list for the leaves of Ψ(G) in it. We also set
up three doubly linked lists for the leaves in these branches that are types A, B, and
AB, respectively.

Given G, we can set up these linked lists and counters in linear time. We next
use this data structure to find a legal pair Y1 and Y2 by means of Lemma 3.12(3).
Since |Q| ≥ 4 by Lemma 3.12(2), there are two cases.

Case 1: Some Y1 and Y2 ∈ Q form a legal pair. This is our desired pair. Note
the r-chains containing Y1 and Y2 in Ψ(G) are contracted into a new chain in Ψ(G′)
consisting of a single leaf of type AB.

Case 2: Q contains only type A or B leaves. Select any Y1 ∈ Q. Since M(Λ(G)) >
0, some Y2 ∈ Λ(G) − Q forms a desired legal pair with Y1. Note that Y1 and Y2 are
no longer pendant blocks in G′ and the newly created block is not a pendant block
of G′, either. The r-branch containing Y2 becomes a chain if in G it contains exactly
two pendant blocks.

It takes O(1) time to decide which of these two cases holds. In either case, the
selection of Y1 and Y2 takes O(1) time using the linked lists. Once Y1 and Y2 are
found, we can find a binding edge in O(1) time in a straightforward manner. After
the edge is added to G, we can update the data structure in O(1) time for G′. Then
we use Lemma 2.4(2) and the counters to check whether G′ satisfies Case S5 in O(1)
time. We repeat this process until G′ does not satisfy Case S5. At this point, we
complete the reduction. Since we iteratively add at most O(n) edges in Case S5, the
reduction takes linear time.
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Theorem 4.2. Given G, an optimal biconnector is computable in O(m + n)
time.

We prove this theorem by means of Theorems 2.7 and 3.2 as follows.

Given G, it takes O(m + n) time to determine which case of Theorem 2.7 holds.
Then it takes O(m + n) time in a straightforward manner to compute an optimal
biconnector for Cases M2, M4, M5, and M6; reduce Case M3 to Case M1 or M2; and
reduce Case M1 to Theorem 3.2.

Next, it takes O(m + n) time to determine which case of Theorem 3.2 holds.
Then, it is straightforward to compute an optimal biconnector in O(m + n) time for
Cases S1, S2, and S3. Lemma 4.1 reduces Case S5 in O(m + n) time to Case S1, S2,
S3, or S4. By Lemma 3.7, we can find an optimal biconnector in O(m + n) time for
Case S4-1. The remaining proof shows how to reduce Case S4-2 to Case S1, S2, S3,
or S4-1 in O(m + n) time by implementing the proof of Lemma 3.11.

We define a data structure Δ(G) as follows. First, we root Ψ(G) at a vertex
of degree two or more as in section 3.4 and classify each vertex u by a 4-bit code
σ0σ1σ2σ3 based on the subtree Tu of Ψ(G) rooted at u:

• σ0 = 1 if and only if Tu has more than one leaf;
• σ1, σ2, or σ3 = 1 if and only if Tu contains a leaf of type A, B or AB,

respectively.

The code has at most ten combinations, i.e., 0100, 0010, 0001, and all the combinations
with σ0 = 1 except 1000. Δ(G) is Ψ(G) augmented with the following items:

1. At each vertex in Ψ(G), Δ(G) maintains its degree and a doubly linked list
for the children of u with the same σ0σ1σ2σ3 code. There are 10 such lists.

2. There are three counters for the numbers of leaves in Ψ(G) of types A, B,
and AB, respectively.

3. The c-vertices of degree at least three are partitioned into groups of the same
degree. Each nonempty group is arranged into a doubly linked list. The lists
themselves are connected by a doubly linked list in the increasing order of
vertex degrees.

We do not need parent pointers in Δ(G), which are subtle to update [19, 20, 29]. This
finishes the description of Δ(G). We can build Δ(G) from G in O(m + n) time.

Lemma 4.3.

1. Let r be the current root of Δ(G). Let h be as stated in Lemma 3.8. Given
Δ(G), if r is critical, we can reroot Δ(G) in O(1) time according to Lemma
3.8; O(n) time if r is not critical but h is; or O(|Pr,h|) time if neither is
critical.

2. Given Δ(G), we can find w1 and w2 of Lemma 3.9 in O(|Pw1,w2 |) time.

Proof.

Statement 1. We implement the proof of Lemma 3.8 using the following steps.

Step 1. Use item 3 of Δ(G) to find c∗.
Step 2. Use items 1 and 2 of Δ(G) and Lemma 2.4(2) to decide which case of the

proof of Lemma 3.8 holds.
Step 3. (a) For Case 1 of the proof of Lemma 3.8, set h = r and Δ(G) is unchanged.

(b) For Case 2 of the proof of Lemma 3.8, first use item 1 of Δ(G) to find
the nearest desired descendant r∗ of r, and then reroot Δ(G) at h = r∗

and update it accordingly.
(c) For Case 3 of the proof of Lemma 3.8, if r �= c∗, then recompute Δ(G)

from Ψ(G) to root at h = c∗; otherwise, r = c∗, and Δ(G) is unchanged.

Since Steps 1 and 2 take O(1) time, the time complexity of each case of this
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statement is bounded by that of Step 3.

Case 1: r is critical. Step 3(c) runs with r = c∗ in O(1) time.

Case 2: r is not critical but h is. Step 3(c) runs with r �= c∗ in O(n) time.

Case 3: Neither r nor h is critical. Then, Step 3(a) or Step 3(b) is performed.
Step 3(a) takes O(1) time. For Step 3(b), the search for r∗ takes O(1) time per vertex
on Pr,r∗ . Since the internal vertices of Pr,r∗ all have degree two, updating item 1 of
Δ(G) along this path takes O(1) time per vertex. Item 1 of Δ(G) outside this path
and the other two items remain the same. Thus, this case takes O(Pr,h) total time as
desired.

Statement 2. We implement the proof of Lemma 3.9 using the following steps.

Step 1. Use item 1 of Δ(G) to decide which case of the proof of Lemma 3.9 holds.
Step 2. Use item 2 of Δ(G) and Lemma 2.4(2) to find all possible pairs of types t1

and t2 such that Λ(G) has a maximum matching that contains a legal pair
between type t1 and type t2.

Step 3. For each such pair of t1 and t2, perform the following computation until w1

and w2 are found.
(a) For Case 1 of the proof of Lemma 3.9, w1 and w2 are in the two branches

of the root of Δ(G) separately. Use item 1 of Δ(G) at the root to decide
whether the desired w1 and w2 exist. If they exist, use item 1 of Δ(G)
to search for them.

(b) For Case 2 of the proof of Lemma 3.9, w1 and w2 are in two separate
branches of the root, one of which is not a chain. The remaining com-
putation is similar to that of Step 3(a).

By Lemma 3.8, some pair t1 and t2 yields the desired w1 and w2. Steps 1 and 2 take
O(1) time. There are O(1) possible pairs of t1 and t2. For each such pair, checking
the existence of w1 and w2 takes O(1) time. If they exist, searching for them takes
O(1) time per vertex on the path Pw1,w2 .

The next lemma completes the proof of Theorem 4.2.

Lemma 4.4. Case S4-2 is reducible to Case S1, S2, S3, or S4-1 in O(m + n)
time.

Proof. Given G in Case S4-2 as input, the reduction algorithm is as follows:

Step 1. Construct Δ(G).
Step 2. repeat

(a) Use Lemma 4.3(1) to reroot Δ(G).
(b) Use Lemma 4.3(2) to find a legal pair w1 and w2.
(c) Add a binding edge e for w1 and w2 into G.
(d) Use Lemma 2.2 to update Δ(G) while rerooting it at the new b-vertex

Ye resulting from the insertion of e.
until G does not satisfy Case S4-2.

Since Step 1 takes O(m+n) time, it suffices to prove that Step 2 takes O(n) time.
By Lemma 3.9(1), each iteration of Step 2 reduces |Λ(G)| by two. Since |Λ(G)| < n,
the repeat loop has less than n iterations. Then, since the until condition can be
checked in O(1) time per iteration using Lemma 2.4(2) and items 2 and 3 of Δ(G),
the until step takes O(n) total time. Similarly, Step 2(c) takes O(1) time per iteration
and O(n) total time in a straightforward manner.

We next show that Steps 2(a), 2(b) and 2(d) also take O(n) total time. For a
given iteration, let G0 and G1 denote G before and after e is inserted, respectively.

Step 2(a). We show that each case in the proof of Lemma 4.3(1) takes O(n) total
time as follows.
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Case 1: This case takes O(1) time per iteration and thus O(n) total time.
Case 2: By Lemma 3.10(3), this case can only happen once in the above reduction

algorithm. Hence, this case takes O(n) total time.
Case 3: This case takes O(1) time per edge on Pr,h for an iteration. Note that

the degree of a vertex in Δ(G) never increases by edge insertion. Then, since Δ(G1)
is rooted at Ye with e connecting two leaves of Δ(G0), each edge on Pr,h is traversed
only once to reroot Δ(G) for this case throughout all the iterations. Therefore, this
case takes O(n) total time.

Step 2(b). This step takes O(|Pw1,w2 |) time per iteration. Since there are O(n)
iterations, by Lemma 2.2(4), this step takes O(n) total time.

Step 2(d). We bound the time for updating each item of Δ(G) as follows.
Item 1 of Δ(G). Notice that Pw1,w2

passes through the root of Δ(G0). Also,
Δ(G1) is rooted at Y2. These properties make it straightforward to update this item
in O(|Pw1,w2 |) time per iteration. Since there are O(n) iterations, by Lemma 2.2(4),
this step takes O(n) total time.

Item 2 of Δ(G). By Lemma 3.9(1), Λ(G1) = Λ(G0) − {w1, w2}. Thus it takes
O(1) time to update this item per iteration and O(n) total time.

Item 3 of Δ(G). Let u be a c-vertex in Δ(G0). If u �∈ Pw1,w2
, it has the same

degree in Δ(G0) and Δ(G1) and is not relocated in this item. If u ∈ Pw1,w2 , its degree
reduces at most two in Δ(G1) and can be relocated in O(1) time. Therefore, this item
can be updated in O(|Pw1,w2

|) time per iteration, i.e., O(n) total time as shown for
item 1.
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1. Introduction. Let F
n
q denote the vector space of n-tuples over the q-element

field Fq. A q-ary linear code C of length n and dimension k, or an [n, k]q code, is a
k-dimensional subspace of F

n
q . An inner product (x,y) of vectors x,y ∈ F

n
q defines

orthogonality: Two vectors are said to be orthogonal if their inner product is 0. The
set of all vectors of F

n
q orthogonal to all codewords from C is called the orthogonal

code C⊥ to C:

C⊥ = {x ∈ F
n
q | (x,y) = 0 for any y ∈ C}.

It is well known that the code C⊥ is a linear [n, n− k]q code.
A k × n matrix GC whose rows form a basis of C is called a generator matrix of

C. A generator matrix of the code C⊥, orthogonal to C, is a parity check matrix for
C, denoted by HC .

The number of nonzero coordinates of a vector x ∈ F
n
q is called its Hamming

weight wt(x). The Hamming distance d(x,y) between two vectors x,y ∈ F
n
q is defined

by

d(x,y) = wt(x − y).

The minimum distance of a linear code C is

d(C) = min{d(x,y) | x,y ∈ C,x �= y} = min{wt(c) | c ∈ C, c �= 0}.

A q-ary linear code of length n, dimension k, and minimum distance d is said to be
an [n, k, d]q code.

If C ⊆ C⊥, then the code C is called self-orthogonal. Self-orthogonal codes with
n = 2k are of particular interest; then C = C⊥ and the codes are called self-dual. The
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classes of self-orthogonal and self-dual codes are important in coding theory from both
a practical and a theoretical point of view. Self-dual codes over F3 are particularly
interesting because they include the Golay code of length 12, quadratic residue codes,
and symmetry codes. Many papers have been devoted to the study of self-dual codes;
see the excellent survey [18] for an overview of these results.

In this work ternary and quaternary self-orthogonal codes with maximum possible
minimum distance are considered. Such codes are classified for lengths n ≤ 29 and
dimensions k ≤ 6 (except for sets of parameters where this was not computationally
feasible using our algorithms). Two different methods are used in the classification,
so (in nearly all cases) the results have been obtained by two independent algorithms.
Very little has been known about the minimum distance and number of self-orthogonal
codes, since most of the research has been into the special case of self-dual codes. For
general linear codes, extensive tables of bounds can be found in [3].

In section 2, two types of inner products are defined and some properties of
the weight distributions of self-orthogonal codes are presented. Two classification
methods are considered in section 3, and the computational results obtained by these
methods are tabulated in section 4. Finally, in section 5 some data for quantum
error-correcting codes obtained from the classified quaternary self-orthogonal codes
are presented.

2. Preliminaries. The Euclidean inner product of two vectors u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) from F

n
q is defined by

(u,v)E = u1v1 + u2v2 + · · · + unvn.

For codes over Fq where q is an even power of an arbitrary prime p, one can
consider another type of inner product, the Hermitian inner product. The Hermitian
inner product of two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) from F

n
q is

defined by

(u,v)H = u1v̄1 + u2v̄2 + · · · + unv̄n,

where v̄i = v
√
q

i for vi ∈ Fq. Consequently, for q = 4 the Hermitian inner product is
defined by

(u,v)H = u1v
2
1 + u2v

2
2 + · · · + unv

2
n.

In the ternary case we consider the Euclidean inner product, and in the quaternary
case (like in most other studies) we consider the Hermitian inner product. Throughout
the paper, these inner products are assumed in the discussion of self-dual and self-
orthogonal codes.

The MacWilliams identities can give a lot of information about possible weight
distributions of self-dual codes. However, in the current study we do not use this
information. We shall now present some known basic results on the codes considered
here. For a proof of Lemma 1, see [8, Theorem 1.4.10]. A code is even (resp., doubly-
even) if the weights of all codewords are divisible by 2 (resp., 4).

Lemma 1. Let C be a code over Fq with q = 3 or 4.
(i) When q = 3, every codeword of C has weight divisible by three if and only if

C is self-orthogonal.
(ii) When q = 4, every codeword of C has weight divisible by two if and only if C

is Hermitian self-orthogonal.
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3. Two classification methods. In any work on classifying mathematical ob-
jects, one should carefully define the concept of equivalence (or, depending on the
conventional terminology, isomorphism). For self-dual and self-orthogonal codes, the
definition of equivalence depends on the inner product. For ternary codes with Eu-
clidean inner product and quaternary codes with Hermitian inner product, the defi-
nition coincides with the definition for general linear codes [18].

Two linear q-ary codes, C1 and C2, are said to be equivalent if the codewords of
C2 can be obtained from the codewords of C1 via a sequence of transformations of
the following types:

1. permutation of coordinates,
2. multiplication of the elements in a given coordinate by a nonzero element of

Fq,
3. application of a field automorphism to the elements in all coordinates simul-

taneously.
(The field F3 does not have nontrivial automorphisms, and the only nontrivial

automorphism of F4 is conjugation.) An automorphism of a linear code C is a sequence
of such transformations that maps each codeword of C onto a codeword of C. The
automorphisms of a code C form a group, called the automorphism group of the code
and denoted by Aut(C).

Determining equivalence of codes plays a central role in any classification algo-
rithm. Not only must one make sure that all completed codes are inequivalent, but
determining equivalence of partial codes is also important for efficiency reasons. The
first author used an algorithm for determining code equivalence that was developed
in [1] and is based on the ideas in [12]. The approach of the second author depends
on the graph isomorphism program nauty [12, 13] for this matter; see [15] for further
details (but some enhancements of the basic method will be presented here).

The approaches to be presented differ in the ways the codes are built up via
smaller codes. For efficiency reasons, Lemma 1 should be taken into account.

The first approach uses results on the parameters of residuals of codes. Let G be
a generator matrix of a linear [n, k, d]q code C. Then the residual code Res(C, c) of
C with respect to a codeword c is the code generated by the restriction of G to the
columns where c has a zero entry. The following result is from [6].

Lemma 2. Suppose C is an [n, k, d]q code and suppose c ∈ C has weight w, where
d > w(q−1)/q. Then Res(C, c) is an [n−w, k−1, d′]q code with d′ ≥ d−w+�w/q�.

In addition to constructing [n, k, d]q codes from their [n − w, k − 1, d′]q residual
codes, one may also start from [n − i, k, d′]q codes. On the bottom of this hierarchy
of extensions is the trivial [k, k, 1]q code.

In the second approach, [n, k, d]q codes are constructed by extending [n−i, k−i, d]q
or [n− i− 1, k− i, d]q codes. The following result shows when the latter type of code
can be used [10, p. 592].

Lemma 3. Let C be an [n, k, d]q code. If there exists a codeword c ∈ C⊥ with
wt(c) = i, then there is an [n− i, k − i + 1, d]q code.

If G is a generator matrix for an [n− i, k − i, d]q or an [n− i− 1, k − i, d]q code,
we extend it (in all possible ways) to(

∗ Ii
G 0

)
or

(
∗ 1 Ii
G 0

)
,(1)

respectively, where Ii is the i× i identity matrix, 1 is an all-1 column vector, and the
starred submatrix is to be determined. If we let the matrix G be in systematic form,
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we can fix k more columns to get(
∗ 0 Ii

G1 Ik 0

)
or

(
∗ 0 1 Ii

G1 Ik 0

)
.(2)

More information on this approach can be found in [2]. The subcodes through
which the codes are constructed must also be self-orthogonal. For the approach via
residual codes, on the other hand, such a restriction does not apply.

If i = 1 in the second approach, we get the method used in [15], where [n, k, d]q
codes are obtained from [n−1, k−1, d]q codes by adding a new column in all possible
ways to the parity check matrix, checking the minimum distance and orthogonality
of the new code, and finally removing copies of equivalent codes. We shall now see
how the equivalence test can be enhanced for this particular variant.

To speed up the algorithm and reduce the need for extensive tables of interme-
diate codes, a classification technique developed by McKay [14] was implemented.
Essentially, the idea is that (in our case) a code can be obtained from several sub-
codes, only one of which is identified as the “parent” of the new code. Then a new
code is rejected unless it was obtained from its parent. Note that identifying a certain
subcode essentially means identifying a coordinate, and with the encoding used in
[15] the output of nauty can be used to get a canonical labelling of the coordinates.

Shortening an [n, k, d]q linear code by deleting one coordinate and keeping the
codewords with a 0 in the given coordinate gives a [n − 1, k′, d]q code with k′ = k
if the original code has only zeroes in the coordinate to be deleted and k′ = k − 1
otherwise. Therefore, in the parent test of a McKay-type algorithm—after adding
one coordinate via a new column in the parity check matrix—one should first check
which coordinates are all-zero. In the test itself, only coordinates that are not all-zero
should be considered. For fields with nontrivial automorphisms, like F4, if one uses
the idea of producing one graph for each automorphism [15], a code passes the parent
test if at least one of the |Aut(Fq)| instances passes the test.

4. Results. We first give a short overview of old results on classifying ternary
and quaternary self-dual and self-orthogonal codes. See [18] for more details and
references.

The length of any ternary self-dual code is divisible by 4, and this necessary
condition is also sufficient. Such codes of length less than or equal to 20—and self-
orthogonal codes of maximal dimension and length less than or equal to 19—have
been completely classified in [5, 11, 16, 17]. A partial classification of the self-dual
codes of length 24 can be found in [9], including a classification of such codes with
maximum minimum distance. For ternary self-dual codes, d ≤ 3

⌊
n
12

⌋
+ 3 holds [18,

Theorem 28]. Codes meeting this bound are called extremal and are known to exist
for admissible lengths n ≤ 48, 56 ≤ n ≤ 64 and do not exist for n = 72, 96, 120 and
n ≥ 144.

Quaternary self-dual codes have even lengths. They have been classified up to
length 16 in [5]. For quaternary self-dual codes, d ≤ 2

⌊
n
6

⌋
+2 holds [18, Theorem 28].

Extremal codes (which meet this bound) exist for admissible lengths n ≤ 10, 14 ≤
n ≤ 22, and n = 28, 30 and do not exist for n = 12, 24, 102, 108, 114, 120, 122 and
n ≥ 126.

There are only sporadic classification results for ternary and quaternary self-
orthogonal codes in the literature [7]. This work makes a contribution toward filling
this gap.
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The classification results are presented in Tables 1 and 2. For lengths n ≤ 29 and
dimensions 3 ≤ k ≤ 6, the maximal minimum distance and the number of correspond-
ing codes are shown. Entries that could not be computed with a reasonable amount of
CPU time are empty. For such instances, one could consider a subclass of codes. We
considered doubly even self-orthogonal quaternary codes to find out that the number
of [20, 4, 12]4, [20, 5, 12]4, [21, 5, 12]4, [25, 4, 16]4, and [25, 5, 16]4 such codes is 16, 4, 4,
333, and 31, respectively.

5. Quaternary self-orthogonal codes and quantum codes. Quantum com-
puters have received a lot of attention in the last decade, after Shor proved that integer
factorization can be solved in polynomial time on such computers [19]. The quantum
analogue of a bit of information is called a qubit and is the state of a system in a two-
dimensional Hilbert space spanned by e0 and e1, where e0 and e1 are eigenvectors
corresponding to the eigenvalues 0 and 1 of the qubit.

The setting in which quantum error-correcting codes (QECCs) exist is the quan-
tum state space of n qubits (quantum bits, or 2-state quantum systems). This space
is C

2n

, and it has a natural decomposition as the tensor product of n copies of C
2,

where each copy corresponds to one qubit. Many known quantum codes have close
connections to a finite group of unitary transformations of C

2n

, known as a Clifford
group.

A QECC is defined to be a unitary mapping (encoding) of k qubits (2-state
quantum systems) into a subspace of the quantum state space of n qubits such that
if any t of the qubits undergo arbitrary decoherence, not necessarily independently,
the resulting n qubits can be used to faithfully reconstruct the original quantum state
of the k encoded qubits. In general, by [[n, k, d]] we denote a QECC that encodes k
qubits of a quantum system into n qubits. The parameter d is the minimum distance
of the code. A QECC with minimum distance d can be used to detect errors that
involve at most d− 1 of the n subsystems. Alternatively, one can correct errors that
involve at most 
(d− 1)/2� subsystems. See [4] for more information about QECCs.

It is known that if C is a Hermitian self-orthogonal linear [n, k]4 code such that
there are no vectors of weight < d in C⊥ \ C (where C⊥ is the Hermitian dual of
C), then there is a quantum error-correcting [[n, n − 2k, d]] code [4]. By investi-
gating the classified codes with respect to this property, a number of quantum error-
correcting codes were detected. The parameters of these codes with d ≥ 3 are given in
Table 3.

The first column of Table 3 shows the parameters of the quaternary codes, and the
parameters of the corresponding quantum codes are given in the second column. The
orders of the automorphism groups of the quaternary codes with dual distance at least
3 are given in the third column—an upper index gives the number of corresponding
codes—and the last column lists the number of quaternary codes with maximum
possible dual distance.
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Table 1

Classification of ternary self-orthogonal codes.

n\k 3 4 5 6

7 3 1
8 3 1 3 1
9 6 1 3 1

10 6 1 6 1
11 6 2 6 1 6 1
12 6 6 6 6 6 1 6 1
13 9 1 6 10 6 4 6 1
14 9 1 6 27 6 15 6 4
15 9 4 9 3 6 73 6 20
16 9 9 9 13 9 1 6 121
17 9 16 9 58 9 35 6 885
18 12 2 9 308 9 997 9 105
19 12 4 12 1 9 15207 9 18019
20 12 14 12 32 12 2 9
21 12 36 12 406 12 359 9
22 15 1 12 3679 12 107017 12 698
23 15 3 12 20673 12 12
24 15 15 15 13 12 12
25 18 45 15 699 15 23 12
26 18 1 15 17703 15 15 2
27 18 4 18 1 15 15
28 18 14 18 6 15 15
29 18 49 18 406 18 1 15

Table 2

Classification of quaternary (Hermitian) self-orthogonal codes.

n\k 3 4 5 6

6 4 1
7 4 1
8 4 4 4 1
9 6 1 4 2

10 6 4 4 12 4 2
11 6 6 6 2 4 6
12 8 5 6 22 6 2 4 5
13 8 10 8 5 6 19 6 1
14 10 1 8 92 8 4 6 23
15 10 7 8 911 8 460 8 3
16 12 1 10 50 8 45311 8 1081
17 12 4 12 1 10 91 8
18 12 45 12 12 10 10 3
19 12 185 12 5673 10 10
20 14 10 12 12 10
21 16 1 14 212 12 12
22 16 4 14 14 67 12
23 16 46 16 3 14 12
24 16 614 16 40397 16 14
25 18 6 16 16 14
26 18 185 18 14 16 16
27 20 2 18 16 16
28 20 46 20 1 18 16
29 20 850 20 22656 18 16
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Table 3

Quaternary self-orthogonal codes and quantum codes.

C D |Aut(C)| #

[6, 3, 4] [[6, 0, 3]] 2160 1
[7, 3, 4] [[7, 1, 3]] 1008 1
[8, 3, 4] [[8, 2, 3]] 1728 1
[8, 4, 4] [[8, 0, 4]] 8064 1
[9, 3, 6] [[9, 3, 3]] 1296 1
[9, 4, 4] [[9, 1, 3]] 4320, 1152 2
[10, 3, 6] [[10, 4, 3]] 360 1
[10, 4, 4] [[10, 2, 3]] 1728, 192, 432, 259200 4
[10, 5, 4] [[10, 0, 4]] 43200, 11520 2
[11, 3, 6] [[11, 5, 3]] 360 1
[11, 4, 6] [[11, 3, 3]] 36 1
[11, 5, 4] [[11, 1, 3]] 1728, 12096, 8640, 576, 11520, 777600 6
[12, 3, 8] [[12, 6, 3]] 1296 1
[12, 4, 6] [[12, 4, 4]] 18, 1442, 576, 122, 24, 1296, 720 1
[12, 5, 6] [[12, 2, 4]] 72, 216 1
[12, 6, 4] [[12, 0, 4]] 20736, 60480, 6912, 138240, 9331200 5
[13, 3, 8] [[13, 7, 3]] 1728 1
[13, 4, 8] [[13, 5, 3]] 242, 36, 432, 720 5
[13, 5, 6] [[13, 3, 4]] 72, 12, 363, 144, 65, 24, 183, 48 1
[13, 6, 6] [[13, 1, 5]] 468 1
[14, 3, 10] [[14, 8, 3]] 1008 1
[14, 4, 8] [[14, 6, 4]] 35, 128, 485, 243, 68, 4322, 1

42, 9, 36, 1443, 18, 192, 3456, 8064
[14, 5, 8] [[14, 4, 4]] 36, 24, 72, 288 4
[14, 6, 6] [[14, 2, 5]] 62, 48, 368, 123, 18, 72, 24, 1442, 252 1
[15, 3, 10] [[15, 9, 3]] 2160 1
[15, 4, 8] [[15, 7, 3]] 245, 652, 1230, 486, 2160, 374, 186, 364, 92

1443, 192, 1152, 60, 432, 504, 120960 189
[15, 5, 8] [[15, 5, 4]] 247, 48, 695, 3258, 1222, 95, 185

108, 723, 216, 302, 60, 36, 360, 288, 15 26
[15, 6, 8] [[15, 3, 5]] 216, 72, 360 3
[16, 3, 12] [[16, 10, 3]] 17280 1
[16, 4, 10] [[16, 8, 3]] 318, 610, 242, 18, 96, 123, 9, 36, 72 38
[16, 5, 8] [[16, 6, 4]] 4832, 24118, 62824, 327856, 12496, 729

3619, 931, 5762, 1926, 9618, 1824, 603, 2163, 360
10802, 303, 2882, 1443, 15, 1728, 2160, 7683, 3072
3842, 18432, 23043, 54, 1152, 8064, 1935360 519

[16, 6, 8] [[16, 4, 4]] 1252, 482, 966, 768, 3612, 864, 3686, 6259, 1442

2414, 108, 93, 1815, 722, 288, 384, 4608 697
[17, 4, 12] [[17, 9, 4]] 48960 1
[17, 5, 10] [[17, 7, 4]] 382, 66, 92, 126 27
[18, 4, 12] [[18, 10, 3]] 24, 12, 723, 362, 60, 360, 432, 6480 11
[18, 6, 10] [[18, 6, 5]] 18, 54, 108 2
[19, 4, 12] [[19, 11, 3]] 32111, 189, 6350, 3611, 1255, 727, 910, 144, 2412, 27, 483 2570
[21, 3, 16] [[21, 15, 3]] 362880 1
[21, 4, 14] [[21, 13, 3]] 126, 628, 3169, 94, 24, 42, 18, 63, 60 212
[22, 5, 14] [[22, 12, 4]] 342, 618, 184, 9, 12, 36 67
[23, 4, 16] [[23, 15, 3]] 24 1
[24, 4, 16] [[24, 16, 3]] 61302, 60, 318934, 12139, 1813, 2428, 912, 365

724, 288, 120, 1923, 484, 1152, 1442, 90
162, 414720, 576, 96, 648 20456

[26, 4, 18] [[26, 18, 3]] 39, 12, 62, 18, 24 14
[28, 4, 20] [[28, 20, 3]] 42 1
[29, 4, 20] [[29, 21, 3]] 6840, 310385, 12111, 2410, 185, 94, 365, 483, 72, 21 11365
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[7] M. van Eupen and P. Lisoněk, Classification of some optimal ternary linear codes of small
length, Des. Codes Cryptogr., 10 (1997), pp. 63–84.

[8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univer-
sity Press, Cambridge, UK, 2003.

[9] J. S. Leon, V. Pless, and N. J. A. Sloane, On ternary self-dual codes of length 24, IEEE
Trans. Inform. Theory, 27 (1981), pp. 176–180.

[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

[11] C. L. Mallows, V. Pless, and N. J. A. Sloane, Self-dual codes over GF(3), SIAM J. Appl.
Math., 31 (1976), pp. 649–666.

[12] B. D. McKay, Practical graph isomorphism, Congr. Numer., 30 (1981), pp. 45–87.
[13] B. D. McKay, nauty User’s Guide (version 1.5), Tech. report TR-CS-90-02, Computer Science

Department, Australian National University, Canberra, Australia, 1990.
[14] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms, 26 (1998), pp. 306–324.
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Abstract. We introduce the notion of unavoidable (complete) sets of word patterns, which is
a refinement for that of words, and study certain numerical characteristics for unavoidable sets of
patterns. In some cases we employ the graph of pattern overlaps introduced in this paper, which
is a subgraph of the de Bruijn graph and which we prove to be Hamiltonian. In other cases we
reduce a problem under consideration to known facts on unavoidable sets of words. We also give
a relation between our problem and the extensively studied universal cycles and prove that there
exists a universal cycle for word patterns of any length over any alphabet. The Stirling numbers of
the second kind and the Möbius function appear in our results.
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1. Introduction. When defining or characterizing sets of objects in discrete
mathematics, “languages of prohibitions” are often used to define a class of objects by
listing the prohibited subobjects, i.e., subobjects that are not allowed to be contained
in the objects of the class. The notion of a subobject is defined in different ways
depending on the objects under consideration: a subword (a block or segment) for
fragmentarily restricted languages, a subgraph for families of graphs, a subshape for
two-dimensional shapes (e.g., a submatrix for matrices), and so on.

We collect all prohibited objects into a set that we call a set of prohibited objects,
or simply a set of prohibitions. The idea of unavoidable (or complete1) set is as follows:
if large enough objects must contain prohibited subobjects, then the set of prohibitions
is unavoidable.

In this paper, we are interested in unavoidable sets of word patterns, or just
patterns (see section 3 for definitions). These patterns are an extension of the per-
mutation patterns studied extensively for the last twenty years (see [17] for a survey
on the corresponding problems). Our unavoidable sets of patterns are refinements for
those of words. Questions on unavoidability of sets of words appear, for instance, in
algebra (sequences without repetitions), coding theory (chain codes), number theory
(arithmetic progressions in partitions of the set of natural numbers and, e.g., van der
Waerden’s theorem), and dynamical systems (motions of an object in a space with
certain restrictions).

There are a number of numerical characteristics that are valuable for unavoidabil-
ity criteria and the recognition algorithms based on them. Three such characteristics,
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1The word complete appears, for example, in [6, 7, 8, 9, 10], but the word unavoidable is of

common use in contemporary literature (e.g., see [1], [19, Chapter 3], [21]), so we decided to use the
latest terminology in this paper. Another expression in the literature for unavoidable sets is blocking
sets [22].
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namely, Mw(n), Lw(n), and Cw(n) (for definitions see section 2), are considered in [7].
We consider the similar characteristics Mp(n,m), Lp(n,m), and Cp(n,m) for the case
of prohibited patterns (for definitions see section 3), where m is the number of letters
in the corresponding alphabet (we do not use this parameter for the functions Mw(n),
Lw(n), and Cw(n) to be consistent with [7]). Moreover, in section 3.2.2 we discuss
how finding a lower bound for Cp(n,m) is related to the so-called universal cycles
for combinatorial structures that have been studied extensively (e.g., see [5, 16] and
the references therein). To get the lower bound involving the Stirling numbers of the
second kind, we prove that the graph of pattern overlaps (see section 3) is Hamiltonian
and derive as a corollary that there exists a universal cycle for word patterns of any
length over any alphabet (see Corollary 3.9).

We remark that when considering patterns, the underlying alphabet must be
ordered, as opposed to the objects considered in [7].

The paper is organized as follows. In section 2 we review the main results on
unavoidable sets of words in [7, 8]. The motivation for a relatively detailed review
of these papers is the fact that they are available only in Russian (as far as we
know), which caused, in particular, the rediscovery of some of those results in [21].
In addition, the results obtained in [7, 8] are of great interest in general and very
useful in this paper in particular. In section 3, we define the notion of a pattern, an
n-pattern word, and study unavoidable sets of patterns.

2. Unavoidable sets of words. Let A = {a1, . . . , an} be an alphabet of n
letters. A word over the alphabet A is a finite sequence of letters of the alphabet.
Any i consecutive letters of a word X generate a subword of length i. The set A∗

is the set of all words over the alphabet A, and An is the set of all words over A of
length n. Let S ⊆ A∗ be a set of prohibited words or a set of prohibitions. A word
that does not contain any words from S as its subwords is said to be free from S, or
S-free. The set of all S-free words is denoted by Ŝ.

If there exists a natural number k such that the length of any word in Ŝ is less
than k, then S is called an unavoidable set. It is straightforward to see that S is
unavoidable if and only if Ŝ has finitely many of elements. Thus, for any unavoidable
set S we can define the function

Lw(Ŝ) = max
X∈Ŝ

�(X),

where �(X) is the length of a word X.
The basic problem in considering sets of prohibitions is whether or not a given set

S of prohibitions is unavoidable. Other possible problems include the following: given
an unavoidable S, find or estimate Lw(Ŝ); construct an S-free word of length Lw(Ŝ);

find the number of elements in Ŝ. If S is avoidable, then some possible problems could
include the following: find an infinite S-free sequence; describe all such sequences; find
the cardinality of the set of these sequences; find the cardinality of the set of finite
S-avoiding sequences of a given length.

Let S be a finite set of words over an alphabet A, and let n be the maximal
length of a word in S. If X is a subword of Y , then we say that Y is a superword for
X. Suppose now that X ∈ S and �(X) < n. Remove X from S and adjoin to S all
superwords for X of length n. If this procedure is performed for any such X, and all
resulting repetitions are removed, we will get a set S

′
of distinct words of length n.

Proposition 2.1 (see [7, Proposition 1]). A set S is unavoidable if and only if
S

′
is unavoidable.
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Thus, sets of prohibitions S ⊆ An are of special interest, and for the most part,
our considerations in this paper are related to these sets. More precisely, we will
consider the functions

Mw(n) = min |S| and Lw(n) = maxLw(Ŝ),

where the extremum is taken with respect to all unavoidable S ⊆ An. These functions
are examples of numerical characteristics that describe the bound between avoidable
and unavoidable sets of prohibitions. To give an instance of such a bound, we consider
the following example.

Example 2.2 (see [7, Examples 1, 2]). Consider A = {0, 1} and the sets of
prohibitions

S1 = {000, 001, 1011, 0101, 1111},
S2 = {000, 001, 1010, 0101, 1111}.

Thus S1 and S2 differ only in one letter (underlined). One can see that S1 is un-

avoidable, and Lw(Ŝ1) = 8. On the other hand, S2 is avoidable. Indeed,

011︸︷︷︸ 011︸︷︷︸ . . . and 0111︸︷︷︸ 0111︸︷︷︸ . . .
are S2-free, and

011︸︷︷︸ 0111︸︷︷︸ and 0111︸︷︷︸ 011︸︷︷︸
are S2-free. Hence, substituting 0 �→ 011 and 1 �→ 0111 in any sequence over A, we
get an S2-free sequence. Hence, the cardinality of Ŝ2 is the continuum.

In what follows, we will need the following graph. A de Bruijn graph is a directed
graph �Gn = �Gn(V,E), where the set of vertices V is the set of all words in An, and
there is an arc from u ∈ An to v ∈ An if and only if

u = aw and v = wb for some w ∈ An−1 and a, b ∈ A.

Figure 1 shows the de Bruijn graphs for a 2-letter alphabet and n = 2, 3.

(000)

(001)

(11)

(01)

(00)

(101)

(111)

(110)

(100)
(010)

(011)

(10)

Fig. 1. The de Bruijn graphs for the alphabet A = {0, 1} and n = 2, 3.

The de Bruijn graphs were first introduced (for the alphabet A = {0, 1}) by de
Bruijn in 1944 for finding the number of code cycles. However, these graphs proved
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A B

P

Fig. 2. The arc �BA is a chord for the path �P , but �AB is not.

to be a useful tool for various problems related to combinatorics on words (e.g.,

see [7, 8, 11, 12, 14, 15]). It is known that the graph �Gn can be defined recursively as
�Gn = L(�Gn−1), where L indicates the operation of taking the line graph.

A chord of a directed simple path �P in �Gn is an arc that does not belong to �P
but connects two of its vertices in a such way that there is a circuit generated by this
arc and the part of the path between the ends of the arc. For instance, on Figure 2
the arc �BA is a chord for the path �P , whereas �AB is not.

Let Cw(n) denote the greatest length (the number of vertices) of a simple path

in �Gn that does not have chords and does not go through any vertex that has a loop.
The following theorem was proved by considering the de Bruijn graph.

Theorem 2.3 (see [7, Theorem 1]). We have Lw(n) = Cw(n)+n−1 = |A|n−1 +
n− 2.

The following theorem was proved using the cyclic structure of the de Bruijn
graph (the main result of [20]) as well as the number of conjugacy classes of words
with respect to a cyclic shift.

Theorem 2.4 (see [7, Theorem 2]). We have

Mw(n) =
1

n

∑
d|n

ϕ(n/d)|A|d,

where ϕ(n) is the number of integers in {1, 2, . . . , n−1} relatively prime to n (Euler’s
ϕ-function).

Since any set of prohibitions S with |S| < Mw(n) is avoidable, it is helpful to
have a table for Mw(n). For |A| = 2 and 2 ≤ n ≤ 10, see Table 1.

Table 1

The function Mw(n) for 2 ≤ n ≤ 10 and a 2-letter alphabet.

n 2 3 4 5 6 7 8 9 10
Mw(n) 3 4 6 8 14 20 36 60 108

In particular, any set of binary words of length 9 that has fewer than 60 words
is avoidable. Also, it is obvious that Mw(n) ∼ |A|n/n, when n → ∞. The last
observation allows us to prove the following statement.

Proposition 2.5 (see [8, Proposition 1]). There exist at least 2|A|n(1−εn) un-
avoidable sets S ⊆ An. Here εn → 0 when n → ∞.

3. Unavoidable sets of patterns. The alphabets considered in this section
must be totally ordered, and without loss of generality they coincide with [m] =
{1, 2, . . . ,m} for an appropriate m.
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We refer to [2, 17] for a general introduction and survey of various pattern prob-
lems. However, in this paper we are concerned only with word patterns studied for
the first time in [3]. More precisely, we consider the segment word patterns (see [17])
(also referred to as generalized patterns without internal dashes), i.e., those whose
occurrence must be a string of consecutive letters. For this paper, we can define a
pattern to be a subword (of a word) that contains each of the letters 1, 2, . . . , k at
least once for some k, and no other letters. For instance, the word 2613235 contains
an occurrence of the pattern 1323, but its subword 2613 is not a pattern. By analogy
with section 2, if a word does not contain a pattern p, it is free from p, or p-free.
However, the crucial difference between this section and section 2 is that instead of
considering words free from a pattern p, we consider the objects that we call the
n-pattern words. An n-pattern word is a word in which each subword of length n
is a pattern. Thus, in the construction of n-pattern words, we can restrict ourselves
to alphabets having at most n letters. Indeed, an occurrence of a letter m > n in a
subword A of length n of an n-pattern word W contradicts the fact that A must be
a pattern (A must contain each of the letters 1, 2, . . . ,m).

By analogy with section 2, when dealing with sets of prohibited words, we can
consider sets of prohibited patterns, or simply sets of prohibitions, when it is clear
which prohibitions we mean. We can also define the notion of an unavoidable set here
in the same way. However, in considering prohibited patterns and n-pattern words,
we assume that all prohibitions are of length n. Hence, for patterns, we can define
the functions Lp(n,m) and Mp(n,m) similarly to Lw(n) and Mw(n) (recall that m is
the number of letters in the alphabet). As in section 2, the basic problem is whether
or not a given set Sp of prohibitions is unavoidable, and Lp(n,m) and Mp(n,m) are
important numerical characteristics to study.

3.1. The function Mp(n, m). Recall that the Möbius function is defined by

μ(n) =

⎧⎪⎨
⎪⎩

0 if n has one or more repeated prime factors,

1 if n = 1,

(−1)k if n is a product of k distinct primes,

so μ(n) 	= 0 indicates that n is square-free.
The purpose of this subsection is to prove the following theorem.
Theorem 3.1. For n-pattern words over [m], we have

Mp(n,m) =
∑
i|n

min(i,m)−1∑
j=0

(−1)j
(

min(i,m) − 1

j

)
1

i

∑
d|i

μ(d)(min(i,m) − j)
i
d ,

where Mp(n,m) = min |Sp|, and the minimum is taken over all unavoidable sets Sp

of patterns of length n over the alphabet [m].
One can compare this result with that of Theorem 2.4.
Remark 3.2. In Theorem 3.1, we can assume that n ≥ m, since if n < m, we can

use only the first n letters in [m] to construct n-pattern words, which reduces to the
case n = m.

Remark 3.3. For n = m, we have min(i,m) = i in the formula of Theorem 3.1.

To prove Theorem 3.1, we introduce the graph of pattern overlaps �Pn = �Pn(V,E),

which is a subgraph of the de Bruijn graph �Gn, where the set of vertices V contains
all n-letter patterns over the underlying alphabet A, and the set of arcs E consists
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111

112

321 121 123

231132

213 212 312

221 122

211

Fig. 3. The graph of pattern overlaps for A = {1, 2, 3} and n = 3.

of all the arcs of �Gn between vertices corresponding to the patterns. In Figure 3, we
can see the graph of pattern overlaps in the case of a 3-letter alphabet and n = 3 (we
omit parentheses around the triples on the graph to indicate that we are dealing with
�P3, not �G3).

Let Tp(n,m) denote the number of conjugacy classes of patterns of length n over
the alphabet [m] with respect to a cyclic shift. For instance, there are 5 conjugacy
classes on Figure 3. They are {111}, {112, 121, 211}, {221, 212, 122}, {321, 213, 132},
and {312, 123, 231}. Thus, Tp(3, 3) = 5.

Lemma 3.4. We have Mp(n,m) = Tp(n,m).
Proof. To prove the lemma, we follow the proof of Theorem 2.4 in [7].
Suppose Sp is an unavoidable set of patterns of length n and X is an arbitrary

n-pattern word of length n (X is a pattern) over [m]. We form the sequence

X∞ = XXX . . .

by repeating the word X periodically. Since Sp is unavoidable, X∞ contains a pro-
hibited pattern p ∈ Sp. From the construction of the sequence, p is either X or a
cyclic shift of X. Thus Sp contains a pattern from each conjugacy class of patterns
of length n over [m] with respect to a cyclic shift. Thus, |Sp| ≥ Tp(n,m), and since
Sp is an arbitrary set, we have

Mp(n,m) ≥ Tp(n,m).

To prove that Tp(n,m) is an upper bound, we need to find an unavoidable set

of cardinality Tp(n,m). We consider the graph �Pn whose vertices correspond to the

words over [m]. If V ′ ⊂ V (�Pn) and each circuit of �Pn contains a vertex in V ′, then

we say that V ′ cuts all circuits of �Pn. By deleting all such V ′ with all incident arcs
from �Pn, we get an acyclic graph on the vertex set V \V ′. The set of the patterns in
[m]n corresponding to the vertices in V ′ is unavoidable. Indeed, if not, a sequence

free from V ′ determines a self-intersecting walk in �Pn and thus generates a circuit on
the vertex set V \V ′, which is impossible.

Mykkeltveit [20] found a set of vertices Vc that cuts all circuits of the de Bruijn

graph �Gn with |Vc| equal to the number of conjugacy classes of the words. Thus
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Vc cuts all circuits in �Gn and has one vertex in each conjugacy class. Since �Pn is a
subgraph of �Gn, �Pn will have no circuit after removing the vertices in Vc. The set of
vertices in Vc that belong to �Pn corresponds to an unavoidable set, and thus

Mp(n,m) ≤ Tp(n,m).

This proves the lemma.
Lemma 3.5.

Tp(n,m) =
∑
i|n

min(i,m)−1∑
j=0

(−1)j
(

min(i,m) − 1

j

)
1

i

∑
d|i

μ(d)(min(i,m) − j)
i
d .

Proof. Recall that a word x ∈ A∗, where A is any (ordered or unordered) alphabet,
is called primitive if it is not a power of another word. Thus x 	= ∅ is primitive if
x = ye only for e = 1. For instance, the words 121, 1221, 12121 are primitive, whereas
the word 121212 is not. It is easy to show that each nonempty word is a power of a
unique primitive word. Thus, x = re for a unique primitive word r. The number e is
called the exponent of x. It is also easy to see that all words, and hence all patterns, in
the same conjugacy class have the same exponent. Moreover, if x1 = re1 and x2 = re2
and |x1| = |x2|, then x1 is conjugate to x2 if and only if r1 is conjugate to r2. We
define the notion of a primitive pattern in the same way as for words. Clearly, all
properties of primitive words hold for primitive patterns as well.

So, in order to find Tp(n,m), we need to find the number of conjugacy classes
of primitive patterns of length i over the alphabet [m], where i|n, and then take a
sum of these numbers. However, for a given i, we cannot use directly the well-known
formula for the number of conjugacy classes of primitive words over min(i,m)-letter
alphabet (a primitive word of length i can have at most i distinct letters, since we are
dealing with patterns), given by

1

i

∑
d|i

μ(d)(min(i,m))
i
d .

Indeed, this formula counts, among others, primitive words which are not primitive
patterns (when some letter j, 2 ≤ j ≤ min(i,m) − 1, occurs in a primitive pattern,
whereas j − 1 does not). So, we need to use the standard inclusion-exclusion method
(the sieve formula) to handle this situation. We define the property Aj to be “the
letter j does not occur in a primitive word.” Clearly we may restrict ourselves to
the case j ≤ min(i,m) − 1, since the absence of the largest letter, namely, min(i,m),
is not a bad property when considering patterns. Now we easily get the number of
primitive patterns of length i, which is given by

min(i,m)−1∑
j=0

(−1)j
(

min(i,m) − 1

j

)
1

i

∑
d|i

μ(d)(min(i,m) − j)
i
d .

This proves the lemma.
Now the truth of Theorem 3.1 follows from Lemmas 3.4 and 3.5.

3.2. The function Lp(n, m). Let Cp(n,m) denote the greatest length (the

number of vertices) of a simple path in �Pn that does not have chords (see the definition
in section 2) and does not pass through any vertex incident with a loop. Using exactly
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the same considerations as in the proof of Theorem 2.3 (see [7]), one can prove the
following theorem.

Theorem 3.6. We have Lp(n,m) = Cp(n,m) + n− 1.

Moreover, in the case m = 2, the de Bruijn graph �Gn almost coincides with the
graph of pattern overlaps �Pn. Indeed, the only difference between these graphs is
the vertex (22 . . . 2) and all edges adjacent to that vertex (22 . . . 2 is the only binary
nonpattern). However, the lemma to Theorem 2.3 (see [7]) provides that in the
binary case Cw(n) = 2n−1 − 1, and since Cw(n) is the maximal length of a path
that, in particular, does not pass through the loop (22 . . . 2), we have that in this case
Cw(n) = Cp(n, 2). Thus the following theorem is true.

Theorem 3.7. We have Lp(n, 2) = 2n−1 + n− 2.
However, in the case m ≥ 3, the only useful information we can extract from

Theorem 2.3 is the following rough bound:

Lp(n,m) < mn−1 + n− 2.

So, according to Theorem 3.6 we need to find Cp(n,m) in order to get Lp(n,m).
The purpose of the rest of the subsection is to find an upper and a lower bound for
Cp(n,m) for m ≥ 3.

3.2.1. An upper bound for Cp(n, m). We give only a trivial upper bound.
Clearly, in order to avoid chords, each conjugacy class (with respect to shift) which
has i words can have no more than i− 1 words in the path. Thus, we use the formula
for Tp(m,n) with a correction, namely, the factor of i− 1, which indicates that each
primitive word of length i is responsible for a conjugacy class of i elements, and we
take i− 1 elements out of these i:

Cp(n,m) ≤
∑
i|n

(i− 1)

min(i,m)−1∑
j=0

(−1)j
(

min(i,m) − 1

j

)
1

i

∑
d|i

μ(d)(min(i,m) − j)
i
d .

3.2.2. A lower bound for Cp(n, m). We observe that the line graph L(�Pn−1)

for the graph �Pn−1 determines a subgraph of the graph �Pn. We get that by using the

general properties of the de Bruijn graph (since �Pn is its subgraph), as well as the fact

that if x1x2 . . . xn−1 and x2x3 . . . xn are vertices in �Pn−1, then the arc between them
generates the vertex x1x2 . . . xn in the line graph, and x1x2 . . . xn is a pattern and
thus belongs to �Pn. Moreover, from the considerations in the proof of Theorem 2.3
(see [7]), it follows that a simple path in �Pn−1 determines a simple path without

chords in �Pn after removing the loop 11 . . . 1.
So, in order to get a lower bound for Cp(n,m), we need to construct a simple

path in �Pn−1 of as great a length as possible (ideally a Hamiltonian path). In order
to get a Hamiltonian path or a path that is “close” to a Hamiltonian one, we can try
to use the methods and techniques similar to those used in constructions of universal
cycles for various combinatorial structures such as words, permutations, partitions,
and others (e.g., see [5, 16]).

We briefly discuss the general notion of a universal cycle (see [5]).
Suppose we are given a family Fn of combinatorial objects of “rank n” and let

m := |Fn| denote their number. We assume that each F ∈ Fn is “generated” or spec-
ified by some sequence x1x2 . . . xn, where xi ∈ A for some fixed alphabet A. We say
that U = a0a1 . . . am−1 is a universal cycle (or a U -cycle) for Fn if ai+1ai+2 . . . ai+n,
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0 ≤ i < m, runs through each element of Fn exactly once, where index addition is
performed modulo n.

In our case the combinatorial objects are patterns of length n, and as in many
other cases (e.g., de Bruijn cycles, permutations, partitions), but not in all cases (e.g.,
k-subsets of an n-set), it is possible to define a directed transition graph, namely, the

graph of pattern overlaps �Pn, and reduce the problem of constructing a U-cycle to
constructing a Hamiltonian circuit for �Pn. Even though we do not need a Hamiltonian
circuit (since we are concerned with paths of maximal length), we can still try to use
the same techniques as in [5, 16] and in the references therein.

However, it turns out that the above-mentioned techniques work only for m =
2, which we are not interested in since we have an explicit result in this case (see
Theorem 3.7). The main problem is that the graph of pattern overlaps is not balanced;

i.e., we have vertices where the indegree is not equal to the outdegree. Also, �Pn is not
the line graph of �Pn−1. However, it is possible to prove the following statement.

Theorem 3.8. The graph of pattern overlaps �Pn contains a Hamiltonian circuit.
Proof. We first observe that �Pn is connected. Indeed, suppose we are given two

vertices of �Pn, namely, X = x1x2 . . . xn and Y = y1y2 . . . yn. If I denotes the vertex
11 . . . 1, then we can find a path �PX from X to I. Indeed, if xi is the largest letter in
X, then we consider the following path in �Pn:

X = x1x2 . . . xn → x2x3 . . . xnx1 → · · · → xixi+1 . . . xi−1 → xi+1 . . . xi−11 = X ′.

Thus, in X ′ we get 1 in place of the largest letter of X. We observe that X ′ is obviously
a pattern. Clearly, we can continue this path by replacing the largest letters, one by
one, with 1’s until we arrive at I. On the other hand, it is easy to see that the
operation of changing a largest letter to 1 is invertible. For instance, in order to find
a path from X ′ to X, we may perform the following sequence of steps:

X ′ = xi+1 . . . xi−11 → xi+2 . . . 1xi+1 → · · · → 1xi+1 . . . xnx1 . . . xi−1 →
xi+1 . . . xnx1 . . . xi−1xi → xi+2 . . . xixi+1 → · · · → x1x2 . . . xn = X.

Thus, we can find a path from I to Y , which together with the path �PX gives a
path from X to Y . Similarly, one can get a path from Y to X, which proves that �Pn

is connected.
We now use standard line digraph methods to finish our proof.
Let �Dn−1 be the subgraph of the de Bruijn graph �Gn−1 with the same vertex set

as �Gn−1 and arcs corresponding to vertices of �Pn. So the line digraph of �Dn−1 is �Pn.

We need to show that �Dn−1 is Eulerian up to isolated vertices, which would imply

that �Pn is Hamiltonian.
The degree condition for �Dn−1 is satisfied since vertices corresponding to patterns

with k letters will have in- and outdegrees equal to the minimum of k + 1 and the
alphabet size; vertices that are almost patterns (consisting of the letters {1, 2, . . . , i−
1, i+ 1, . . . , j} for some i and j) have in- and outdegree 1; other vertices are isolated.

Connectivity for �Dn−1 (except for the isolated vertices) can be obtained from

connectivity for �Pn proved above. Indeed, for any two nonisolated vertices x and y
in �Dn−1 there are arcs X and Y such that X comes out from x and Y comes in to y.

There is a path from X to Y in �Pn which gives a path from x to y in �Dn−1. Similarly,
there is a path from y to x. We are done.

As an immediate corollary to Theorem 3.8 we have the following.
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Corollary 3.9. For any m and n, there exists a U-cycle for word patterns of
length n over an m-letter alphabet.

The following proposition is easy to prove using elementary combinatorics.
Proposition 3.10. The number of different word patterns of length n on m

letters is

m∑
i=1

∑
a1+···+ai=n
a1≥1,...,ai≥1

(
n

a1, . . . , ai

)
=

m∑
i=1

i!S(n, i),

where S(n, i) is a Stirling number of the second kind.
Now, using the discussion in the beginning of section 3.2.2, Theorem 3.8, and

Proposition 3.10, we obtain the following proposition, where again S(n, i) is a Stirling
number of the second kind.

Proposition 3.11.

Cp(n,m) ≥
m∑
i=1

∑
a1+···+ai=n−1
a1≥1,...,ai≥1

(
n− 1

a1, . . . , ai

)
=

m∑
i=1

i!S(n− 1, i).

As a final remark, we observe that another way to get the number of different word
patterns of length n on m letters is using a correction in the formula for Tp(m,n) just
as we did when we obtained the upper bound for Cp(n,m) in section 3.2.1. However,
in this case the correction factor is i rather than i − 1, which says that we consider
each conjugacy class with respect to shift and find the number of elements in it. Thus,
i and 1/i cancel each other, and we get a combinatorial proof of the following identity:

m∑
i=1

i!S(n, i) =
∑
i|n

min(i,m)−1∑
j=0

(−1)j
(

min(i,m) − 1

j

)∑
d|i

μ(d)(min(i,m) − j)
i
d .
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A CONVEX QUADRATIC CHARACTERIZATION OF THE LOVÁSZ
THETA NUMBER∗
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Abstract. In previous works an upper bound on the stability number α(G) of a graph G based
on convex quadratic programming was introduced and several of its properties were established. The
aim for this investigation is to relate theoretically this bound (usually represented by υ(G)) with
the well-known Lovász ϑ(G) number. First, a new set of convex quadratic bounds on α(G) that
generalize and improve the bound υ(G) is proposed. Then it is proved that ϑ(G) is never worse than
any bound belonging to this set of new bounds. The main result of this note states that one of these
new bounds equals ϑ(G), a fact that leads to a new characterization of the Lovász theta number.
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1. Introduction. Let G = (V,E) be a simple undirected graph where V =
{1, . . . , n} denotes the vertex set and E is the edge set. It will be supposed that G
has at least one edge, i.e., E is not empty. We will write ij ∈ E to denote the edge
linking nodes i and j of V. The adjacency matrix AG = [aij ] of G is defined by

aij =

{
1 if ij ∈ E,
0 if ij /∈ E.

A stable set (independent set) of G is a subset of nodes of V whose elements
are pairwise nonadjacent. The stability number (or independence number) of G is
defined as the cardinality of a largest stable set and is usually denoted by α(G). A
maximum stable set of G is a stable set with α(G) nodes. The problem of finding
α(G) is NP-hard, and thus it is suspected that it cannot be solved in polynomial time.
In addition, there exists ε > 0 such that to approximate α(G) within a ratio of n−ε

is NP-hard (see [1]). However, several ways of approaching α(G) have been proposed
in the literature (see, for example, [2, 6, 9, 16] and [3] for a survey).

For any graph G with at least one edge, it can easily be proved (see Proposition
2.1) that α(G) ≤ υ(G), where υ(G) is the optimal value of the following convex
quadratic programming problem:

(PG) υ(G) = max{2eTx− xT (H + I)x : x ≥ 0}.

Here and hereinafter e is the n × 1 all ones vector, T stands for the transposition
operation, I is the identity matrix of order n, and

H =
1

−λmin(AG)
AG,
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where AG is the adjacency matrix of G and λmin(AG) is its smallest eigenvalue. As
the trace of AG is zero and G has at least one edge, AG is indefinite. (See [5] for
details.) Thus λmin(H) = −1 and this guarantees the convexity of PG because H + I
is positive semidefinite.

Having in mind the nice properties of υ(G) (see [14, 15]), the initial aim of this in-
vestigation was to theoretically relate υ(G) with the well-known Lovász ϑ(G) number
introduced in [12] and discussed in many publications [8, 9, 10, 11, 13]. As a conse-
quence of this effort, a new set of convex quadratic bounds on α(G) that generalize
and improve the υ(G) bound is introduced. Also, it is shown that ϑ(G) is never worse
than any bound belonging to this set of new bounds. The main result herein proved
states that ϑ(G) is equal to the best bound in this set. In consequence, it leads to a
characterization of ϑ(G) by convex quadratic programming.

This note is organized as follows. In section 2 the new family of upper bounds
on α(G) is introduced and some of its properties are presented. In section 3, some
different ϑ(G) formulations are recalled, and the results relating the new introduced
bounds with ϑ(G) are established in section 4.

2. Generalizing the υ(G) bound. To improve the upper bound υ(G), we
define the following family of quadratic problems which are based on a perturbation
in the Hessian of the convex quadratic programming problem PG:

(PG(C)) υ(G,C) = max{2eTx− xT (HC + I)x : x ≥ 0},

where C = [cij ] is a nonnull real symmetric matrix such that cij = 0 if i = j or ij /∈ E
and

HC =
C

−λmin(C)
,

denoting λmin(C) the smallest eigenvalue of C. Any matrix satisfying the conditions
imposed to matrix C will be called a weighted adjacency matrix of G. Note that as
well as the adjacency matrix AG, the matrix C is indefinite, taking into account that
its trace is null and not all entries cij are null. Consequently, since λmin(HC) = −1,
all problems PG(C) are convex. Note also that υ(G,AG) = υ(G) and thus PG is
included in the introduced family of quadratic problems.

Some basic facts about the PG(C) family of problems are given below.
Proposition 2.1. For any weighted adjacency matrix C of a graph G, the num-

ber υ(G,C) is the optimal value of a convex quadratic problem and verifies α(G) ≤
υ(G,C), i.e., υ(G,C) is an upper bound on α(G).

Proof. As λmin(HC) = −1, the problem PG(C) is convex quadratic as stated. To
see that υ(G,C) is an upper bound on α(G) for all matrices C, let x be a characteristic
vector of any maximum independent set S of G (defined by xi = 1 if i ∈ S and xi = 0
otherwise). Since the vector x is a feasible solution of PG(C) and verifies xTHC x = 0
(note that xixj = 0 if ij ∈ E), we have

υ(G,C) ≥ 2eTx− xTx− xTHC x = 2α(G) − α(G) = α(G),

i.e., α(G) ≤ υ(G,C), for all weighted adjacency matrices C of G.
A clique of the graph G = (V,E) is any subset of V such that the induced

subgraph is complete. A minimum clique cover of G is a set of cliques of G that
cover V with the least cardinality. This minimum number of cliques can be denoted
by χ̄(G) and, like the stability number, it is NP-hard to compute χ̄(G). The partial
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graph associated with a minimum clique cover of G is a graph with the same set of
vertices as that of G, and whose edges are those of the complete subgraphs induced
by the cliques forming the clique cover.

Proposition 2.2. Let G be a graph with at least one edge. If M is the adja-
cency matrix of the partial graph associated with a minimum clique cover of G, then
υ(G,M) ≤ χ̄(G).

Proof. Suppose that χ̄(G) = k and denote by Gi, i = 1, . . . , k, the complete
subgraphs induced by the cliques forming a minimum clique cover of G. Let x be an
optimal solution of PG(M), where M is the adjacency matrix of the partial graph
associated with this minimum clique cover. Note that λmin(M) = −1 since M + I is
formed by k all ones blocks on the diagonal (say, J1, . . . , Jk), these blocks are positive
semidefinite, and any Ji-block of size at least two has a zero eigenvalue. Thus

υ(G,M) = 2eTx− xT (M + I)x =

k∑
i=1

2eTi xi − xT
i Jixi,

where, for each i, ei and xi are, respectively, the subvectors of e and x whose com-

ponents correspond to the vertices of Gi. As Ji = eie
T
i and

(
eTi xi − 1

)2 ≥ 0, we have
2eTi xi − xT

i Jixi ≤ 1 for all i, hence υ(G,M) ≤ k, as required.
Note that for any graph G with at least one edge that satisfies α(G) = χ̄(G) (in

particular for perfect graphs), Propositions 2.1 and 2.2 allow us to define α(G) as
follows:

α(G) = min
C

υ(G,C),

where C is a weighted adjacency matrix of G.

3. The Lovász ϑ(G) number. The Lovász ϑ(G) number was introduced in [12]
and has been subsequently studied in several publications. It is generally considered
the most famous upper bound on α(G), for which various different formulations were
established in the literature (see [9, 11]). Some of these formulations are now recalled.

An orthonormal representation of a graph G = (V,E) with V = {1, 2, . . . , n} is
a set of unit vectors u1, u2, . . . , un in a Euclidean space, which are orthogonal (i.e.,
uT
i uj = 0) whenever ij /∈ E. Note that the vectors dimension is not fixed and that any

graph has an orthonormal representation, considering, for example, a set of pairwise
orthonormal vectors.

Lovász defined his theta number as follows:

ϑ(G) = min
c,u1,u2,...,un

c unitary

max
i∈V

1

(cTui)
2 ,(3.1)

where the minimum is taken over all vectors c with ||c|| = 1 and all orthonormal
representations u1, u2, . . . , un of G.

As mentioned, the inequality α(G) ≤ χ̄(G) holds true for any graph G. Both of
these numbers are NP-hard to compute but they “sandwich” the number ϑ(G), which
can be computed in polynomial time, as proved by Grötschel, Lovász, and Schrijver
[7]. That is,

α(G) ≤ ϑ(G) ≤ χ̄(G),

a fact known as the Lovász sandwich theorem (see [11]).
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The paper [12] gives several characterizations of ϑ(G). One of them is the follow-
ing:

ϑ(G) = min
A

λmax(A),

where λmax(A) denotes the largest eigenvalue of A, and the minimum is taken over
the set of all symmetric matrices A = [aij ] ∈ R

n×n such that aij = 1 if i = j or
ij /∈ E. Since we are assuming that G has at least one edge, we can eliminate the
matrix eeT from this set. In fact, if ϑ(G) = λmax(ee

T ) = n, then χ̄(G) = n (recall
the sandwich theorem), and thus G would have no edge.

Let A be one of the above symmetric matrices. As A �= eeT we have that Q =
A− eeT �= 0 is a weighted adjacency matrix of G. Consequently, setting A = eeT +Q,
ϑ(G) can be formulated as follows:

ϑ(G) = min
Q

λmax(ee
T + Q),(3.2)

where Q is a weighted adjacency matrix of G.
Another characterization of ϑ which is dual of (3.2) is the following (see [12]):

ϑ(G) = max
B

eTBe,(3.3)

where B = [bij ] ∈ R
n×n ranges over all positive semidefinite symmetric matrices such

that bij = 0 for ij ∈ E and Tr(B) = 1. (Tr(B) denotes the trace of B.)

4. Relating ϑ(G) and υ(G, C). In this section we relate ϑ(G) with the convex
quadratic upper bounds υ(G,C).

Theorem 4.1. Let G be a graph with at least one edge. Then for any weighted
adjacency matrix C of graph G, we have ϑ(G) ≤ υ(G,C).

Proof. Let C = [cij ] be a weighted adjacency matrix of G = (V,E) and suppose
that PG(C) is not unbounded for otherwise the theorem is true.

Let x be an optimal solution of PG(C). The Karush–Kuhn–Tucker conditions
applied to this problem guarantee that the following conditions are true:

x ≥ 0, (HC + I)x ≥ e, and xT (HC + I)x = eTx = υ(G,C).(4.1)

As HC +I is positive semidefinite we can write HC +I = UTU. Thus the columns
of U can be thought of as an orthonormal representation of G.

Define c = υ−1/2Ux, where υ abbreviates υ(G,C). Then by (4.1), cT c = υ−1xT ·
(HC + I)x = 1 and

UT c = υ−1/2UTUx ≥ υ−1/2e.

This inequality implies

1(
uT
i c

)2 ≤ υ for each i,

where ui denotes the column i of U . Recalling (3.1) we have ϑ(G) ≤ υ(G,C) as
desired.

This theorem asserts that ϑ(G) is not worse that any υ(G,C) bound. So, in
particular, the inequality ϑ(G) ≤ υ(G) is always true. However, there are many
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graphs for which the value of υ(G) equals ϑ(G). In fact, it was proved in [4] that
there is an infinite number of graphs that verify α(G) = υ(G) and hence ϑ(G) = υ(G).
These graphs constitute the so-called class of graphs with convex-QP stability number.
(One member of this class can be constructed by considering L(L(G)), where L(G) is
the line graph of a connected graph G with an even number of edges.)

We state now the main result of this note, which gives the announced character-
ization of ϑ(G) by convex quadratic programming.

Theorem 4.2. Let G be a graph with at least one edge. If Q attains the optimum
in (3.2), then ϑ(G) = υ(G,C), where C = −Q.

Consequently, the following characterization of ϑ(G) is valid:

ϑ(G) = min
C

υ(G,C) = min
C

max
x≥0

{
2eTx− xT (HC + I)x

}
,(4.2)

where C is a weighted adjacency matrix of G.
Proof. Let Q be a weighted adjacency matrix of G attaining the optimum in (3.2)

and let C = −Q. As ϑ(G) = λmax(ee
T +Q) ≥ λmax(Q), we will divide the proof of the

equality ϑ(G) = υ(G,C) in two cases. (To simplify the notation we will sometimes
use ϑ instead of ϑ(G).)

Case 1. ϑ(G) = λmax(Q).
Let x attain the optimum in PG(C). Then, using the positive semidefiniteness of

I − ϑ−1(eeT + Q), we have

υ(G,C) = 2eTx− xT (HC + I)x = 2eTx− xT

(
−Q

−λmin(−Q)
+ I

)
x

= 2eTx− xT

(
−Q

λmax(Q)
+ I

)
x

= 2eTx− xT
(
I − ϑ−1Q + ϑ−1eeT

)
x− ϑ−1

(
eTx

)2
= 2eTx− xT

[
I − ϑ−1

(
eeT + Q

)]
x− ϑ−1

(
eTx

)2
≤ 2eTx− ϑ−1

(
eTx

)2 ≤ ϑ,

since
(
ϑ1/2 − ϑ−1/2eTx

)2 ≥ 0. So by Theorem 4.1, we have ϑ(G) = υ(G,C) for this
case.

Case 2. ϑ(G) > λmax(Q).
Let B attain the optimum in (3.3). Since ϑI − eeT − Q and B are positive

semidefinite, we have

0 ≤ Tr
[
B(ϑI − eeT −Q)

]
= ϑTr(B) − Tr(BeeT ) − Tr(BQ) = ϑ− ϑ− 0 = 0.

So Tr
[
B(ϑI − eeT −Q)

]
= 0 and then B(eeT +Q−ϑI) = 0, i.e., the column space of

B is orthogonal to the column space of ϑI−eeT −Q. (In fact, if M and N are positive
semidefinite matrices and Tr(MN) = 0, then MN = 0. To see this, let M = UTU
and N = WTW . Then 0 = Tr(MN) = Tr(UTUWTW ) = Tr(WUTUWT ). Since
WUTUWT is positive semidefinite, it implies that UWT = 0, hence MN = 0.)

The inequality ϑ(G) > λmax(Q) implies that λmin(ϑI − Q) > 0 and hence
rank(ϑI − Q) = n. Then rank(ϑI − eeT − Q) ≥ n − 1 and by the column spaces
orthogonality, rank(B) ≤ 1. As TrB = 1, rank(B) = 1, and then B = ϑ−1xxT for
some vector x whose support is a stable set S. Since eTBe = ϑ and TrB = 1, we can
choose x ≥ 0 and thus we have eTx = xTx = ϑ. Additionally, x is a characteristic



A NEW CHARACTERIZATION OF THE LOVÁSZ THETA NUMBER 387

vector of S. (To see this, let y be the characteristic vector of S. Then yTx = eTx = ϑ
and, by the Cauchy–Schwarz inequality, (yTx)2 ≤ (xTx)(yT y). So ϑ ≤ |S| and by the
maximality of ϑ, we have yT y = ϑ. Hence, the Cauchy–Schwarz inequality is satisfied
with equality and this implies x = y.)

Using once more the orthogonality of the column spaces of B and ϑI − eeT −Q,
we conclude that

(
eeT + Q

)
x = ϑx, and hence −Qx = ϑ(e− x). Then x satisfies the

Karush–Kuhn–Tucker conditions associated with PG(C) (recall (4.1)) as
• x ≥ 0;
• (HC + I)x = ( −Q

λmax(Q) + I)x = −Qx
λmax(Q) + x = ϑ

λmax(Q) (e − x) + x ≥ e, since

ϑ ≥ λmax(Q); and
• xT (HC + I)x = xTx = eTx = ϑ, since x is a characteristic vector of a stable

set.
Consequently, by the positive semidefiniteness of HC + I, ϑ(G) = υ(G,C) is also

true for Case 2.
Finally, the proved equality and the definition of Q imply the characterization

(4.2).
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Abstract. In this paper, n-fold branched coverings of a closed nonorientable surface S of
genus p with r ≥ 1 cyclic branch points (that is, such that all ramification points over them are of
multiplicity n) are considered. The number Np, r(n) of such coverings up to equivalence is evaluated
explicitly in a closed form (without using any complicated functions such as irreducible characters of
the symmetric groups). The obtained formulas depend on the parity of r and n. The method is based
on some previous enumerative results and techniques for nonorientable surfaces. In particular, we
generalize the approach developed for the counting of unbranched coverings of nonorientable surfaces
and make use of the analytical method of roots-of-unity sums.
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1. Introduction. Throughout this paper, a surface means a compact connected
2-manifold without boundary. Recall some known concepts from algebraic topology
[16]. A continuous mapping ρ : T → S from a surface T onto S is called a branched
covering of multiplicity n if there exists a finite subset B = {b1, . . . , br} of points in
S such that the restriction of ρ on T − ρ−1(B), ρ|T −ρ−1(B) : T − ρ−1(B) → S −B, is
an n-fold (n-sheeted) covering projection in the usual sense. The smallest subset B of
T which has this property is called the branch point set of ρ. At the neighborhood of
each point x ∈ ρ−1(B), the projection ρ is topologically equivalent to the complex map
z �→ zm with some natural number m. Such an x is called a ramification point of ρ, and
m is called the order of x. Denote by skm the number of ramification points of order
m of the mapping ρ in the preimage ρ−1(bk), where k = 1, . . . , r and m = 1, . . . , n.
We will call the (r × n)-matrix σ = (skm) the ramification type of the covering ρ. For

any k, (1s
k
1 · · ·nskn) is a partition of n, that is,

∑
m mskm = n.

Two branched coverings ρ : T → S and ρ′ : T ′ → S are considered to be equivalent
(or isomorphic) if there exists a homeomorphism η : T ′ → T such that ρ′ = ρ ◦ η.

The classical Hurwitz enumeration problem is to count nonequivalent n-fold co-
verings of S with a given ramification type σ. By now, only the nonorientable case
for branched coverings remains open. The orientable case was, in principle, solved
completely by Mednykh [18], as was the nonorientable case with unramified cove-
rings [20]. The aim of the present work is to adjust the method of the latter article to
coverings of nonorientable surfaces in the particular case when B is nonempty, skm = 0
for m < n, and skn = 1 for all k = 1, . . . , r. In other words, we consider the case when
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every branch point is cyclic; i.e., it is lifted to a unique ramification point (so that
the corresponding covering permutation is a full cycle of length n). Such a restriction
simplifies the situation considerably, allowing elimination of irreducible characters of
the symmetric groups in the formulas. Recently, this idea has been implemented
successfully by two of the present authors to the cases of orientable surfaces [11]. The
present work supplements this paper, extending its results to nonorientable surfaces.
A special technique of counting the solutions of systems of linear congruences by
sums of roots of unity (known also as Ramanujan’s sums) is applied. See [11] for
all necessary definitions, references, and additional explanations. For other useful
information concerning branched coverings of nonorientable surfaces, see [8, 9, 10].

2. Preliminary results. In what follows, S denotes a closed nonorientable sur-
face of genus p. The set of branch points B will be considered fixed. We denote by
Sn the symmetric groups on n symbols and by [g] the cycle type of a permutation
g ∈ Sn, that is, [g] = (1s1 · · ·nsn) if g consists of sm independent cycles of length
m, m = 1, . . . , n. For cycle types (partitions of n) we adopt the usual notational
agreement to drop empty parts m0 and to write m instead of m1. In particular, (n)
denotes the partition of n consisting of a sole part, n.

As follows from results of Hurwitz [4] and their subsequent generalizations, each
covering ρ of S with the ramification type σ = (skm) is uniquely determined by an
ordered (p + r)-tuple of permutations of degree n,

(a1, . . . , ap, c1, . . . , cr) ∈ Sp+r
n = Sn × Sn × · · · × Sn︸ ︷︷ ︸

p+r

,(1)

which satisfy the relations

p∏
j=1

a2
j

r∏
k=1

ck = l1 ,(2)

[ck] = (1s
k
1 · · ·nskn), k = 1, 2, . . . , r,(3)

and generate a transitive subgroup of Sn. Here l1 = l1n denotes the identity permu-
tation. Tuples satisfying the last condition will be called transitive. Two coverings
are equivalent if and only if the corresponding tuples are conjugate via a permutation
from Sn. The proof of these facts can be found, for example, in [2] or [8].

Denote by Bp, r, σ(n) the set of all tuples (transitive or not) of form (1) satisfying
(2) and (3), and select in Bp, r, σ(n) the subset Tp, r, σ(n) of transitive tuples. We set
Bp, r, σ(n) := |Bp, r, σ(n)| and Tp, r, σ(n) := |Tp, r, σ(n)|, where the vertical bars denote
the cardinality of the set.

2.1. A general formula. The following result based on general formulas in
terms of the irreducible characters for the number of solutions of equations in groups
is valid (see [7]; cf. also [3, 6, 11, 20]).

Proposition 2.1. The number Bp, r, σ(n) of elements of the set Bp, r, σ(n) is
determined by the formula

Bp, r, σ(n) = n!
∑

λ∈Dn

(
r∏

k=1

χλ
sk1 ···skn

1s
k
1 · sk1 ! · · ·nskn · skn!

)( n!

fλ

)p−2+r

,(4)
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where σ = (skm) is the ramification type, Dn is the set of all irreducible representations
of the group Sn, f

λ is the degree, and χλ
sk1 ...s

k
n

= χλ
[ck] is the character of permutations

of the type [ck] = (1s
k
1 · · ·nskn) corresponding to the representation λ.

As noted, unlike branched coverings over orientable surfaces considered in [11], no
general results have been obtained so far for the number of branched coverings over
nonorientable surfaces. Therefore we use here special tools sufficient for the particular
case under consideration, which generalize those given in [20] and [18]. Our task is
facilitated partially by a somewhat similar problem considered in [13] (see also [14])
for a class of three-dimensional manifolds.

2.2. Cyclic branch points. In the case of cyclic branch points, σ has a parti-
cular form:

[ck] = (n), k = 1, 2, . . . , r,(5)

that is, all ck are n-cycles. We denote by Tp, r(n) the corresponding number of tuples,
i.e., Tp, r(n) = |Tp, r, (n)r (n)| := Tp, r, σ(n), where σ is of form (5), i.e., skn = 1 and

skm = 0 for m < n and k = 1, . . . , r.
Our aim in this paper is to find the number of covering Np, r(n) up to equiva-

lence, which coincides with the number of orbit of the symmetric group Sn acting by
conjugation on the set Tp, r,(n)r (n). Notice also that Tp, r(n)/(n − 1)! is the number
of subgroups of index n of the corresponding fundamental group while Np, r(n) is the
number of conjugacy classes of such subgroups. In the literature, Tp, r(n) are also
called the corresponding Hurwitz numbers.

Theorem 2.2 (cf. [11]). For any n, r ≥ 1, and p ≥ 0, the number of tuples (1)
satisfying conditions (2) and (5) is the following:

Tp, r(n) =
(n!)p−1+r

nr

n−1∑
s=0

(−1)sr
(
n− 1

s

)−(p−2+r)

.(6)

Proof. The presence of full cycles ck ensures transitivity, so that Tp, r,(n)r (n) =
Bp, r,(n)r (n). This simplifies the enumeration considerably; in particular by Proposi-
tion 2.1 we have

Tp, r(n) = n!
∑

λ∈Dn

(χλ
(n)

n

)r( n!

fλ

)p−2+r

.(7)

Further we make use of the fact that characters χλ almost always vanish on the full
cycle (n). Namely,

χλ
(n) =

{
(−1)s if λ � (1s n−s), 0 ≤ s ≤ n− 1,
0 otherwise;

(8)

see, e.g., [5, Theorem 21.4] or [22, Example 7.67(a)]. Now, by the hook-length for-
mula [22, 7.21.6] we have

fλ =
n!

s!n(n− s− 1)!
=

(
n− 1

s

)
if λ � (1sn− s).(9)

Substituting (8) and (9) into (7) we obtain (6).
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Due to formula (6), in the counting of permutation tuples for the case of cyclic
branch points we have got rid of using characters.

Notice that in accordance with (6), Tp, r(n) = 0 for odd r and even n since in this
case a product of r full cycles is an odd permutation; thus, equality (2) is impossible.
However, we will not exclude this case from the subsequent consideration.

2.3. Calculations in the centralizer of a regular permutation. Since we
need to count transitive permutation tuples up to conjugacy, we make use of enu-
merative Burnside’s lemma. Accordingly we are interested in the automorphisms of
tuples, that is, their centralizers. It is well known that each automorphism is a regular
permutation. Hence, all permutations in such a tuple commute with this permutation
h. Thus they belong to its centralizer Z(h), which is of the form Z� 	 Sm, where � is
the order of the automorphism. Now, our approach (going back to [12] and [17]) is to
make necessary calculations in this wreath product so to take into account conditions
(2) and (5).

Denote by bg the action of a permutation g on an element b. Let us fix a regular
permutation h of degree n and order � (�m = n) which commutes with all permuta-
tions a1, a2, . . . , ap and c1, c2, . . . , cr. Belonging to Z(h) ∼= Z� 	Sm, they can be written
in the form

ai = (ti1, t
i
2, . . . , t

i
m; âi), i = 1, 2, . . . , p,

and

ck = (xk
1 , x

k
2 , . . . , x

k
m; ĉk), k = 1, . . . , r,

where all âi and ĉk belong to Sm and all tij and xk
j , j = 1, . . . ,m, belong to Z�. Now

using the formulas of the multiplication of permutations in Z� 	 Sm described, say,
in [14], we can represent (2) as the following system of congruences:

(10)

t1
j
+ t1

j
â
1
+ t2

j
â2
1
+ · · · + tp

j
â2
1
···â 2

p−1

+ tp

j
â2
1
···â 2

p−1
â
p
+ x1

j
â2
1
···â 2

p
+ x2

j
â2
1
···â 2

p ĉ1
+ · · · ≡ 0 (mod �)

for j = 1, . . . ,m together with the equation

â2
1â

2
2 · · · â2

pĉ1 · · · ĉr = l1m.(11)

It is easy to see (see [18]) that in these terms, condition (5) is expressed as follows:

(xk
1 + xk

2 + · · · + xk
m, �) = 1, k = 1, 2, . . . , r, r ≥ 1,(12)

where again (,) denotes the greatest common divisor, and

[ĉk] = (m), k = 1, 2, . . . , r.(13)

Now we are interested in the number of solutions of the system of (10) and (12).
This number proves (as we will see later) to be independent of a specific choice of the
tuple (a1, . . . , ap, c1, . . . , cr). More generally, let us consider an arbitrary (2p + r)-tuple
of permutations of degree m, (α1, β1, . . . , αp, βp, γ1, . . . , γr), where γ1, . . . , γr are full
cycles, and let M = Mp, r,m(�) denote the number of solutions of the system (12) and
(14) in Z�, where

t1jα1 + t1jβ1 + · · ·+ tpjαp + tp
jβp

+ x1
jγ1 + · · ·+ xr

jγr ≡ 0 (mod �), j = 1, . . . ,m.(14)
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The following lemma is a crucial technical result of this work.

Lemma 2.3. For any tuple (α1, β1, . . . , αp, βp, γ1, . . . , γr) ∈ S2p+r
m , where all γi are

full cycles, the number of solutions of the system of (12) and (14) in Z� is determined
by the following formula:

Mp, r,m(�) = �m(p−1+r)−rφ(�)r ×

⎧⎨
⎩

1 for � odd,
2 for � even, r even,
0 for � even, r odd,

(15)

where φ(�) is the Euler function.

Proof. Generally we make use of the same technique as in the appendix of [13]
(see also [20]). Denoting by fj the left-hand-side expressions of (14), we introduce the
following polynomials of z1, . . . , zm :

P (z1, . . . , zm) :=
∑

∀i,j,k 1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

z
fj
j .(16)

Then the number of solutions of the system (12) and (14) modulo � coincides with the
sum of the coefficients of P (z1, . . . , zm), all indices of which are divisible by �, and,
consequently, is given by the formula

M =
1

�m

∑
1≤�1≤�

...
1≤�m≤�

P (ε�1 , . . . , ε�m),(17)

where ε = �
√

1 = exp 2πi
� , i =

√
−1.

Changing the order of the factors in (16) by applying α−1
i , β−1

i , and γ−1
i to sub-

scripts, one can represent
∏m

j=1 z
fj
j as follows:

P (z1, . . . , zm) =
∑

1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

(
z
t1j

j
α
−1
1

z
t1j

j
β
−1
1

· · · zt
p
j

j
α
−1
p

z
tp
j

j
β
−1
p

z
x1
j

j
γ
−1
1

· · · zx
r
j

jγ
−1
r

)
,

whence by elementary, although tedious, transformations,

P (ε�1 , . . . , ε�m)

=
∑

1≤ti
j
,xk

j
≤�

(xk
1
+···+xk

m,�)=1

m∏
j=1

ε
t1j (�

j
α
−1
1

+�
j
β
−1
1

)

· · · ε
tp
j
(�

j
α
−1
p

+�
j
β
−1
p

)

ε
x1
j�

j
γ
−1
1 · · · ε

xr
j �

j
γ
−1
r

=

m∏
j=1

⎛
⎝ �∑

t1
j
=1

ε
t1j (�

j
α
−1
1

+�
j
β
−1
1

)

· · ·
�∑

tp
j
=1

ε
tp
j
(�

j
α
−1
p

+�
j
β
−1
p

)

⎞
⎠ r∏

k=1

∑
1≤xk

1
,...,xk

m≤�

(xk
1
+···+xk

m,�)=1

ε
xk
j �

j
γ
−1
k

=

m∏
j=1

[�δ(0, �
j
α
−1
1

+ �
j
β
−1
1

) · · · �δ(0, �
j
α
−1
p

+ �
j
β
−1
p

)]δ(�1, �2, . . . , �m)Φ(�1, �)
r�r(m−1).

(18)
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Here we use a multivariable δ-function defined as follows:

δ(a, b, c, . . .) :=

{
1 if a ≡ b ≡ c ≡ . . . (mod �),
0 otherwise.

The last equality in (18) is based on the following claim.
Claim 1. Σ :=

∑
1≤x1,...,xm≤�

(x1+···+xm,�)=1

εxj�j = δ(�1, . . . , �m)�m−1Φ(�1, �), where Φ(u, �)

is the von Sterneck function (known also as Ramanujan’s sum): the sum of the prim-
itive �th roots of unity in the power u:

Φ(u, �) :=
∑

x: (x,�)=1

εxu.

In turn, Claim 1 relies on the following well-known identity.
Claim 2. For any two integers a and b, we have

∑�
x=1 ε

x(a−b) = �δ(a, b).
We have

Σ =

�∑
x1=1

ε(�1−�m)x1 · · ·
�∑

xm−1=1

ε(�m−1−�m)xm−1

∑
(x,�)=1

ε�mx = δ(�1, . . . , �m)�m−1Φ(�m, �),

where x := x1 + · · · + xm. Besides, δ(�1, . . . , �m)Φ(�m, �) = δ(�1, . . . , �m)Φ(�1, �)
since both products vanish unless �1 = �2 = · · · = �m. These arguments prove
Claim 1.

Return to the proof of Lemma 2.3. The factor δ(�1, . . . , �m) in the last expres-
sion in (18) shows that the polynomial P (ε�1 , . . . , ε�m) does not vanish only if all �j
coincide,

�1 = · · · = �m = λ,(19)

in which case P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(λ, �)rΔ, where

Δ =

m∏
j=1

[δ(�
j
α
−1
1

,−�
j
β
−1
1

) · · · δ(�
j
α
−1
p

,−�
j
β
−1
p

)].(20)

Thus, Δ is always equal to 0 or 1. Now it is clear that (regardless of αi, βi) in view
of (19), Δ does not vanish if and only if λ ≡ −λ (mod �) or, equivalently,

2λ ≡ 0 (mod �).(21)

This equation has only the trivial solution λ ≡ 0 (mod �) if � is odd, and it has the
additional solution λ ≡ �/2 (mod �) if � is even.

We conclude that

P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(0, �)r

if �1 = · · · = �m = 0,

P (ε�1 , . . . , ε�m) = �mp+(m−1)rΦ(�/2, �)r

if � is even, and �1 = · · · = �m = �/2, and

P (ε�1 , . . . , ε�m) = 0
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in all other cases.
As was shown by Hölder,

Φ(x, n) =
φ(n)

φ( n
(x,n) )

μ

(
n

(x, n)

)
,(22)

where μ(n) is the number-theoretic Möbius function [1, p. 164] (cf. [21]). It follows
that Φ(0, �) = φ(�) and Φ(�/2, �) = −φ(�).

Substitute these values into the above expressions for P (ε�1 , . . . , ε�m) and substi-
tute them into (17). Taking into account that φ(�)r + (−φ(�))r = 0 if r is odd and
φ(�)r + (−φ(�))r = 2φ(�)r if r is even, we finally obtain (15).

3. Enumeration. The main result of this paper is the following.
Theorem 3.1. The number Np, r(n) of nonequivalent n-fold coverings of a closed

nonorientable surface of genus p with r ≥ 1 cyclic branch points is expressed by the
following formulas:

Np, r(n)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r(2, �)

m−1∑
s=0

[s!(m−s−1)!]ν for r even,

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r
m−1∑
s=0

(−1)s[s!(m−s−1)!]ν for r odd, n odd,

0 for r odd, n even,

(23)

where ν := p − 2 + r is the characteristic of S − B, φ(�) is the Euler function, and
(2, �) denotes the greatest common divisor of the numbers 2 and �.

Proof. Recall that the number of coverings Np, r(n) coincides with the number of
orbits of the symmetric group Sn acting by conjugation on the set Tp, r,(n)r (n). By
applying Burnside’s lemma we obtain

Np, r(n) =
1

n!

∑
�|n

�m=n

n!

m!�m
T̃p, r(�

m),(24)

where T̃p, r(�
m) denotes the number of tuples (1) satisfying (2) and (5) and commuting

with a fixed regular permutation h of order �. As we saw, these are permutation tuples
satisfying (in terms of the centralizer Z(h)) conditions (10)–(13). Since restrictions
(10) and (12) are independent of (11) and (13), multiplying the numbers of solutions of
both problems, we obtain in the designations adopted above the following proposition.

Proposition 3.2.

T̃p, r(�
m) = Tp, r(m)Mp, r,m(�).(25)

Now we make use of formulas (6) and (15). Notice that the last factor in (15) can
be represented equivalently as follows:⎧⎨

⎩
(2, �) for r even,

1 for r odd, � odd,
0 for r odd, � even.

(26)
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Substituting expressions (25), (6), and (15) (taking into account (26)) into (24), after
elementary transformations we obtain the first two formulas (23). Now consider the
last case, when r is odd and n is even. According to (15) (or (26)), for even � dividing
n, the factor Mp, r,m(�) = 0. Now suppose that � is odd. Then m is even. In this

case,
∑m−1

s=0 (−1)s
(
m−1
s

)−ν
= 0 since

(
m−1
s

)−ν
=

(
m−1

m−1−s

)−ν
and s and m− 1 − s are

of different parity. Thus, Tp,r(m) = 0 and Np, r(n) = 0.
Remark 1. In our case, the covering surface is nonorientable. Indeed, since the

permutation c1 is a full cycle, for any permutation a1 ∈ Sn there exists an integer
k such that the permutation a1c

k
1 fixes the element 1. The word a1c

k
1 contains an

odd number of letters aj ; therefore, by the familiar criterion [2], this means that the
corresponding covering surface is nonorientable. Besides, by the Riemann–Hurwitz
formula it is of characteristic nν.

Remark 2. It is interesting to compare (23) with the formula for the number
No

g, r(n) of the corresponding coverings of an orientable surface of genus g. According
to [11] (in a slightly modified form),

No
g, r(n) = n2g−2

∑
�|n

�m=n

�(m−1)νψ(r, �)

m−1∑
s=0

(−1)sr[s!(m− s− 1)!]ν ,(27)

where ψ(r, �) :=
∑�

k=1 Φ(k, �)r and ν := 2g− 2+ r. At the same time, for the number
of the corresponding permutation tuples T o

g, r(n) we conclude from [11] and formula
(6) above for p = 2g that

T o
g, r(n) = T2g, r(n).(28)

Now let us express Np, r(n) in terms of Tp, r(m), m|n. Formula (6) can be rewritten
in the following form:

Tp, r(n) = n!np−2
n−1∑
s=0

(−1)sr[s!(n− s− 1)!]ν .(29)

In (23) we can join the first two formulas with the help of the greatest common divisor
of three numbers (2, �, r). After that, substituting there the right-hand-side expression
of (29), we obtain

Np, r(n) =

⎧⎪⎨
⎪⎩

0 for r odd, n even,

np−2
∑
�|n

�m=n

�(m−1)νφ(�)r(2, �, r)

mp−1

Tp, r(m)

(m− 1)!
otherwise.(30)

For comparison, formula (27) can be rewritten in a similar form as follows:

No
g, r(n) = n2g−2

∑
�|n

�m=n

�(m−1)νψ(r, �)

m2g−1

T o
g, r(m)

(m− 1)!
.(31)

Here are the values of Np, r(n) for n ≤ 7. For even r,

Np, r(1) = 1,
Np, r(2) = 2p,
Np, r(3) = 3p−2(2ν+1 + 1 + 2r),
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Np, r(4) = 2 · 4p−2(6ν + 3 · 2ν + 2r),
Np, r(5) = 5p−2(2 · 24ν + 2 · 6ν + 4ν + 4r),
Np, r(6) = 2 · 6p−2(120ν + 24ν + 12ν + 3ν · 2r + 2 · 8ν + 4ν + 2r),
Np, r(7) = 7p−2(2 · 720ν + 2 · 120ν + 2 · 48ν + 36ν + 6r),

and for odd r and odd n, Np, r(1) = 1,

Np, r(3) = 3p−2(2ν+1 − 1 + 2r),
Np, r(5) = 5p−2(2 · 24ν − 2 · 6ν + 4ν + 4r),
Np, r(7) = 7p−2(2 · 720ν − 2 · 120ν + 2 · 48ν − 36ν + 6r).

3.1. Coverings of the projective plane and the Klein bottle. Consider
now the particular cases when ν = 1. These are coverings of the projective plane and
the Klein bottle with two and one branch points, respectively.

Corollary 3.3. The number of nonequivalent n-fold coverings of the projective
plane with two cyclic branch points is given by the formula

N1, 2(n) =
1

n

∑
�|n

�m=n

(2, �)φ(�)2�m−1
m−1∑
s=0

s!(m− s− 1)!.(32)

In particular, if n = q is an odd prime, then

N1, 2(q) =
1

q

(
(q − 1)2 +

q−1∑
s=0

s!(q − s− 1)!

)
.

The numerical values for n = 1, 2, 3, 4, 5, 6, 7, 8 are 1, 2, 3, 8, 16, 64, 264, 1580.
Formula (32) can be slightly simplified due to the following familiar identity [23]

(see also [15] and references therein):

n∑
s=0

s!(n− s)! =
(n + 1)!

2n

n∑
j=0

2j

j + 1
.(33)

Corollary 3.4. The number of nonequivalent n-fold coverings of the Klein
bottle with one cyclic branch point is given by the formula

N2, 1(n) = 2
∑
�|n

�m=n

m!�m−1φ(�)

m + 1
(34)

if n is odd and N2, 1(n) = 0 if n is even. In particular, if n = q is an odd prime, then
N2, 1(q) = q − 1 + 2q!/(q + 1).

Proof. N2, 1(n) vanishes for even n, and for odd n we should take the second
formula of (23) with ν = 1. Now for odd m, the following elementary identity is
valid [19] (see also [22, Example 7.67(c)]):

m−1∑
s=0

(−1)s[s!(m− s− 1)!] =
2m!

m + 1
;(35)

the corollary follows.
The numerical values for n = 1, 3, 5, 7, 9, 11 are 1, 5, 44, 1266, 72636, 6652810.
Other numerical data for the projective plane and the Klein bottle are contained

in Tables 3.1 and 3.2.
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Table 3.1

The number of n-sheeted coverings of the projective plane (p = 1) with r cyclic branch points.

n\r 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 0 2 0 2 0 2 0
3 1 3 5 11 21 43 85
4 0 8 0 128 0 3968 0
5 1 16 232 5680 132448 3189184 76426624
6 0 64 0 581696 0 8297164544 0
7 1 264 144504 107174448 76724477856 55290551845824 39803169903525504

Table 3.2

The number of n-sheeted coverings of the Klein bottle (p = 2) with r cyclic branch points.

n\r 1 2 3 4 5 6
1 1 1 1 1 1 1
2 0 4 0 4 0 4
3 5 13 23 49 95 193
4 0 104 0 2720 0 93824
5 44 1256 27344 666656 15911744 382307456
6 0 30608 0 415444544 0 5972357328128
7 1266 1071540 743214744 537904137744 386934209149536 278634137614009920

3.2. Asymptotics. It is evident that in formula (23) for fixed p and r and
growing n, the term with � = 1 dominates (of course, unless ν = 0 or r is odd and n
is even). In turn, the dominating terms of its internal sum for � = 1 correspond to
s = 0 and s = n− 1 and are equal to (n− 1)!ν . Therefore we have the next corollary.

Corollary 3.5. Asymptotically for fixed p and r (except for p = r = 1),

Np, r(n) ∼ 2
n!ν

nr
= 2n!p−2(n− 1)!r(36)

as n → ∞, where n is odd if r is odd.
By (6), Tp, r(n) ∼ 2n!p−1(n− 1)!r as n → ∞, with the same restrictions. So

Np, r(n) ∼ Tp, r(n)

n!
.

Notice that n!p(n − 1)!r is the number of tuples (1) satisfying (5). As we see, (2)
diminishes this number asymptotically n!/2 times.
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NONSEPARATING PLANAR CHAINS IN 4-CONNECTED GRAPHS∗

SEAN CURRAN† , ORLANDO LEE‡ , AND XINGXING YU§

Abstract. In this paper, we describe an O(|V (G)||E(G)|) algorithm for finding a nonseparating
planar chain in a 4-connected graph G, which will be used to decompose an arbitrary 4-connected
graph into planar chains. This work was motivated by the study of a multitree approach to reliability
in distributed networks, as well as the study of nonseparating induced paths in highly connected
graphs.
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1. Introduction. Let G = (V (G), E(G)) denote a graph with vertex set V (G)
and edge set E(G). We use the notation xy (or yx) to represent an edge with ends
x and y. For any S ⊆ V (G), let G[S] denote the subgraph of G with V (G[S]) = S
and E(G[S]) consisting of the edges of G with both ends in S; we say that G[S] is
the subgraph of G induced by S. Let G−S denote G[V (G)−S]. A subgraph H of G
is an induced subgraph of G if G[V (H)] = H. We also say that H is induced in G. A
graph G is k-connected, where k is a positive integer, if |V (G)| ≥ k + 1 and, for any
S ⊂ V (G) with |S| ≤ k− 1, G−S is connected. A subgraph H of G is nonseparating
if G− V (H) is connected.

In 1984, Itai and Rodeh [10] proposed a multitree approach to reliability in dis-
tributed networks. Let G be a graph and r ∈ V (G). We may view G as a distributed
network with a root r and the vertices of G as processors. A fault-tolerant communi-
cation scheme can be designed for this network if we are able to find spanning trees
of G which are independent [6, 10]. For a tree T and x, y ∈ V (T ), let T [x, y] denote
the unique path from x to y in T . A rooted tree T is a tree with a specified vertex
called the root of T . Let T and T ′ be trees in a graph rooted at r. We say that T and
T ′ are independent if for each vertex x ∈ V (T ) ∩ V (T ′), the paths T [r, x] and T ′[r, x]
have no vertex in common except for r and x.

Itai and Rodeh [10] developed a linear time algorithm that given any vertex r in
a 2-connected graph G finds two independent spanning trees of G rooted at r. Later,
Cheriyan and Maheshwari [3] proved that for any vertex r in a 3-connected graph
G, there exist three independent spanning trees of G rooted at r. Furthermore, they
gave an O(|V (G)|2) algorithm for finding these trees. Itai and Zehavi [11] proved
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independently that every 3-connected graph contains three independent spanning
trees (rooted at any vertex), and they conjectured the following.

Conjecture 1.1. Let G be a k-connected graph and let r ∈ V (G). Then there
exist k independent spanning trees of G rooted at r.

A contractible edge in a k-connected graph is an edge whose contraction results
in a new k-connected graph. Itai and Zehavi’s proof for the 3-connected case relies on
the existence of a contractible edge. On the other hand, for every k ≥ 4 there exist
infinitely many k-connected graphs with no contractible edges. In view of this fact, it
would be interesting to know if Conjecture 1.1 holds for k = 4. The 4-connected case
of Conjecture 1.1 is also important in terms of applications, since four independent
spanning trees ensure at a reasonable cost a higher degree of reliability in distributed
networks. Huck [8] proved Conjecture 1.1 for planar 4-connected graphs. Miura et al.
[14] gave a linear algorithm for finding four independent rooted spanning trees in a
planar 4-connected graph.

Itai and Rodeh’s algorithm [10] for constructing two independent spanning trees
relies on “ear decompositions” of graphs. Cheriyan and Maheshwari [3] used the
concept of nonseparating ear decomposition to construct three independent spanning
trees in 3-connected graphs. The first step in their approach is to find a nonseparating
cycle which avoids a given vertex. A cycle C avoids a vertex v if v �∈ V (C).

Theorem 1.2. Let G be a 3-connected graph, let e ∈ E(G), and let u ∈ V (G) be
nonincident to e. Then G has a nonseparating induced cycle through e and avoiding
u. Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

The existence of a nonseparating induced cycle in Theorem 1.2 was proved by
Tutte [21], and the algorithmic part was done by Cheriyan and Maheshwari [3, Theo-
rem 5]. In general, it is not true that given an edge e in a 4-connected graph G, there
exists a cycle C through e such that G − V (C) is 2-connected. In this paper we are
concerned with the problem of finding a nonseparating planar chain in a 4-connected
graph whose deletion results in a 2-connected graph. (A nonseparating planar chain
may be viewed as a generalization of the concept of a nonseparating path.) We give
an efficient algorithm for solving this problem. Our result has some interesting conse-
quences (section 4) and will be used in a forthcoming paper to decompose an arbitrary
4-connected graph into planar chains.

To describe precisely our result, we need to introduce the concept of chain and
planar chain. A block of a graph G is either a maximal 2-connected subgraph of G or
a subgraph of G induced by a cut edge. A block is nontrivial if it is 2-connected, and
it is trivial otherwise.

Definition 1.3. A connected graph H is a chain if its blocks can be labeled as
B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as v1, . . . , vk−1

such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1 and
(ii) V (Bi) ∩ V (Bj) = ∅ if |i− j| ≥ 2 and 1 ≤ i, j ≤ k.

We let H := B1v1B2v2 . . . vk−1Bk denote this situation. If k ≥ 2, v0 ∈ V (B1) − {v1}
and vk ∈ V (Bk)− {vk−1}, or, if k = 1, v0, vk ∈ V (B1) and v0 �= vk, then we say that
H is a v0-vk chain, and we denote this by H := v0B1v1 . . . vk−1Bkvk. We usually fix
v0 and vk, and we refer to them as the ends of H. See Figure 1 for an example with
k = 5.

A plane graph is a graph which is drawn in the plane with no pair of edges
crossing. Let G be a graph with distinct vertices a, b, c, and d. We say that the
quintuple (G, a, b, c, d) is planar if G can be drawn in a closed disc in the plane with
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v0 v1 v2 v3 v4 v5

B1

B2 B3

B4

B5

Fig. 1. Example of a chain.

no pair of edges crossing such that a, b, c, d occur on the boundary of the disc in this
cyclic order.

For a graph G and x, y ∈ V (G) let G−xy denote the graph with vertex set V (G)
and edge set E(G) − {xy}. (Note that xy need not be an edge of G.)

Definition 1.4. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a chain.
If H is an induced subgraph of G, then we say that H is a chain in G. We say that H
is a planar chain in G if, for each 1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equivalently, Bi is
2-connected), there exist distinct vertices xi, yi ∈ V (G)− V (H) such that (G[V (Bi)∪
{xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar, and Bi − {vi−1, vi} is a component of G −
{xi, yi, vi−1, vi}. We also say that H is a planar v0-vk chain. See Figure 2 for two
drawings of an example with k = 5. The dashed edges there may or may not exist,
but they are not part of H.

v0 v0

v1
v1

v2

v2

v3

v3

v4 v4

v5v5

B1 B1

B2

B2B2

B3 B3

B4

B4B4

B5

B5B5

x2x2

y2 = x4
y2 = x4

y4y4

x5x5

y5

y5

G− V (H)

G− V (H)

Fig. 2. A planar chain H := v0B1v1B2v2B3v3B4v4B5v5 in a graph G.

Definition 1.5. Let G be a graph, let S ⊆ V (G), and let k be a positive integer.
We say that G is (k, S)-connected if |V (G)| ≥ |S| + 1, G is connected, and, for any
T ⊂ V (G) with |T | ≤ k − 1, every component of G− T contains an element of S.

This definition is partially motivated by the following observation. Let G be
a k-connected graph, let S ⊆ V (G), and let K be a component of G − S. Then
G[V (K) ∪ S] is (k, S)-connected.
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For a graph G and a subgraph H of G, we use NG(H) to denote the set of
vertices in V (G)− V (H) which are adjacent to at least one vertex in V (H). Now we
are ready to describe the main result of this paper. It is stated in a form which can
be conveniently used in a forthcoming paper. (See Figure 5 for an illustration of the
hypothesis of the theorem.)

Theorem 1.6. Let G be a graph, let a, b be distinct vertices of G, let P be a non-
separating induced path in G between a and b, let BP be a nontrivial block of G−V (P ),
and let XP :=NG(G−V (BP )). Suppose G−(V (BP )−XP ) is (4, XP∪{a, b})-connected.
Then there exists a planar a-b chain H in G such that BP ⊆ G−V (H) and G−V (H)
is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|) time.

There are two interesting consequences of Theorem 1.6 related to an open problem
posed by Lovász [13]. (See section 4.)

Corollary 1.7. Let G be a 4-connected graph, let a, b be distinct vertices of G,
and let P be a nonseparating induced path in G between a and b such that G− V (P )
has a nontrivial block. Then there is a path Q between a and b in G such that G−V (Q)
is 2-connected, and such a path can be found in O(|V (G)||E(G)|) time.

Corollary 1.8. Let G be a 4-connected graph and ra ∈ E(G). Then there exists
a cycle C in G through ra such that G− (V (C)−{r}) is 2-connected. Moreover, such
a cycle can be found in O(|V (G)|2) time.

The rest of this paper is organized as follows. In the remainder of this section we
establish some notation we will use throughout the paper. In section 2 we give several
auxiliary lemmas. These lemmas concern the existence of certain nonseparating paths
in graphs with some connectivity constraints. In section 3 we prove Theorem 1.6. In
section 4 we prove several consequences of Theorem 1.6, including Corollaries 1.7
and 1.8.

Throughout this paper, we use A := B to rename B as A, or to define A as B.
Let G be a graph. For S ⊆ V (G), let NG(S) := {x ∈ V (G) − S : xy ∈

E(G), for some y ∈ S}. Thus, for a subgraph H of G, NG(H) = NG(V (H)). When
S = {x}, we let NG(x) := NG({x}). When there exists no ambiguity, we may simply
use N(S), N(H), and N(x) instead of NG(S), NG(H), and NG(x), respectively. For a
set F of 2-element subsets of V (G), let G+F denote the graph with vertex set V (G)
and edge set E(G) ∪ F . If F := {xy}, let G + xy := G + F .

We describe a path in G as a sequence P = (v1, v2, . . . , vk) of distinct vertices of
G such that vivi+1 ∈ E(G), 1 ≤ i ≤ k − 1. The vertices v1 and vk are called the
ends of the path P , and the vertices in V (P )−{v1, vk} are called the internal vertices
of P . For 1 ≤ i ≤ j ≤ k, let P [vi, vj ] := (vi, . . . , vj), and for 1 ≤ i < j ≤ k, let
P (vi, vj) := P [vi+1, vj−1]. For A,B ⊆ V (G), we say that a path P is an A-B path if
one end of P is in A, the other end is in B, and no internal vertex of P is in A ∪ B.
If P is a path with ends a and b, we say that P is a path from a to b, or P is an a-b
path. Two paths P and Q are disjoint if V (P )∩ V (Q) = ∅. Two paths are internally
disjoint if no internal vertex of one is contained in the other. Given a path P in G
and a set S ⊂ V (G) (respectively, a subgraph S of G), we say that P is internally
disjoint from S if no internal vertex of P is contained in S (respectively, V (S)). We
also describe a cycle in G as a sequence C = (v1, v2, . . . , vk, v1) such that the vertices
v1, . . . , vk are distinct, vivi+1 ∈ E(G), for 1 ≤ i ≤ k − 1, and vkv1 ∈ E(G).

2. Nonseparating paths. In trying to find a nonseparating planar chain, we
need to be able to find efficiently disjoint paths and nonseparating paths in graphs
which satisfy certain connectivity conditions. The purpose of this section is to provide
auxiliary lemmas (and algorithms) to deal with these problems.
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The disjoint paths problem can be defined as follows. Given a graph G and distinct
vertices a, b, c, d of G, find disjoint paths from a to b, and from c to d, respectively, or
certify that they do not exist.

This problem was solved independently in [2, 16, 17, 19]. We state Seymour’s
version [16, Theorem 4.1].

Theorem 2.1. Let a, b, c, d be distinct vertices of a graph G. Then exactly one
of the following holds:

(1) G contains disjoint paths from a to b and from c to d, respectively, or
(2) for some integer k ≥ 0, there exist pairwise disjoint sets A1, . . . , Ak ⊆ V (G)−

{a, b, c, d} such that
• for 1 ≤ i �= j ≤ k, NG(Ai) ∩Aj = ∅,
• for 1 ≤ i ≤ k, |NG(Ai)| ≤ 3, and
• if G′ is the graph obtained from G by, for each i, deleting Ai and adding

new edges joining every pair of distinct vertices in NG(Ai), and also
adding the edges ab and cd, then G′ can be drawn in the plane with no
pair of edges crossing except ab and cd, which cross once.

Let G be a graph and S := {a, b, c, d} ⊆ V (G). Shiloach [17] gave an O(|V (G)||E(G)|)
algorithm for the disjoint paths problem. We need to solve a special case of the dis-
joint paths problem, namely, when G is (4, S)-connected. We show in the appendix
that Shiloach’s algorithm can solve the disjoint paths problem in O(|V (G)|+ |E(G)|)
time for (4, S)-connected graphs.

Lemma 2.2. Let G be a graph and let S := {a, b, c, d} ⊂ V (G). Suppose that G
is (4, S)-connected. Then exactly one of the following holds:

(1) there exist disjoint paths from a to b and from c to d, respectively, or
(2) (G, a, c, b, d) is planar.

Moreover, one can in O(|V (G)|+ |E(G)|) time find paths as in (1) or certify that (2)
holds.

The rest of this section deals with nonseparating induced paths in graphs with
certain connectivity properties. We also show how to find these paths efficiently.

Lemma 2.3. Let G be a connected graph, S ⊆ V (G), {a, a′} ⊆ S, and let P be
an a-a′ path in G. Suppose

(i) G is (3, S)-connected, and
(ii) S − {a, a′} is contained in a component U of G− V (P ).

Then there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′)∩V (U) =
∅. Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. We may assume that P is induced; otherwise, we can find in O(|V (G)| +
|E(G)|) time an induced a-a′ path in G satisfying (ii). If P is nonseparating, then
P ′ := P is the required path. If |V (P )| = 2, then by (i) every component of G −
V (P ) contains a vertex of S, and so by (ii) G − V (P ) = U , which implies that P is
nonseparating. So we may assume that |V (P )| ≥ 3 and G− V (P ) is not connected.

Let G′ be the graph obtained from G by contracting U to a single vertex u, adding
the edges aa′, ua, and ua′ and removing multiple edges. See Figure 3. Note that a, a′

belong to the cycle P +aa′. We claim that H := G′−u is 2-connected. Suppose for a
contradiction that there exists v ∈ V (H) such that H − v is disconnected. Since a, a′

are vertices of P + aa′ which is a cycle in H, there exists a component K in H − v
which does not contain any vertex of P . But then K is a component of G− v which
does not contain any vertex in S, contradicting (i). Thus, G′ − u is 2-connected.

In fact, G′ must be 3-connected. Suppose for a contradiction that G′ is not
3-connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Since G′ − u is
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U u

aa a′a′

G G′

Fig. 3. Graphs G and G′ in the proof of Lemma 2.3.

2-connected, u �∈ T . Moreover, since {u, a, a′} induces a triangle in G′, there ex-
ists a component K of G′ − T which does not contain any of u, a, a′. But then K is
also a component of G − T which does not contain any element of S, contradicting
(i). Hence, G′ is 3-connected.

By Theorem 1.2 (with G′, aa′, u as G, e, u, respectively), there exists a nonsepa-
rating induced cycle C in G′ containing aa′ and avoiding u. Moreover, such a cycle
can be found in O(|V (G′)| + |E(G′)|) time (and hence in O(|V (G)| + |E(G)|) time).
Thus, P ′ := C − aa′ is a nonseparating induced path in G such that V (P ′) ∩
V (U) = ∅.

As an application of Lemma 2.3, we derive the following strengthening of
Lemma 2.2.

Lemma 2.4. Let G be a graph and S := {a, a′, b, b′} ⊆ V (G). Suppose that G is
(4, S)-connected. Then exactly one of the following holds:

(1) there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′) ∩
{b, b′} = ∅, or

(2) (G, a, b, a′, b′) is planar.
Moreover, one can in O(|V (G)| + |E(G)|) time find a path as in (1) or certify that
(2) holds.

Proof. By Lemma 2.2, either (a) there exist disjoint paths P and Q in G from a
to a′ and from b to b′, respectively, or (b) (G, a, b, a′, b′) is planar. Moreover, one can
in O(|V (G)|+ |E(G)|) time find paths as in (a) or certify that (b) holds. If (b) holds,
then (2) holds. Assume (a) holds. Let U be the component of G − V (P ) contain-
ing S − {a, a′} = {b, b′}. Since G is (4, S)-connected (and hence (3, S)-connected),
G,P, S, U and {a, a′} satisfy the hypothesis of Lemma 2.3. Thus, by Lemma 2.3 there
exists a nonseparating a-a′ path P ′ in G such that V (P ′) ∩ V (U) = ∅, and such a
path can be found in O(|V (G)| + |E(G)|) time. Hence, V (P ′) ∩ {b, b′} = ∅, and P ′

satisfies (1).
To prove the final result of this section, we need the following result of Cheriyan

and Maheshwari [3, p. 516], which is the core of the linear algorithm in [3] for finding
a nonseparating induced cycle as described in Theorem 1.2.

Theorem 2.5. Let G be a 3-connected graph, let aa′ ∈ E(G), and let C be a non-
separating induced cycle in G containing aa′. Then there exists another nonseparating
induced cycle C ′ in G such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩ E(C) = {aa′}.
Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

Our next result is in the same spirit as Theorem 2.5, but we relax the 3-connectivity
condition. Therefore, it is more convenient to use.
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Fig. 4. G and G′ as in the proof of Lemma 2.6.

Lemma 2.6. Let G be a connected graph, let a, a′ be distinct vertices of G with
degree at least two, and let P be a nonseparating induced a-a′ path in G. Suppose that
G is (3, V (P ))-connected. Then there exists another nonseparating induced a-a′ path
P ′ in G such that V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩ E(P ) = ∅. Moreover, such a
path can be found in O(|V (G)| + |E(G)|) time.

Proof. For convenience, let H := G − V (P ). Since P is a nonseparating path in
G, H is connected. Moreover, both a and a′ have a neighbor in V (H) because both
have degree at least two in G and P is induced. Let v1 = a, v2, . . . , vk = a′ be the
neighbors of H on P in this order from a to a′. (See Figure 4 for an illustration.) Note
that k ≥ 3 because G is (3, V (P ))-connected. Let G′ be the graph obtained from G
by adding the edge aa′ and by replacing, for each 1 ≤ i ≤ k − 1, the path P [vi, vi+1]
by an edge vivi+1. Note that C := G′ − V (H) is a cycle in G′. See again Figure 4.

We claim that G′ is 3-connected. Suppose for a contradiction that G′ is not 3-
connected. Then there is a vertex cut T in G′ with |T | ≤ 2. Note that T �⊆ V (C),
since H is connected and every vertex of C has a neighbor in H. But then G′ − T
has a component K such that V (K)∩ V (C) = V (K)∩ V (P ) = ∅. Hence, K is also a
component of G− T with V (K) ∩ V (P ) = ∅, contradicting the assumption that G is
(3, V (P ))-connected. Hence, G′ is 3-connected.

By Theorem 2.5 (with G′, C, a, a′ as G,C, a, a′, respectively), there exists a
nonseparating cycle C ′ in G′ such that V (C ′) ∩ V (C) = {a, a′} and E(C ′) ∩ E(C) =
{aa′}. Moreover, such a cycle can be found in O(|V (G′)| + |E(G′)|) time (and hence
in O(|V (G)| + |E(G)|) time). Thus, P ′ := C ′ − aa′ is a nonseparating induced a-a′

path in G such that V (P ′) ∩ V (P ) = {a, a′} and E(P ′) ∩ E(P ) = ∅.

3. Nonseparating chains. The main goal for this section is to design an al-
gorithm that solves the following problem. Given G, a, b, P,BP as in Theorem 1.6,
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a a

b b

P P

BP

XPXP

G G− (V (BP ) −XP )

Fig. 5. G, a, b, P,BP , XP in Notation 3.1.

find a planar a-b chain H in G such that G − V (H) is 2-connected and V (BP ) ⊆
V (G)−V (H). For convenience, we fix the following notation throughout this section.

Notation and assumption 3.1. Let G be a graph, let a, b be distinct vertices
of G, let P be a nonseparating induced a-b path in G, let BP be a nontrivial block
of G − V (P ), and let XP := NG(G − V (BP )). Suppose that G − (V (BP ) − XP ) is
(4, XP ∪ {a, b})-connected. See Figure 5.

Let PP be the set of nonseparating induced a-b paths P ′ in G with BP ⊆ G −
V (P ′). Note that P ∈ PP . For each P ′ ∈ PP let BP ′ denote the nontrivial block
of G − V (P ′) containing BP . We say that P ′ ∈ PP is a BP -augmenting path if
|V (BP )| < |V (BP ′)|.

Note that XP consists of cut vertices of G − V (P ) contained in V (BP ) and the
neighbors of V (P ) contained in V (BP ). Also note that our next result shows that the
paths in PP are well behaved.

Lemma 3.2. Let P ′ ∈ PP . Let XP ′ := N(G−V (BP ′)). Then G−(V (BP ′)−XP ′)
is (4, XP ′ ∪ {a, b})-connected.

Proof. For convenience, let G′ := G−(V (BP ′)−XP ′). Suppose for a contradiction
that G′ is not (4, XP ′ ∪ {a, b})-connected. Then there exists some T ⊂ V (G′) with
|T | ≤ 3 and there exists some component K of G′−T such that V (K)∩(XP ′∪{a, b}) =
∅. Since V (BP ) ⊆ V (BP ′), for each x ∈ XP , either x �∈ V (G′) or x ∈ XP ′ . Thus,
V (K) ∩ XP = ∅. But then, K is a component of (G − (V (BP ) − XP )) − T which
does not contain any vertex in XP ∪ {a, b}. This contradicts the assumption that
G − (V (BP ) −XP ) is (4, XP ∪ {a, b})-connected. Therefore, G′ is (4, XP ′ ∪ {a, b})-
connected.

Let us describe the basic idea of the algorithm we want to design. At the beginning
of each iteration we have a nonseparating a-b path P and a nontrivial block BP of
G − V (P ). The algorithm then tries to find a BP -augmenting path P ′ ∈ PP . If the
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a

b

P
rB = x∗

B − rB

BBP

lB

hBx

x′

y

y′

y∗

z = z∗

Fig. 6. A nice bridge B and the graph GB as defined in the proof of Lemma 3.7 shown in
boldface.

algorithm finds such a path P ′, then it starts a new iteration with P ′ as P . (Note that
by Lemma 3.2, G− (V (BP ′) −XP ′) is (4, XP ′ ∪ {a, b})-connected.) If the algorithm
does not find a BP -augmenting path, then it finds a planar a-b chain as required in
Theorem 1.6.

To describe this algorithm more precisely, we need more concepts and notation.
Definition 3.3. Let F be a subgraph of a graph K. An F -bridge of K is a

subgraph of K which is induced by either (1) an edge in E(K)−E(F ) with both ends
on F or (2) edges of a component D of K − V (F ) together with the edges of K from
D to F . For an F -bridge B of K, the set V (B) ∩ V (F ) is the set of attachments of
B on F .

Notation 3.4. Let B denote the set of BP -bridges of G−V (P ). For each B ∈ B,
V (BP ) ∩ V (B) consists of exactly one vertex (which is contained in XP ), and we let
rB denote this vertex. For any x, y ∈ V (P ), we denote x ≤ y if x ∈ V (P [a, y]). If
x ≤ y and x �= y, then we write x < y. In this case, we say that x is lower than y,
or y is higher than x. Since G is (4, XP ∪ {a, b})-connected, for each B ∈ B, B − rB
has at least three neighbors on P . Let lB and hB denote the lowest and the highest
neighbor of B − rB on P , respectively. See Figure 6 for an example.

Lemma 3.5. The following hold:
(1) V (P (lB , hB)) �= ∅ and NG(P (lB , hB)) ∩ (V (B) − {rB}) �= ∅, and
(2) NG(P (lB , hB)) �⊂ V (B) ∪ V (P ).
Proof. (1) holds because B − rB has at least three neighbors on P , and (2) holds

because P is an induced path in G and {rB , lB , hB} is not a 3-vertex cut of G.
Next, we describe members of B which we can use to produce a BP -augmenting

path.
Definition 3.6. For each vertex x of G − V (P ), we define x∗ as follows. If

x ∈ V (B) for some B ∈ B, then let x∗ := rB. If x ∈ V (BP ), then x∗ := x. We say
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that a member B of B is a nice bridge if there exist x, y ∈ NG(P (lB , hB))− ((V (B)−
{rB}) ∪ V (P )) such that x∗ �= y∗. See Figure 6 for an example.

The next lemma shows that any nice bridge can be used to find a BP -augmenting
path.

Lemma 3.7. Let B ∈ B be a nice bridge. Then there exists an induced lB-hB path
Q in G[V (B)∪{lB , hB}] such that P ′ := (P −V (P (lB , hB)))∪Q is a BP -augmenting
path in G. Moreover, such a path Q can be found in O(|V (G)| + |E(G)|) time.

Proof. Since B is a nice bridge, there exist x, y ∈ NG(P (lB , hB)) − ((V (B) −
{rB})∪V (P )) such that x∗ �= y∗. See Figure 6. Let GB be the subgraph of G induced
by (V (B) − {rB}) ∪ V (P [lB , hB ]). Since B is a BP -bridge, B − rB is connected.
Thus, P [lB , hB ] is a nonseparating induced path in GB . Furthermore, since G is
(4, XP ∪ {a, b})-connected, for any T ⊂ V (GB) with |T | ≤ 2, every component of
GB − T contains a vertex of V (P [lB , hB ]). (Otherwise, T ∪ {rB} is a 3-cut of G, and
G−(T∪{rB}) has a component not containing any element of XP∪{a, b}.) Thus, GB is
(3, V (P [lB , hB ]))-connected. By Lemma 2.6 (with GB , lB , hB , P [lB , hB ] as G, a, a′, P ,
respectively), there exists a nonseparating induced lB-hB path Q in GB disjoint from
P (lB , hB). Moreover, such a path Q can be found in O(|V (GB)| + |E(GB)|) time.
Since |V (GB)| + |E(GB)| = O(|V (G)| + |E(G)|), such a path Q can be found in
O(|V (G)| + |E(G)|) time.

Clearly, the path P ′ = (P − V (P (lB , hB))) ∪Q is an induced a-b path in G.

Let us prove that P ′ is nonseparating in G. It suffices to prove that for every
v /∈ V (BP ) ∪ V (P ′), there exists a {v}-V (BP ) path in G − V (P ′). First, suppose
v ∈ V (B′) for some B′ ∈ B with B′ �= B. Since V (B′) ∩ V (P ′) = ∅, there exists
a v-rB′ path in B′ (and hence in G − V (P ′)). So we may assume v ∈ (V (B) −
{rB}) ∪ V (P (lB , hB)). Since NG(P (lB , hB)) �⊂ V (B) ∪ V (P ) (by (2) of Lemma 3.5)
and V (Q(lB , hB))∩V (P (lB , hB)) = ∅, and because Q is a nonseparating path in GB ,
there exists a v-V (BP ) path in G− V (P ′). Hence, P ′ is nonseparating in G.

Thus, P ′ ∈ PP . It remains for us to show that |V (BP )| < |V (BP ′)|. Note that G
contains disjoint paths Px and Py from x to x∗ and from y to y∗, respectively, and Px

and Py are disjoint from P ∪(B−rB)∪(BP −{x∗, y∗}). Let x′, y′ ∈ V (P (lB , hB)) such
that xx′, yy′ ∈ E(G). Then both BP and the path (Px ∪ P [x′, y′] ∪ Py) + {xx′, yy′}
are contained in BP ′ . Hence, |V (BP )| < |V (BP ′)|, and so, P ′ is a BP -augmenting
path.

In what follows we prove several lemmas which will help us find nice bridges (and
hence, BP -augmenting paths by Lemma 3.7). But first, we need the following.

Definition 3.8. We say that two BP -bridges B and B′ in B are overlapping
if the paths P [lB , hB ] and P [lB′ , hB′ ] have an edge in common. Define an auxiliary
graph K such that V (K) = B, and B and B′ are adjacent in K if B and B′ are
overlapping. See Figure 7 for an example.

The next two lemmas appear in [5]. Since their proofs are short, we include them
here.

Lemma 3.9. Let (B1, B2, B3) be an induced path in K such that rB1
�= rB3

. Then
B2 is a nice bridge.

Proof. By the definition of K and by the assumption that (B1, B2, B3) is induced
in K, B1 and B3 are not overlapping. Thus we may assume lB1 < hB1 ≤ lB3 < hB3 .
Moreover, lB2 < hB1 and lB3 < hB2 . Let x ∈ V (B1) − {rB1} such that xhB1 ∈ E(G)
and let y ∈ V (B3) − {rB3

} such that ylB3
∈ E(G). Clearly, x, y ∈ NG(P (lB2

, hB2
)),

x, y �∈ (V (B2) − {rB2}) ∪ V (P ), and x∗ = rB1 �= rB3 = y∗. Hence by Definition 3.6,
B2 is a nice bridge.
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Fig. 7. An example of an auxiliary graph K.

Lemma 3.10. Let (B1, B2, B3) be a path in K such that rB1 �= rB2 �= rB3 �= rB1 .
Then one can find in constant time some i ∈ {1, 2, 3} such that Bi is a nice bridge.

Proof. If the path (B1, B2, B3) is induced in K, then the result follows from
Lemma 3.9. So suppose that B1, B2, B3 induces a triangle in K. By symmetry,
assume that P [lB1 , hB1 ] is not properly contained in P [lBi , hBi ] for i = 2, 3 (this can
be checked in constant time). Thus, for each i ∈ {2, 3}, either lBi

∈ V (P (lB1
, hB1

)) or
hBi ∈ V (P (lB1 , hB1)) or P [lB1 , hB1 ] = P [lBi , hBi ]. Therefore, since NG(P (lBi , hBi))∩
(V (Bi)−{rBi}) �= ∅ (by (1) of Lemma 3.5), it follows that there exist x ∈ NG(P (lB1 ,
hB1)) ∩ (V (B2) − {rB2}) and y ∈ NG(P (lB1 , hB1)) ∩ (V (B3) − {rB3}). Note that
x, y �∈ (V (B1) − {rB1

}) ∪ V (P ), and x∗ = rB2
�= rB3

= y∗. Hence by Definition 3.6,
B1 is a nice bridge.

To find BP -augmenting paths, we need to search the components of K. For
convenience, we introduce the following notation.

Notation 3.11. Let A1,A2, . . . ,At be the components of the auxiliary graph K.
For j = 1, . . . , t let Vj :=

⋃
B∈V (Aj)

V (B), let Qj :=
⋃

B∈V (Aj)
P [lB , hB ], and let

RAj
:= {rB : B ∈ V (Aj)}. Note that Vj is a subset of V (G) − (V (BP ) −XP ), Qj is

a subpath of P , and RAj ⊆ XP .
The number of edges in a component of K can be O(|V (K)|2), but for our purpose,

we need to compute only a spanning tree of each component.
Lemma 3.12. Algorithm 1 constructs rooted spanning trees Tj of Aj for all j =

1, . . . , t, and finds the ends aj , bj of Qj with aj < bj, for all j = 1, . . . , t. Furthermore,
for any j ∈ {1, . . . , t} and any element B of V (Tj), the path from the root of Tj to
B in Tj is induced in K. Moreover, all Tj , aj , bj can be found in O(|V (G)| + |E(G)|)
time.

Proof. The set Q is implemented as a queue, and for each vertex x of the path P
we keep a list of BP -bridges B of G− V (P ) such that lB = x. The index k is used to
avoid rescanning a vertex more than once. The algorithm is basically a variation of
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Algorithm 1. Construct forest.
Require: The set B of BP -bridges of G− V (P ).
Return: An integer t ≥ 0, spanning trees T1, T2, . . . , Tt of the components of the

auxiliary graph K, and the ends aj , bj of Qj with aj < bj for j = 1, . . . , t.
Let P = (a = x1, x2, . . .);
j ← 1;
k ← 1;
while k ≤ |V (P )| do

Let B ∈ B such that lB = xk;
Tj ← B;
aj ← lB ;
bj ← hB ;
Q ← {B};
while Q �= ∅ do

Let B′ ∈ Q;
Q ← Q− {B′};
Let xk′ = hB′ ;
for i ← k to k′ − 1 do

for each B such that lB = xi do
if B �∈ V (Tj) then
Q ← Q∪ {B};
Tj ← (Tj ∪ {B}) + BB′;

if k′ > k then
k ← k′;

bj ← xk;
while k ≤ |V (P )| and there exists no B ∈ B such that lB = xk do
k ← k + 1;

j ← j + 1;

the breadth-first search method and can be implemented to run in O(|V (G)|) time.
It is easy to see that each Tj is a spanning tree of a component of K. The first vertex
inserted in Tj becomes its root. Furthermore, it is not hard to see that (from the
nature of breadth-first search) Tj satisfies the following property: for any element B
of V (Tj), the path in Tj from B to the root of Tj is induced in K.

From Notation 3.11 and Algorithm 1, we see that Qj = P [aj , bj ].

Next, for a component Aj of K (or more precisely, the spanning tree Tj computed
by Algorithm 1) we derive necessary and sufficient conditions for the existence of a
nice bridge in V (Aj), and hence we may apply Lemma 3.7 to derive the existence of
a BP -augmenting path. We do this by considering the size of RAj

.

Lemma 3.13. Let Aj be a component of K such that |RAj | ≥ 3. Then there exists
a member of V (Aj) which is a nice bridge. Moreover, such a member of V (Aj) can
be found in O(|V (G)|) time.

Proof. We want to show that Tj contains a path (B1, B2, B3) such that either
(i) (B1, B2, B3) is an induced path in K and rB1 �= rB3 or (ii) rB1 �= rB2 �= rB3 �= rB1 .
For convenience, let T := Tj . Since |RAj | ≥ 3, there exist members W,Y, and Z
of V (Aj) such that rW �= rY �= rZ �= rW . Moreover, W,Y, and Z can be found in
O(|V (T )|) time and hence in O(|V (G)|) time. We may assume that W is the root of
T . By Lemma 3.12, T [W,Y ] and T [W,Z] are induced paths in Aj .
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Suppose neither T [W,Y ] nor T [W,Z] contains a path (B1, B2, B3) satisfying (i) or
(ii) above. Because rW �= rY , rB ∈ {rW , rY } for every member B of V (T [W,Y ]) and
rB1 �= rB2 for every member B1B2 of E(T [W,Y ]). Similarly, because rW �= rZ , rB ∈
{rW , rZ} for every member of V (T [W,Z]) and rB1 �= rB2 for any member B1B2 of
E(T [W,Z]). But since rZ is distinct from rW and rY , it follows that T [W,Y ]∪T [W,Z]
must contain a path (B1, B2, B3) which satisfies (i) or (ii). Clearly, this path can be
found in O(|V (G)|) time.

By Lemmas 3.9 and 3.10, one of B1, B2, B3 is a nice bridge, and such a bridge
can be found in O(|V (G)|) time.

If |RAj | ≤ 2 for every j ∈ {1, . . . , t}, then the existence of a nice bridge is not
guaranteed. In this case, we will find certain 4-cuts of G which play a fundamental
role in the construction of the desired planar a-b chain.

Lemma 3.14. Let Aj be a component of K such that |RAj
| = 1. Then one of the

following holds:

(1) |V (Aj)| = 1 and |(XP ∩NG(Qj(aj , bj))) −RAj | = 1, or
(2) a member of V (Aj) is a nice bridge, and it can be found in O(|V (G)|) time.

Proof. We claim that (XP ∩NG(Qj(aj , bj)))−RAj �= ∅. Otherwise, there exists a
component of G− (RAj ∪{aj , bj}) not containing any element of XP ∪{a, b} (because
P is induced), which is a contradiction to the assumption that G is (4, XP ∪ {a, b})-
connected. Thus, let x ∈ (XP ∩NG(Qj(aj , bj))) −RAj .

First, suppose |V (Aj)| ≥ 2. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)). Since
|V (Aj)| ≥ 2, there exists B′ ∈ V (Aj) such that B′ �= B, and B and B′ overlap. By
renaming B and B′ if necessary, we may assume that P [lB , hB ] is not a proper subpath
of P [lB′ , hB′ ]. Then, either lB′ ∈ V (P (lB , hB)), or hB′ ∈ V (P (lB , hB)), or both
lB = lB′ and hB = hB′ . By (1) of Lemma 3.5, NG(P (lB′ , hB′))∩(V (B′)−{rB′}) �= ∅.
Hence, P (lB , hB) has a neighbor y such that y ∈ V (B′) − {rB′}. Note that x, y ∈
NG(P (lB , hB)), x, y �∈ (V (B) − {rB}) ∪ V (P ), x∗ = x �∈ Vj and y∗ = rB′ ∈ Vj . Thus
by Definition 3.6, B is a nice bridge. Clearly, B can be found in O(|V (G)|) time, and
hence, (2) holds.

Now, assume that |V (Aj)| = 1 and B is the only member of V (Aj). Then
Qj = P [lB , hB ]. Suppose (1) does not hold. Then |(XP ∩NG(P (lB , hB))) − RAj | >
1. Hence, there exists some y ∈ (XP ∩ NG(P (lB , hB))) − RAj with y �= x. Then
x, y ∈ NG(P (lB , hB)), x, y �∈ (V (B) − {rB}) ∪ V (P ), and x∗ = x �= y = y∗. Hence by
Definition 3.6, B is a nice bridge. Again, (2) holds.

Lemma 3.15. Let Aj be a component of K such that |RAj
| = 2. Then one of the

following holds:

(1) XP ∩NG(Qj(aj , bj)) ⊆ RAj
, or

(2) a member of V (Aj) is a nice bridge, and it can be found in O(|V (G)|) time.

Proof. Suppose that (1) does not hold. Then there exists some x ∈ (XP ∩
NG(Qj(aj , bj)))−RAj

. Note that x∗ = x. Let B ∈ V (Aj) such that x ∈ NG(P (lB , hB)).
Since |RAj

| = 2, we have |V (Aj)| ≥ 2, and hence there exists B′ ∈ V (Aj) such that
B′ �= B, and B and B′ overlap. We can rename B and B′ if necessary so that
P [lB , hB ] is not a proper subpath of P [lB′ , hB′ ]. We can show that B is a nice bridge
as in the second paragraph in the proof of Lemma 3.14.

Before we can fully describe the main algorithm, we need to deal with the situation
where (1) of Lemma 3.14 or (1) of Lemma 3.15 occurs.

Definition 3.16. Let Aj be a component of K such that either (i) |RAj | = 1 and
|(XP ∩NG(Qj(aj , bj)))−RAj

| = 1, or (ii) |RAj
| = 2 and NG(XP ∩Qj(aj , bj)) ⊆ RAj

.
If (i) holds, then let RAj := {cj}, let (XP ∩ N(Qj(aj , bj))) − RAj := {dj}, and let
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Fig. 8. 4-cuts determined by a component Aj of K.

Gj := G[Vj ∪ {dj} ∪ V (Qj)] − cjdj. If (ii) holds, then let RAj := {cj , dj}, and let
Gj := G[Vj ∪ V (Qj)] − cjdj. In both cases, the set Sj := {aj , bj , cj , dj} is a 4-cut in
G, and Gj − Sj is a component of G− Sj. We say that Aj determines the 4-cut Sj.
Note that since Aj is a component of K, Gj − {cj , dj} is 2-connected. See Figure 8.

Lemma 3.17. Let Aj be a component of K which determines a 4-cut {aj , bj , cj , dj}.
Then one of the following holds:

(1) there exists an induced aj-bj path Q in Gj−{cj , dj} such that (P−V (P (aj , bj)))∪
Q is a BP -augmenting path, or

(2) (Gj , aj , cj , bj , dj) is planar.
Moreover, one can in O(|V (Gj)| + |E(Gj)|) time find a path as in (1) or certify that
(2) holds.

Proof. Since G is (4, XP ∪ {a, b})-connected, if T ⊂ V (Gj) with |T | ≤ 3,
then any component of Gj − T contains an element of {aj , bj , cj , dj}. Hence, Gj is
(4, {aj , bj , cj , dj})-connected. Apply Lemma 2.4 with Gj , aj , bj , cj , dj as G, a, a′, b, b′,
respectively. Then one of the following holds:

(a) there exists a nonseparating induced aj-bj path Q in Gj such that V (Q) ∩
{cj , dj} = ∅, or

(b) (Gj , aj , cj , bj , dj) is planar.
Moreover, one can in O(|V (Gj)| + |E(Gj)|) time find a path as in (a) or certify that
(b) holds.

If (b) occurs, then we have (2). So we may assume that (a) occurs. Let P ′ :=
(P−V (P (aj , bj)))∪Q. Then P ′ is a nonseparating induced path in G. Moreover, since
{cj , dj} is contained in the connected subgraph Gj − V (Q) of G− V (P ′), |V (BP )| <
|V (BP ′)|. Thus, P ′ is a BP -augmenting path.

We are now ready to prove the main result of this paper. With input G, a, b, P ,
BP , and XP , Algorithm 2 returns a planar a-b chain H in G such that G− V (H) is
2-connected and V (BP ) ⊆ V (G) − V (H).
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Algorithm 2. Nonseparating planar chain.

Require: G, a, b, P,BP , XP satisfying hypotheses of Theorem 1.6.
Return: A planar a-b chain H in G such that G−V (H) is 2-connected and V (BP ) ⊆

V (G) − V (H).
1: loop
2: if G− V (P ) = BP then
3: Return H ← P and stop;
4: Compute the set B of BP -bridges in G− V (P );
5: Apply Algorithm 1 to B to compute spanning trees T1, T2, . . . , Tt of the compo-

nents A1, A2 . . . ,At of the auxiliary graph K, the subpaths Q1, Q2 . . . , Qt of P
and their respective ends a1, b1, a2, b2, . . . , at, bt;

6: if every Aj determines a 4-cut {aj , bj , cj , dj} and (Gj , aj , cj , bj , dj) is planar
then

7: Return H := (P −
⋃t

j=1 V (P (aj , bj))) ∪ (
⋃t

j=1(Gj − {cj , dj})) and stop;
8: if there exists j such that |RAj | ≥ 3 or Aj does not determine a 4-cut then
9: Find a nice bridge B ∈ V (Aj);

10: Find an induced lB-hB path Q in G[(V (B) ∪ {lB , hB}] such that (P −
V (P (lB , hB))) ∪Q is a BP -augmenting path;

11: Set P ← (P − V (P (lB , hB))) ∪ Q, update BP and XP , and start a new
iteration;

12: if there exists Aj which determines a 4-cut and (Gj , aj , cj , bj , dj) is nonplanar
then

13: Find an induced aj-bj path Q in Gj−{cj , dj} such that (P−V (P (aj , bj)))∪Q
is a BP -augmenting path.

14: Set P ← (P−V (P (aj , bj)))∪Q, update BP and XP , and start a new iteration;

Theorem 3.18. Algorithm 2 is correct and runs in O(|V (G)||E(G)|) time.

Proof. Let us first prove the correctness of the algorithm.

At the start of each iteration of the main loop, P is a nonseparating induced a-b
path, and BP is a nontrivial block of G − V (P ). Moreover, G − (V (BP ) − XP ) is
(4, XP∪{a, b})-connected, where XP := NG(G−V (BP )). As the algorithm progresses,
|V (BP )| increases.

If the algorithm stops at line 3, then clearly G− V (P ) is 2-connected. Moreover,
since P is an induced a-b path, H := P is also a planar a-b chain in G.

If the algorithm stops at line 7, it returns a subgraph H. First, note that BP =
G − V (H) is 2-connected. Let us prove that H is a planar a-b chain in G. Note
that t ≥ 1. For each j, 1 ≤ j ≤ t, we have that |RAj

| ≤ 2 and Aj determines a
4-cut Sj := {aj , bj , cj , dj}, where cj , dj ∈ XP ⊆ V (BP ). Moreover, (Gj , aj , cj , bj , dj)
is planar. Since Aj is a component of K, Gj − {cj , dj} is 2-connected. Therefore,

H := (P −
⋃t

j=1 V (P (aj , bj))) ∪ (
⋃t

j=1(Gj − {cj , dj})) is a planar a-b chain in G.

If B is a nice bridge, then by Lemma 3.7 the path Q in line 10 exists and (P −
V (P (lB , hB))) ∪ Q is a BP -augmenting path. So, every time the algorithm executes
lines 8–11, it increases |V (BP )|. Moreover, the existence of the nice bridge B on line 9
is guaranteed by Lemma 3.13, (2) of Lemma 3.14, and (2) of Lemma 3.15.

If Aj is a component of K that determines a 4-cut {aj , bj , cj , dj} and (Gj , aj , cj , bj ,
dj) is nonplanar, then by (1) of Lemma 3.17 the path Q in line 13 exists and (P −
V (P (aj , bj)))∪Q is a BP -augmenting path. So when the algorithm executes lines 12–
14, it also increases |V (BP )|.
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Finally, Lemma 3.2 guarantees that after the update of BP and XP either in
line 11 or in line 14, the hypotheses of Theorem 1.6 still hold in the next iteration.
Since |V (BP )| increases at each iteration, the loop eventually stops, and hence Algo-
rithm 2 is correct.

Now, let us verify the complexity of the algorithm.
The loop on line 1 is executed at most |V (G)| times since |V (BP )| increases at

each iteration.
The steps in lines 2 and 4 can be performed in O(|V (G)|+ |E(G)|) time by stan-

dard graph search techniques (for example, see [18]). By Lemma 3.12, the spanning
trees T1, . . . , Tt (line 5), the paths Q1, . . . , Qt, and their respective ends a1, b1, . . . , at, bt
can be computed in O(|V (G)| + |E(G)|) time by Algorithm 1.

The steps in line 6 and line 12 test whether (Gj , aj , bj , cj , dj) is planar. By
Lemma 2.4 this is equivalent to deciding whether there exists a nonseparating induced
aj-bj path in Gj containing neither cj nor dj and can be done in O(|V (Gj)|+ |E(Gj)|)
(and hence O(|V (G)| + |E(G)|) time).

Finding a nice bridge B in line 9 can be done in O(|V (G)|) time by Lemma 3.13,
(2) of Lemma 3.14, and (2) of Lemma 3.15. The path Q in line 10 can be found
in O(|V (G)| + |E(G)|) time by Lemma 3.7. The path Q in line 13 can be found in
O(|V (Gj)| + |E(Gj)|) (and hence O(|V (G)| + |E(G)|) time by Lemma 3.17.

Clearly, the steps in lines 11 and 14 can be done in O(|E(G)|) time.
Therefore, the running time of Algorithm 2 is O(|V (G)||E(G)|).

4. Related results. Our eventual goal is to construct a decomposition of any
4-connected graph into certain chains and find four independent spanning trees. This
will be done in forthcoming papers where the asymptotic performance of Algorithm 2
can often be improved to O(|V (G)|2): instead of applying the algorithm to G, we
apply it to a sparse spanning 4-connected subgraph of G with the help from a result
of Ibaraki and Nagamochi [9].

Theorem 4.1. Given a k-connected graph G, one can find in O(|V (G)|+ |E(G)|)
time a spanning k-connected subgraph of G with at most k|V (G)| edges.

The first step in our decomposition of a 4-connected graph is to find a nonsep-
arating cyclic chain. Intuitively, a cyclic chain is a graph obtained from a chain by
identifying its ends. More precisely, we have the following.

Definition 4.2. A connected graph H is a cyclic chain if for some integer k ≥ 2,
there exist subgraphs B1, . . . , Bk of H and vertices v1, . . . , vk of H such that

(i) for 1 ≤ i ≤ k, Bi is 2-connected or Bi is induced by an edge of H,

(ii) V (H) =
⋃k

i=1 V (Bi) and E(H) =
⋃k

i=1 E(Bi),
(iii) if k = 2, then V (B1) ∩ V (B2) = {v1, v2} and E(B1) ∩ E(B2) = ∅, and
(iv) if k ≥ 3, then V (Bi)∩V (Bi+1) = {vi} for 1 ≤ i ≤ k, where Bk+1 := B1, and

V (Bi) ∩ V (Bj) = ∅ for 1 ≤ i < i + 2 ≤ j ≤ k and (i, j) �= (1, k).
We usually fix one of the vertices v1, . . . , vk as the root of H, say, vk, and we use the
notation H := v0B1v1 . . . vk−1Bkvk to indicate that H is a cyclic chain rooted at v0

(= vk). Each subgraph Bi is called a piece of H. See Figure 9 for an example with
k = 6.

Definition 4.3. Let G be a graph and let H := v0B1v1 . . . vk−1Bkvk be a cyclic
chain rooted at v0 = vk. If H is an induced subgraph of G, then we say that H is a
cyclic chain in G. We say that H is a planar cyclic chain in G if for each 1 ≤ i ≤ k
with |V (Bi)| ≥ 3 (or equivalently, Bi is 2-connected), there exist distinct vertices
xi, yi ∈ V (G) − V (H) such that (G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is planar,
and Bi − {vi−1, vi} is a component of G − {xi, yi, vi−1, vi}. See Figure 10 for an
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v0 = v6 v1 v2 v3 v4 v5

B1

B2 B3
B4

B5

B6

Fig. 9. Example of a cyclic chain.

v0 = v6 = r

v1

v2

v3

v4

v5

B1

B2

B3

B4

B5

B6

x2

y2 = x4

y4

x5

y5

G− (V (H) − {r})

Fig. 10. A planar cyclic chain H := v0B1v1 . . . v5B6v6 rooted at r in a graph G.

example with k = 6, where the dashed edges may or may not exist in G but they are
not part of H.

Now we can state and prove a result which will serve as the first chain in a chain
decomposition of a 4-connected graph. See again Figure 10 for an example.

Theorem 4.4. Let G be a 4-connected graph and let ra ∈ E(G). Then there exists
a planar cyclic chain H in G rooted at r such that ra induces a piece of H and G−
(V (H)−{r}) is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|)
time.

Proof. Let G be a 4-connected graph and let ra ∈ E(G). By Theorem 1.2, one
can find a nonseparating induced cycle C in G through ra in O(|V (G)| + |E(G)|)
time. Let P denote the path C − r and let b be the end of P other than a. Since
C is induced, exactly two neighbors of r lie on P , namely, a and b. Thus, since
(G− V (P ))− r = G− V (C) is connected, r is not a cut vertex of G− V (P ). Let BP

be the block of G − V (P ) containing r. Note that NG(r) ⊆ V (BP ) ∪ {a, b}. Hence,
BP contains more than two vertices because r has degree at least four, and therefore,
BP is 2-connected. If G−V (P ) = BP , then H := C is a planar cyclic chain rooted at
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r such that ra induces a piece of H and G− (V (H)−{r}) is 2-connected. So assume
that G− V (P ) is not 2-connected, that is, G− V (P ) �= BP .

Let XP := NG(G − V (BP )). Then G, a, b, P,BP , XP satisfy the hypotheses of
Theorem 1.6. By Theorem 1.6 one can find in O(|V (G)||E(G)|) time a planar a-b chain
H ′ in G such that BP ⊆ G − V (H ′) and G − V (H ′) is 2-connected. Since NG(r) ⊆
V (BP ) ∪ {a, b}, we have r �∈ NG(H ′ − {a, b}). Therefore, H := (H ′ ∪ {r}) + {ra, rb}
is an induced subgraph of G. Hence H is a planar cyclic chain in G rooted at r such
that ra induces a piece of H and G− (V (H) − {r}) is 2-connected.

The property that ra induces a piece in the planar cyclic chain in Theorem 4.4 is
not necessary for constructing a chain decomposition of a 4-connected graph, but it
has an interesting consequence (see Corollary 1.8). To derive Corollaries 1.7 and 1.8,
we need to introduce some results on Hamilton paths and cycles in planar graphs.

Thomassen [20] proved the existence of a special path in a 2-connected planar
graph, and, later on, Chiba and Nishizeki [4] developed a O(|V (G)|+|E(G)|) algorithm
for finding such a path.

Theorem 4.5. Let G be a 2-connected plane graph with a facial cycle F . Let
x ∈ V (F ), e ∈ E(F ), and y ∈ V (G)−{x}. Then G contains an x-y path P through e
such that

(i) every P -bridge of G has at most three attachments on P , and
(ii) every P -bridge of G containing an edge of F has at most two attachments

on P .

Moreover, such a path P can be found in O(|V (G)| + |E(G)|) time.

For our purpose, we need the following consequence of Theorem 4.5. This was
proved by Curran and Yu [5]. For a proof, see the appendix.

Corollary 4.6. Let (G, a, c, b, d) be a planar graph and suppose that G is
(4, {a, b, c, d})-connected. Then there exists a Hamilton a-b path in G− {c, d}. More-
over, such a path can be found in O(|V (G)| + |E(G)|) time.

Corollary 4.7. Let G be a 4-connected graph and let H be a planar x-y chain
in G. Then there exists a Hamilton x-y path in H. Moreover, such a path can be
found in O(|V (H)| + |E(H)|) time.

Proof. Let H := v0B1v1 . . . vk−1Bkvk, where v0 = x and vk = y. Since H is a
planar chain, for each nontrivial block Bi of H there exists ui, wi ∈ V (G) − V (H)
such that (G[V (Bi) ∪ {ui, wi}] − uiwi, vi−1, ui, vi, wi) is planar and Bi − {vi−1, vi}
is a component of G − {vi−1, vi, ui, wi}. Moreover, Gi := G[V (Bi) ∪ {ui, wi}] −
uiwi is (4, {vi−1, vi, ui, wi})-connected. Applying Corollary 4.6 to (Gi, vi−1, ui, vi, wi)
as (G, a, c, b, d), one can find a Hamilton vi−1-vi path in Bi = Gi − {ui, wi} in
O(|V (Gi)| + |E(Gi)|) time. Therefore, a Hamilton x-y path in H can be found in
O(|V (H)| + |E(H)|) time.

By an argument similar to that in Corollary 4.7 we can prove the following.

Corollary 4.8. Let G be a 4-connected graph and let H be a planar cyclic chain
in G. Then there exists a Hamilton cycle in H. Moreover, such a cycle can be found
in O(|V (H)| + |E(H)|) time.

It is now easy to see that Corollary 1.7 follows from Theorem 1.6 and Corollary 4.7,
and Corollary 1.8 follows from Theorems 4.1 and 4.4 and Corollary 4.8.

Corollary 1.8 is similar in spirit to Theorem 1.2, which was proved by Tutte.
Unlike Tutte’s result, however, we cannot ask the cycle C in Corollary 1.8 to be
induced, and we do not remove the vertex r from the graph. Curran and Yu [5,
Theorem 1.3] showed that if G is 5-connected and e ∈ E(G), then G contains an
induced cycle C through e such that G − V (C) is 2-connected. All these results are
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related to the following important open problem. In 1975, Lovász [13] conjectured
the following. Given any positive integer k, there exists some positive integer f(k)
with the property that for any given vertices x and y of an f(k)-connected graph G,
there exists an induced x-y path P in G such that G − V (P ) is k-connected. Thus,
Tutte’s result solves the case k = 1, and Curran and Yu’s result implies the case
k = 2, which was proved independently by Chen, Gould, and Yu [1] and Kriesell [12].
The conjecture is still open for higher values of k.

Appendix.
Proof of Lemma 2.2. First, we prove that exactly one of (1) and (2) holds. Clearly,

(1) and (2) are mutually exclusive because of planarity. We know that either (1)
or (2) of Theorem 2.1 holds. If (1) of Theorem 2.1 holds, then (1) of Lemma 2.2
holds. So assume (2) of Theorem 2.1 holds. Let A1, . . . , Ak be as described in (2)
of Theorem 2.1. Then S ∩ Ai = ∅ for 1 ≤ i ≤ k. Hence, G[Ai] consists of those
components of G−NG(Ai) containing no element of S, contradicting our assumption
that G is (4, S)-connected because |NG(Ai)| ≤ 3. Thus no Ai can exist. Let G′ be
described as in (2) of Theorem 2.1. Observe that (G′ − {ab, cd}, a, c, b, d) is planar.
Since G′ − {ab, cd} = G, (2) of Lemma 2.2 holds. Therefore, either (1) or (2) holds.

Let us prove the algorithmic part of Lemma 2.2. First, we give a sketch of
Shiloach’s algorithm. It has as input a graph G and vertices a, b, c, d of G (with
no connectivity hypothesis on G). The algorithm consists of reductions R1, . . . ,R6,
which reduces the general problem to a restricted one.

R1: The algorithm initially reduces the problem to 3-connected graphs, in
O(|V (G)| + |E(G)|) time.

R2: If the graph is planar, then a specialized O(|V (G)| + |E(G)|) algorithm for
3-connected planar graphs [15] is used to solve the problem.

R3: Assume that G is nonplanar. This is the most time-consuming step of the
algorithm. It reduces the problem using network flow techniques to graphs satisfying
some connectivity constraints involving S := {a, b, c, d}. Namely, the resulting graph
G satisfies the following property: for any subset S′ of vertices of G with |S′| ≤ 4,
there exist four disjoint paths connecting S to S′ (these paths can share ends in
S′, however). In fact, this step is not executed at once, but it is interspersed with
reductions R4, R5, and R6 in the algorithm. Whenever the algorithm finds a set S′

which is not connected to S by four disjoint paths, a reduction is performed. The total
time spent with these reductions during the whole algorithm is O(|V (G)||E(G)|). For
simplicity, suppose that no such set S′ exists. By Menger’s theorem, this is equivalent
to saying that G is (4, S)-connected. Note that the graph G in the statement of
Lemma 2.2 is (4, S)-connected.

Thus, so far G is 3-connected, nonplanar, and (4, S)-connected. The algorithm
then finds a subdivision of a Kuratowski graph (K5 or K3,3). Shiloach gave an
O(|V (G)|2) algorithm to find such a subdivision, but this can be improved as we
show below using an algorithm of Hsu and Shih [7].

R4: If a subdivision of K5 is found, Shiloach claims that the required two disjoint
paths can be found in O(|V (G)| + |E(G)|) time, using a result of Watkins [22].

R5 and R6: If a subdivision of K3,3 is found, then Shiloach’s algorithm finds the
required two disjoint paths in O(|V (G)| + |E(G)|) time.

Let us show how to improve the running time of the algorithm for (4, S)-connected
graphs. Let G be a graph, let S := {a, b, c, d} ⊂ V (G) and suppose that G is (4, S)-
connected. Let G+ := G + {ac, cb, bd, da}. Since G is (4, S)-connected, G+ is (4, S)-
connected. Because each of a, b, c, d has degree at least three in G+, it follows that
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G+ is 3-connected. Moreover, if there exist disjoint paths P and Q in G+ from a to
b, and from c to d, respectively, then P and Q are both paths in G, and vice versa.

We describe now how to solve the two disjoint paths problem for G+ in O(|V (G)|+
|E(G)|) time. Hsu and Shih [7] developed a O(|V (H)|+ |E(H)|) algorithm that, given
a graph H, either finds an embedding of H or finds a subdivision of a Kuratowski
graph in H. Applying this algorithm to G+, we find either an embedding of G+ or a
subdivision of K5 or K3,3. If the former occurs, then G+ is planar, and we can use step
R2 to solve the two disjoint paths problem in O(|V (G)| + |E(G)|) time. Otherwise,
there exists a subdivision of K5 (or K3,3), and we can use steps R4 (or R5 and R6,
respectively) of Shiloach’s algorithm to find the required two disjoint paths. Thus,
we can find the two disjoint paths P and Q, if they exist, in O(|V (G)| + |E(G)|)
time.

Proof of Corollary 4.6. Let G′ := (G − d) ∪ {bc, ac}. We first show that G′ is 2-
connected. Suppose on the contrary that G′ is not 2-connected. Let x be a cut vertex
of G′. Since G is (4, {a, b, c, d})-connected, G−{c, d} contains an a-b path, and hence
{a, b, c} is contained in a cycle in G′. Therefore, {a, b, c} is contained in an x-bridge
of G′, and G′ has another x-bridge B such that (V (B) − {x}) ∩ {a, b, c} = ∅. Hence,
B − x is a component of G− T , where T := {x, d}, and (V (B) − {x}) ∩ {a, b, c} = ∅,
a contradiction.

Note that G′ is planar and can be drawn in the plane so that ac, bc and NG(d) are
on a facial cycle F . Applying Theorem 4.5 (with G′, a, c, bc as G, x, y, e, respectively),
G′ has an a-c path P through bc satisfying (i) and (ii) of Theorem 4.5. Moreover,
such a path can be found in O(|V (G)| + |E(G)|) time. Note that ac �∈ E(P ) because
bc ∈ E(P ).

We proceed to show that every P -bridge of G′ is induced by a single edge, and so P
must be a Hamilton path in G′. Let B be a P -bridge of G′ such that V (B)−V (P ) �= ∅,
and let T := V (B) ∩ V (P ). Since a, b and c are all on P , then {a, b, c} ∩ V (B) ⊆ T .
Thus, B − T is a component of G− (T ∪ {d}) containing no element of {a, b, c, d}. If
|T | ≤ 2, then |T ∪ {d}| ≤ 3, contradicting our assumption that G is (4, {a, b, c, d})-
connected. Since P satisfies (i) of Theorem 4.5, we may assume |T | = 3. Then by (ii)
of Theorem 4.5, E(B) ∩ E(F ) = ∅, and hence (V (B) − T ) ∩ NG(d) = ∅. Therefore,
B−T is a component of G−T such that (V (B)−T )∩{a, b, c, d} = ∅, a contradiction
to the assumption that G is (4, {a, b, c, d})-connected.

Thus, P − c is a Hamilton a-b path in G−{c, d}. Moreover, by Theorem 4.5 such
a path can be found in O(|V (G)| + |E(G)|) time.
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1. Introduction. A Steiner quadruple system of order v, denoted by SQS(v),
is a pair (X,B) where X is a v-set of points and B is a set of 4-subsets of X, called
blocks, with the property that every 3-subset of X is contained in exactly one block
of B. Hanani [4] showed that an SQS(v) exists if and only if v ≡ 2 or 4 (mod 6).

If (X,B) is an SQS(v), then P ⊂ B is a parallel class if P is itself a partition of X.
We say (X,B) is resolvable (and denoted it by RSQS(v)) if B can be partitioned into
r(v) = 1

3

(
v−1
2

)
parts B = P1∪P2∪· · ·∪Pr(v), such that each part Pi is a parallel class.

In this case we shall say that P1 | P2 | · · · | Pr(v) is a resolution of B. It is clear that
a necessary condition for the existence of an RSQS(v) is that v ≡ 4 or 8 (mod 12) or
v = 1 or 2.

In 1977, the only orders for which an RSQS(v) was known were v = 2n, and the
only recursive construction known was the doubling construction (i.e., a construction
of an RSQS(2v) from an RSQS(v)). In 1978, Booth [1] and Greenwell and Lindner [2]
constructed an RSQS(20) and an RSQS(28), thus providing the first examples with
v not a power of two. Further examples were given by Hartman, who constructed
RSQS(q + 1) for all prime powers q ≡ 7 (mod 12) with q ≤ 379 [5] and RSQS(4p) for
p ∈ {19, 43, 127, 199, 223, 271, 1603} [6].

Hartman [5], [7] provided the main recursive theorems for RSQS(v)s. To state
this result, we need the notion of a resolvable quadruple system with a resolvable
subsystem. Let (X,B) be an RSQS(v) with a resolution P1 | P2 | · · · | Pr(v) and
let (Y,A) be an RSQS(u) with a resolution P ′

1 | P ′
2 | · · · | P ′

r(u) such that Y ⊂ X,

A ⊂ B and P ′
j ⊂ Pj for 1 ≤ j ≤ r(u). Then (X,B) is an RSQS(v) with a resolvable

subsystem of order u and will be denoted by RSQS(v : u). Note that subsystems of
orders 1 and 2 are trivially resolvable.

Theorem 1.1 (see [7]). If there exists an RSQS(g+ s : s) where g ≡ s (mod 12),
then there exists an RSQS(3g + s : g + s).

Theorem 1.2 (see [5]). If there exists an RSQS(g + s : s) where g ≡ 0 (mod 12)
and 9s ≥ 5g, then there exists an RSQS(3g + s : g + s).
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In 1987, Hartman used these two recursive constructions and some small designs
to obtain the following theorem.

Theorem 1.3 (see [6]). There exists an RSQS(v) for all v ≡ 4 or 8 (mod 12) with
23 possible exceptions v ∈ {220, 236, 292, 364, 460, 596, 676, 724, 1076, 1100, 1252, 1316,
1820, 2236, 2308, 2324, 2380, 2540, 2740, 2812, 3620, 3820, 6356}.

In this paper, we shall construct RSQSs of the above 23 orders. Thus, Theorem
1.3 can be updated in the following.

Theorem 1.4. If v is a positive integer with v > 2, then an RSQS(v) exists if
and only if v ≡ 4 or 8 (mod 12).

In section 2, we introduce a resolvable H(u, g, 4, 3) and use it to construct RSQSs.
In section 3, we introduce a resolvable candelabra quadruple system and use it to give
recursive constructions for RSQSs. Theorem 1.4 will be proved in section 4.

2. Constructions using resolvable H designs. Mills [9] discussed the exis-
tence of H designs. Let u be a positive integer and let X be a set of points. Let T
= {T1, . . . , Tu} be a partition of X into disjoint sets Ti, which we will call the groups
of T . By a transverse of T we mean a subset of X that meets each Ti in at most one
point. An H design is a triple (X, T ,B), where B is a set of k-element transverses of
T , called blocks, such that each t-element transverse is contained in exactly one of
them. If |T1| = · · · = |Tu| = g, we denote it by H(u, g, k, t). Mills [9] showed that for
u > 3, u �= 5, an H(u, g, 4, 3) exists if and only if ug is even and g(u − 1)(u − 2) is
divisible by 3 and that for u = 5, an H(5, g, 4, 3) exists if g is divisible by 4 or 6.

An H(u, g, 4, 3) is said to be resolvable if its block set can be partitioned into
(u − 1)(u − 2)g2/6 parts Pi such that each Pi is a partition of the point set (called
parallel class). It is easy to see that if a resolvable H(u, g, 4, 3) exists, then ug ≡
0 (mod 4).

For u = 4, we have the following result on resolvable H(4, g, 4, 3).
Lemma 2.1. There is a resolvable H(4, g, 4, 3) for any positive integer g.
Proof. The desired design is based on Z4×Zg with groups {i}×Zg, 0 ≤ i ≤ 3. Let

F = {F1, . . . , Fg} and F ′ = {F ′
1, . . . , F

′
g} be a one-factorization of complete bipartite

graph on {0, 1} × Zg and {2, 3} × Zg with groups as partites, respectively. For any
{x, y} ∈ Fk and {x′, y′} ∈ F ′

k, construct blocks {x, y, x′, y′}, where 1 ≤ k ≤ g. Denote
the set of all these blocks by C. It is easy to see that C is the block set of an H(4, g, 4, 3).
We need only to give its required g2 parallel classes P (i, j), 1 ≤ i, j ≤ g. Each parallel
class P (i, j) comprises all blocks {x, y, x′, y′}, where {x, y} is the kth edge of Fi and
{x′, y′} is the (k+ j)th edge of F ′

i . It is easy to check that all P (i, j) form a partition
of C. It follows that a resolvable H(4, g, 4, 3) exists.

Lemma 2.2. Suppose that there exists a resolvable H(u, g, 4, 3) where u is even.
If there is an RSQS(2gq), then there is an RSQS(ugq).

Proof. Let (X,G,B) be the given resolvable H(u, g, 4, 3) with a resolution P1 | P2 |
· · · | Ps, where s = (u−1)(u−2)g2/6 and G = {G0, . . . , Gu−1}. Let F ′ = {F ′

1, . . . , F
′
u−1}

be a one-factorization of complete graph on Zu since u is even.
First, we construct a resolvable H(u, gq, 4, 3) on X ′ = X ×Zq with the group set

G′ = {G′
i = Gi × Zq : 0 ≤ i ≤ u− 1}.

For each block B ∈ B, construct a resolvable H(4, q, 4, 3) on B × Zq with groups
{x} × Zq, x ∈ B. Such a design exists by Lemma 2.1. Denote its block set by AB

and its parallel classes by PB(r, h), 1 ≤ r, h ≤ q.
Let A = ∪B∈BAB . Then (X ′,G′,A) is an H(u, gq, 4, 3) and its block set A can be

partitioned into (u−1)(u−2)g2q2/6 parallel classes P (j, r, h), 1 ≤ j ≤ s, 1 ≤ r, h ≤ q,
where P (j, r, h) = ∪B∈PjPB(r, h). So, the resultant H(u, gq, 4, 3) is also resolvable.
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Now, we shall convert the above H(u, gq, 4, 3) to an RSQS(ugq).
Since an RSQS(2gq) exists, gq is even. For 0 ≤ i ≤ u−1, let F i = {F i

1, . . . , F
i
gq−1}

be a one-factorization of complete graph on G′
i. For any {x, y} ∈ F a

l and {x′, y′} ∈ F b
l ,

construct blocks {x, y, x′, y′}, where 1 ≤ l ≤ gq − 1 and {a, b} ∈ F ′
i , 2 ≤ i ≤ u − 1.

Denote the set of all these blocks by A′.
For 1 ≤ k ≤ u/2, let the kth edge of F ′

1 be {a, b}. Construct an RSQS(2gq) on
G′

a ∪ G′
b. Such a design exists by assumption. Denote its block set by Ck and its

parallel classes by Q(k, 1), . . . , Q(k, (2gq − 1)(2gq − 2)/6). Let C = ∪1≤k≤u/2Ck.
Then it is easy to check that (X ′,G′,A∪A′∪C) is an SQS(ugq). We need to give

its required parallel classes.
The first (u − 1)(u − 2)g2q2/6 parallel classes are P (j, r, h). For 2 ≤ i ≤ u − 1,

1 ≤ l ≤ gq − 1 and 1 ≤ m ≤ gq/2, each parallel class P ′(i, l,m) comprises all blocks
{x, y, x′, y′}, where {x, y} is the kth edge of F a

l , {x′, y′} the (m + k)th edge of F b
l ,

and {a, b} ∈ F ′
i . Note that all P ′(i, l,m)s form a partition of A′. For 1 ≤ j′ ≤

(2gq − 1)(2gq − 2)/6, let Q′(j′) = ∪1≤k≤u/2Q(k, j′). Then Q′(j′) is a parallel class
on X ′ and all Q′(j′)s form a partition of C. So, Q′(j′), P (j, r, h) and P ′(i, l,m) are
pairwise disjoint and form a resolution of the block set of the resultant SQS. The
result then follows.

The above lemma indicates that resolvable H designs are useful in the construc-
tion of RSQSs. A construction of resolvable H designs is given below.

To construct a resolvable H(v, 2, 4, 3) we shall modify the well-known doubling
construction. Let (V,B) be an SQS(v). Let {F1, . . . , Fv−1} be a one-factorization
of Kv defined on the vertex set V . The doubling construction produces an SQS(2v)
(V × Z2,B1 ∪ B2), where

B1 = {B × {i} : B ∈ B, i ∈ Z2},

B2 = {(E × {0}) ∪ (E′ × {1}) : E,E′ ∈ Fj , 1 ≤ j ≤ v − 1}.

We first remark that the block set B2 can be partitioned into parallel classes. For
convenience, let

Fj = {{a0j , b0j}, {a1j , b1j}, . . . , {a(n−1)j , b(n−1)j}},

where v = 2n. For 1 ≤ j ≤ v − 1 and for 0 ≤ k ≤ n− 1, denote

B(j, k) = {({aij , bij} × {0}) ∪ ({a(i+k)j , b(i+k)j} × {1}) : 0 ≤ i ≤ n− 1},

where i + k is reduced modulo n. It is clear that B(j, k) is a parallel class and also

B2 =
⋃

1≤j≤v−1

⋃
0≤k≤n−1

B(j, k).

We further remark that we can obtain an H(v, 2, 4, 3) based on V ×Z2 with groups
{x}×Z2, x ∈ V . Let D = ∪1≤j≤v−1B(j, 0) and let B3 = B2 \ D. It is easy to see that
B1 ∪ B3 is the block set of the H design. What we want is a resolvable H(v, 2, 4, 3).
Since B3 is the union of parallel classes, we shall pick up some of these parallel classes
together with B1 and reorganize them into new parallel classes. To do this we require
some structure on both B1 and Fj ; here we let V = Z2n and a group G = (Z2n,+)
will be used.
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Let R be the subgroup of order n in G, so

R = {0, 2, 4, . . . , 2n− 2}.

Let Ki (i = 0, 1) be a graph on the vertex set Z2n such that {a, b} is an edge if and
only if a− b and i have the same parity. Then K0 is an (n− 1)-regular graph and K1

is an n-regular graph, K0 ∪K1 = K2n.
For Δ ⊂ Z2n, let Δ + r = {δ + r : δ ∈ Δ}. Denote

dev(Δ) = {Δ + r : r ∈ R}.

For odd d = 1, 3, . . . , 2n − 1, it is obvious that dev({0, d}) is a one-factor of K2n,
denoted by Γ(d), and K1 is decomposed into n one-factors Γ(d) for odd d, 1 ≤ d ≤
2n− 1. Although there may be no such a one-factorization for K0, we can show that
K0 ∪ Γ(d) has a one-factorization under certain conditions.

Lemma 2.3. Let n be a prime > 3. For any odd d, 1 ≤ d ≤ 2n− 1, the n-regular
graph K0 ∪ Γ(d) has a one-factorization.

Proof. For d = 1, we have a one-factor F of K0 ∪ Γ(1):

{0, 1}, {−2, 2}, {−1, 3}, . . . , {−2i, 2i}, {−(2i−1), (2i+1)}, . . . , {n+1, n−1}, {n+2, n}.

Under the subgroup R, F generates n one-factors decomposing K0 ∪ Γ(1).
For odd d �= n, 1 ≤ d ≤ 2n − 1, since gcd(d, n) = 1, the mapping fd : x 	→ dx

is an isomorphism from K0 ∪ Γ(1) to K0 ∪ Γ(d). Denote Fd = fd(F ). Then Fd is a
one-factor and generates a one-factorization of K0 ∪ Γ(d) under R.

For d = n, we construct a one-factor Fn of K0 ∪ Γ(n):

{0, n}, {−1, 1}, . . . , {−i, i}, . . . , {n + 1, n− 1}.

Under R, Fn generates n one-factors decomposing K0 ∪ Γ(n).
Lemma 2.4. Let n be a prime with n > 3 and u be a positive integer with u < n.

Suppose Q1, . . . , Qu are u sets of pairs such that each Qk contains pairs with different
parity and belonging to different Γ(d)s. Suppose that an SQS(2n) on Z2n is generated
by a set of blocks B under R such that B can be partitioned into u parts P1, . . . , Pu

with the property that each Pk ∪Qk is a partition of the set Z2n. If there is a certain
odd d0 such that (∪1≤k≤uQk)∩Γ(d0) = ∅, then there exists a resolvable H(2n, 2, 4, 3).
Moreover, there exists an RSQS(4n).

Proof. We shall show that the block set B1 ∪B3 of the above-mentioned H(2n, 2,
4, 3) can be partitioned into parallel classes.

By Lemma 2.3, K0 ∪ Γ(d0) has a one-factorization. Denote its one-factors by
F2, F4, . . . , F2n−2, Fd0 . For d �= d0, denote Γ(d) = Fd. Thus, {F1, F2, . . . , F2n−1} is a
one-factorization of K2n on Z2n and B3 = ∪1≤j≤2n−1 ∪1≤k≤n−1 B(j, k) as before.

We distinguish B(d, k) if Γ(d) ∩Qk �= ∅. We may order the edges in Γ(d) so that
the (i + k)th edge is {x + 2k, y + 2k} if the ith edge is {x, y}. Denote

Pk = {B × {0}, (B + 2k) × {1} : B ∈ Pk} ∪ Tk,

where

Tk = {(E × {0}) ∪ ((E + 2k) × {1}) : E ∈ Qk}.

Since Pk ∪ Qk is a partition of Z2n, Pk is a parallel class. Under R, Pk generates n
parallel classes. For 1 ≤ k ≤ u, all these nu parallel classes partition the union of B1
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and all distinguished B(d, k)’s. Together with the undistinguished B(d, k)’s we obtain
a resolution of B1 ∪ B3. Thus, the H(2n, 2, 4, 3) is resolvable.

Since B1 ∪ B2 = (B1 ∪ B3) ∪ D and D = ∪1≤j≤2n−1B(j, 0), B1 ∪ B2 is the block
set of an RSQS(4n).

Lemma 2.5. There exists a resolvable H(2n, 2, 4, 3) for n ∈ {5, 7, 13}.
Proof. Apply Lemma 2.4 with n, d0, u, Pk, and Qk as follows.
For n = 5 and d0 = 7, u = 3,

P1 : 0 1 2 6 3 4 5 9 Q1 : 7 8
P2 : 0 2 4 7 1 3 5 8 Q2 : 6 9
P3 : 0 1 3 4 5 6 8 9 Q3 : 2 7

For n = 7 and d0 = 7, u = 5,
P1 : 3 4 10 11 1 6 9 12 2 7 8 13 Q1 : 0 5
P2 : 2 5 9 12 1 6 10 11 0 3 4 13 Q2 : 7 8
P3 : 1 6 8 13 9 10 11 12 2 4 5 7 Q3 : 0 3
P4 : 0 2 4 8 3 5 7 13 Q4 : 1 6 9 12 10 11
P5 : 6 7 10 12 0 1 9 11 Q5 : 2 3 4 13 5 8

For n = 13, d0 = 13 and u = 12 we list the first six Pk and Qk and the other six
are obtained by Pk+6 = {B + 1 : B ∈ Pk} and Qk+6 = {E + 1 : E ∈ Qk}.

P1 : 0 1 2 21 3 4 8 14 5 6 13 19 9 12 16 23
P2 : 0 1 16 24 9 11 14 23 2 4 10 15 3 7 17 22
P3 : 0 1 18 22 4 6 10 13 23 25 7 16 2 5 15 21
P4 : 0 1 4 12 2 3 9 17 10 11 23 7 14 16 18 5
P5 : 0 2 7 12 3 5 14 25 6 9 15 21 4 8 17 22
P6 : 0 2 20 23 22 25 6 17 4 5 7 21 8 9 14 18 10 11 19 3

Q1 : 7 22 11 18 15 10 17 20 25 24
Q2 : 5 8 13 6 19 18 21 12 25 20
Q3 : 3 12 9 20 11 8 17 24 19 14
Q4 : 13 8 15 24 19 20 21 6 25 22
Q5 : 1 10 11 16 13 24 19 18 23 20
Q6 : 1 12 13 16 15 24

Lemma 2.6. If there is an RSQS(v), then there exists an RSQS(pv) for p ∈
{5, 7, 13}.

Proof. Apply Lemma 2.2 with g = 2, u = 2p and q = v/4. Since a resolvable
H(2p, 2, 4, 3) exists from Lemma 2.5, we obtain an RSQS(pv) from an RSQS(v).

3. Constructions using resolvable candelabra quadruple systems. In
this section, we give recursive constructions for RSQSs by using resolvable cande-
labra quadruple systems (CQSs).

CQSs are useful in the construction of SQS(v)s; see, for example, [8]. A CQS of
order v with a candelabra of type (ga1

1 · · · gak

k : s), denoted by CQS(ga1
1 · · · gak

k : s), is a
quadruple (X,S,G,A), where X is a set of v = s+

∑
1≤i≤k aigi points, S is a subset of

X of size s, and G = {G1, G2, . . .} is a partition of X \S of type ga1
1 · · · gak

k . The set A
contains 4-subsets of X, called blocks, such that every 3-subset T ⊂ X with |T ∩ (S ∪
Gi)| < 3 for all i is contained in a unique block and no 3-subset of S ∪Gi is contained
in any block. The members of G are called branches or groups, and S is called the
stem of the candelabra. A CQS will be called uniform if all groups have the same size.

Now, we introduce the notion of resolvability for a CQS. A CQS(gn : s) (X,S,G,A)
is said to be resolvable if its block set can be partitioned into (ng(g + 2s− 3) + n(n−
1)g2)/6 parts with the following two properties: (1) for each group G ∈ G, there are
exactly g(g + 2s− 3)/6 parts, each being a partition of X \ (G ∪ S) (called a partial
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parallel class); (2) there are n(n− 1)g2/6 parts, each being a partition of X (called a
parallel class).

We have an easy example for resolvable CQSs. Let (X ∪ {∞1,∞2},B) be an
RSQS(2n + 2) with a resolution P (1) | · · · | P (n(2n + 1)/3). There are n blocks in
B each containing both ∞1 and ∞2. Denote them by B1, . . . , Bn. Without loss of
generality, we assume that Bi ∈ P (i) for 1 ≤ i ≤ n. Denote P ′(i) = P (i) \ {Bi}. Let
S = {∞1,∞2}, G = {Bi\S : 1 ≤ i ≤ n} and A = B\{B1, . . . , Bn}. Take G as the set of
groups and S as a stem. Then (X,S,G,A) is a resolvable CQS(2n : 2) with a resolution
P ′(1) | · · · | P ′(n) | P (n + 1) | · · · | P (n(2n + 1)/3). We state this in the following.

Lemma 3.1. If there exists an RSQS(2n + 2), then there exists a resolvable
CQS(2n : 2).

The proofs of Hartman’s theorems [7, Theorem 4.5], [6, Theorem 2.1] imply,
respectively, the following two lemmas.

Lemma 3.2. If there exists an RSQS(g+s : s), where g ≡ s (mod 12), then there
exists a resolvable CQS(g3 : s).

Lemma 3.3. If there exists an RSQS(g + s : s), where g ≡ 0 (mod 12) and
9s ≥ 5g, then there exists a resolvable CQS(g3 : s).

From a resolvable CQS, we can obtain an RSQS.

Lemma 3.4 (filling in holes). Suppose that there exists a resolvable CQS(gn : s).
If there is an RSQS(g + s : s), then there exists an RSQS(ng + s : g + s).

Proof. Let (X,S,G,B) be the given resolvable CQS(gn : s), where G = {G1, . . . ,
Gn}. Then the block set B has a partition {P (k, j) : 1 ≤ k ≤ n, 1 ≤ j ≤ g(g + 2s −
3)/6} ∪{P ′(m) : 1 ≤ m ≤ n(n − 1)g2/6} such that (1) for 1 ≤ k ≤ n and 1 ≤ j ≤
g(g + 2s− 3)/6, P (k, j) is a partition of X \ (Gk ∪ S); (2) for 1 ≤ m ≤ n(n− 1)g2/6,
P ′(m) is a parallel class on X.

For 1 ≤ k ≤ n, construct an RSQS(g + s : s) on Gk ∪ S. Such a design exists by
assumption. Denote the set of blocks in the subdesign by C and the set of the other
blocks by Ak. Then there are (g+ s− 1)(g+ s− 2)/6 parallel classes Q(k, j), 1 ≤ j ≤
(g+s−1)(g+s−2)/6, with the property for g(g+2s−3)/6 < j ≤ (g+s−1)(g+s−2)/6
each parallel class Q(k, j) on Gk ∪ S contains a parallel class Q′(j) on S.

Then (X,B∪C∪(∪1≤k≤nAk)) is an SQS(gn+s) and (G1∪S, C∪A1) is a subdesign
RSQS(g + s). We shall resolve this quadruple system.

The first (s− 1)(s− 2)/6 parallel classes are P ′′(j) = (∪1≤k≤n(Q(k, j) \Q′(j)))∪
Q′(j), g(g+2s−3)/6 < j ≤ (g+s−1)(g+s−2)/6. Another ng(g+2s−3)/6 parallel
classes are P ′(k, j) = P (k, j) ∪Q(k, j), 1 ≤ k ≤ n and 1 ≤ j ≤ g(g + 2s− 3)/6. The
other n(n − 1)g2/6 parallel classes are P ′(m), 1 ≤ m ≤ n(n − 1)g2/6. Clearly, these
parallel classes are pairwise disjoint. Further, the number of these parallel classes is
(s − 1)(s − 2)/6 + ng(g + 2s − 3)/6 + n(n − 1)g2/6, which is the required number
of parallel classes in an RSQS(gn + s). Therefore, such an SQS is also resolvable.
Further, since Q(1, j) ⊂ P ′′(j) for g(g + 2s − 3)/6 < j ≤ (g + s − 1)(g + s − 2)/6
and Q(1, j) ⊂ P ′(1, j) for 1 ≤ j ≤ g(g + 2s − 3)/6, so this RSQS(ng + s) is also an
RSQS(ng + s : g + s).

This lemma shows that resolvable CQS is useful for the construction of RSQS.
We give other constructions for resolvable CQS as follows.

Lemma 3.5. Suppose that there exists an RSQS(u + 1). If there is a resolvable
CQS(g3 : s), then there is a resolvable CQS(gu : s).

Proof. Let (X∪{∞},B) be the given RSQS(u) with a resolution P1 | · · · | Pu(u−1)/6.
We shall construct the desired design on Y = (X × Zg) ∪ S, where S ∩ (X × Zg) = ∅
and |S| = s.
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For each block B ∈ B with ∞ �∈ B, construct a resolvable H(4, g, 4, 3) on B ×Zg

with groups {x} × Zg, x ∈ B. Such a design exists by Lemma 2.1. Denote its block
set by CB and its parallel classes by P ′

B(m), 1 ≤ m ≤ g2.

For each block B ∈ B with ∞ ∈ B, construct a resolvable CQS(g3 : s) on
((B\{∞})×Zg)∪S. Such a design exists by assumption. Denote its block set by AB .
Then there is a resolution {PB(x, j) : x ∈ B\{∞}, 1 ≤ j ≤ g(g+2s−3)/6}∪{P ′′

B(m) :
1 ≤ m ≤ g2} such that (1) for x ∈ B \ {∞} and 1 ≤ j ≤ g(g + 2s − 3)/6, PB(x, j)
is a partition of (B \ {x,∞}) × Zg; (2) for 1 ≤ m ≤ g2, P ′′

B(m) is a parallel class on
((B \ {∞}) × Zg) ∪ S.

By [8, Theorem 1.4], (∪B∈B,∞�∈BCB) ∪ (∪B∈B,∞∈BAB) is the block set of a
CQS(gu : s). It remains to give its resolution with the two properties.

For x ∈ X and 1 ≤ j ≤ g(g + 2s − 3)/6, let P (x, j) = ∪B∈B,{x,∞}⊂BPB(x, j).
Then each P (x, j) is a partition of (X \ {x}) × Zg. For 1 ≤ k ≤ u(u − 1)/6 and
1 ≤ m ≤ g2, let P ′(k,m) = (∪B∈Pk, ∞∈BP

′′
B(m)) ∪ (∪B∈Pk, ∞�∈BP

′
B(m)). Then each

P ′(k,m) is a parallel class on Y . It has been checked that all these parallel classes
form the required resolution. It follows that a resolvable CQS(gu : s) exists.

Before we give a tripling construction for resolvable CQS, we first give the con-
struction of a resolvable CQS(63 : 2).

Lemma 3.6. There exists a resolvable CQS(63 : 2).

Proof. We start with a CQS(33 : 1) on Z9∪{∞} with groups Gi = {i, i+3, i+6},
0 ≤ i ≤ 2, and a stem S = {∞}, whose block set B is generated by the following 9
base blocks under the mapping x → x + 3 (mod 9). (Note that such a CQS exists by
[3, Theorem 5.1].)

A∞: 0 1 2 ∞ 0 4 8 ∞ 0 5 7 ∞
A1: 1 3 2 6 1 3 5 7 2 6 5 7
A2: 4 7 5 8 3 6 5 8 3 6 4 7

We consider each base block as an ordered quadruple given above so that each block
B ∈ B is then ordered.

The desired design will be based on X = (Z9∪{∞})×Z2 with groups G′
i = Gi×Z2,

0 ≤ i ≤ 2, and a stem S′ = S × Z2.

For each block B = {x1, x2, x3,∞} ∈ B, construct a resolvable CQS(23 : 2) on
B×Z2 with groups {xi}×Z2, 1 ≤ i ≤ 3, and a stem S′. Such a design exists by Lemma
3.1. Denote its block set by AB . Then AB has a partition {PB(x1), PB(x2), PB(x3)}∪
{PB(r′, r) : r′, r ∈ Z2} such that (1) for 1 ≤ k ≤ 3, PB(xk) contains one block
({x1, x2, x3} \ {xk}) × Z2; (2) each PB(r′, r) is a parallel class B × Z2.

For each block B = {a′, b′, c′, d′} ∈ B with its four elements in the given order
and ∞ �∈ B we shall construct a special H(4, 2, 4, 3) on B×Z2 with groups {x}×Z2,
x ∈ B. Denote

CB(k, i, j) = {(a′, i), (b′, i + k), (c′, j), (d′, j + k)},

CB(k) = {CB(k, i, j) : i, j ∈ Z2}.

Then CB = CB(0) ∪ CB(1) is the block set of the H(4, 2, 4, 3).

Let D = (∪B∈B,∞�∈BCB) ∪ (∪B∈B,∞∈BAB). Then by [10, Theorem 7.1] (X,S′,
{G′

i : 0 ≤ i ≤ 2},D) is a CQS(63 : 2). It remains to show that it is also resolvable. It
should contain 36 parallel classes on X and 7 partial parallel classes on X \ (G′

i ∪ S′)
for any 0 ≤ i ≤ 2.
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For 0 ≤ i ≤ 2 and x ∈ Gi, let P (x) = ∪B∈B,{∞,x}⊂BPB(x). Then P (x) is a
partial parallel class on X \ (G′

i ∪ S′). For r′, r ∈ Z2, the other four partial parallel
classes P ′(i, r′, r) on X \ (G′

i ∪ S′) are obtained as follows.
Denote the three base blocks of A2 by B0, B1, B2 in order. For 0 ≤ i ≤ 2, let

Bi = {3j + Bi : 0 ≤ j ≤ 2} and for r′, r ∈ Z2 let

P ′(i, r′, r) = {CB(1, r′, r) : B ∈ Bi}.

Then P ′(i, r′, r) is a partial parallel class on X \ (G′
i ∪ S′). Note that for 0 ≤ i ≤ 2,

∪r′,r∈Z2
P ′(i, r′, r) = ∪B∈BiCB(1).

Now, we give the required 36 parallel classes P ′′(i, j, r′, r) on X, where 0 ≤ i, j ≤ 2
and r′, r ∈ Z2. Denote the three base blocks of A1 by A0, A1, A2 in order. Let
D0 = A0, D1 = A1 + 3 = 4681, D2 = A2 + 6 = 8324. Let A(i, 0) be as follows and
A(i, j) = {3j + B : B ∈ A(i, 0)} for 0 ≤ j ≤ 2.

A(1, 0) = {0 4 8 ∞, A0, A1, A2},
A(2, 0) = {0 1 2 ∞, B0, B1, B2},
A(0, 0) = {0 5 7 ∞, D0, D1, D2}.

Let

P (1, j, r′, r) = {CA0+3j(0, r
′, r′ + r), CA1+3j(0, r

′ + 1, r), CA2+3j(0, r
′ + r + 1, r + 1)},

P (2, j, r′, r) = {CB0+3j(0, r
′ + r, r′), CB1+3j(0, r, r

′ + 1), CB2+3j(0, r + 1, r′ + r + 1)},

P (0, j, r′, r) = {CD0+3j(1, r
′, r′+r), CD1+3j(1, r

′+r+1, r′), CD2+3j(1, r
′+1, r′+r+1)}.

Let P ′′(i, j, r′, r) = PB(r′, r) ∪ P (i, j, r′, r), where B ∈ A(i, j) and ∞ ∈ B. Since in
each A(i, j), each element occurs twice if it is not in the block containing ∞, each
P ′′(i, j, r′, r) is a parallel class on X. For 0 ≤ i, j ≤ 2, let A(i, j)′ = {B ∈ A(i, j) :
∞ �∈ B}. Note that for 0 ≤ j ≤ 2, ∪r′,r∈Z2

P (i, j, r′, r) = ∪B∈A(i,j)′CB(0) for i ∈ {1, 2}
and ∪r′,r∈Z2

P (0, j, r′, r) = ∪B∈A(0,j)′CB(1). Since ∪0≤j≤2(A(0, j)′ ∪ Bj) = {B ∈ B :
∞ �∈ B}, we have⋃

B∈B,∞�∈B

CB(1) =
⋃

0≤j≤2

⋃
r′,r∈Z2

(P ′(j, r′, r) ∪ P (0, j, r′, r)).

We have proved that D has the resolution {P (x) : x ∈ Z9} ∪ {P ′(i, r′, r) : 0 ≤
i ≤ 2, r′, r ∈ Z2} ∪ {P ′′(i, j, r′, r) : 0 ≤ i, j ≤ 2, r′, r ∈ Z2}, so the CQS(63 : 2) is
resolvable.

Lemma 3.7. If there is a resolvable CQS(g3 : s) for g ≡ s ≡ 0 (mod 2), then
there exists a resolvable CQS((3g)3 : s).

Proof. We keep the notation of Lemma 3.6 and we adapt the proof to the present
situation. Let g = 2m and s = 2n. The desired design will be based on Y =
(Z9 ×Z2 ×Zm)∪ ({∞}×Z2 ×Zn) with groups G′′

i = G′
i ×Zm, 0 ≤ i ≤ 2, and a stem

S′′ = S′ × Zn.
For each block B = {x1, x2, x3,∞} ∈ B, construct a resolvable CQS(g3 : s) on

({x1, x2, x3} ×Z2×Zm)∪S′′ with groups {xi}×Z2×Zm, 1 ≤ i ≤ 3 and a stem S′′. Such
a design exists by assumption. Denote its block set by A′′

B . Then A′′
B has a partition

{PB(xi, �) : 1 ≤ i ≤ 3, 1 ≤ � ≤ g(g+2s−3)/6}∪{PB(r′, r, h) : 1 ≤ h ≤ m2, r′, r ∈ Z2}
such that (1) for any k and �, PB(xk, �) is a partition of ({x1, x2, x3}\{xk})×Z2×Zm;
(2) each PB(r′, r, h) is a parallel class on ((B \ {∞}) × Z2 × Zm) ∪ S′′.

For each block B ∈ B and ∞ �∈ B, we shall construct a special H(4, g, 4, 3) on
B × Z2 × Zm with groups {x} × Z2 × Zm, x ∈ B. Denote its block set by C′′

B , which
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can be obtained as follows. Note that CB is the block set of the special H(4, 2, 4, 3)
on B × Z2. For any A ∈ CB , from Lemma 2.1 we have a resolvable H(4,m, 4, 3) on
A × Zm with groups {a} × Zm, a ∈ A. Denote its block set by B(A) and the m2

parallel classes by P (A, h), 1 ≤ h ≤ m2. Then we have

C′′
B =

⋃
A∈CB

B(A).

Let D′′ = (∪B∈B,∞�∈BC′′
B) ∪ (∪B∈B,∞∈BA′′

B). Then by [10, Theorem 7.1] (Y, S′′,
{G′′

i : 0 ≤ i ≤ 2},D′′) is a CQS((3g)3 : s). It remains to show that it is also resolvable.
It should contain 9g2 parallel classes on Y and g(3g+2s−3)/2 partial parallel classes
on Y \ (G′′

i ∪ S′′) for any i, 0 ≤ i ≤ 2.
For 1 ≤ � ≤ g(g+2s−3)/6, 0 ≤ i ≤ 2, x ∈ Gi, let P (x, �) = ∪B∈B,{x,∞}⊂BP (x, �).

Then P (x, �) is a partition of Y \ (G′′
i ∪S′′). The other g2 partial classes P ′(i, r′, r, h)

on Y \ (G′′
i ∪ S′′) can be obtained from P ′(i, r′, r), where

P ′(i, r′, r, h) =
⋃

A∈P ′(i,r′,r)

P (A, h)

and r′, r ∈ Z2, 1 ≤ h ≤ m2.
Now, we give the required 9g2 parallel classes P ′′(i, j, r′, r, h) on Y . For 0 ≤ i, j ≤

2, r′, r ∈ Z2, and 1 ≤ h ≤ m2, denote P (i, j, r′, r, h) = ∪A∈P (i,j,r′,r)P (A, h) and let

P ′′(i, j, r′, r, h) = PB(r′, r, h) ∪ P (i, j, r′, r, h),

where B ∈ A(i, j) and ∞ ∈ B. Since PB(r′, r, h) is a partition of ((B \ {∞}) × Z2 ×
Zm)∪S′′ and P (i, j, r′, r, h) is a partition of (Z9 \B)×Z2 ×Zm, then P ′′(i, j, r′, r, h)
is a parallel class on Y .

Since C′′
B = ∪A∈CB

B(A), D′′ has the resolution {P (x, �) : x ∈ Z9, 1 ≤ � ≤ g(g +
2s− 3)/6} ∪ {P ′(i, r′, r, h) : 0 ≤ i ≤ 2, r′, r ∈ Z2, 1 ≤ h ≤ m2} ∪ {P ′′(i, j, r′, r, h) : 0 ≤
i, j ≤ 2, r′, r ∈ Z2, 1 ≤ h ≤ m2}, and the CQS((3g)3 : s) is resolvable.

Lemma 3.8. If there is an RSQS(v), then there exists an RSQS(6v − 4).
Proof. We start with an RSQS(v). We apply Lemma 3.5 with the known re-

solvable CQS(63 : 2) in Lemma 3.6. Then we obtain a resolvable CQS(6v−1 : 2).
Further, apply Lemma 3.4 with the known RSQS(8 : 2). Then we obtain an RSQS
(6v − 4).

4. Small designs. In this section, we construct the desired 23 RSQSs.
Lemma 4.1. There exists an RSQS(v) for v ∈ {236, 596, 1100, 1820, 2324, 2540,

3620, 6356}.
Proof. Since there exists an RSQS((v+4)/6) by Theorem 1.3, the conclusion then

follows from Lemma 3.8.
Lemma 4.2. There is an RSQS(v) for v ∈ {220, 364, 460, 676, 1316, 2236, 2380,

2740, 3820}.
Proof. For v ∈ {220, 460, 2380, 2740, 3820}, the result follows from Lemma 2.6

with p = 5 and the known RSQS(v/p) in Theorem 1.3.
For v ∈ {364, 1316}, the result follows from Lemma 2.6 with p = 7 and the known

RSQS(v/p) in Theorem 1.3.
For v ∈ {676, 2236}, the result follows from Lemma 2.6 with p = 13 and the

known RSQS(v/p) in Theorem 1.3.
Lemma 4.3. There exists an RSQS(v) for v ∈ {724, 1076, 1252, 2308, 2812}.
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Proof. For v = 724 we start with an RSQS(20 : 4), which exists by Theorem
1.3. By Lemma 3.2 a resolvable CQS(163 : 4) exists. Then by Lemma 3.7 there is
a resolvable CQS(483 : 4), which together with an RSQS(16) and an application of
Lemma 3.5 (take g = 48, s = 4 and u = 15) gives a resolvable CQS(4815 : 4). Fill the
holes of this CQS with an RSQS(52 : 4) to get an RSQS(724).

For v = 1076 we start with an RSQS(20 : 8) in [7]. By Theorem 1.2 there is an
RSQS(44 : 8). Since there is an RSQS(44 : 4), by Lemma 3.2 there is a resolvable
CQS(403 : 4). Applying Lemma 3.4 gives an RSQS(124 : 44), which together with an
RSQS(44 : 8) leads to an RSQS(124 : 8). From the above resolvable CQS(403 : 4) we
can also obtain a resolvable CQS(1203 : 4) by Lemma 3.7. Further, applying Lemma
3.4 with the known RSQS(124 : 4) in Theorem 1.3 yields an RSQS(364 : 124), which
together with the above RSQS(124 : 8) gives an RSQS(364 : 8). Then we apply
Theorem 1.1 to give an RSQS(1076).

For v = 1252 we start with an RSQS(8), which exists by Theorem 1.3. Applying
the doubling construction yields an RSQS(16 : 8). Since there is an RSQS(52 : 16)
in [6], there is an RSQS(52 : 8). From the above resolvable CQS(483 : 4) we may
apply Lemma 3.4 to give an RSQS(148 : 52). So, there are an RSQS(148 : 16) and an
RSQS(148 : 8). By Lemma 3.2 there is an CQS(1403 : 8). Further, applying Lemma
3.4 gives an RSQS(428 : 148), which together with an RSQS(148 : 16) leads to an
RSQS(428 : 16). It follows from Lemma 3.2 that a resolvable CQS(4123 : 16) exists.
An RSQS(1252) is then obtained by Lemma 3.4.

For v = 2308, since there is an RSQS(260 : 4), by Lemma 3.2 there is a resolvable
CQS(2563 : 4). Applying Lemma 3.7 gives a resolvable CQS(7683 : 4). We then apply
Lemma 3.4 with the known RSQS(772 : 4) to obtain an RSQS(2308).

For v = 2812, by Lemma 2.5 there is a resolvable H(10, 2, 4, 3). Applying Lemma
2.2 with q = 19, we obtain an RSQS(380). From the proof of Lemma 2.2 such
an RSQS(380) contains a subdesign RSQS(76), i.e., an RSQS(380 : 76) exists. By
Lemma 3.2 we have a resolvable CQS(3043 : 76). Applying Lemma 3.4 gives an
RSQS(988 : 76). From the last CQS we apply Lemma 3.7 to obtain a resolvable
CQS(9123 : 76). Then, an RSQS(2812) exists by Lemma 3.4.

Lemma 4.4. There exists a resolvable H(146, 2, 4, 3) and an RSQS(292).

Proof. Apply Lemma 2.4 with n = 73, d0 = 73, and u = 56. We list three
pairs of (Pk, Qk) below. For k = 2, the pair generates 9 pairs under the mapping
fi : x 	→ 5ix for 0 ≤ i ≤ 8. For k = 3, the pair generates 18 pairs under the mapping
fi : x 	→ 5ix for 0 ≤ i ≤ 17. We then obtain 28 pairs of (Pk, Qk). Under the mapping
δ : Δ 	→ Δ + 1, they lead to the other 28 pairs.

P1 contains the following 24 base blocks:

0 2 18 104 1 11 91 83 4 54 16 122 3 107 63 9 6 88 14 36
20 26 74 40 5 35 129 105 8 12 44 70 7 27 41 25 10 110 34 100
30 48 46 90 21 111 101 29 66 78 28 106 15 75 117 69 60 68 132 38
64 118 112 98 89 67 37 113 50 86 82 24 45 79 59 61 56 80 126 136
13 131 53 17 19 81 139 31 57 97 125 93 77 51 135 39

P2 contains the following 30 base blocks:

0 1 61 62 108 120 122 134 2 85 101 38 138 140 24 26 3 30 44 71
8 91 28 18 136 110 130 104 14 16 20 22 94 114 82 102 12 32 72 92
74 76 84 86 96 116 124 144 80 100 34 54 17 119 89 45 40 42 68 70
11 65 27 81 25 127 139 95 7 58 52 103 141 49 129 37 19 73 143 51
4 5 6 78 135 21 75 107 9 36 63 109 93 121 77 105 98 99 125 126
13 64 115 137 15 117 29 131 33 87 59 113 97 53 123 79 118 55 23 106
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P3 contains the following 32 base blocks:
0 1 3 4 2 29 83 110 6 7 11 12 8 35 143 24 88 89 129 130
16 17 25 26 18 45 115 142 30 31 41 42 28 55 33 60 82 109 107 134
48 49 63 64 46 73 13 40 58 59 75 76 44 71 65 92 98 99 117 118
10 37 53 80 78 105 23 50 90 91 121 122 66 93 5 32 102 103 139 140
14 15 21 22 108 135 69 96 84 85 131 132 54 81 9 36 86 87 137 138
38 39 51 52 56 57 111 112 94 95 119 120 20 47 79 106 114 141 43 70
100 127 77 104 34 61 97 124
Q1 contains the following 25 pairs:

22 23 32 43 33 42 47 52 49 62 55 58 65 72 71 92
76 119 84 123 87 134 94 143 95 128 96 127 99 140 103 138
109 124 85 130 114 133 115 142 116 141 120 137 121 144 73 102
108 145
Q2 contains the following 13 pairs:

10 31 35 46 39 48 41 56 43 50 47 60 57 88 66 67 69 132
83 112 90 133 111 128 142 145
Q3 contains the following 9 pairs:

19 62 27 68 67 72 74 101 113 116 123 136 125 126 128 145
133 144
The 23 undecided orders in Theorem 1.3 have been solved in Lemmas 4.1–4.4.

By Theorem 1.3, we have proved Theorem 1.4.
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BOUNDS ON THE TRAVEL COST
OF A MARS ROVER PROTOTYPE SEARCH HEURISTIC∗
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Abstract. D∗ is a greedy heuristic planning method that is widely used in robotics, including
several Nomad class robots and the Mars rover prototype, to reach a destination in unknown terrain.
We obtain nearly sharp lower and upper bounds of Ω(n logn/ log logn) and O(n logn), respectively,
on the worst-case total distance traveled by the robot, for the grid graphs on n vertices typically
used in robotics applications. For arbitrary graphs we prove an O(n log2 n) upper bound.

Key words. robot travel, D∗, grid graph, girth, planar graph, search heuristic, Mars rover,
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1. Introduction. D∗ is a greedy heuristic planning method that is widely used
to direct a robot in a terrain with initially unknown obstacles from given start to given
goal coordinates. D∗ always moves the robot along a shortest presumed unblocked
path from its current coordinates to the goal coordinates, presuming that as-yet-
unobserved portions of the terrain have no obstacles. It stops when it has reached the
goal coordinates or determined that this is impossible. If movement along the current
path is blocked by an obstacle, the shortest presumed unblocked path changes and
D∗ needs to replan. This can be implemented efficiently [11] and easily [4].

In robotics applications, the continuous terrain is usually discretized into a grid.
Robot movement then corresponds to traversal from vertex to adjacent vertex in a
grid graph. The graph is known in the sense that the vertices (grid cells) and edges
are known. Impassable features of the terrain, which determine the graph’s structure,
may be known via satellite reconnaissance, prior exploration, or mapping. The graph
is unknown in the sense that vertices of the graph may be blocked by debris, crevices,
or other obstacles. An obstacle is not known until the robot’s sensors detect it, for
example, as the robot attempts to move to it.

D∗ is also used in other AI applications to reach a desired goal state from an
initial starting state [13, 3, 7, 14]. In these applications, and in some terrains such
as buildings, the graph may be a Voronoi or other type of graph rather than a grid
graph. In all of these applications the vertices can be recognized—in the case of
robot movement, by the physical coordinates; in other planning problems by state
identifiers.
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The D∗ algorithm has some advantages over depth first search (DFS) in practice,
including ease of replanning if the robot is moved to a new location, empirically good
average performance, and effective use of partial terrain information [6]. D∗ has been
used outdoors on an autonomous high-mobility multiwheeled vehicle that navigated
1,410 meters to the goal location in an unknown area of flat terrain with sparse mounds
of slag as well as trees, bushes, rocks, and debris [13]. As a result of this demonstration,
D∗ is now widely used in the DARPA unmanned ground vehicle (UGV) program, for
example, on the UGV Demo II vehicles. D∗ is also being integrated into a Mars
rover prototype (according to Anthony Stentz), tactical mobile robot prototypes, and
other military robot prototypes for urban reconnaissance [3, 7, 14]. Furthermore, it
has been used indoors on Nomad 150 mobile robots in robot-programming classes to
reach a goal location in unknown mazes [9, 8]. D∗ has also been used as the key
method in various robot-navigation software [2, 12].

Given its simple form and many applications it would be quite interesting to know
analytically how well D∗ performs. The measure by which we assess performance here
is the worst-case distance traveled by the robot. We focus on travel distance in the
terrain rather than travel planning time because robots move so slowly that the task-
completion times are completely dominated by their travel times.

For the rest of the paper, n denotes the number of vertices in the terrain graph
G = (V,E). In practice, D∗ seems to perform reasonably well and, in many domains,
exhibits a performance that is linear in n [6], i.e., the same order as DFS, but it is
not known whether this is due to properties of the test terrains or whether the plan-
execution times are indeed guaranteed to be good on any terrain. However, in [6]
it was also shown that for arbitrary graphs the performance is Ω(n log n/ log log n).
Here we prove the same Ω(n log n/ log log n) bound for grid graphs. The proof is a
considerably modified version of the construction in [6]. This establishes that D∗

has superlinear worst-case performance on the class of graphs used in real robotics
applications.

The best upper bound on D∗ previously known was O(n3/2) [5]. We prove an
upper bound of O(n log n) for planar graphs. This leaves only a log logn gap, and
establishes that D∗ is only slightly inferior to DFS in this worst-case performance
sense. As mentioned above, D∗ is also employed for other applications in which the
graph may not possess the grid structure. For arbitrary graphs we prove an upper
bound of O(n log2 n). Thus D∗ has a rather good performance guarantee in general.

In sections 2–4 we assume that the robot has tactile (short-range) sensors. In
section 5.1 we extend the results to long-range sensors. In particular, the lower bound
applies to any line-of-sight sensor, and the upper bounds apply to all sensor types.
In section 5.2 we extend results to the case where both vertices and edges may be
blocked.

2. Definitions. We assume that the robot is equipped with a tactile (short-
distance) sensor, omni-directional, point-sized, and capable of error-free motion and
sensing. The sensors on board the robot uniquely identify its location. We model the
terrain as a graph. Vertices in the graph represent locations in the terrain. Traversing
an edge in the graph corresponds to traveling from one location to an adjacent location
in the terrain. We are interested in the quality of the plans determined by D∗ as a
function of the number of vertices of the graph.

With these assumptions, we can formalize the behavior of D∗ as follows. We call a
graph H = (V,E) vertex-blocked by B ⊂ V if B is the set of blocked vertices, vertices
that cannot be traversed. On a finite undirected graph H = (V,E) vertex-blocked by
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Fig. 1. Reference [6]’s example graph for lower bound.

B, a robot has to reach a designated goal vertex t from a start vertex s. D∗ always
moves the robot from its current vertex along a shortest presumed unblocked path to
the goal vertex. A presumed unblocked path is one that contains no vertices which
are known to be blocked. Initially, the robot has no information about B except that
s �∈ B. If the robot attempts to move to a blocked vertex v, it learns that v ∈ B.
D∗ then recomputes a new presumed unblocked path to begin the next iteration. D∗

terminates when the robot reaches the goal vertex or there are no presumed unblocked
paths to the goal vertex, in which case the goal vertex is unreachable from the start
vertex. Additional notation to formalize the information state of the robot is given
in section 4.1.

3. D∗: Lower bound on grids. We now prove a lower bound on the worst-case
travel distance of D∗ on vertex-blocked grids. First, we review the construction of
[10, 6], which employs the key idea of tricking the robot into traversing the same long
path back and forth many times. Second, we give an overview of how to transform
that example into a grid without losing the key idea. Third, we explain exactly how
the grid is constructed. Last, we analyze the worst-case travel distance of D∗ on our
grid graph, proving the lower bound.

3.1. Making the robot go to and fro.1 The analysis of [10, 6] proved that
the worst-case travel distance of D∗ is Ω( n logn

log log n ) steps on vertex-blocked graphs

H = (V,E). This lower bound is achieved with graphs of the structure shown in
Figure 1. We now sketch the main idea of its construction, but with our own “rim-and-
spoke” terminology, in order to introduce our much more complex grid construction.

The graph of Figure 1 consists of a long horizontal path of length dd (where d
is an integer parameter), which we call the “rim,” and a set of “spokes” of varying
lengths attached to the rim at various vertices. The uppermost “tip” vertex of each
spoke is blocked and connected to the goal vertex by an edge. Note that the edges
from the tips to the goal are physically unrealistic edges, because they allow the robot

1

A charming old bear at the zoo
Could always find something to do

When tired, you know
Of the walk to and fro

He’d reverse, and walk fro and to.
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to move from any tip to the goal in one step. The possible spoke lengths are
∑h

i=0 d
i

for the nonnegative integers h = 0 · · · d − 1. We refer to a spoke of length
∑h

i=0 d
i

as a “class h spoke.” Longer spokes are spaced farther apart from each other than
short spokes. In particular, the vertices where class h spokes attach to the rim have
distance dh+1 from each other. Hence, if the robot is at a vertex where a class h spoke
attaches to the rim, then it is shorter to go to the goal along the rim to the next class
h spoke than it is to go via any class h + 1 spoke.

In particular, in Figure 1 there are three classes of spokes: 0, 1, and 2. The robot
does not know that the shortest unblocked path to the goal from starting vertex v0

is to traverse the rim to v27, then the long class 2 spoke, and reach the goal vertex.
Instead, the robot tries to reach the goal through the shortest presumed unblocked
path via the short class 0 spoke at v3, then the class 0 spoke at v6, and so on until
it tries the class 0 spoke at the right end of the rim, v27. From there, the shortest
presumed unblocked path to the goal is via the class 1 spoke at v18. Thus the robot
is led to traverse the rim from right to left, checking each class 1 spoke. Finally, the
robot traverses the rim a third time, reaching the goal via the class 2 spoke.

In general, the robot starts at vertex v0; it traverses the rim from left to right,
checking the class 0 spokes for a path to the goal vertex; then it returns along the rim
from right to left, checking class 1 spokes for a path to the goal vertex, and so on.
Each class forces the robot to traverse the rim once. Thus the total travel distance is
≥ dd+1. A computation shows that there are O(dd) vertices in the graph, and hence
the total travel distance is Ω( n logn

log log n ).

3.2. Conceptual overview. We wish to construct a grid that captures the key
idea from the previous analysis: to fool the robot into traversing a lengthy rim many
times by visiting all the class h spokes before visiting any class h+1 spokes. However,
the graph topology of the previous analysis cannot directly be embedded into a grid;
the goal vertex must be simultaneously adjacent to the ends of many spokes of greatly
different lengths, which moreover are placed at great distances from each other. In
a grid, on the other hand, each cell is adjacent to at most four cells, and adjacent
cells are physically close. We use several ideas to modify the graph topology of the
previous construction to be able to embed it into a grid. A conceptual sketch of these
ideas is shown in Figure 2.

1. Attach each spoke at a separate vertex to the rim (Figure 2a). This eliminates
the problem of a vertex on the rim being adjacent to too many other vertices.
As long as longer class spokes are spaced far enough apart, the robot is still
fooled into repeatedly traversing the rim.

2. Remove the very short spokes (Figure 2b). We must place the goal vertex at
some distance D from the rim, and we thus cannot construct spokes of length
less than D. In particular, we only use classes 0.8d to 0.9d instead of using
classes 0 to d.

3. Move the spokes physically closer together, but maintain their distances from
each other along the rim. We do this by “squeezing” the rim into an accordion
shape (Figure 2c). In particular, the sections of the rim between spokes get
bent into long loops, which we call “columns.”

4. Redesign the spokes so that they all have the same physical height, while
maintaining their original lengths (Figure 2c). In particular, build a pair
of blocked walls of the same height, with some space between them. Put a
twisty path of the appropriate length in between the walls.

5. Once the spokes are fairly close and of equal height, bend the rim into part of
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a) attach spokes at distict locations on the rim (not to scale)

= blocked vertex = unblocked vertex

b) remove short spokes

= blocked vertex = unblocked vertex

start

goal

start

goal

c) fold the rim and tall spokes

d) curve the rim

= blocked vertex = unblocked vertex

goal

start

goalstart

= blocked vertex = unblocked vertex

Fig. 2. Steps of the transformation.

a circular arc, pushing the tips of the spokes together towards the goal vertex
(Figure 2d). It is not possible to squeeze too many distinct vertices into a
small area on a grid, but this problem is solved by blocking the paths to the
goal vertex a bit before the goal vertex.

3.3. Construction. Place the goal vertex g at (0, 0). For some sufficiently large
integer z ≡ 0(mod 10), define the outer rim R such that

R :=
{
(x, y) ∈ Z≥0 × Z≥0 : z0.7z ≤ x + y ≤ z0.7z + 1

}
.

The rim is a long diagonal path from (0, z0.7z) to about (z0.7z, 0). Note that the rim is
two concentric quarter circles in the “taxicab” metric L1, so each point in R is within
1 of z0.7z from g. Along the rim, there will be “spoke-base points” and “column-base
points” alternating. (Note: to avoid notational clutter, we omit the “floor” operation
notation. Here, for example, z0.7z means �z0.7z	. )

For each i ∈ {0.8z, . . . , 0.9z}, create zz−i−1 spokes of class i. A conceptual figure

is given in Figure 3. Let S := z0.2z−z0.1z−1

z−1 be the number of total spokes. For
i ∈ {1, . . . , S}, define the ith spoke-base, bi, such that

bi :=

(
z0.7z

S
i +

z0.7z

2S
, z0.7z − z0.7z

S
i− z0.7z

2S

)
.

Therefore bi ∈ R.
From each spoke-base, construct a twisty path towards g. Each path has length

2zj for some j ∈ {0.8z, 0.8z+1, . . . , 0.9z}. We call such a path of length 2zj a “spoke
of class j.” The graph will contain zz−j−1 spokes of class j, for each j.

The taxicab distance between two adjacent spoke bases will be 2z0.7z/S, but to
make the construction’s key idea work, these distances must be longer for the robot
as it moves in the graph. We increase the graph distances by inserting detour loops
into the rim. Lemma 3.1 makes this idea precise.
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column

rim
spoke

height

(part of rim)

wall
goal

vertex

Fig. 3. Conceptual figure with two spoke classes.

Fig. 4. A column of height 3.

Lemma 3.1. Given a function t : {1, . . . , S} → Z≥0 such that t(i) − t(i − 1) ≥
2z0.7z

S+1 ∀i, it is possible to modify R using only cells above R in the plane, such that
∀j > i, traveling along R from bi to bj takes between (t(j)−t(i)−4) and (t(j)−t(i)+4)
steps.

Proof. For i ∈ {0, . . . , S}, define the ith column-base, ci such that

ci :=

(
z0.7z

S
i, z0.7z − z0.7z

S
i

)
.

Therefore ci ∈ R. At each of the column-bases, remove the point itself and the point
above it from the rim and add two paths traveling upwards, connected at the top.
So, if the column-base is at (x, y), remove (x, y) and (x, y + 1) from R and add one
path from (x − 1, y + 2) to (x − 1, y + 3 + h) and another path from (x + 1, y) to
(x + 1, y + 3 + h), with a connecting point at (x, y + 3 + h). This increases the steps
needed to cross this point in the rim by 2h. We call such a construction a “column
of height h.” A column of height 3 is illustrated in Figure 4.

We now define an iterative algorithm for building the columns. For a fixed i,
assume the previous columns have been built and let D be the current distance from b1
to bi. Let h := � t(i)−t(1)−D

2 	 and build a column of height h at ci−1. This ensures that
the distance from b1 to bi is now t(i)− t(1), up to round-off error. Repeat the process
for all later i. (Note that the recalculation from t(1) here prevents accumulation of
round-off error.)

The fourth idea is to build each spoke as a twisty path of the appropriate length.
Each spoke consists of a wedge of sufficient area. The spokes do not overlap, except
in a small unblocked triangular region near the goal vertex, within which all paths
are direct.

Lemma 3.2. Given a function l : {1, . . . , S} → Z≥0 such that z0.7z ≤ l(i) ≤ zz−1,
∀i, it is possible to construct spokes from bi such that the distance from bi to t is
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Fig. 5. The hypothetical path Pi, along with the shortening necessary to set the path length to l(i).

between (l(i) − 4) and (l(i) + 4).
Proof. We would like to connect each of the spokes to g. However, the max degree

of a grid prevents this. Therefore we add a triangle T such that

T :=
{

(x, y) : x, y ∈ Z≥0

∧
x + y ≤ z0.5z

}
.

We may then simply connect the spokes to T . For each i ∈ {1, . . . , S}, define the ith
“tip” vertex ti such that

ti :=

(
z0.5z

S
i +

z0.5z

2S
, z0.5z − z0.5z

S
i− z0.5z

2S

)
.

Therefore ti ∈ T . This will be the point that the ith spoke connects to.
To construct the paths of length l(i) for each i, construct a hypothetical path Pi

from bi of excessive length. Then, when building the actual graph, simply include as
much of Pi as necessary before the graph takes a direct path to ti, as illustrated in
Figure 5. The point where the graph ignores Pi and instead switches to a direct path
to ti depends on l(i). We block the cell just prior to ti on the path.

Building Pi takes a bit of construction. We use Euclidean rays from g to partition
the space between R and g into areas Ai and then create many path segments running
parallel to R called “levels.” Pi runs up and down these levels, traveling back and
forth to increase length. We define a space Ci to give room to connect one level to
the next without coming close to the rays. This is all illustrated in Figure 5. The
triangle in the lower left corner represents a region of unblocked cells, bordered by
the ti. Since all of the twisty paths have become direct paths by the time they reach
their ti, and the blockages occur prior to reaching ti, the spokes may overlap within
this unblocked region.

For each i ∈ {0, . . . , S}, define the ith “ray” ri to be the Euclidean line from

( z
0.5z

S i, z0.5z− z0.5z

S i) to ci. Hence ri goes from T to R. For each i ∈ {1, . . . , S}, define
the ith area Ai to be the integer points between ri−1 and ri. Define the ith cushion
Ci such that

Ci :=
{

(x, y) : x, y ∈ Z≥0

∧
d[((x, y), ri)] ≤ 8

}
.

For each i ∈ {1, . . . , z0.3z − 2} and each j ∈ {1 . . . , 0.1z0.7z}, define the level li,j
such that

li,j :=
{
(x, y) : z0.7z − 6j ≤ x + y ≤ z0.7z − 6j + 1

}⋂
(Ai − Ci − Ci+1).



438 A. MUDGAL, C. TOVEY, S. GREENBERG, AND S. KOENIG

Use levels {li,0, . . . , li,0.1z0.7z} to make Pi, using Ci and Ci+1 to connect the levels.
Ci is large enough to let Pi avoid crossing the ray.

The distance between ci and ci+1 is 2z0.7z

S ≥ 2z0.3z. The levels are parallel and
contained in a Euclidean triangle. The smallest is only one tenth of the way to the
point, so each level is longer than z0.3z. There are 0.1z0.7z levels, so the total length
of Pi is at least 0.1zz.

To build the actual spoke, we define a function s(p) for all points p ∈ Pi, such that
s(p) is the distance from bi to t if we were to shorten Pi at p and take a direct path to
ti from p. (Note that this definition involves the actual distance in the graph, avoiding
accumulated round-off error.) Let Si be the point in Pi that minimizes |s(Si) − l(i)|.
For any two points p, p′ in the same level, if d(p, p′) = 2, then |s(p) − s(p′)| = 2,
since d(p, t) = d(p′, t). Therefore, if Si is contained in one of the levels, shortening
Pi at Si gives a spoke within 2 of l(i). If Si is contained in one of the cushions, we
may be able to create an even more precise spoke. For any adjacent c, c′ ∈ Ci ∩ Pi,
|s(c) − s(c′)| ≤ 1, as the path from c to ti likely passes through c′. Hence, regardless
of whether Si appears in a level or in a cushion, we exceed the precision required by
Lemma 3.2.

To finally build our graph, define a function p[i, j] such that

p[i, j] := zi+1j +
z0.8z+1

0.1z + 1
(i− 0.8z).

This will be the “position” of the jth spoke of class i. We order the spokes by this
position function, so the first spoke is the one with the lowest position, the second is
the one with the second lowest position, and so forth.

Put a blocked cell near the end of each spoke except one of class 0.9z. Hence the
robot will be tempted by each of the spokes of class 0.8z in turn, following the rim
for about zz steps. The robot will then turn around and travel up the rim, tempted
only by the spokes of the next class 0.8z + 1, again taking about zz steps, and so on
until it reaches the goal via the unblocked spoke of class 0.9z.

Define the length function l such that l[k] := 2zi, where i is the class of the kth
spoke. We use this l with Lemma 3.1.

Define t such that t[k] = p[i, j], where i and j are the coordinates for the kth
spoke. We use this t with Lemma 3.2.

3.4. Analysis. Note: here we prove the lower bound for tactile (short-range)
sensors. In section 5.1 we show that the theorem applies to all line-of-sight sensors as
well.

Theorem 3.3. The worst-case travel distance of D∗ on vertex-blocked grids
H = (V,E) is Ω( n logn

log log n ) steps.

Proof. The distance the robot must travel to find a spoke of class i and then
travel to g is at most zi+1 +2zi steps. For any j > i, simply traveling a spoke of class
j will take at least 2zj ≥ 2zi+1 steps. Hence the robot will walk to the smallest class
spoke available, find a blocked cell, and go to the next of that class, traversing the
rim.

By the placement of the spokes, notice that ∀h, h′ ∈ {0.8z, . . . , 0.9z}, if h < h′,
then the rightmost h-class spoke is to the right of the rightmost h′-class spoke. Also
the leftmost h-class spoke is to the left of the leftmost h′-class spoke. Hence, after
visiting every spoke of class i, the robot turns around and finds the first spoke of class
i + 1. Each time the robot traverses the rim, it goes from the leftmost spoke of class
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Fig. 6. When the blockage at b of Pi is detected, d(2, t) increases by at most d(b−, b+)H
i+1−2 =

4.

i to the rightmost spoke of class i. This distance is more than zz − 2zi−1 = Ω(zz).
The total travel distance (just on the rim) is therefore at least z0.1zΩ(zz) = Ω(zz+1).

On the other hand, there are θ(zz) vertices in the rim (including the columns).
There are O(z0.5z) vertices in T . In class i there are O(zz−i−1) spokes, each with
O(zi) vertices, so each class contains O(zz−1) vertices. There are 0.1z classes, so
there are O(zz−.9) vertices in the spokes. Therefore the total number of vertices in
the graph is θ(zz). If n = θ(zz), then logn = θ(z log z) and log logn = θ(log z). Then
the total distance is Ω(zz+1) = Ω(nz) = Ω( n logn

log log n ).

4. D∗: Upper bounds.

4.1. Notation. As defined in section 2, the robot knows the graph H = (V,E),
the starting location s ∈ V and a goal vertex t ∈ V . However, it does not know which
vertices in V are blocked. D∗ travels along a shortest presumed unblocked path to
t. If the robot has tactile sensors, it replans whenever it encounters a blocked vertex
along its currently planned path. To prepare the way for an extension to long-range
sensors in the next section, we analyze here a slightly more general case. We permit
the robot to detect a blocked vertex some distance ahead on its planned path. For
example, in Figure 6, the robot starting from 0 might travel as far as 2 and then
detect blocked vertex 6. Note that an earlier vertex such as 4 might be blocked, but
go undetected at this iteration.

We assume that the initial graph H = (V,E) given to the robot is connected with
n = |V | vertices (if not, take the component containing the starting vertex). The
starting and target vertices are denoted s, t ∈ V , respectively. At the start of the
ith iteration of D∗, let vi−1 denote the robot’s location and Hi = (V,Ei) denote its
current information about the environment. Ei is obtained from E by removing all
edges incident on vertices that have been found to be blocked. Initially v0 = s and
H1 = H. Let Pi denote the shortest path in Hi from vi−1 to t that the robot decides
to follow. If i is not the final iteration, let bi be the vertex found to be blocked by the
robot while following Pi. Hi+1 is obtained from Hi by removing edges incident on
bi. Let b−i and b+i denote, respectively, the vertices preceding and following bi on Pi;
see Figure 6. Let vi be the starting vertex for the next iteration. Clearly vi either is
b−i in Pi or precedes b−i in Pi and the subpath of Pi between vi and b−i exists in Hi+1.
Also, the subpath of Pi from b+i to t exists in Hi+1.

Let d(u, v)H denote the shortest distance between vertices u and v in graph H.
If u and v are not connected, then d(u, v)H = ∞.

Let v0, v1, . . . , vk be a run of the method. This captures a run up to ties in
shortest viable paths. If the robot reaches t, then vk = t. The total distance traveled
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by the robot is

C =
k∑

i=1

d(vi−1, vi)
Hi

.

4.2. Telescoping.
Lemma 4.1. C ≤ n +

∑k−1
i=1 d(b−i , b

+
i )H

i+1

.
Proof. Since vi lies on the shortest path Pi from vi−1 to t in Hi, by the principle

of optimality

C =
k∑

i=1

d(vi−1, vi)
Hi

=

k∑
i=1

(d(vi−1, t)
Hi − d(vi, t)

Hi

)

= d(v0, t)
H1 − d(vk, t)

Hk

+

k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

)

≤ n +

k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

).

This formula has the following intuitive explanation: the robot optimistically
thinks that undetected vertices are unblocked. When the robot gets to vi and de-
tects a blockage, it is set back in the distance it thinks it is from t, by the amount
(d(vi, t)

Hi+1 − d(vi, t)
Hi

). The sum of these setbacks, plus the initial optimistic dis-
tance to t, equals the total distance traveled by the robot.

By the triangle inequality,

d(vi, t)
Hi+1 ≤ d(vi, b

−
i )H

i+1

+ d(b−i , b
+
i )H

i+1

+ d(b+i , t)
Hi+1

.(4.1)

By the principle of optimality, the subpath of Pi from vi to b−i in Hi has length

d(vi, b
−
i )H

i

, the subpath of Pi from b−i to b+i has length d(b−i , b
+
i )H

i

= 2, and the

subpath of Pi from b+i to t in Hi has length d(b+i , t)
Hi

. Hence,

d(vi, t)
Hi

= d(vi, b
−
i )H

i

+ 2 + d(b+i , t)
Hi

.(4.2)

Observe that the first and third of these subpaths exist in Hi+1. Only the path
of length 2 through bi between b−i and b+i is no longer viable in Hi+1. Therefore,

d(vi, b
−
i )H

i

= d(vi, b
−
i )H

i+1

and d(b+i , t)
Hi

= d(b+i , t)
Hi+1

. Plugging (4.1) and (4.2)
into the bound for C above yields the lemma.

In plain words, the amount of the setback when at vi cannot be more than the re-
vised distance d(b−i , b

+
i )H

i+1−2 since the robot could splice in that path to replace the

blocked b−i , bi, b
+
i portion of Pi. Notice that d(b−i , b

+
i )H

i+1

< ∞ because the following
pairs are all in the same connected component in Hi+1: vi and b−i ; vi and t; b+i and t.

4.3. Time reversal and weighted edges. Define the following function:

CYCLE-WEIGHT(T, S). Input: a tree T = (V, F ) and an ordered list S =
{ek, ek−1, . . . , e1} of distinct edges from the complete graph on V such that S∩F = φ.
Define the weight wi of edge ei ∈ S to be the length of a shortest cycle that contains
ei in the graph Ti = (V, F ∪ {ek, ek−1, . . . , ei}).
Output:

∑k
i=1 wi.
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We next show that
∑k−1

i=1 d(b−i , b
+
i )H

i+1 ≤ CYCLE-WEIGHT(T, S) for a suitably
constructed tree T and S = {ei = (b−i , bi) : 1 ≤ i ≤ k − 1}.

The basic idea relating the edge weights in CYCLE-WEIGHT to the d(b−i , b
+
i )H

i+1

values can be understood by considering a special case. Suppose Hk is connected ex-
cept for the isolated vertices b1, b2, . . . , bk−1. Reverse the time perspective so that
the robot motion adds edges, first the edges incident on bk−1, then the edges in-
cident on bk−2, and so on. Pick T to be a spanning tree of the graph (V,Ek ∪
{(b1, b+1 ), (b2, b

+
2 ), . . . , (bk−1, b

+
k−1)}) and S to be ei = (b−i , bi) : 1 ≤ i ≤ k − 1. Then

wi ≥ 2 + d(b−i , b
+
i )H

i+1

because any cycle containing (b−i , bi) in Ti must also contain
(bi, b

+
i ).
Unfortunately such a simple construction does not work in the general case as

multiple connected components may be formed when the edges incident to a blocked
vertex are removed. To get around this problem, we define a new sequence of graphs
Fk, Fk−1, . . . , F1 as follows:

1. Fk is a spanning forest of Hk.
2. For 1 ≤ i ≤ k − 1, let Ci be the connected component of Hi+1 containing

b+i and b−i . Then Fi is a spanning forest of Hi containing the subgraph
Fi+1

⋃
{(bi, b+i )}.

The following lemma follows by induction directly from the definition of Fi.
Lemma 4.2. For 1 ≤ i ≤ k and all vertices u and v, Fi is acyclic; d(u, v)Fi < ∞

iff d(u, v)Hi < ∞; and d(u, v)Fi ≥ d(u, v)H
i

.
Consider the cycle weight problem with T = F1 and S = {ei = (bi, b

−
i ) : 1 ≤ i ≤

k − 1}. The next lemma bounds the cost of our method by CYCLE-WEIGHT(T,S).
Lemma 4.3. Let H1, H2, . . . , Hk be a sequence of graphs as defined in section

4.1. Let T = F1 and S = {ei = (b−i , bi) : 1 ≤ i ≤ k − 1}. Then
∑k−1

i=1 d(b−i , b
+
i )H

i+1 ≤
CYCLE-WEIGHT(T ,S).

Proof. According to Lemma 4.2, Fi+1 and Hi+1 have the same connected com-
ponents. The subgraph of F1 induced by Ci is connected since Ci is a component
of Hi+1. The edges ej for i < j < k are contained in Ci since b−j , bj , b

+
j ∈ Ci for

all i < j < k. Thus, the graph obtained by contracting all vertices of Ci in Ti+1

is acyclic. Since Ti is obtained from Ti+1 by adding ei, every cycle that contains
ei = (b−i , bi) in Ti must also contain (bi, b

+
i ). Thus, wi is equal to 2 plus the dis-

tance between b−i and b+i in the subgraph G′ of Ti induced by Ci. But G′ is also

a subgraph of Hi+1 and hence it holds that wi ≥ 2 + d(b−i , b
+
i )H

i+1

. Consequently,∑k−1
i=1 d(b−i , b

+
i )H

i+1 ≤
∑k−1

i=1 wi = CYCLE-WEIGHT(T, S).

4.4. An extremal problem on graphs. We now bound CYCLE-WEIGHT((V,E), S)
in terms of |V | and |S|. Let Ew = {ei;wi ≥ w} be the set of edges with weight at
least w. Recall that the girth of a graph is the length of its shortest cycle. Define
Γ(n,w) (respectively, ΓP (n,w)) to denote the maximum number of edges in a graph
(respectively, planar graph) with n vertices and a girth of at least w. The following
lemma relates Ew and Γ(n,w).

Lemma 4.4. |Ew| ≤ Γ(|V |, w)− |V |+ 1 for all CYCLE-WEIGHT((V,E), S) and
all w.

Proof. Consider the graph Tw = (V,E ∪Ew). We claim that Tw has a girth of at
least w. To see this, assume that it does not and thus has a cycle C of length w′ < w.
Since (V,E) is a tree, at least one edge of C must belong to Ew. Consider the edge
ej ∈ Ew ∩C with the smallest j. Then Tj contains C and thus wj ≤ w′ < w. On the
other hand, wj ≥ w since ej ∈ Ew, which is a contradiction. Thus, Tw has a girth of
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at least w. This implies that Γ(|V |, w) ≥ |E ∪Ew| = |E|+ |Ew| = |V | − 1 + |Ew| and
the lemma follows.

Corollary 4.5. |Ew| ≤ ΓP (|V |, w)−|V |+1 for all CYCLE-WEIGHT((V,E), S)
such that (V,E ∪ S) is planar, and all w.

Proof. In the proof of Lemma 4.4, Tw is planar because it is a subgraph of planar
graph (V,E ∪ S). Hence Γ(|V |, w) may be replaced by ΓP (|V |, w).

We now bound CYCLE-WEIGHT((V,E), S) by making use of bounds on Γ(n,w),
a well studied problem in extremal combinatorics. We first consider the case that the
graph (V,E ∪ S) is planar.

Lemma 4.6. ΓP (n,w) ≤ wn
w−2 for all n and w.

Proof. Since the sum of the lengths of all faces of any planar graph G = (V,E) is
at most 2|E| and every face has length at least w, the number of its faces can be at
most 2|E|/w. The bound of the lemma follows from substituting this relationship in
Euler’s formula.

Note that the weight of any edge in S is at most |V |. Define Ew,2w = {ei ∈ S :
w ≤ wi < 2w}. Then, by Corollary 4.5 and Lemma 4.6 it holds that

CYCLE-WEIGHT((V,E), S) ≤
log |V |∑
i=1

2i+1|E2i,2i+1 |

≤ O(|S|) +

log |V |∑
i=3

2i+1|E2i |

≤ O(|S|) +

log |V |∑
i=3

2i+1(ΓP (|V |, 2i) − |V | + 1)

≤ O(|S|) +

log |V |∑
i=3

2i+1

(
2i|V |
2i − 2

− |V | + 1

)

≤ O(|S|) +

log |V |∑
i=3

2i+1 4|V |/2i

= O(|V | log |V |).

The last inequality depends on planarity (so S = O(|V |)) and |V | ≥ 6. We now
repeat the analysis for general graphs. In this case, we use a recent result by Alon,
Hoory, and Linial [1] that states that any graph G = (V,E) with average degree d > 2
has a girth of at most logd−1 |V | [1], resulting in the following lemma.

Lemma 4.7. Γ(n,w) ≤ n(n
1
w + 1)/2 for all n and w.

Proof. Consider any graph G = (V,E) with |V | = n, |E| ≥ |V | + 1 and a girth
of at least w. Then, its average degree is d = 2|E|/n > 2 and thus, according to the
result by Alon, Hoory, and Linial [1], w ≤ log2|E|/n−1 n. Solving this inequality for
|E| yields the lemma.

This lemma allows us to bound CYCLE-WEIGHT((V,E), S) for general graphs.

Lemma 4.8. w(|V |(|V | 1
w − 1)) = O(|V | log |V |) for |V | ≥ w > log2 |V |.

Proof. Let n = |V | and remove the common factor |V | from the statement of

the lemma. The resulting left-hand side defines the function f(w) = w(n
1
w − 1). Its

derivative is

f ′(w) = n
1
w

(
1 − lnn

w

)
− 1
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and its second derivative is

f ′′(w) =
n

1
w ln2 n

w3
> 0.

Therefore f is convex (in the range w > 0). Hence arg maxn≥w≥log2 n f(w) occurs at

one of the endpoints of the range, n or log2 n. We will show that f(w) = O(log n) for
both endpoints.

At w = n, let t = lnn
n → 0 as n → ∞. The Taylor series for et around 0 then

gives

n
1
n − 1 = e

ln n
n − 1 = et − 1 =

lnn

n
+

ln2n

2n2
+ o(n−2) = O

(
log n

n

)
.

Thus f(n) = O(log n).
At w = log2 n, let t = ln 2

logn , so

f(w)

log n
= log n(n

1
log2 n ) − 1 = log n(e

ln n
log2 n − 1) = logn(e

ln 2
log n − 1) =

ln 2

t
(et − 1).

Again using the Taylor series we get f(w)
logn = ln 2(1 + t

2 + t2

6 + · · · ) = ln 2(1 + o(1)) =

O(1).
Using Lemmata 4.8, 4.4, and 4.7, we have

CYCLE-WEIGHT((V,E), S) =
∑

i:wi≤log2 |V |

wi +
∑

i:wi>log2 |V |

wi

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1|E2i,2i+1 |

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1|E2i |

≤ |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1(Γ(|V |, 2i) − |V | + 1)

= |S| log2 |V | +
log |V |∑

i=2 log log |V |
2i+1(|V |(|V |

1

2i − 1)/2 + 1)

= |S| log2 |V | +
log |V |∑

i=2 log log |V |
O(|V | log |V |)

= O((|V | + |S|) log2 |V |).

We now state these results as a lemma.
Lemma 4.9. CYCLE-WEIGHT((V,E), S) = O((|V |+ |S|) log2 |V |). If the graph

(V,E ∪ S) is planar, CYCLE-WEIGHT((V,E), S) = O(|V | log |V |).

4.5. Worst-case travel bound. We are now ready to prove an upper bound
on the worst-case travel distance of D∗.
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Theorem 4.10. For robot sensors as described in section 4.1, D∗ traverses
O(n log2 n) edges on connected graphs G = (V,E). It traverses O(n log n) edges on
connected planar graphs G = (V,E).

Proof. According to Lemmata 4.1 and 4.3, D∗ traverses at most O(n) +∑k−1
i=1 d(b−i , b

+
i )H

i+1 ≤ O(n) + CYCLE-WEIGHT((V,E′), S) edges, where |S| < n
and (V,E′ ∪ S) is a subgraph of G. According to Lemma 4.9, it holds that
CYCLE-WEIGHT((V,E′), S) = O((n + |S|) log2 n) = O(n log2 n) and, if G and thus
(V,E′ ∪ S) are planar, CYCLE-WEIGHT((V,E′), S) = O(n log n).

5. Extensions.

5.1. Long-range sensors. Both the lower and upper bounds of the previous
sections extend to the case of long-range sensors, rather than the tactile sensors we
have assumed so far. Many real robots are equipped with sonar, radar, or laser sensors,
so it is worthwhile to consider this case. In directions where the view is not blocked
by obstacles, these sensors can detect at moderate or even unlimited distances.

The lower bound is easy. Place a little twist in the path Pi just before the blocked
vertex of each spoke, so that the blocked vertex cannot be detected until the robot is
O(1) vertices away. Therefore Theorem 3.3 applies to robots with long-range field-of-
vision sensors.

We now extend the upper bound to the case of long-range sensors. We will not
require that the sensors be field-of-vision; they may see around corners, have gaps in
their vision, etc. We only require that if the robot attempts to move to vertex v ∈ B
from a vertex adjacent to v, then the robot will detect that v ∈ B. This is a minimal
property required for any functioning robot.

Theorem 5.1. Suppose that the robot follows the D∗ algorithm on graph H =
(V,E). Each time the robot attempts to move to an adjacent vertex, it either moves
successfully or it detects that the vertex is blocked. After an attempted move (whether
successful or not) the robot may detect additional blocked vertices in H. Then the
bounds of Theorem 4.10 apply.

Proof. Our proof consists of two parts. Part 1 shows that our bounds apply if
the robot detects blocked vertices that are not on the planned path to the target.
Part 2 shows that if more than one blocked vertex on the planned path is detected,
then there exists a different robot whose movements are the same, but which does not
detect more than one blocked vertex on the planned path.

We preface part 1 by stating the very simple ideas hidden in the technical state-
ments. Blocked vertices off the path do not affect the telescoping formula of Lemma
4.1, because, by definition, they do not affect the current path. When we reverse
time and add the special edges ek, . . . , e1, we add extra edges (those connected to the
off-path vertices). Our upper bound is on the length of a smallest cycle containing ei,
so adding extra edges can only make this smaller. Therefore the upper bound, which
is computed in Lemma 4.9 as though there were no extra edges, is still valid.

Let Bi ⊂ V denote the off-path vertices detected as blocked in iteration i. The
definitions of vi and Hi remain the same as in section 4.1, but now Hi+1 is obtained
from Hi by removing all edges incident on bi or incident on any b ∈ Bi. Lemma 4.1
remains true in this setting because no vertices in Bi are on the path Pi. In particular,
the subpaths of Pi from vi to b−i and from b+i to t still exist in Hi+1. Intuitively, the
blockages Bi contribute to the setback amount suffered by the robot, but this setback
is still bounded by the change in distance from b−i to b+i .

For the associated cycle weight problem, we define a sequence of forests
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Fk, Fk−1, . . . , F1. As before, Fk is a spanning forest of Hk and Fi is a spanning
forest of Hi containing the subgraph Fi+1

⋃
{(bi, b+i )}. It is easy to show that taking

T = F1 and S = {ei = (bi, b
−
i ) : 1 ≤ i ≤ k − 1} satisfies Lemma 4.3. Therefore we

have verified part 1.

Based on part 1, the bounds of Theorem 4.10 apply as long as the robot never
detects more than one blocked vertex on the current planned path to t. For the
second part of the proof, whenever the robot detects more than one such blocked
vertex, categorize the detected vertices as follows:

• off-path: all vertices not on the current planned (shortest presumed unblocked)
path to t.

• first-path: the nearest detected blocked vertex on the current planned path to t.
• more-path: all other detected blocked vertices on the current planned path to t.

Consider now a fictional robot whose movements have been identical to the real
one, and which until the present step has detected the same set of blocked vertices.
Now, however, our fictional robot only detects the off-path vertices and first-path
vertex. It replans the shortest presumed unblocked path to t, moves zero steps, and
then considers detecting the more-path vertices (more-path with respect to the original
plan, not the new plan). It detects all of those which are off the newly replanned path.
It can also detect one vertex on the new path, if there is one. If more than one of
these are on the new path, it recategorizes them with respect to the new path and
repeats the procedure.

This procedure must terminate, because each replan strictly decreases the number
of more-path vertices. At termination, the fictional robot has performed precisely the
same set of physical movements as has the real robot, and it has detected the same
set of blocked vertices. The fictional robot has never detected more than one blocked
vertex on its current planned path. The desired bounds therefore apply to both it
and the real robot.

5.2. Blocked edges. Another natural extension is when in addition to blocked
vertices B ⊂ V , some edges B′ ⊂ E might also be blocked. This can be reduced to
the vertex blocking case by adding a new vertex ve in the middle of every edge e ∈ E.
Blocking of e then corresponds to blocking of vertex ve in the tranformed graph. We
consider two cases.

First, assume that the robot does not expend travel cost to detect an incident
blocked edge. Then if the robot encounters a blocked edge (u, v) while going from u
to v, it can sense all other edges emanating from u to check which ones are blocked
at zero additional cost. Thus the robot will stop in at most n iterations. To bound
the travel cost, let (b−i , b

+
i ) be the edge found blocked by the robot in iteration i.

Lemma 4.1 remains true in this setting as the subpaths of Pi from vi to b−i and from
b+i to t still exist in Hi+1. For the associated cycle weight problem, Hi+1 is now
obtained from Hi by removing all edges found blocked by the robot in iteration i.
Define the sequence Fk, Fk−1, . . . , F1 by taking Fk a spanning forest of Hk and Fi

a spanning forest of Hi containing the subgraph Fi+1. Similar arguments show that
T = F1, S = {(b−i , b+i ) : 1 ≤ i ≤ k − 1} satisfies Lemma 4.3. By arguments for long-
range sensors above, the bounds in Theorem 4.10 also hold when the robot detects a
combination of blocked vertices and edges in each iteration.

Next we assume that the robot must traverse an edge in order to detect edge
blockage. In this case detecting blocked e in the original graph corresponds to trav-
eling to vertex ve in the transformed graph. However, the number of vertices in the
transformed graph is |V |+ |E| and Theorem 4.10 gives an O(|E| log |E|) upper bound
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Fig. 7. Lower bound example for blocked edges.

for planar graphs and O(|E| log2 |E|) upper bound for general graphs. For planar
graphs this is still O(n log n) since |E| = O(n). We next show a lower bound of
Ω(|E|) for D∗ on general graphs. Thus our bounds leave a O(log2 |E|) = O(log2 n)
gap.

Consider the graph H = ({s, t}
⋃
X

⋃
Y,E) as shown in Figure 7 where |X| =

|Y | = n
2 . Assume that all edges E′ ⊂ E between X and Y are blocked without the

knowledge of the robot. Imagine a little twist towards the end of each edge e ∈ E′,
so the robot has to travel to the twist to find out whether e is blocked. Now consider
running D∗ with start vertex s and target vertex t. As long as there exists a “presumed
unblocked” edge (x, y) ∈ E′ at the start of iteration i, the robot has a length 2 path
vi−1 − y − t or a length 4 path vi−1 − s − x − y − t available to it. Therefore the
robot will not take the length 6 path vi−1 − s− u− · · · − v− t until iteration |E′|+ 1.
In each preceding iteration, the robot will travel on edge (x, y) till the twist near y,
find it to be blocked, and then come back to x. Therefore its travel cost is at least
Ω(|E′|) = Ω(|E|) steps on H.

6. Conclusions. The popular robot-navigation method that we have analyzed
in this paper, D∗, is appealingly simple and easy to implement from a robotics point
of view and appealingly complicated to analyze from a mathematical point of view.
Our results, likewise, are satisfying in two ways. First, our tighter upper bounds
on worst-case travel distances guarantee that D∗ cannot perform badly under any
circumstances. Second, the gap between the best known lower and upper bounds
is now quite small, namely O(log log n) for planar graphs, and O(log n log log n) on
arbitrary graphs.

REFERENCES

[1] N. Alon, S. Hoory, and N. Linial, The Moore bound for irregular graphs, Graphs Combin.,
18 (2002), pp. 53–57.

[2] B. Brumitt and A. Stentz, GRAMMPS: A generalized mission planner for multiple mo-
bile robots, in Proceedings of the International Conference on Robotics and Automation,
Leuven, Belgium, 1998.

[3] M. Hebert, R. McLachlan, and P. Chang, Experiments with driving modes for urban robots,
in Proceedings of the SPIE Mobile Robots, Boston, 1999.

[4] S. Koenig and M. Likhachev, Improved fast replanning for robot navigation in unknown ter-
rain, in Proceedings of the International Conference on Robotics and Automation, Wash-
ington, D.C., 2002, pp. 968–975.

[5] S. Koenig, C. Tovey, and W. Halliburton, Greedy mapping of terrain, in Proceedings of the
International Conference on Robotics and Automation, Seoul, Korea, 2001, pp. 3594–3599.



MARS ROVER D∗ HEURISTIC SEARCH TRAVEL BOUNDS 447

[6] S. Koenig, C. Tovey, and Y. Smirnov, Performance bounds for planning in unknown terrain.
Planning with uncertainty and incomplete information, Artificial Intelligence, 147 (2003),
pp. 253–279.

[7] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M. Hebert,

R. Maclachlan, C. Won, T. Frost, G. Sukhatme, M. McHenry, and S. Goldberg,
A portable, autonomous, urban reconnaissance robot, in Proceedings of the International
Conference on Intelligent Autonomous Systems, Paris, France, 2000.

[8] I. Nourbakhsh, Interleaving Planning and Execution for Autonomous Robots, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1997.

[9] I. Nourbakhsh and M. Genesereth, Assumptive planning and execution: a simple, working
robot architecture, Autonomous Robots Journal, 3 (1996), pp. 49–67.

[10] Y. Smirnov, Hybrid Algorithms for On-Line Search and Combinatorial Optimization
Problems, Tech. report CMU-CS-97-171, Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1997; available online from http://www.cs.
cmu.edu/afs/cs/cmu.edu/user/smir/www/home/html.

[11] A. Stentz, The focused D* algorithm for real-time replanning, in Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, Montreal, Quebec, 1995, pp. 1652–1659.

[12] A. Stentz, CD*: A real-time resolution optimal re-planner for globally constrained problems,
in Proceedings of the National Conference on Artificial Intelligence, Edmonton, Alberta,
2002, pp. 605–612.

[13] A. Stentz and M. Hebert, A complete navigation system for goal acquisition in unknown
environments, Autonomous Robots, 2 (1995), pp. 127–145.

[14] S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Hebert, Distributed robotic
mapping of extreme environments, in Proceedings of the SPIE: Mobile Robots XV and
Telemanipulator and Telepresence Technologies VII, Vol. 4195, Boston, 2000.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 448–462

LABELING SCHEMES FOR SMALL DISTANCES IN TREES∗

STEPHEN ALSTRUP† , PHILIP BILLE† , AND THEIS RAUHE†

Abstract. We consider labeling schemes for trees, supporting various relationships between
nodes at small distance. For instance, we show that given a tree T and an integer k we can assign
labels to each node of T such that given the label of two nodes we can decide, from these two labels
alone, if the distance between v and w is at most k and, if so, compute it. For trees with n nodes
and k ≥ 2, we give a lower bound on the maximum label length of log n + Ω(log log n) bits, and for
constant k, we give an upper bound of log n+O(log logn). Bounds for ancestor, sibling, connectivity,
and bi- and triconnectivity labeling schemes are also presented.
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1. Introduction. Motivated by applications in XML search engines, network
routing, and implicit graph representation, several labeling schemes for trees have
been developed, among these [16, 22, 13, 10, 26, 1, 3, 8]. Given a tree, a labeling
scheme assigns a label, which is a binary string, to each node v of the tree. Then,
given only the labels of two nodes we can compute some predefined function of the
two nodes. The main objective is to minimize the maximum label length, i.e., the
maximum number of bits used in a label.

In this paper we consider labeling schemes for various relationships between nodes
of small distance in trees. For instance, we show, by giving upper and lower bounds,
that a labeling scheme supporting parent and sibling queries requires labels of length
log n+Θ(log logn).1 This improves a recent bound by Kaplan and Milo [18] of logn+
O(

√
log n).
More generally, we say that two nodes v and w with nearest common ancestor

z are (k1, k2)-related if the distance from v to z is k1 and the distance from w to z
is k2. For a positive integer k, a k-relationship labeling scheme is a labeling scheme
for trees which supports tests for whether v and w are (k1, k2)-related for all nodes
v and w and all positive integers k1, k2 ≤ k. In particular, a 1-relationship labeling
scheme supports tests for whether two nodes are (0, 0)-, (0, 1)-, (1, 0)-, or (1, 1)-related,
that is, whether two nodes are identical, one is the parent of the other, or they are
siblings. For trees with n nodes we show, for k = 1, a lower bound on the label
length of logn + Ω(log log n), and for fixed, constant k we give an upper bound of
log n + O(log log n).

As noted in [18], a k-relationship labeling scheme can be used to test whether
the distance between two nodes is at most k, and if this is the case we can compute the
distance exactly. We call a labeling scheme with this property a k-restricted dis-
tance labeling scheme. We give a lower bound showing that for k = 2, a k-restricted
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1log refers to the binary logarithm and log∗ is the number of times log should be iterated to get

a constant.
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distance labeling scheme requires labels of length log n + Ω(log log n). Hence, for
constant k, our k-relationship labeling scheme gives a k-restricted distance labeling
scheme which is optimal to within a factor of log logn. This result improves a recent
upper bound of logn+O(

√
log n) for k-relationship and k-restricted distance labeling

schemes given in [18]. In contrast to the results for restricted distances, Gavoille et
al. [13] show that a labeling scheme for computing the distance between any pair of
nodes in a tree must use labels of length Θ(log2 n). In [10] it is shown that even if the
distances are allowed to be approximated to within a factor of (1 + 1/ log n) we still
need labels of length Θ(logn log log n). Our result shows that for restricted distances
much smaller labels suffice. A 1-restricted labeling scheme supports tests for whether
two nodes are identical or adjacent. Such a labeling scheme, called an adjacency
labeling scheme, was recently given for trees in [4], with label length bounded by
log n + O(log∗ n). Thus, there is a provable gap between the label length of 1- and
2-restricted distance labeling schemes.

The above lower bounds are the result of a more general new technique which
we use to obtain lower bounds for several types of labeling schemes, and for many of
these we give matching upper bounds. Apart from the above results we present the
following.

1.1. Bi- and triconnectivity labeling schemes. As an application of our
k-relationship labeling scheme we obtain a labeling scheme for general graphs for bi-
connectivity (or 2-vertex connectivity) queries. Recently, Katz et al. [21] considered
labeling schemes for 1-, 2-, 3-, and m-vertex connectivity. They gave a labeling scheme
for biconnectivity using 3 logn bits. We show, giving upper and lower bounds, that
labels of length logn+Θ(log logn) are required. The labeling scheme for triconnectiv-
ity (or 3-vertex connectivity) in [21] uses the biconnectivity labeling scheme and has
label length bounded by 5 logn. Using our biconnectivity labeling scheme we obtain
a triconnectivity labeling scheme using labels of length 3 logn + O(log log n).

1.2. Ancestor labeling schemes. For trees with n nodes we show that a la-
beling scheme for ancestor queries must use labels of length log n+ Ω(log log n). This
is the first nontrivial lower bound for the problem. Upper bounds using 2 �log n� bits
were given in [27, 17, 23]. Recently, Abiteboul, Kaplan, and Milo [1] gave an ancestor
labeling scheme using labels of length 3/2 log n+O(log log n). Subsequently, this was
improved by Alstrup and Rauhe [3], bounding the label length to logn + O(

√
log n).

If no two nodes are assigned to the same label, we say that the labels are unique.
The above labeling schemes all produce unique labels, whereas the lower bounds
also hold for labeling schemes that produce nonunique labels. However, the following
bounds show that there is a nontrivial complexity difference between labeling schemes
assigning unique and nonunique labels.

1.3. Sibling and connectivity labeling schemes. For sibling queries we give
a labeling scheme using labels of length �log n�. This labeling scheme will not assign
unique labels to the nodes of the tree. For the case where uniqueness is required, as
in [16], we give upper and lower bounds of logn+ Θ(log log Δ) for trees of maximum
degree Δ. Extending the result for the sibling labeling scheme we give a labeling
scheme supporting connectivity queries for forests of n nodes using labels of length
�log n�. Again, these labels are not unique, and if uniqueness is required we show
that labels of length logn + Θ(log logn) are required.

1.4. Related work. Adjacency labeling schemes were introduced by Breuer and
Folkman [5, 6], and efficient labeling schemes were considered by Kannan, Naor, and
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Rudich in [16, 17]. In [22] distance labeling schemes were introduced, i.e., labeling
schemes that compute the distance between any pair of nodes. Distance labeling
schemes for various types of graphs are given in [22, 20, 13, 11], and distance label-
ing schemes computing approximate distances are given in [10, 25].

Recently, labeling schemes for various other relationships have been studied. La-
beling schemes are given for ancestor in [17, 1, 26, 3, 19, 8], for nearest common
ancestor in [2], and for connectivity in [21]. Efficient labeling schemes are also ap-
plicable to routing schemes; see, e.g., [23, 26]. A survey on labeling schemes can be
found in [12].

1.5. Outline. In section 2 we give some preliminaries, and in sections 3, 4, and
5 we present the upper bounds on relationship, bi- and triconnectivity, connectivity,
and sibling labeling schemes. Lower bounds for these schemes are shown in section
6 together with lower bounds for ancestor labeling schemes and the above-mentioned
lower bound technique.

2. Preliminaries. For a graph G we denote the set of nodes and edges by V (G)
and E(G). Let T be a rooted tree with n nodes. The degree of a node v ∈ V (T ),
deg(v), is the number of children of v and the degree of T , deg(T ), is given by
deg(T ) = maxv∈V (T ) deg(v). Note that an edge (v,parent(v)) does not contribute
to deg(v). The distance between two nodes v, w ∈ V (T ), denoted by dist(v, w), is
the number of edges on the unique simple path between v and w. The depth of
v is the distance between v and the root of T . We let T (v) denote the subtree of
T rooted at a node v ∈ V (T ). If w ∈ V (T (v)), then v is an ancestor of w, and
if w ∈ V (T (v))\{v}, then v is a proper ancestor of w. If v is (proper) ancestor
of w, then w is a (proper) descendant of v. A node z is a common ancestor of v
and w if it is an ancestor of v and w. The nearest common ancestor of v and w,
nca(v, w), is the common ancestor of v and w of largest depth. For a node v of
depth d and i ≤ d, the ith level ancestor of v, A(v, i), is the ancestor of v of depth
d − i. We call the nodes A(v, 1) and A(v, 2) the parent (denoted parent(v)) and
grandparent of v, respectively. Two nodes are siblings if they have the same parent.
A node with no children is a leaf and otherwise is an internal node. Two nodes in
a forest are connected if and only if there is a path between them. A bit string
of length n is a sequence a = a0a1 . . . an−1, where ai ∈ {0, 1}, 0 ≤ i ≤ n − 1. For
0 ≤ j ≤ n−1 the sequences a0, . . . , aj−1 and an−j , . . . , an−1 are the j most significant
bits and the j least significant bits, respectively. The standard binary representation
of a positive integer k is the unique bit string a0 . . . ar−1, where r = �log k� and

k =
∑r−1

j=0 aj2
r−j−1. The discrete logarithm of k is the number �log k�. For two

integers i and j, where i ≤ j, let [i, j] be the interval {i, . . . , j}.

2.1. Labeling schemes. A binary query (or simply query) is a mapping f :
V (G) × V (G) → X for some set X. A labeling scheme for a family of graphs F
supporting queries f1, . . . , fm (fi : V (G) × V (G) → Xi) is a tuple (e, d1, . . . , dm) of
mappings, where e is called the encoder and di is called the decoder for the ith query.
The encoder e defines a label assignment, eG, for all G ∈ F , which is a mapping of
V (G) into bit strings called labels. Given the labels of two nodes v and w, the ith
decoder, di, computes the ith query, i.e., di(eG(v), eG(w)) = fi(v, w). If the label
assignment eG is an injective mapping for all G ∈ F , we say that the labeling scheme
assigns unique labels to the nodes. A labeling scheme has label length bounded by s
if the maximum length of the labels assigned to a node in any G ∈ F is bounded by
s. We say that a labeling scheme can be computed in time t if there is an encoder e
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such that for any G ∈ F , e assigns labels to all nodes in G in time t.

3. Upper bound for relationship labeling schemes.

3.1. A 1-relationship labeling scheme. In this section we give a 1-relationship
labeling scheme, which will serve as a basis for our k-relationship labeling scheme in
the next section. As a consequence, some of the lemmas shown below will be more
general than required for a 1-relationship labeling scheme. Our labeling scheme as-
signs unique labels to each node and supports both parent and sibling queries. As
described, a labeling scheme with these properties implies a 1-relationship labeling
scheme. The labeling scheme has label length bounded by logn + O(log log n) for
trees with n nodes.

Some of the ideas in this section are inspired by [4]. There a simple labeling scheme
supporting parent (but not sibling) queries is given with labels of length bounded by
log n+O(log log n). Subsequently, they use this result to construct a more complicated
labeling scheme with labels of length bounded by logn + O(log∗ n). In this section
we instead generalize the simple labeling scheme supporting parent queries to also
handle sibling queries within the same bounds. As noted in the introduction we later
show that our labels are the smallest possible within a factor of log logn.

Let Tn denote the family of rooted trees with n nodes. Let T ∈ Tn. As in [14]
we partition T into disjoint paths. For a node v ∈ V (T ) let size(v) = |V (T (v))|. We
classify each node of T as either heavy or light as follows. The root is light. For
each internal node v we pick a child w of v of maximum size among the children of
v and classify w as heavy. The remaining children are light. We call an edge to a
light child a light edge and an edge to a heavy child a heavy edge. For an internal
node v, let heavy(v) denote the heavy child of v. Define the light subtree, L(w),
rooted at the node w as follows. If w is an internal node, then L(w) is the subtree
obtained from T (w) by cutting away T (heavy(w)), and if w is a leaf L(w) = T (w).
Let lightsize(v) = |V (L(v))|. The light depth of a node v, lightdepth(v), is the number
of light edges on the path from v to the root.

Lemma 1 (see [14]). For any tree T with n nodes lightdepth(v) ≤ log n + O(1)
for any v ∈ T .

The nearest light ancestor of v (possibly v itself) is denoted apex(v). By removing
the light edges T is partitioned into heavy paths.

A key ingredient of the scheme is preorder numbers. Order the tree T such that
the rightmost child of each internal node is the heavy node. The light children need
not be in any particular order. A preorder depth first traversal of T is obtained by
first visiting the root and then recursively visiting the children of the root from left
to right. The preorder number, pre(v), is the number of nodes visited before v in this
traversal, i.e., the root will have number 0 and the rightmost leaf will have number
n− 1. The labels assigned by our labeling scheme will encode pre(v) in the label of v
using �log n� bits. This will ensure that the labels are unique. In the rest of the label
we will encode various smaller fields using no more than O(log log n) bits in total. In
the following we show how to test, for two nodes v and w, if one is the parent of the
other or if they are siblings based on whether v and w are light or heavy nodes.

First define a node w to be a significant ancestor of v if v ∈ L(w). Note that a
node is its own significant ancestor. We have the following relation between significant
ancestors and the preorder numbering.

Lemma 2. For all nodes v and w, v ∈ L(w) if and only if pre(v) ∈ [pre(w),
pre(w) + lightsize(w) − 1].
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Proof. If w is a leaf, then v = w and lightsize(w) = 1. Hence, pre(w) = pre(v) =
pre(w)+lightsize(w)−1 and the result follows. So assume w is an internal node. Then,
in a preorder traversal, v is visited at the time of w or after and before heavy(w) if and
only if pre(w) ≤ pre(v) < pre(heavy(w)). Since pre(heavy(w)) = pre(w)+lightsize(w)
the result follows.

Consider the binary representation of pre(v) for an internal node v. Let f(v) =
�log lightsize(v)�. We define the significant preorder number, spre(v), as the smallest
number greater than or equal pre(v) which is a multiple of 2f(v). Equivalently,

spre(v) =

{
pre(v) if pre(v) mod 2f(v) = 0,

pre(v) − (pre(v) mod 2f(v)) + 2f(v) otherwise.

The following lemma states the relations we need between the preorder and significant
preorder numbers.

Lemma 3. For all nodes v and w the following hold:
(i) spre(v) ∈ [pre(v),pre(v) + lightsize(v) − 1].
(ii) v = w if and only if lightdepth(v) = lightdepth(w) and spre(v) = spre(w).
(iii) If lightdepth(v) = lightdepth(w), then pre(w) < pre(v) if and only if

spre(w) < spre(v).
Proof. (i) If pre(v) mod 2f(v) = 0, then spre(v) = pre(v), and since lightsize(v) ≥

1 for all v the result follows. Otherwise 1 ≤ pre(v) mod 2f(v) ≤ 2f(v) − 1. Hence,
spre(v) ≥ pre(v)− (2f(v) − 1) + 2f(v) = pre(v) + 1 and spre(v) ≤ pre(v)− 1 + 2f(v) ≤
pre(v) − 1 + lightsize(v).

(ii) If v = w, the conditions are clearly satisfied. Conversely, assume that v �= w
and the conditions are satisfied. Since v �= w and lightdepth(v) = lightdepth(w) we
have that v �∈ L(w) and w �∈ L(v). Then, by Lemma 2 pre(v) �∈ [pre(w),pre(w) +
lightsize(w)−1] and pre(w) �∈ [pre(v),pre(v)+lightsize(v)−1], and hence these inter-
vals must be disjoint. However, since spre(v) = spre(w) we have, by (i), the contradic-
tion that spre(v) ∈ [pre(v),pre(v) + lightsize(v) − 1] and spre(v) ∈ [pre(w),pre(w) +
lightsize(w) − 1].

(iii) Assume that lightdepth(v) = lightdepth(w). If pre(w) < pre(v), then v �∈
L(w). By Lemma 2, pre(v) �∈ [pre(w),pre(w) + lightsize(w) − 1] and since pre(w) <
pre(v) we have pre(w) + lightsize(w) − 1 < pre(v). By (i) it follows that spre(w) <
spre(v). Conversely, since spre(w) < spre(v) and lightdepth(v) = lightdepth(w) we
have by (ii) that v �= w. Furthermore, as in the proof of (ii), this implies that
the intervals [pre(v),pre(v) + lightsize(v) − 1] and [pre(w),pre(w) + lightsize(w) −
1] are disjoint. By (i), spre(v) ∈ [pre(v),pre(v) + lightsize(v) − 1] and spre(w) ∈
[pre(w),pre(w)+ lightsize(w)−1] and since these intervals are disjoint and spre(w) <
spre(v) we have that pre(w) < pre(v).

Note that by Lemma 3(ii) it follows that any node v is uniquely identified by
spre(v) and lightdepth(v). The following lemma shows that the significant pre-
order number of a significant ancestor can be represented efficiently. In particular,
spre(parent(v)) can be represented efficiently if v is a light node.

Lemma 4. Given pre(v) we can represent spre(w) for each significant ancestor
w of v using only log log n + O(1) bits per significant ancestor.

Proof. Let w be a significant ancestor of v. Since lightsize(w) < 2f(w)+1 there can
be, apart from spre(w), at most one other number in the interval [pre(w),pre(w) +
lightsize(w) − 1] with all the f(w) least significant bits set to zero, i.e., the number
spre(w) + 2f(w). Let pre′(v) be pre(v) with all the f(w) least significant bits set to
zero. Since w is a significant ancestor of v, v ∈ L(w) and thus, by Lemma 2, pre(v) ∈
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[pre(w),pre(w) + lightsize(w) − 1]. Hence, pre′(v) will be either spre(w) − 2f(w),
spre(w) or spre(w) + 2f(w) and therefore spre(w) is either pre′(v) + 2f(w), pre′(v), or
pre′(v)−2f(w). Clearly, representing f(w) and two extra bits to distinguish these three
cases we can compute spre(w) from pre(v). This can be represented by �log log n�+2
bits since f(w) is bounded by logn.

For each light node v we will encode lightdepth(v), spre(v), and spre(parent(v)) in
the label of v. By Lemma 1 lightdepth(v) ≤ log n+O(1) and can thus be represented
using log logn + O(1) bits. Since the labels encode pre(v) and v is light, we have by
Lemma 4 that spre(v) and spre(parent(v)) can also be represented using log logn +
O(1) bits. By Lemma 3(ii), lightdepth(v) together with spre(v) uniquely identifies
the node v. This immediately implies the following.

Lemma 5. For a light node v and internal node w, w is the parent of v if and
only if lightdepth(v) = lightdepth(w) + 1 and spre(parent(v)) = spre(w).

Lemma 6. For two light nodes v and w, w and v are siblings if and only if
lightdepth(v) = lightdepth(w) and spre(parent(v)) = spre(parent(w)).

Next we show how to handle the remaining cases. Define diff parent(v) = spre(v)−
spre(parent(v)) and leave it undefined for the root. Similarly, for internal nodes, de-
fine diff heavy(v) = spre(heavy(v)) − spre(v) and leave it undefined for leaves. The
following lemma shows how the discrete logarithm of diff parent(v) and diff heavy(v)
can be used to test for parenthood between two nodes on a heavy path. Since the
discrete logarithm is bounded by logn, only �log log n� bits are needed to represent
each of these numbers.

Lemma 7. For heavy node v and internal node w, w is the parent of v if and only
if spre(w) < spre(v), lightdepth(v) = lightdepth(w) and �log(spre(v) − spre(w))� =
�log diff parent(v)� = �log diff heavy(w)�

Proof. For w = parent(v) it is straightforward, using Lemma 3, to verify that
the conditions are satisfied. Conversely, assume that a node w �= parent(v) satis-
fies the conditions. Since spre(w) < spre(v) and lightdepth(v) = lightdepth(w), we
have by Lemma 3(iii) that pre(w) < pre(v), and therefore w cannot be a descen-
dant of v. Furthermore, w cannot be a descendant of any other sibling of v, because
then lightdepth(w) > lightdepth(v). It follows that w cannot be a descendant of
parent(v). Hence, in a preorder traversal of T the node heavy(w) is visited before
parent(v) or heavy(w) = parent(v). That is, pre(heavy(w)) ≤ pre(parent(v)) and by
Lemma 3(ii) and (iii), also spre(heavy(w)) ≤ spre(parent(v)), and therefore spre(v)−
spre(w) ≥ (spre(heavy(w))−spre(w))+(spre(v)−spre(parent(v))) = diff heavy(w)+
diff parent(v). By the identities �log(spre(v) − spre(w))� = �log diff parent(v)� =
�log diff heavy(w)� this leads to the contradiction spre(v)−spre(w) ≥ diff heavy(w)+
diff parent(v) ≥ 2 · 2�log diff parent(v)� = 2 · 2�log(spre(v)−spre(w))� > spre(v) −
spre(w).

Considering siblings instead, we immediately obtain the following corollary to
Lemma 7.

Lemma 8. A heavy node v and light node w are siblings if and only if spre(parent
(w)) < spre(v), lightdepth(v) = lightdepth(w) − 1, and �log(spre(v) − spre(parent
(w)))� = �log diff parent(v)� = �log diff heavy(parent(w))�.

Note that since any node has at most one heavy child, two heavy nodes v and w
are siblings if and only if v = w. Since the labels are unique it is trivial to handle this
case.

Combining the above lemmas we obtain the 1-relationship labeling scheme. For
T ∈ Tn let the encoder eT (v), v ∈ V (T ), encode pre(v), lightdepth(v), spre(v),
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�log diff heavy(v)� and a type bit indicating if v is a light or heavy node. Further-
more, if v is a light node encode spre(parent(v)) and �log diff heavy(parent(v))�. If v
is a heavy node encode �log diff parent(v)�. As described, pre(v) uses �log n� bits and
each of the other values uses log log n+O(1) bits each. For easy decoding we represent
each of the values in fixed sized fields in the label of v. The first �log n� bits stores
pre(v). The other values are represented, in five fields (we leave one field undefined
when v is a light node) of the same length, in the next 5 log logn + O(1) bits. At
the end of the label we store the type bit. We will assume that the decoder does not
know the value n, i.e., the decoder is not specialized to trees of size n but will work
with any tree, regardless of its size. Due to this restriction we cannot compute �log n�
directly and use this to extract the preorder number and then the rest of the fields.
Instead we use a self-delimiting code for �log n�. In particular, we prefix the label
with 1|x|0x, where x is the binary representation of the length of the field containing
pre(v). Since the length of pre(v) is �log n�, we have added only 2 log logn + O(1)
bits. Note that the unary prefix 1|x|0 enables us to figure out the length of x. In
total the label length will be bounded by logn + O(log log n). By uniqueness of the
labels and Lemmas 5 through 8, it is straightforward to construct decoders testing if
two nodes are (0, 0)-, (0, 1)-, (1, 0)-, or (1, 1)-related. In summary we have the next
theorem.

Theorem 1. For trees with n nodes there is a 1-relationship labeling scheme with
label length bounded by log n + O(log log n).

Finally, note that labels for all nodes in T can be computed in O(n) time and
queries can be implemented in O(1) time per query assuming standard binary oper-
ations on a RAM.

3.2. A general k-relationship labeling scheme. In this section we generalize
the result of the previous section to a k-relationship labeling scheme. The scheme
extends the ideas of the first labeling scheme and has label length bounded by logn+
O(k2(log log n + log k)), which for constant k is log n + O(log log n).

We first extend the definition of diff heavy(v) and diff parent(v) as follows. If v
has a descendant u on the same heavy path as v of distance m, let diff heavy(v,m) =
spre(u) − spre(v), and if there is no such node u let diff heavy(v,m) = 2n, i.e., the
discrete logarithm of 2n will be �log n� + 1, indicating that this is not an actual
difference. Similarly, define diff parent(v,m) for the ancestor on the same heavy path
of v of distance m. Furthermore, for a node v we define the index of v, index(v),
as the number of nodes with the same light depth as v and with smaller preorder
numbers than v. We will use the following generalization of Lemma 7.

Lemma 9. For a heavy node v and internal node w, w and v are on the same heavy
path and w is an ancestor of v of distance m ≥ 1 if and only if spre(w) < spre(v),
lightdepth(v) = lightdepth(w), �log(spre(v) − spre(w))� = �log diff parent(v,m)� =
�log diff heavy(w,m)�, and index(v) mod m = index(w) mod m.

Proof. Let x denote the ancestor of v of distance m on the heavy path of
v. Similarly, let y denote the descendant of w of distance m on the heavy path
of w. If x or y does not exist, then the conditions do not hold by definition of
diff parent and diff heavy. If they both exist and if x = w (or equivalently y = v),
it is straightforward to check that the conditions are satisfied. Conversely, as-
sume that the conditions are satisfied and x �= w. Since �log(spre(v) − spre(w))� =
�log diff parent(v,m)� = �log diff heavy(w,m)�, both x and y exist and are on the
same heavy paths as v and w, respectively. As in the proof of Lemma 7, we have
lightdepth(w) = lightdepth(y) = lightdepth(x) = lightdepth(v) and pre(w) < pre(v).
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Since index(w) mod m = index(y) mod m = index(x) mod m = index(v) mod m and
x �= w, the paths from w to y and x to v are either disjoint or x = y. Thus
pre(y) ≤ pre(x) and by Lemma 3(ii) and (iii) also spre(y) ≤ spre(x). Therefore spre(v)
− spre(w) ≥ diff heavy(w,m) + diff parent(v,m). By the identities �log(spre(v) −
spre(w))� = �log diff parent(v,m)� = �log diff heavy(w,m)�, we obtain the contradic-
tion spre(v)−spre(w) ≥ diff heavy(w,m)+diff parent(v,m) ≥ 2·2�log diff parent(v,m)� =
2 · 2�log(spre(v)−spre(w))� > spre(v) − spre(w).

The main idea in our labeling scheme is to store, in the label of v, pre(v) and
lightdepth(v) as before. Furthermore, for each significant ancestor w of v of distance
at most k we will represent spre(w) together with diff heavy(w,m), diff parent(w,m),
and index(w) mod m for 1 ≤ m ≤ k. Then, to test if two nodes v and w are (k1, k2)-
related we identify the heavy path containing the nearest common ancestor of v and
w and compute distances to and on this heavy path.

3.3. The encoder. We can now describe the encoder for our k-relationship
labeling scheme. For T ∈ Tn let the label eT (v), v ∈ V (T ) encode pre(v) and
lightdepth(v). Furthermore, we store an ancestor table of s entries, where s is the
number of significant ancestors of distance at most k from v. If w is the ith significant
ancestor of v, the ith entry in the ancestor table will represent spre(w), dist(v, w),
and a single bit, called the apex bit, indicating whether the distance dist(w, apex(w))
is at most k. If this is so we store dist(w, apex(w)) and otherwise leave this field un-
defined. Furthermore, the ith entry also represents, for 1 ≤ m ≤ k, diff heavy(w,m),
diff parent(w,m) and index(w) mod m. Hence, number of bits used to represent an
entry is bounded by O(k log log n + k log k) and thus the total number of bits used
for the ancestor table is at most O(k2(log log n+ log k)). Note that since w is the ith
significant ancestor we have that lightdepth(w) = lightdepth(v) − i and hence this
information is implictly stored in the table.

For efficient computation of the queries we store a lookup table of k entries. The
ith entry stores the light depth of A(v, i). Hence the lookup table uses at most
O(k log log n) bits. As before all the values are stored in fixed sized fields and we
prefix the label with small codes representing the length of pre(v) and each of tables.
In total the label length is bounded by logn+O(k2(log log n+log k)). Computing the
tables can be done in O(k) time per node after O(n) time preprocessing and hence
the labeling scheme can be computed in O(nk) time.

3.4. The decoder. In the following we present the decoder for our k-relationship
labeling scheme. We first present necessary and sufficient conditions for two nodes v
and w to be (k1, k2)-related and then show how to test these conditions using only
the labels of v and w.

Lemma 10. Let v, w ∈ T and distances k1 and k2 (not both zero) be given. Let
v′ be the significant ancestor of v such that lightdepth(v′) = lightdepth(A(v, k1)) and
if v′ �= v let v′′ be the significant ancestor of v of light depth lightdepth(A(v, k1)) + 1.
Otherwise let v′′ = v. Similarly, define w′ and w′′ for w and k2. Then, v and w are
(k1, k2)-related if and only if one of the following disjoint conditions is satisfied:

(i) v′ = w′, v′′, and w′′ are on different heavy paths, dist(v, v′) = k1 and
dist(w,w′) = k2.

(ii) v′ and w′ are on same heavy path, v′ is a proper ancestor of w′, dist(w′, v′) =
k2 − dist(w,w′), and dist(v, v′) = k1.

(iii) v′ and w′ are on same heavy path, w′ is a proper ancestor of v′, dist(v′, w′) =
k1 − dist(v, v′), and dist(w,w′) = k2.
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Fig. 1. Cases for Lemma 10: (a) case (i), (b) case (ii).

Proof. The situation is illustrated in Figure 1. Let z = nca(v, w). If one of the
conditions is satisfied it is straightforward to check that v and w are (k1, k2)-related.
Conversely, if v and w are (k1, k2)-related, then z must be on the heavy path of v′

and w′ and z = v′ or z = w′. If z = v′ = w′, then z is a significant ancestor of both
v and w. Hence, since k1 and k2 are not both zero, v′′ and w′′ must be on different
heavy paths; otherwise there would be a common ancestor of larger depth than z
contradicting the assumption that z = nca(v, w). If z = v′ �= w′, then v′ is a proper
ancestor of w′, and if z = w′ �= v′, then w′ is a proper ancestor of v′. Since v and w
are (k1, k2)-related the distance conditions are satisfied.

Given only the labels of the nodes v and w we can test if they are (k1, k2)-related
for k1, k2 ≤ k as follows. First, since the labels are unique, it is trivial to test if v
and w are (0, 0)-related. Hence, we will assume that k1 and k2 are not both zero.
We will show how to test each of the conditions in Lemma 10 using only the labels.
Using the lookup tables we first compute the entries in the ancestor tables for the
nodes v′, v′′, w′, and w′′. Assume that the values stored at these entries of the tables
are available. Using Lemma 3(ii) we can check if v′ = w′. The distances dist(v, v′)
and dist(w,w′) are stored directly in the ancestor tables of v and w, and the first
three conditions in (ii) and (iii) can be checked using Lemma 9. What remains is to
describe how to test if v′′ and w′′ are on different heavy paths. Since the distances
dist(v′′, apex(v′′)) and dist(w′′, apex(w′′)) are both smaller than k, they are available
in the ancestor tables. If v′′ and w′′ are on the same heavy path their distance must
be |dist(v′′, apex(v′′)) − dist(w′′, apex(w′′))|, so we can use Lemma 9 to test whether
they are on the same heavy path and if so if they are this distance apart. Thus we
have shown that the conditions of Lemma 10 can be tested using only the labels of v
and w and so we can determine if v and w are (k1, k2)-related. In summary we have
shown the next theorem.

Theorem 2. For trees with n nodes there is a k-relationship labeling scheme with
label length bounded by log n + O(k2(log log n + log k)).

As noted, the k-relationship labeling scheme can be computed in O(nk) time and
due to the lookup and ancestor tables queries can be performed in O(1) time.

4. Upper bounds for bi- and triconnectivity labeling schemes. As an
application of our k-relationship labeling scheme of section 3 we give a labeling scheme
for biconnectivity. Subsequently, we use a reduction from [21] to obtain a labeling
scheme for triconnectivity. Both labeling schemes assign unique labels. For a graph
G with n nodes, the labeling scheme for bi- and triconnectivity uses labels of length
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bounded by logn + O(log log n) and 3 logn + O(log log n), respectively.

We first give some preliminaries. Let G be a graph. A set of paths P connecting
two nodes v and w in G is vertex-disjoint if each node except v and w appears in at
most one path p ∈ P . We define v and w to be m-vertex connected if there is a set of
vertex-disjoint paths of size m connecting v and w. We say that v and w are bi- or
triconnected if they are 2- or 3-vertex connected, respectively. A cut-node is a node
whose removal (and all incident edges) disconnects the graph. A block of a graph
G is a maximal connected subgraph without a cut-node. By maximality, different
blocks of G overlap in at most one node, which is then the cut-node. Using Menger’s
theorem (see, e.g., [9]), it can be shown that two nodes v, w ∈ V (G) are biconnected
if and only if they are within the same block and the block has at least three nodes.

We define the block graph B of G. Each node in G is represented by a unique
node in B and each node in B either represents a node in G or a block with at least
three nodes in G. The edges of B are defined as follows. Let v be a node in G and let
B(v) denote the set of blocks in G that contain v and have at least three nodes. For
each node representing a block b ∈ B(v) there is an edge to the node representing v
in B. A node in B representing a node in G that is not contained in any block with
at least three nodes is not incident to any other node in B. By the maximality of
blocks we have the next lemma.

Lemma 11. The block graph B of a graph G is a forest of unrooted trees.

Using depth-first search [24], we can compute the block forest in linear time. We
root each tree in the forest as follows. If the tree contains only one node, this node is
the root. Otherwise the tree contains at least one node representing a block and we
arbitrarily root the tree in such a node. By Br we denote the rooted version of the
block forest B.

Lemma 12. Two nodes v and w in G are biconnected in G if and only if, in the
block forest of rooted trees Br, either v and w are siblings, v is the grandparent of w,
or w is the grandparent of v.

Proof. If v and w are biconnected in G, then they are contained in the same block
with at least three nodes, and hence they are incident to the same node representing
a block. In Br, this implies that v and w are either siblings or one is the grandparent
of the other. Conversely, if v and w are siblings or one is the grandparent of the other
in Br, then they are incident to the same node representing a block. Hence, they are
contained in the same block with at least three nodes and are thus biconnected.

To test the conditions in Lemma 12 we extend our k-relationship labeling scheme
to handle the more general case of forests. Add an extra root node connected to
each root of the trees in the forest. This produces a tree where we then apply our
k-relationship labeling scheme. The modifications needed to handle a special root
node are straightforward to implement. Using a 2-relationship labeling scheme for
the forest Br we obtain by Lemma 12 the following theorem.

Theorem 3. For graphs with n nodes there is a biconnectivity labeling scheme
that assigns unique labels with label length bounded by log n + O(log log n).

Since we can compute the block forest Br in O(n) time, the labeling scheme can
be computed in O(n) time and with the 2-relationship labeling scheme queries can be
answered in O(1) time.

As noted in the introduction we can use our biconnectivity labeling scheme to
obtain a triconnectivity labeling scheme using a reduction from [21]. There a labeling
scheme for triconnectivity is given using labels of length bounded by 5 logn. By
Lemmas 3.3, 3.4, and 3.6 in [21] and Theorem 3 we obtain the following improvement.
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Theorem 4. For graphs with n nodes there is a triconnectivity labeling scheme
that assigns unique labels with label length bounded by 3 log n + O(log log n).

5. Upper bounds for sibling and connectivity labeling schemes. In this
section we consider labeling schemes for sibling queries and connectivity queries in a
forest. First we consider sibling queries. If two nodes in the same tree can be given the
same label, we can label the nodes with labels of length �log n� as follows. Partition
the nodes into groups such that two nodes are siblings if and only if they belong to the
same group. This construction gives g ≤ n groups, which are numbered 1, 2, . . . , g.
Nodes in the same group are given the same label, namely, the number of the group.
Now, two nodes are siblings if and only if they have the same label.

Theorem 5. For trees with n nodes there is a sibling labeling scheme with label
length bounded by �log n�.

Next we show how to assign unique labels for trees with maximum degree Δ.
We group the nodes as above. We assign to each node v two numbers: a group
number g(v) to answer sibling queries as above, and an individual number i(v) to
make its label unique. Two nodes in the same group will be given the same group
number. Assume we have g groups g1, g2, . . . , gg. Let |gi| be the number of nodes
in gi. Using a Huffman code [15] we give each node in group gi, a group number of
length logn− log |gi| + O(1). The individual numbers given to the nodes in group gi
are simply 1, 2, . . . , |gi|, of length log |gi|+O(1). In total we use log n+O(1) bits for
the group and individual numbers; however, coding these two numbers as one label,
we also need to be able to separate these two numbers given the label of a node. We
use the first O(log log Δ) bits of the label to code the length of the individual number
as follows. The individual number in a tree with maximum degree Δ is at most Δ
and can be represented with at most q = log Δ + O(1) bits. To represent the length
of the individual number we need O(log q) = O(log log Δ) bits. Now, we also need to
represent the length of the bit string representing the length of the individual number,
but this can be done simply by using an unary code of length O(log log Δ).

Theorem 6. For trees with n nodes and maximum degree Δ there is a sib-
ling labeling scheme that assigns unique labels with label length bounded by log n +
O(log log Δ).

Using the same observations, grouping connected nodes, we get the next theorem.

Theorem 7. For forests with n nodes there is a connectivity labeling scheme that
assigns unique labels with label length bounded by log n + O(log log n).

It is straightforward to compute the above labeling schemes in O(n) time and
answer queries in O(1) time assuming standard binary operations on a RAM.

6. Lower bounds. In this section we present a lower bound technique and
subsequently give lower bounds for ancestor, connectivity, sibling, 1-relationship, 2-
restricted distance, and biconnectivity labeling schemes.

If v is an ancestor of w or w is an ancestor of v, we say that v and w are weak
ancestors. A lower bound for a weak ancestor labeling scheme is clearly a lower bound
for an ancestor labeling scheme. The lower bound presented in this paper is for weak
ancestor labeling schemes.

We will use the following technique to show this lower bound. First we give a
family of trees FA where each tree consists of cn nodes for a constant c. We then show
that any labeling scheme (which may use nonunique labels) for weak ancestor queries
needs to use Ω(n log n) different labels for FA. If m different labels are necessary,
then the label length must be at least logm. Since log(cn log n) = logn+Ω(log log n),
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for any constant c, we establish the lower bound. A similar construction is used for
the other lower bounds.

In some cases, e.g., in [7], the goal is to minimize the average length of labels
instead of the maximum. We note that, using the above technique, our lower bounds
also hold for the average length of labels.

6.1. Lower bound technique. Let S be a set of elements and let e : S → D be
a function labeling S with elements from some domain D. We will assume |S| = nk,
where k is an integer ≤ log n and n is a power of two. We define a partition P of S
into k boxes each of n elements. The elements in the ith box, 1 ≤ i ≤ log n, denoted
by Bi are partitioned into n/2i groups each of 2i elements.

Lemma 13. Let S, e, and k be as described above. If there exists a partition P
such that the following two properties hold, then |D| = Ω(nk):

(i) for two different elements s1, s2 ∈ S, if s1 and s2 belong to the same box,
then e(s1) �= e(s2),

(ii) for elements s1, s2, s3, s4 ∈ S, if s1 and s2 belong to two different groups in
the same box, e(s1) = e(s3) and e(s2) = e(s4), then s3 and s4 belong to two different
groups.

Proof. We will say the function e associates labels with the elements from S.
The elements associated with the same label are called neighbors. In the following we
give a strategy to choose a subset S′ of elements from S, guaranteeing that for all
s1, s2 ∈ S′, where s1 �= s2, s1 and s2 will not be neighbors. We call a strategy with
such a guarantee a safe strategy. The number of labels needed by e for S will be at
least the size of S′ since |D| ≥ |S′| when S′ is chosen by a safe strategy. We say an
element is a marked element if it is chosen to belong to S′. Hence, no two elements
with the same label will be marked. If one or more elements from a group are marked
we say the group is marked. For a box B we let M(B) denote the number of marked
groups belonging to the box.

We first mark elements from the box Bk and next for Bi in order of decreasing
i. All elements in Bk will be marked. From the first property of Lemma 13 there
are no neighbors in the same box and the marking is therefore safe. When marking
elements from the remaining boxes Bi, i < k, we keep the invariant that M(Bi) ≤
n/2i+1. Hence, we will mark elements from at most half of the groups belonging
to Bi.

Let F (i) be the set of groups belonging to the boxes Bj , j ≥ i, and let M(F (i))
be the number of marked groups belonging to F (i). Since we keep the invariant that

M(Bi) ≤ n/2i+1 for i < k, we have that for i ≤ k, M(F (i)) ≤ n/2k +
∑k−1

j=i n/2
j+1 =

n/2i. Next, we describe how to mark elements from Bi, after marking elements from
Bj , j > i. If a group in Bi includes an element with a marked neighbor in Bj , j > i,
we say the group is closed. If a group is not closed it is open.

Let s1, s2 ∈ Bi belong to two different groups. If s1 has a marked neighbor s3

and s2 has a marked neighbor s4, then by the second property of Lemma 13, s3

and s4 must belong to two different marked groups from F (i + 1). Hence, for each
closed group in Bi we can associate a marked group from F (i + 1) which will not be
associated to any other group in Bi. Since the number of groups in Bi is n/2i and we
keep the invariant that M(F (i+1)) ≤ n/2i+1, at least n/2i+1 of the groups in Bi will
be open. Since the elements from the open groups do not have a marked neighbor
and none of them are neighbors by the first property of Lemma 13 it is safe to mark
all elements from the n/2i+1 open groups of Bi. This way we maintain the invariant
of marking elements from at most half of the groups in Bi, i < k. Summarizing, we
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mark all elements in Bk and half the elements from the remaining k − 1 boxes. In
total we mark Ω(nk) elements.

In the following sections we will define different families of graphs for which the
nodes from these graphs can be partitioned such that the labeling obeys the properties
given in Lemma 13.

6.2. Ancestor labeling schemes. To show a lower bound for a weak ancestor
labeling scheme we give a family FA of logn trees {T1, T2, . . . , Tlog n}, each of size
2n+ 1. We show that for a subset S of the nodes from FA, where |S| = n log n, there
is a partition P of S, such that any e must obey the two properties in Lemma 13.
This implies that at least Ω(n log n) labels are needed and will conclude our proof.

The tree Ti in FA consists of a root node with n/2i children. Each child v is the
root of a path ρ(v) of length 2i. Furthermore, each node on these paths has a child
which is a leaf not belonging to the path.

We have |V (Ti)| = 2(n/2i)2i+1 = 2n+1. We let S be the subset of nodes from FA
which belongs to a path ρ(v), where v is a child of one of the root nodes in the family.
Hence, |S| = n log n. Box Bi is the subset of nodes from S which belongs to the tree Ti.
The nodes from box Bi are partitioned into groups such that two nodes from the same
group belong to the same path. Next we show that the two properties from Lemma 13
must be fulfilled for any weak ancestor labeling scheme (e, d) in this partition.

Consider the first property. Let s1, s2 ∈ Bi, s1 �= s2. If s1 and s2 are weak
ancestors, choose s2 to be the node closer to the root. On the other hand, if s1 and
s2 are not weak ancestors, then choose s2 arbitrarily. Let c be the leaf in Ti which is
the child of s2. Note that in both cases s1 and c are not weak ancestors and therefore
d(e(s1), e(c)) �= d(e(s2), e(c)), which implies that e(s1) �= e(s2).

Next we consider the second property. Let s1, s2, s3, s4 ∈ S, where s1 and s2

belong to two different groups in the same box. This implies that s1 and s2 are not
weak ancestors. Hence, if e(s1) = e(s3) and e(s2) = e(s4), then s3 and s4 are not
weak ancestors and therefore s3 and s4 must belong to different groups.

Theorem 8. A weak ancestor labeling scheme for trees with n nodes needs label
of length log n + Ω(log log n).

6.3. Connectivity labeling schemes. In this section we consider the minimum
label length required to answer connectivity queries in a forest if the labels assigned
to the nodes must be unique. Let FC be the family of logn forests Fi, 1 ≤ i ≤ log n,
where Fi consist of 2logn−i paths of length 2i. We have |V (Fi)| = n. We let S be the
nodes from FC . Box Bi is the nodes from Fi. The nodes in Bi are partitioned into
groups such that connected nodes are in the same group.

The first property from Lemma 13 follows trivially from our assumption that the
labels assigned to a forest Fi are unique. Let s1, s2, s3, s4 ∈ S. If s1 and s2 belong
to two different groups from the same box Bi, s1 and s2 are not connected in Fi.
If s3 and s4 are in the same group, s3 and s4 are connected in some forest, and
d(e(s1), e(s2)) should therefore be different from d(e(s3), e(s4)), which cannot be the
case if e(s1) = e(s3) and e(s2) = e(s4).

Theorem 9. A connectivity labeling scheme for forests with n nodes that assigns
unique labels needs labels of length log n + Ω(log log n).

6.4. Sibling labeling schemes. In this section we consider the minimum label
length required to answer sibling queries in a tree if the labels assigned to the nodes
must be unique. We consider a forest of trees FS(k) of k trees Ti, 1 ≤ i ≤ k ≤ log n.
Let B(j) be a complete balanced binary rooted tree with 2j leaves and 2j+1−1 nodes.
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The tree Ti consists of a tree B = B(log n − i), where each leaf from B in Ti has 2i

children. These children are the set S. The box Bi consists of the subset of nodes
from S which comes from Ti. The nodes in box Bi are partitioned into groups such
that two nodes which belong to the same group are siblings. The first property from
Lemma 13 follows trivially from our assumption that the labels assigned to a tree are
unique. Let s1, s2, s3, s4 ∈ S. Since s1 and s2 does not belong to the same group, s1

and s2 are not siblings. If s3 and s4 belongs to the same group, s3 and s4 are siblings.
Therefore d(e(s1), e(s2)) should be different from d(e(s3), e(s4)), which cannot be the
case if e(s1) = e(s3) and e(s2) = e(s4). The maximum degree Δ of a tree in FS(k) is
2k, and |S| = nk, giving the next theorem.

Theorem 10. A sibling labeling scheme for trees with n nodes and maximum
degree Δ that assigns unique labels needs labels of length log n + Ω(log log Δ).

6.5. 1-relationship and 2-restricted distance labeling schemes. In this
section we consider the minimum label length required to answer 1-relationship and
2-restricted distance queries in a tree. To show the bound for 1-relationship labeling
schemes we show that a labeling scheme for answering both parent and sibling queries
needs to use labels of length log +Ω(log logn). Let FSP be the forest FS(log n) to
which we have added a child to each leaf in the forest FS(log n). We let S be the
same subset of nodes as in the previous section. Let s1, s2 belong to the same box,
s1 �= s2, and let c be the child of s1. Since s2 is not a parent to c, s1 and s2 must be
assigned different labels. Hence, the first property of Lemma 13 is satisfied.

Theorem 11. A 1-relationship labeling for trees with n nodes needs labels of
length log n + Ω(log log n).

For 2-restricted distance labeling schemes we use FSP and the same partition as
above. Let s1, s2 belong to the same box, s1 �= s2, and let c be the child of s1. Since
the distance from s1 to c is 1 and the distance from s2 to c is 3, s1 and s2 must be
assigned different labels. Furthermore, the distance between two nodes in S is 2 if
and only if they are siblings, and by the same observations as in the sibling labeling
scheme the result follows.

Theorem 12. A 2-restricted distance labeling scheme for trees with n nodes needs
labels of length log n + Ω(log log n).

6.6. Biconnectivity labeling schemes. In this section we consider the mini-
mum label length required to answer biconnectivity queries in a graph. Let Gi be the
graph consisting of 2i disjoint cycles Ci = {c1, . . . , c2i} each of length n/2i. Further-
more, for each node v ∈ V (Ci), Gi contain two nodes v1, v2 �∈ V (Ci) connected with
each other and v. Let FB be the family Gi, 1 ≤ i ≤ log n− 2, and let S be the set of
nodes in Ci, 1 ≤ i ≤ log n− 2. Then |S| = n(log n− 2). The box Bi is the nodes in S
from Gi, and two nodes are in the same group if they are biconnected. Note that cy-
cles of length less than 3 are not biconnected and therefore the restriction i ≤ log n−2
is important. Let s1, s2 ∈ S belong to the same box, s1 �= s2 and let v1 and v2 be the
nodes connected to s1 but not on the cycle containing s2. Since v1 and v2 are bicon-
nected with s1 but not s2, e(s1) �= e(s2). Let s1, s2, s3, s4 ∈ S, where s1 and s2 belong
to different groups in the same box. This implies that s1 and s2 are not biconnected
and if e(s1) = e(s3) and e(s2) = e(s4), s3 and s4 must also belong to different groups.

Theorem 13. A biconnectivity labeling scheme for graphs with n nodes needs
labels of length log n + Ω(log log n).
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Abstract. Amalgamating smaller evolutionary trees into a single parent tree is an important
task in evolutionary biology. Traditionally, the (supertree) methods used for this amalgamation take
a collection of leaf-labeled trees as their input. However, it has been recently highlighted that, in
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1. Introduction. In evolutionary biology, supertree methods have become a fun-
damental process for constructing an evolutionary tree that best represents the infor-
mation exhibited by the original input. These methods amalgamate an input collec-
tion of smaller evolutionary trees on overlapping sets of taxa into a single parent tree
called a supertree. The increasing popularity of supertree methods is highlighted by
a recent survey [3] and a published book [4].

If the input collection of trees carries no conflicting information, then one would
like the resulting supertree to preserve all of the ancestral relationships displayed
by each of the trees in this collection. For collections of rooted phylogenetic trees,
there is a polynomial-time algorithm that finds such a tree. In practice, however,
incompatibility is more common and so one seeks a method that resolves these conflicts
in a sensible way, while still producing a supertree that has a number of attractive
properties. The following list of desirable properties for any supertree method applied
to a collection P of rooted phylogenetic trees is given in [12]:

(i) The method runs in polynomial time in the size of the input.
(ii) The resulting supertree displays all rooted binary subtrees shared by all of

the trees in P.
(iii) If P is compatible, then the resulting supertree displays each of the trees in

P.
(iv) The method satisfies the following two natural symmetry properties of order-

ing and renaming:
(a) The resulting supertree is independent of the order in which the members

of P are listed.
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(b) If we rename all the species and then apply the method to this new
collection of input trees, the resulting supertree tree is the one obtained
by applying the method to the original collection P, but with the species
renamed as before.

(v) The method allows a possible weighting of the trees in P.

To date, the algorithms MinCutSupertree [12] and its modified version [9] are the
only two supertree methods for rooted phylogenetic trees that have been shown to
satisfy all the above properties. We remark here that (iv) may seem trivial to satisfy,
but for collections of unrooted phylogenetic trees, it has been shown that no supertree
method for such collections can simultaneously satisfy (iii) and both parts of (iv) [14].

In this paper, we present a general supertree method for collections of rooted
semilabeled trees, that is, rooted trees in which some (possibly none) of the interior
vertices as well as all of the leaves are labeled. Making the extension from rooted
phylogenetic trees to rooted semilabeled trees means that we allow nested taxa in the
input. In particular, the interior labels represent taxa at a higher taxonomic level than
any of their descendants, for example, families versus genera or genera versus species.
One of the main features of this supertree method is that it purposely allows for
the possibility of variants. Indeed, provided the input satisfies two natural ancestor-
descendant pairwise properties, any such variant constructed from it satisfies all the
rooted semilabeled tree analogues of the desirable properties (i)–(iii) above. Moreover,
although the rooted semilabeled tree analogues of (iv) and (v) are dependent on the
constructed variant, satisfying these additional properties is not difficult. We highlight
this with an example of such an algorithm. To the best of our knowledge, this is the
first time such supertree methods for rooted semilabeled trees have been considered.
The next section contains some further background and necessary preliminaries for
the rest of the paper.

2. Background and preliminaries. Throughout this paper, we will assume
that the reader has some familiarity with the basics of phylogenetics. Unless otherwise
stated, the notation and terminology follows Semple and Steel [13].

A rooted phylogenetic tree (on X) is an ordered pair (T ;φ) consisting of a rooted
tree T in which all interior vertices have degree at least three except the root, which
has degree at least two and a bijective map φ from X to the leaf set of T . Rooted
phylogenetic trees on X are also called rooted phylogenetic X-trees. Loosely speaking,
a rooted phylogenetic X-tree is a rooted tree whose leaves are bijectively labeled with
the elements of X. The leftmost tree in Figure 1 is an example of a rooted phylogenetic
tree, where X = {a, b, c, d}.

Let T ′ be a rooted phylogenetic tree on X ′, and let X be a subset of X ′. The
restriction of T ′ to X is the rooted phylogenetic tree that is obtained from the minimal
rooted subtree of T ′ induced by the elements of X by suppressing all nonroot vertices
of degree two. This restriction is denoted by T ′|X. We say that T ′ displays a rooted
phylogenetic X-tree T if, up to isomorphism, T ′|X is a refinement of T . Intuitively, T ′

displays T if T ′ preserves all of the ancestral relationships described by T . The reason
for allowing refinement is that, from a biological viewpoint, vertices of outdegree at
least three usually represent an uncertainty to the exact order of speciation as oppose
to a multiple speciation event. A collection P of rooted phylogenetic trees is said to
be compatible if there exists a rooted phylogenetic tree that displays each of the trees
in P. Again, intuitively, P is compatible if it carries no conflicting information.

Traditionally, supertree methods have been applied to rooted phylogenetic trees.
One of the first such methods is Build [2]. This polynomial-time algorithm takes a



A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA 465

a b d c

e
e

a b c
a d b c

Fig. 1. A collection P of rooted semilabeled trees.

collection of rooted phylogenetic trees and determines if they are compatible, in which
case it outputs a tree that displays each of the trees in the collection. Algorithms like
Build are all-or-nothing algorithms as they return a tree only if the input data meet
some criteria. However, despite this limitation, such algorithms give valuable insight
into more general supertree methods. Indeed, the algorithm MinCutSupertree and
its modified version is based on Build.

For nested taxa, the analogues of rooted phylogenetic trees and compatibility are
rooted semilabeled trees and ancestral compatibility. A rooted semilabeled tree (on X)
is an ordered pair (T ;φ) consisting of a rooted tree T with vertex set V and root vertex
ρ and a map φ : X → V with the properties that for all v ∈ V −{ρ} of degree at most
two, v ∈ φ(X) and, if ρ has degree zero or one, then ρ ∈ φ(X). Rooted semilabeled
trees on X are also called rooted X-trees. Furthermore, if φ is one-to-one, then (T ;φ)
is said to be singularly labeled. Observe that the definition of rooted semilabeled trees
extends the definition of rooted phylogenetic trees by allowing (i) some of the interior
(nonleaf) vertices as well as all the leaves to be labeled by the elements of X and
(ii) vertices may be labeled by more than one element of X. Examples of rooted
semilabeled trees that are singularly labeled are shown in Figure 1.

Let X ⊆ X ′ and let a, b ∈ X. A rooted X ′-tree T ′ ancestrally displays a rooted
X-tree T if T ′|X refines T so that whenever a is a strict descendant of b in T , a is
a strict descendant of b in T ′|X. The formal definition of strict descendant is given
at the end of this section, but intuition should suffice for the moment. A collection
P of rooted semilabeled trees is ancestrally compatible if there is a rooted semilabeled
tree T that ancestrally displays each of the trees in P, in which case we say that T
ancestrally displays P. Observe that if P consists of rooted phylogenetic trees and is
compatible, then P is ancestrally compatible as none of the trees in P contains any
interior labels. Conversely, suppose that P is ancestrally compatible and consists of
rooted phylogenetic trees. Let T be a rooted semilabeled tree that ancestrally displays
P. Let T ′ be the rooted phylogenetic tree that is obtained from T by replacing each
interior label x with a pendant edge joining the interior vertex previously labeled by
x and labeling the other end-vertex x. It is now easily checked that T ′ displays P.

Page [10] recently motivated the problem of developing supertree methods for
nested taxa and initially posed the problem of constructing a polynomial-time algo-
rithm for determining the ancestral compatibility of an arbitrary collection of rooted
semilabeled trees. In answer to this problem, Daniel and Semple [7] presented an algo-
rithm called AncestralBuild. Analogous to Build, this polynomial-time algorithm
is an all-or-nothing algorithm and determines if a collection P of rooted semilabeled
trees are ancestrally compatible, in which case it outputs a rooted semilabeled tree
that ancestrally displays P. With AncestralBuild in hand, the next natural step
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forward is to construct a more general supertree method for rooted semilabeled trees.

In section 3 of this paper, we present a supertree method for collections of rooted
semilabeled trees that are singularly labeled. Called NestedSupertree, this method
outputs either a rooted semilabeled tree or a statement indicating that either there
is a pair of taxa that are not pairwise consistent or there is an ancestor-descendant
contradiction. Strictly speaking, this is still an all-or-nothing algorithm. However,
such an inconsistency or a contradiction is very particular, and one that we believe
in practice could be resolved separately. Based on AncestralBuild, one of the
attractions of NestedSupertree is that it is able to be easily refined to give rise to a
number of possible variants, each of which is a supertree method for rooted semilabeled
trees that are singularly labeled. Moreover, we show in sections 3 and 4 that any such
variant satisfies all the rooted semilabeled tree analogues of properties (i)–(iii) in the
introduction. Furthermore, in section 5, we describe one particular variant where
the rooted semilabeled trees in the input are weighted. In addition to (i)–(iii), the
resulting algorithm satisfies the rooted semilabeled tree analogues of (iv) and (v). The
restriction to collections of rooted semilabeled trees that are singularly labeled is for
simplicity and functionality (see remarks in section 3). Indeed, in practice, this is not
much of a restriction as rooted semilabeled trees are typically singularly labeled.

In the final section of this paper, section 6, we consider what happens when
NestedSupertree is applied to a collection P of rooted phylogenetic trees. In this
case, the minor conditions on P referred to above are redundant and that Nested-

Supertree applied to P always returns a rooted phylogenetic tree. We show that if
P is compatible, then the rooted phylogenetic tree returned by NestedSupertree is
the same as that returned by Build. Thus NestedSupertree is a generalization of
Build. In fact, as we will see, it also generalizes AncestralBuild in a corresponding
way.

Before ending this section with some preliminaries we make two comments. First,
in addition to the properties listed in the introduction, one other property is given
in [12]. This property says that “the resulting supertree displays all ‘nestings’ shared
by all of the trees in P,” where one subset of the labels in P nests in another if the
most recent common ancestor of the former is a strict descendant of the most recent
common ancestor of the latter. It has been recently shown by Willson [15] that the
proof in [12] that establishes MinCutSupertree has this property is incorrect and, in
fact, that MinCutSupertree does not have this property. (We note that if one adds
the condition that “A is a subset of B” in the statement associated with this proof,
then the proof is correct and MinCutSupertree is guaranteed to have the nesting
property provided the first set of labels is a subset of the other.) Whether displaying
all shared nestings of the input collection is a desirable property is debatable. We
simply note here that NestedSupertree also does not have this property. For
the curious reader, there is a general supertree method for collections P of rooted
phylogenetic trees that satisfies this nesting property as well as the properties listed
in the introduction. In particular, first use the Build algorithm to either produce
a supertree that displays P, in which case the supertree method outputs this tree,
or recognize that P is not compatible. If the latter happens, construct the “Adams
consensus tree” T (see [1] or [13]) for the set P ′ of rooted phylogenetic trees obtained
from P by restricting each tree to the subset of labels of P that are common to each
tree in P. This tree displays all of the nestings shared by all of the trees in P ′ and
hence P. Now, for each remaining label a in P, adjoin a to the root of T with a
distinct new edge. The supertree method outputs the resulting tree. Second, the
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approach taken by NestedSupertree and the approach of MinCutSupertree are
very different. A comparison between these two methods for rooted phylogenetic trees
would make an interesting project.

Finally, some preliminaries. Typically, one views a rooted tree as an undirected
graph. However, it will often be convenient in this paper to view a rooted tree as a
directed graph where each edge is replaced with an arc directed away from the root.
Now let T = (T ;φ) be a rooted semilabeled tree on X. The set X is called the label
set of T and the elements of X are called labels. We also use L(T ) to denote the label
set of T . If v is a vertex of T , we say that the elements of φ−1(v) label v. Furthermore,
T is fully labeled if every vertex of T is labeled by an element of X. For a collection
P of rooted semilabeled trees, we denote the union of the label sets of the trees in P
by L(P). Moreover, we call an element x of L(P) common if x ∈

⋂
T ∈P L(T ).

There is a natural and useful partial order on the label set L(T ) of a rooted
semilabeled tree T = (T ;φ). This partial order is obtained by setting b ≤T a if
the path from the root of T to φ(a) includes φ(b), in which case we say that a
is a descendant of b. If b <T a, then we say that a is a strict descendant of b.
Furthermore, a, b ∈ L(T ) are not comparable under ≤T if neither b ≤T a nor a ≤T b
holds. Essentially, a and b are not comparable in T if a is not a descendant of b and b
is not a descendant of a. In Figure 1, e and c are not comparable in the middle tree,
but c is a (strict) descendant of e in the rightmost tree.

Last, a rooted triple is a rooted phylogenetic tree that has two interior vertices and
whose label set has size three. We denote the rooted triple T with label set {a, b, c}
by ab|c if the path from a to b does not intersect the path from the root to c. For
a collection P of rooted semilabeled trees, a rooted triple whose label set {a, b, c} is
a subset of

⋂
T ∈P L(T ) is common relative to P if, for all T1, T2 ∈ P, T1|{a, b, c} is

isomorphic to T2|{a, b, c}. Note that none of a, b, c need label a leaf of T1 or T2. The
rooted triple ab|c is common to the three rooted semilabeled trees shown in Figure 1.

3. The algorithm NestedSupertree. For a collection P of rooted semi-
labeled trees that are singularly labeled, the algorithm NestedSupertree applied to
P is based on a particular construction and two graphs. We describe the construction
first and then the two graphs.

Let T = (T ;φ) be a rooted semilabeled tree on X, where T has vertex set V .
We say that a rooted fully labeled tree T1 = (T ;φ1) on X1, where X ⊆ X1, has been
obtained from T by adding distinct new labels if for all distinct u, v ∈ V , the following
properties are satisfied:

1. If φ−1(v) is nonempty, then φ−1
1 (v) = φ−1(v).

2. If φ−1(v) is empty, then |φ−1
1 (v)| = 1.

3. If φ−1(u) and φ−1(v) are both empty, then φ−1
1 (u) �= φ−1

1 (v).
Intuitively, T1 has been obtained from T by adding a distinct new label to each
nonlabeled vertex of T . For a collection P of rooted semilabeled trees, we say that
P1 has been obtained from P by adding distinct new labels if it has been obtained
by adding distinct new labels to each tree in P so that no pair of added labels are
the same. Although NestedSupertree is applied to P, all the work in the method
goes into constructing a supertree for a collection of rooted fully labeled trees that
has been obtained from P by adding distinct new labels.

We now describe the two graphs each of which consists of both arcs (directed
edges) and edges. For the purposes of this paper and to avoid confusion, we will call a
graph that contains both arcs and edges a mixed graph. Let P be a collection of rooted
semilabeled trees and let P ′ be a collection of rooted fully labeled trees obtained from
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Fig. 2. A collection P ′ of rooted fully labeled trees.

P by adding distinct new labels. The descendancy graph of P ′, denoted D(P ′), is the
mixed graph whose vertex set is L(P ′), whose arc set is

{(c, a) : c <T a for some T ∈ P ′},

and whose edge set is

{{a, b} : a is not comparable to b under ≤T for some T ∈ P ′}.

The descendancy graph is said to be acyclic if, ignoring edges, it has no directed
cycles.

The second graph D′(P ′) is obtained from the descendancy graph D(P ′) of P ′ as
follows. For each common rooted triple a1a2|b of P, add a new vertex labeled a1a2|b,
a new arc from a1a2|b to a1, and a new arc from a1a2|b to a2. Vertices of the form
a1a2|b are called rooted triple vertices of D′(P ′); all other vertices of D′(P ′) are called
label vertices. We call D′(P ′) the modified descendancy graph of P ′.

In general, let G be a mixed graph and let G′ be the directed graph obtained from
G by deleting all of the edges in the edge set of G. Thus the arc set of G′ is equal
to the arc set of G. A vertex v of G has indegree zero if v has indegree zero in G′.
Similarly, a subset of the vertex set of G is the vertex set of an arc component of G if
it is the vertex set of a component of G′. Furthermore, for a subset V1 of the vertex
set of G, the restriction of G to V1 is the subgraph of G that is obtained by deleting
all vertices not in V1 together with their incident edges and arcs. This restriction is
denoted by G|V1.

Example 3.1. To illustrate the above construction and mixed graphs, let P be the
collection of rooted semilabeled trees shown in Figure 1 and let P ′ be the collection
of rooted fully labeled trees obtained from P by adding distinct new labels as shown
in Figure 2.

The modified descendancy graph of P ′ is shown in Figure 3, where, for simplicity,
the edges as well as the arcs (c, a) where a is not an immediate descendant of c are
omitted. If these edges were included, there would, for example, be an edge joining the
label vertices w1 and c as they are not comparable in the rightmost tree of Figure 2.
Furthermore, to highlight the one rooted triple vertex, its outgoing arcs are drawn
as dashed arrows. This example will be referred to later in this section and also in
section 5.

Last, let P be a collection of rooted semilabeled trees that are singularly labeled,
and let a and b be elements of L(P). We say that a and b are pairwise consistent if,
whenever a is a strict descendant of b in some tree in P, a is always a strict descendant
of b in every tree of P whose label set contains both a and b. Furthermore, P is said
to be pairwise consistent if all pairs of labels in L(P) are pairwise consistent.
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Fig. 3. The modified descendancy graph of P ′.

We now describe NestedSupertree and its subroutine Descendant. An il-
lustrative example and some informative remarks follow these descriptions. In brief,
NestedSupertree constructs a rooted semilabeled tree by starting at the root and
working downwards toward the leaves. The main workings of the method are con-
tained within a subroutine called Descendant. This subroutine uses successive
restrictions of a certain modified descendancy graph to determine how this rooted
semilabeled tree is constructed.

Algorithm NestedSupertree(P).
Input: A collection P of rooted semilabeled trees that are singularly labeled.
Output: A rooted semilabeled tree T with label set L(P), the statement P is not
pairwise consistent, or the statement P has an ancestor-descendant contradiction.

1. For each pair a, b ∈ P, check that a and b are pairwise consistent. If not, then halt
and return P is not pairwise consistent.

2. Construct a collection P ′ of rooted fully labeled trees from P by adding distinct
new labels.

3. Construct the descendancy graph D(P ′) of P ′.
4. If D(P ′) has a directed cycle, then halt and return P has an ancestor-descendant

contradiction.
5. Construct the modified descendancy graph D′(P ′) of P ′.
6. Call the subroutine Descendant(D′(P ′), v′).
7. Remove the added labels from T ′ (the rooted semilabeled tree outputted by De-

scendant), suppress any resulting unlabeled vertex that has indegree one and
outdegree one, and, if the root is unlabeled and has degree one, relocate the root
to the nearest vertex that is either labeled or has outdegree at least two. Return
the resulting rooted semilabeled tree T .

Algorithm Descendant(D′(P ′), v′).
Input: A graph D′(P ′).
Output: A rooted fully labeled tree T ′ with root vertex v′.

1. Let S0 denote the set of label vertices of D′(P ′) that have indegree zero and no
incident edges.

2. If S0 is empty, then choose S0 to be any nonempty subset of label vertices of D′(P ′)
that have indegree zero.

3. Delete the elements of S0 (and their incident arcs and their incident edges) from
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Fig. 4. (a) One possible output of Descendant when applied to D′(P ′) and (b) the correspond-
ing output of NestedSupertree.

D′(P ′). Furthermore, for each common rooted triple a1a2|b of P, delete the rooted
triple vertex a1a2|b if, in the resulting mixed graph, the arc component containing
a1 and a2 does not contain the label vertex b.

4. Let S1,S2, . . . ,Sk denote the vertex sets of the arc components of the graph ob-
tained at the end of step 3.

5. For each element i ∈ {1, 2, . . . , k}, call Descendant(D′(P ′)|Si, v
′
i). Assign the

labels in S0 to v′ and attach T ′
i to v′ via the edge {v′i, v′}.

Example 3.2. As an example of NestedSupertree applied to a collection of
rooted semilabeled trees that are singularly labeled, let P and P ′ be the collections
described in Example 3.1. On the first iteration of Descendant, the label vertices v2

and u3 in the modified descendancy graph D′(P ′) have indegree zero and no incident
edges, and no other label vertices have this property. Therefore, in this iteration,
S0 = {v2, u3}. Furthermore, the graph obtained from D′(P ′) by deleting the elements
of S0 has exactly one arc component.

In the second iteration, the label vertices of the inputted graph that have indegree
zero are e, u1, and u2, and each of these has an incident edge. Therefore, in this
iteration, we can choose any nonempty subset of {e, u1, u2} to be S0. If we choose S0

to be the whole set, then, in all subsequent iterations of the algorithm, there is always
a nonempty set of label vertices of the corresponding graph that have indegree zero
and no incident edges. By making this choice, Descendant eventually returns the
rooted fully labeled tree shown in Figure 4(a) and NestedSupertree returns the
rooted semilabeled tree shown in Figure 4(b).

Remarks.

1. Observe that in step 2 of Descendant a choice can be made on the make
up of S0. This is the part of the algorithm that allows for variants. One possible
way to make this choice is described in section 5. Note that, as we will soon see, if
the subroutine is called but step 2 is never invoked, then the supertree returned by
NestedSupertree ancestrally displays P.

2. One of the attractions of a general supertree algorithm is that conflicts are
resolved in some way so that one always outputs a supertree whether or not the original
collection of input trees is compatible. In the case that the input is a collection of
rooted phylogenetic trees, it is reasonable that any supertree algorithm resolves such
conflicts. However, in the case that the input is a collection of rooted semilabeled
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trees, it appears to us that there are some fundamental ancestor-descendant conflicts
that should be resolved separately. Two such conflicts are when P is not pairwise
consistent or has an ancestor-descendant contradiction. Finding such conflicts can be
easily done in polynomial time. In the case of ancestor-descendant contradictions, see
the proof of Lemma 3.4.

3. Rooted triple vertices and associated arcs are added to the descendancy graph
of P ′ so that any tree outputted by NestedSupertree preserves all the common
rooted triples of P. This property and, in particular, the rooted semilabeled tree
analogue of desirable property (ii) are established in the next section.

4. Proposition 3.6 shows that, provided P is pairwise consistent and the descen-
dancy graph of P ′ is acyclic, NestedSupertree returns a rooted semilabeled tree.
Thus we can always find a nonempty set S0 as described in steps 1 and 2 of the
subroutine Descendant.

5. Last, the check for the pairwise consistency of P and the restriction that
each tree in the input collection is singularly labeled could be removed from
NestedSupertree. However, if either is done, then there is no guarantee that
the resulting supertree satisfies the rooted semilabeled tree analogue of (ii) in the
introduction.

The rest of this section establishes some basic properties of NestedSupertree,
in particular, the rooted semilabeled tree analogues of (i) (Proposition 3.7) and (iii)
(Proposition 3.3). Further properties are established in the next section.

We begin by making the following observation. Recall from the introduction
that AncestralBuild is a polynomial-time algorithm that determines if a collection
of rooted semilabeled trees is ancestrally compatible, in which case such a tree is
returned [7]. The description of NestedSupertree closely resembles the description
of AncestralBuild. Indeed, the latter can be essentially obtained from the former
as follows. Remove steps 1, 4, and 5 in NestedSupertree; replace the modified
descendancy graph of P ′ with the descendancy graph of P ′ in Descendant; remove
the second sentence of step 3 of Descendant; and replace step 2 of Descendant

“If S0 is empty, halt and return P ′ is not ancestrally compatible”, in which case P is
not ancestrally compatible. It follows that NestedSupertree can be viewed as a
generalization of AncestralBuild. Indeed, we have the following proposition.

Proposition 3.3. Let P be a collection of rooted semilabeled trees that are
singularly labeled, and suppose P is ancestrally compatible. Then NestedSupertree

applied to P returns a rooted semilabeled tree that ancestrally displays P.

Proof. Let P ′ be a collection of rooted fully labeled trees that is obtained from
P by adding distinct new labels. Since P is ancestrally compatible, P is pairwise
consistent and D(P ′) has no directed cycles. It now follows from the description
of how AncestralBuild can be obtained from NestedSupertree that
NestedSupertree applied to P returns a rooted semilabeled tree that ancestrally
displays P.

The next two lemmas are needed for the proofs of Propositions 3.6 and 3.7. The
first lemma is well known and is an easy exercise. However, we include its proof as it
indicates how one can find all the ancestor-descendant contradictions of a collection
of rooted semilabeled trees.

Lemma 3.4. Let D be a connected digraph that contains no directed cycle. Then
there exists a vertex of D whose indegree is zero.

Proof. Assume no vertex of D has indegree zero. Let D′ be the digraph obtained
from D by reversing the orientation of the arcs of D. By assumption, every vertex
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of D′ has outdegree at least one. Let u be a vertex of D′. Starting at u, construct a
directed walk. Since each vertex of D′ has an outgoing arc, we must eventually meet
a vertex on this walk that has already been traversed. In particular, this means that
D′ contains a directed cycle, which in turn implies that D contains a directed cycle.
This contradiction completes the proof of the lemma.

Lemma 3.5. Let P be a collection of rooted fully labeled trees that are singularly
labeled. Let b ∈

⋂
T ∈P L(T ), and let x, y ∈ L(P). Suppose that b is pairwise consistent

with each of the labels in L(P). Then the following hold:

(i) If there is a directed path from b to x in D(P), then there is an arc from b
to x in D(P). Furthermore, if there is a directed path from x to b in D(P),
then there is an arc from x to b in D(P).

(ii) Suppose that (b, x) is an arc in D(P). If (y, x) is also an arc in D(P) and
b �= y, then either there is an arc from y to b in D(P) or there is an arc from
b to y in D(P).

Proof. We first prove (i). Assume that by1y2 · · · ykx is a directed path in D(P)
from b to x. As y1 is a strict descendant of b in some tree in P and b is pairwise
consistent with y1, it follows that whenever b and y1 are labels of some tree in P, y1

is a strict descendant of b. Since there is an arc from y1 to y2, there is a tree T1 in P
in which y2 is a strict descendant of y1. Since b is a label of T1, this implies that y2 is
a strict descendant of b in T1, so, by definition, there is an arc in D(P) from b to y2.
Repeating this argument for y2 and y3, we deduce that there is an arc in D(P) from
b to y3. Continuing in this way, we eventually establish that there is an arc in D(P)
from b to x. A similar argument shows that there is an arc (x, b) in D(P) if there is
a directed path in D(P) from x to b. This establishes (i).

We now prove (ii). Since (y, x) is an arc of D(P), there is a tree T in P for which
x is a strict descendant of y. But this means that, as (b, x) is an arc of D(P), b is
a common label and is pairwise consistent with x, and all trees in P are singularly
labeled, either b is a strict descendant of y or y is a strict descendant of b in T . In
particular, either (b, y) or (y, b) is an arc in D(P), respectively.

Proposition 3.6. Let P be a collection of rooted semilabeled trees that are
singularly labeled and let P ′ be a collection of fully labeled trees obtained from P by
adding distinct new labels. If P is pairwise consistent and the descendancy graph of P ′

is acyclic, then NestedSupertree applied to P returns a rooted semilabeled tree.

Proof. Because of Lemma 3.4 and the fact that Descendant successively con-
siders proper restrictions of the modified descendancy graph of P ′, it suffices to show
that one can always choose a nonempty set S0 of label vertices in steps 1 and 2 at each
iteration of the subroutine Descendant. To see this, suppose that at some iteration
of Descendant the associated connected restriction, D, say, of D′(P ′) has no label
vertex of indegree zero. Let S be the set of label vertices of D in which the only
incoming arcs are the ones coming from rooted triple vertices. Since any restriction
of the descendancy graph of P ′ is acyclic, it follows that S is nonempty. Let a1 be an
element of S. By the construction of the modified descendancy graph, a1 is a label of
a common rooted triple, a1a2|b, say, of P. Furthermore, a1 is not the only element of
S; for otherwise, every label vertex of D, including a2, would be a strict descendant
of a1. It now follows that, as D is connected, there is a label vertex w that lies in
a directed path from a1 and that also lies in a directed path from a common label
vertex, x1, say, that is distinct from a1 and is in S. By Lemma 3.5(i), this implies
that there exists a tree T1 in P in which w is a strict descendant of a1 and a tree T2

in P in which w is a strict descendant of x1. As a1 and x1 are not comparable in T1,
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it follows that w is not comparable to x1 in T1. But w is a strict descendant of x1 in
T2, contradicting the assumption that P is pairwise consistent. We conclude that at
steps 1 and 2 of each iteration of Descendant, we can always find an appropriate
nonempty set of label vertices.

Proposition 3.7. Let P be a collection of rooted semilabeled trees that are
singularly labeled. Then the running time of NestedSupertree applied to P is
polynomial in |L(P)| × |P|.

Proof. Let P ′ be a collection of rooted fully labeled trees that is obtained from
P by adding distinct new labels. Since the only possible unlabeled vertices of a
rooted semilabeled tree are either the root vertex or a vertex of degree at least three,
the number of such interior vertices is at most one less than the number of leaves.
Therefore, to prove the proposition, it suffices to show that the running time of
NestedSupertree is polynomial in |L(P ′)| × |P|.

It is clear that checking for pairwise consistency is polynomial time in |L(P ′)|×|P|.
Furthermore, the construction of the descendancy graph of P ′ can be also be done
in such a time. Now one can determine if a directed graph has no directed cycles
by successively deleting vertices (and their incident arcs) that have either indegree or
outdegree zero. If this process results in the empty graph, then the original graph
has no directed cycles; otherwise it has a directed cycle. Since the size of D(P ′) is
polynomial in the size of L(P ′), determining whether D(P ′) has no directed cycles is
polynomial in the size of L(P ′).

The number of triples of L(P) is polynomial in |L(P)| and so finding the collection
of common rooted triples of P is also polynomial in |L(P ′)| × |P|. It follows that the
construction of the modified descendancy graph of P ′ is polynomial time in |L(P ′)|×
|P|. Lastly, as stated in the fourth remark following Example 3.2, at each iteration of
the subroutine Descendant there is always at least one vertex with indegree zero.
Consequently, at each iteration, S0 is nonempty and so the mixed graph resulting
from deleting the elements in S0 is a proper restriction of the mixed graph inputted
at that particular iteration. Thus the number of such iterations is bounded by the
size of L(P ′). We deduce that the running time of NestedSupertree is polynomial
in |L(P ′)| × |P|.

4. Other properties of NestedSupertree. The main purpose of this section
is to establish the rooted semilabeled tree analogue of desirable property (ii) in the
introduction for NestedSupertree.

A rooted semilabeled tree T is binary if T is singularly labeled and every vertex
has degree at most three except for the root, which has degree at most two. The main
result of this section is the following theorem.

Theorem 4.1. Let P be a collection of semilabeled trees that are singularly labeled
and let T be a rooted semilabeled binary tree that is ancestrally displayed by each tree
in P. Suppose that NestedSupertree applied to P returns a rooted semilabeled tree
T ′. Then T ′ ancestrally displays T .

To prove Theorem 4.1, we first establish several results. The first result, Propo-
sition 4.2, is well known (for example, see [13]).

Proposition 4.2. Let T be a rooted phylogenetic X-tree. Let

R(T ) = {T |S : S ⊆ X, |S| = 3, T |S is a rooted triple}.

If T ′ is a rooted phylogenetic X ′-tree, where X ⊆ X ′, and R(T ) ⊆ R(T ′), then T ′

displays T .
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Fig. 5. The six triples.

For rooted semilabeled trees that are singularly labeled, the analogous result is
Proposition 4.3. We will call a rooted semilabeled tree that is singularly labeled and
has label set of size three a triple. A rooted triple is a particular type of triple. Up to
isomorphism, there are six triples and these are shown in Figure 5. For convenience
in this paper, we denote these triples as Types (I)(a) and (b), (II), (III), and (IV)(a)
and (b). We will continue to refer to a triple of Type (I)(a) as a rooted triple.

Proposition 4.3. Let T be a rooted semilabeled tree on X. Let

B(T ) = {T |S : S ⊆ X, |S| = 3, T |S is a triple of Type (I)(a) or (IV)(a)},

D(T ) = {c <T a : a, c ∈ L(T )},

and

N (T ) = {a is not comparable to b under ≤T : a, b ∈ L(T )}.

If T ′ is a rooted semilabeled tree on X ′, where X ⊆ X ′, and B(T ) ⊆ B(T ′), D(T ) ⊆
D(T ′), and N (T ) ⊆ N (T ′), then T ′ ancestrally displays T .

Proof. To prove the proposition, it is clear that we may assume that X and X ′ are
the same sets. Let T = (T ;φ). The proof is by induction on the number n of interior
labels of T . If n = 0, then it is straightforward to deduce the result by Proposition 4.2
and the fact that N (T ) ⊆ N (T ′). Now assume that the result holds for all rooted
semilabeled trees that have fewer than n interior labels, where n ≥ 1. Since T has
at least one interior label, there exists an interior vertex u of T that is labeled by
an element, d, say, of X such that all elements of X that are strict descendants of d
label leaves of T . Let T1 be the rooted semilabeled tree obtained from T by replacing
the rooted subtree of T that lies below or equal to u with a single leaf labeled by the
elements of φ−1(u). Let T2 be the rooted semilabeled tree that is the rooted subtree
of T that lies below or equal to d and in which the elements in φ−1(u) are removed.
Note that if u has outdegree one, then u is deleted and the root of T2 is the vertex of
T that is immediately below u.
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Now consider T ′. Since D(T ) ⊆ D(T ′), each element in φ−1(u) labels an interior
vertex of T ′. Moreover, as there is an element of X that is a strict descendant of
each element in φ−1(u), it follows that, for all pairs a, b ∈ φ−1(u), either a and b
label the same vertex of T ′ or one element, a, say, is a strict descendant of b in T ′.
Let c be a least element of φ−1(u) under ≤T ′ and let v be the interior vertex of T ′

that is labeled by c. Again, as D(T ) ⊆ D(T ′), the set of strict descendants of c in
T ′ is exactly the label set of T2. Analogous to the constructions of T1 and T2 in the
previous paragraph, construct T ′

1 and T ′
2 from T ′ using the vertex v instead of u.

Evidently, B(T1) ⊆ B(T ′
1 ), D(T1) ⊆ D(T ′

1 ), and N (T1) ⊆ N (T ′
1 ), and B(T2) ⊆ B(T ′

2 ),
D(T2) ⊆ D(T ′

2 ), and N (T2) ⊆ N (T ′
2 ). Furthermore, both T1 and T2 have fewer

than n labeled interior vertices. Therefore, by our induction assumption, T ′
1 and T ′

2

ancestrally display T1 and T2, respectively. By definition, it immediately follows that
T ′ ancestrally displays T unless u has outdegree one and the vertex of T ′ labeled by
c has outdegree at least two. But then, in this case, there are elements a, b ∈ X such
that T |{a, b, c} is of Type (IV)(a) and T ′|{a, b, c} is of Type (IV)(b), contradicting
the assumptions in the statement of the proposition. This completes the proof of
Proposition 4.3.

Lemma 4.4. Let P be a collection of rooted semilabeled trees that are singularly
labeled and let a, b ∈ L(P). Suppose that NestedSupertree applied to P returns a
rooted semilabeled tree T .

(i) If a is a strict descendant of b in some tree in P, then a is a strict descendant
of b in T .

(ii) If a, b ∈
⋂

T ∈P L(T ), and a is not comparable to b in each tree in P, then a
is not comparable to b in T .

Proof. Part (i) immediately follows from the description of NestedSupertree.

To prove (ii), let P ′ be the collection of rooted fully labeled trees that is obtained
from P by adding distinct new labels in step 2 of NestedSupertree. At some
iteration of the running of the subroutine Descendant, one of the label vertices a
or b in some restriction of the modified descendancy graph D′(P ′) of P ′ has indegree
zero. Consider the first such iteration and let D denote the corresponding connected
mixed graph. Without loss of generality, we may assume that a has indegree zero in
this restriction. To establish the lemma, it suffices to show by the construction of T
that b is not a vertex of D.

Let Va be the subset of vertices of D that are either label vertices lying on a
directed path starting at a or rooted triple vertices where both adjacent label vertices
lie on a directed path starting at a. Since a and b are not comparable in every tree
in P and a has indegree zero, it follows by the contrapositive of Lemma 3.5(i) that
b �∈ Va. Thus, to establish that b is not a vertex of D, it suffices to show that Va is the
vertex set of D. To see this, suppose that D contains an arc (z, x), where z �∈ Va, but
x ∈ Va. Clearly, x is a label vertex of D. Assume that z is also a label vertex of D.
By Lemma 3.5(i), (a, x) is an arc of D. Therefore, as a has indegree zero, it follows by
Lemma 3.5(ii) that there is an arc from a to z in D. This implies that z ∈ Va, which
is a contradiction. In fact, by extending this argument, it is easily seen that, ignoring
rooted triple vertices, Va contains all of the label vertices of D. It now follows by
the definition of Va that Va is the vertex set of D. This completes the proof of the
lemma.

We remark here that the condition that a and b are common labels of P in the
statement of Lemma 4.4(ii) cannot be weakened.

Let P be a collection of rooted semilabeled trees. A triple whose label set {a, b, c}
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Fig. 6. Two triples.

is a subset of
⋂

T ∈P L(T ) is common relative to P if, for all T1, T2 ∈ P, T1|{a, b, c} is
isomorphic to T2|{a, b, c}.

Lemma 4.5. Let P be a collection of rooted semilabeled trees that are singularly
labeled, and let T be a common triple of P of Type (I)(a) or (IV)(a). Let {a, b, c}
be the label set of T . Suppose that NestedSupertree applied to P returns a rooted
semilabeled tree T ′. Then T ′|{a, b, c} is isomorphic to T .

Proof. If T is a triple of Type (IV)(a), then it is easily seen, by interpreting
Lemma 4.4 for a collection of rooted fully labeled trees that are singularly labeled,
that T ′|{a, b, c} is isomorphic to T . Therefore suppose that T is the rooted triple
ab|c, say. Let P ′ be the collection of rooted fully labeled trees that is obtained from
P by adding distinct new labels in step 2 of NestedSupertree. Since a, b, and c
are common labels of P, it follows by Lemma 4.4 that every pair of a, b, and c are
not comparable in T . Furthermore, by step 3 of Descendant, a and b are always
in the same arc component of the restrictions of the modified descendancy graph of
P ′ that are considered throughout the running of NestedSupertree provided c is
in the same restriction. We now deduce from the description of Descendant that
T ′|{a, b, c} is isomorphic to ab|c.

We now prove Theorem 4.1.
Proof of Theorem 4.1. Since each label of T is a common label of P, it immedi-

ately follows by Lemma 4.4 that D(T ) ⊆ D(T ′) and N (T ) ⊆ N(T ′). Furthermore,
by Lemma 4.5, B(T ) ⊆ B(T ′), and hence, by Proposition 4.3, T ′ ancestrally displays
T .

Corollary 4.6. Let P be a collection of rooted semilabeled trees that are singu-
larly labeled. Suppose that NestedSupertree applied to P returns a rooted semil-
abeled tree T ′. Then the following hold:

(i) If T is a common triple of P, then T ′ ancestrally displays T .
(ii) Let {a, b, c} be a subset of

⋂
T ∈P L(T ). Suppose that, for all T ∈ P, T |{a, b, c}

is one of the two triples shown in Figure 6. Then T ′ ancestrally displays the
triple shown in Figure 6(b).

Proof. If T is a common triple of any type except Type (I)(b), then (i) follows
from Theorem 4.1. If T is a common triple of Type (I)(b), then (i) follows from
Lemma 4.4(ii).

For (ii), a routine check using both parts of Lemma 4.4 establishes this part of
the corollary.

We end this section with an observation regarding the last corollary. Observe that
for the two triples in (ii) of this corollary one is a refinement of the other. Amongst
the other triples only one other pair has this property, Types (I)(a) and (b). Despite
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part (ii) of Corollary 4.6, it is straightforward to construct an example where the
analogue of (ii) for Types (I)(a) and (I)(b) does not hold. This is not a weakness
of NestedSupertree but simply highlights the fact shown in [14] that no general
supertree method for rooted phylogenetic trees (and hence rooted semilabeled trees)
is able to satisfy this analogue.

5. A variant of NestedSupertree. In this section, we present a particular
variant of NestedSupertree. This algorithm, which we call MinEdgeWeight-

Tree, allows the input trees to be weighted and also satisfies the symmetry properties
of ordering and renaming. To describe MinEdgeWeightTree, we simply note that
it is obtained from NestedSupertree by replacing step 2 of Descendant with the
following:

2′. If S0 is empty, then choose S0 as follows:
(a) Let C0 denote the set of label vertices of D′(P ′) that have indegree zero.
(b) For each c ∈ C0, weight c to be the sum of the weights of the trees in P ′ that

induce at least one incident edge with c in D′(P ′).
(c) Let S0 consist of the elements of C0 with minimum weight.

Note that if the input trees are not weighted, choose each tree to have weight one.
Remarks.
1. Clearly, at each iteration of the subroutine of MinEdgeWeightTree anal-

ogous to Descendant, S0 is nonempty at the end of either step 1 or step 2′. Fur-
thermore, the time taken to find S0 is polynomial in |L(P)| × |P|. It immediately
follows by the results established in sections 3 and 4 for NestedSupertree that
MinEdgeWeightTree applied to a collection of rooted semilabeled trees that are
singularly labeled and weighted satisfies the rooted semilabeled tree analogues of (i)–
(iii) and (v) in the introduction.

2. In comparison with Descendant, the set S0 of label vertices is well defined in
the corresponding subroutine of MinEdgeWeightTree. Since no appeal is made to
the specific symbols used as labels or to the order in which the members of P are listed
in MinEdgeWeightTree, it follows that MinEdgeWeightTree also satisfies the
rooted semilabeled tree analogues of (iv)(a) and (b) in the introduction.

Example 5.1. To illustrate MinEdgeWeightTree, consider the collection P of
rooted semilabeled trees described in Example 3.1 and the collection P ′ of rooted fully
labeled trees obtained from P by adding distinct new labels. For the purposes of the
example, suppose that the three trees in Figure 1 are weighted so that the leftmost
tree is weighted 3, the middle tree is weighted 2, and the rightmost tree is weighted
1. The modified descendancy graph of P ′ is the same as that given in Figure 3.

Applying MinEdgeWeightTree to P, the first iteration of its subroutine is
the same as that in Example 3.2. In particular, S0 = {v2, u3} at the end of step 1
and so, in this iteration, no label vertices of the inputted graph are weighted. In the
second iteration of its subroutine, S0 is empty after step 1. At step 2′(a), the set
C0 of label vertices of the inputted graph with no incoming arcs is {e, u1, u2}. Since
the label vertex e has exactly one incident edge and this is induced by the tree with
weight 2, we give e weight 2 at step 2′(b) in this iteration. Similarly, u1 and u2 are
both weighted 3. This weighting together with the associated mixed graph are shown
in Figure 7(a), where the edges and the arcs (c, a) in which a is not an immediate
descendant of c are omitted. At step 2′(c), S0 = {e} and so, at this iteration, it is
e and its incident arcs and edges that are deleted from the input graph. The graph
resulting from these deletions is shown in Figure 7(b), where the weights of the label
vertices with indegree zero are also shown. Continuing in this way, the subroutine
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Fig. 7. The associated graphs in the second and third iteration of DescendantSupertree in
Example 5.1.
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Fig. 8. The trees returned by MinEdgeWeightTree and its subroutine in Example 5.1.

of MinEdgeWeightTree eventually returns the rooted fully labeled tree shown in
Figure 8(a), and MinEdgeWeightTree returns the rooted semilabeled tree shown
in Figure 8(b).

Remarks. Although we think MinEdgeWeightTree is a reasonable algorithm,
we expect there to be more elaborate algorithms for supertree construction based on
NestedSupertree. The point is that it highlights how NestedSupertree can be
used as a basis for constructing new supertree methods for rooted semilabeled trees
that satisfy all the rooted semilabeled tree analogues of the properties listed in the
introduction.

6. NestedSupertree applied to rooted phylogenetic trees. Although not
originally intended for phylogenetics, the algorithm Build [2] was one of the first
supertree methods for collections P of rooted phylogenetic trees. Furthermore, as
well as MinCutSupertree and its modified version, the general approach taken by
Build has been used in a number of more recent supertree algorithms, for example, [5,
6, 8, 11]. In the setting of phylogenetics, Build is a polynomial-time algorithm for
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deciding if P is compatible. In this section, we describe how NestedSupertree can
be applied to P to determine the compatibility of P. In the case that P is compatible,
we also show that the rooted phylogenetic tree returned by NestedSupertree is the
same as that returned by Build.

Since a collection P of rooted phylogenetic trees is compatible if and only if
it is ancestrally compatible, it follows by the discussion preceding Proposition 3.3
that NestedSupertree can be suitably modified to determine the compatibility
of P. Theorem 6.1 shows that when applied to the same collection of compatible
rooted phylogenetic trees, the supertrees returned by NestedSupertree with this
modification and Build are identical up to isomorphism.

Before stating Theorem 6.1, we first give a description of Build. Let P be a
collection of rooted phylogenetic trees and let S be a subset of L(P). Let [P,S] be
the graph that has vertex set S and has an edge joining two vertices a and b precisely
if there exists a c ∈ S and a T ∈ P such that

T |{a, b, c} ∼= ab|c.

Algorithm Build(P, v).
Input: A collection P of rooted phylogenetic trees.
Output: A rooted phylogenetic tree T that displays P with root vertex v, or the
statement P is not compatible.
1. Set S to be the label set of P.
2. If |S| = 1, then output the rooted phylogenetic tree consisting of the single vertex

v labeled by the element in S.
3. If |S| ≥ 2, construct [P, S].
4. Let S1,S2, . . . ,Sk denote the vertex sets of the components of [P,S]. If k = 1,

then halt and return P is not compatible.
5. For each i ∈ {1, 2, . . . , k}, call Build(Pi, vi), where Pi is the collection of rooted

phylogenetic trees obtained from P by restricting each tree in P to Si. If Build(Pi, vi)
returns a tree, then attach Ti to v via the edge {vi, v}.
Theorem 6.1. Let P be a collection of rooted phylogenetic trees, and suppose

that P is compatible. Then, up to isomorphism, the rooted phylogenetic trees returned
by NestedSupertree with the above modifications and Build when applied to P
are identical.

Proof. We begin the proof with two observations. Let S denote the label set of
P, and let P ′ be a collection of rooted fully labeled trees that is obtained from P
by adding distinct new labels. The first observation is that the vertex set of each
component of the graph [P,S] is a union of maximal proper clusters of the trees in P.
For the second observation, consider the descendancy graph of P ′, and let S0 denote
the set of vertices of D(P ′) that have indegree zero and no incident edges. Then the
vertex sets of each arc component of D(P ′)\S0 is also a union of maximal proper
clusters of the trees in P ′. From these two observations, it is easily deduced, for all
a, b ∈ S, that a and b are in the same component of [P,S] if and only if a and b are
in the same arc component of D(P ′)\S0.

Let Si be the vertex set of a component of [P,S] and let S ′
i be the vertex set of

the arc component of D(P ′)\S0 that contains Si. Let Pi be the collection of rooted
phylogenetic trees obtained from P by restricting each tree in P to Si, and let P ′

i

be the collection of rooted semilabeled trees obtained from P ′ by restricting each
tree in P ′ to S ′

i. It is easily seen that all of the trees in P ′
i are fully labeled. Now

the equivalence at the end of the last paragraph implies that P ′
i could have been
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obtained from Pi by adding distinct new labels. Furthermore, the arc component of
D(P ′) containing the elements of Si is equal to the descendancy graph of D(P ′

i). Since
[P,S] contains at least two components, this implies that the maximal proper clusters
of the trees returned by NestedSupertree with the appropriate modifications and
Build when applied to P are the same. Repeatedly applying this argument to Pi

for all i, we eventually deduce that the two rooted phylogenetic trees returned by
NestedSupertree with the appropriate modifications and Build are identical.

We end this section by remarking on what happens when NestedSupertree

is applied to an arbitrary collection P of rooted phylogenetic trees. Let P ′ be a
collection of rooted fully labeled trees that is obtained from P by adding distinct new
labels. Since each of the trees in P are phylogenetic, P is pairwise consistent, and
the descendancy graph of P ′ is acyclic. It is now easily seen from the description
of Descendant that NestedSupertree applied to P returns a rooted semilabeled
tree and that this tree is phylogenetic. It now follows by Propositions 3.7 and 3.3,
and Theorem 4.1 that NestedSupertree is a general supertree method for rooted
phylogenetic trees that satisfies the desirable properties (i)–(iii) in the introduction.
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Abstract. For Boolean polynomials in Zp of sufficiently low degree we derive a relation express-
ing their values on one level set in terms of their values on another level set. We use this relation
to derive linear upper and lower bounds, tight to within constant factor, on the degrees of various
approximate majority functions, namely, functions that take the value 0 on one level set, the value 1
on a different level set, and arbitrary 0-1 values on other Boolean inputs. We show sublinear upper
bounds in the case of moduli that are not prime powers.
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1. Introduction. Methods bounding the degree of polynomials that represent
Boolean functions have been important tools in complexity theory. These techniques
have been used to obtain several results that shed light on the complexity of Boolean
functions. In particular, such polynomial degree lower bounds have consequences for
the constant-depth circuit complexity of the associated Boolean functions.

We say that a polynomial represents a Boolean function if the polynomial is
nonzero when the Boolean function is TRUE and zero when it is FALSE. The functions
AND, OR, and Majority have been studied extensively in this framework and are
examples of the more general class of threshold functions. Specifically, a threshold
function is one which has value TRUE iff the number of nonzero inputs is at least
a certain threshold. For AND, OR, and Majority, the respective thresholds are the
number of inputs n, one, and n/2 respectively. Most of the work in this area concerns
polynomials that represent these functions either exactly or at a large fraction of the
points. Our results instead bound the degree of a large class of Boolean functions
with values fixed at only a small subset of the domain. In particular, we study the
approximate majority function, which is defined for fixed A,B with A < B as any
function that is TRUE if exactly B of the inputs are TRUE, and FALSE if exactly
A are TRUE. Using properties of the binomial coefficients, we provide a linear lower
bound on the degree of polynomials representing such approximate majority functions.
For example, if for some prime p, n = 4pk, A = n/4, and B = 3n/4, we prove a lower
bound linear in n/p on the degree of a polynomial representing this approximate
majority function over Zp. Our general linear lower bounds, however, hold only
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modulo powers of primes. For composite moduli with multiple prime factors, we
prove sublinear upper bounds.

Degree lower bounds for Boolean polynomials were first used by Razborov [Raz87]
and Smolensky [Smo87] in the context of proving lower bounds on the size of constant-
depth Boolean circuits. These results inspired much work on the degree of threshold
and other functions over various rings. Beigel [Bei93] gives an overview of much
of the earlier work in this area. For example, Barrington, Straubing, and Thérien
[BST90] proved linear upper bounds on the degree of a polynomial representing the
OR function over Zm and showed that they are tight for prime m. These upper
bounds were improved by Barrington, Beigel, and Rudich [BBR92] to be sublinear for
the case of composite m. In the case of majority, Tsai [Tsai96] proves a lower bound
for all m of n/2 on the degree of the majority function over Zm. The approximate
majority function with A = n/4 and B = 3n/4 arises naturally in the context of
quantum complexity [GP01]. We show that the degree of this function is within a
constant factor of that of the majority function for prime powers but significantly
lower otherwise.

2. Preliminaries.

2.1. Combinatorics. For natural numbers n and k, we denote by (n)k the k-ary
representation of n, i.e., the string . . . a2a1a0 with 0 ≤ ai < k such that n =

∑
i aik

i.
Note that the first (from the right) nonzero digit of (n)k is given by the least i such
that ki+1

� n, an observation to which we shall frequently refer.
In 1878 Lucas [Luc78] gave a method for easily determining the value of

(
n
k

)
mod

p for prime p. This result is now known as Lucas’s theorem. It is one of the main
ingredients in the proofs of our results. By x[i] we denote the symbol at the ith
position from the right of string x.

Theorem 1 (see [Luc78]). Let p be a prime number, and let n, k be positive
integers. Then

(
n

k

)
≡

m∏
i=0

(
(n)p[i]

(k)p[i]

)
(mod p),

where m is the maximal index i such that (n)p[i] �= 0 or (k)p[i] �= 0 and where we use
the convention that

(
a
x

)
= 0 whenever x > a.

2.2. Representation of Boolean functions over Zm. We now define what
it means for a polynomial over Zm to represent a Boolean function. We should note
that there are several ways to represent a Boolean function by a polynomial over Zm,
as discussed, for instance, in Tardos and Barrington [TB95]. The definition we use
here is what is sometimes called one-sided representation.

Definition 1. Let g : {0, 1}n → {0, 1} be a Boolean function and P : Z
n
m →

Zm a multilinear polynomial. We say that P represents g over Zm iff for all x ∈
{0, 1}n, P (x) ≡ 0 ⇔ g(x) = 0. By the degree deg(P ) of a polynomial P : Z

n
m →

Zm, we mean the degree of its largest monomial. The degree of a Boolean func-
tion g : {0, 1}n → {0, 1} over Zm is then defined as deg(g,m) = min{deg(P ) |
P represents g over Zm}.

Note that since for all x ∈ {0, 1} and � > 0, we have that x� = x, the restriction
to multilinear polynomials is without loss of generality.

We will sometimes restrict ourselves to polynomials with outputs in {0, 1}, which
thus strictly represent Boolean functions. When the modulus is a prime power pk,
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the following lemmas relate the degrees of the strict and one-sided representations to
be within a factor of (p − 1)(2pk−1 − 1). Both are usually stated as being folklore
results. See [Bei93] for an overview of these and other similar results. The proof of
Lemma 3 is due to Richard Beigel [Bei02], correcting a misstatement in [Bei93].

Lemma 2. Let p be a prime and g : Z
n
p → Zp be a polynomial of degree d; then

there is a polynomial h : Z
n
p → Zp of degree (p − 1)d such that for all x ∈ {0, 1}n,

h(x) ∈ {0, 1}, and h(x) ≡ 0 iff g(x) ≡ 0.

Proof. Take h = gp−1. By Fermat’s little theorem, h(x) ≡ 1 (mod p) iff g(x) �=
0.

Lemma 3. Let k be a positive integer and p be a prime. If g : Z
n
pk → Zpk is a

polynomial of degree d, then there exists a degree d(2pk−1−1) polynomial h : Z
n
p → Zp,

such that for all x ∈ {0, 1}n, h(x) ≡ 0 iff g(x) ≡ 0.

Proof. By Theorem 1, we have that for every prime p and positive integer m,

(
m

pi

)
≡

(
(n)p[i]

1

)
≡ (n)p[i] (mod p).

Thus we have that for every such p, m

m ≡ 0 (mod pk) ⇔ ∀i < k

[(
m

pi

)
≡ 0 (mod p)

]
.(2.1)

Define the ith elementary symmetric function of the n variables y1, . . . , yn, i ≤ n, as

∑
1≤�1<···<�i≤n

i∏
j=1

y�j .

Note that if each yi ∈ {0, 1}, and exactly |y| of them are 1, then the value of the

above expression is
(|y|

i

)
. Now write g as a sum of monomials of coefficient 1, i.e.,

replace, for example, 3x1x2 by x1x2 + x1x2 + x1x2. Let
(
g(x)
i

)
be the ith elementary

symmetric function of the monomials in g. Define h(x) as

h(x) =
k−1∑
i=0

(
g(x)

pi

) i−1∏
j=0

(
1 −

(
g(x)

pj

)p−1
)
.

We have that the degree of
(g(x)

pi

)
is dpi ≤ dpk−1. Also, the degree of the product

is at most
∑k−2

j=0 d(p− 1)pj = d(pk−1 − 1). Thus the degree of h(x) is d(2pk−1 − 1).

If g(x) ≡ 0 (mod pk), then by (2.1),
(g(x)

pi

)
≡ 0 (mod p) for all 0 ≤ i < k; hence

h(x) ≡ 0 (mod p). On the other hand, if g(x) �≡ 0 (mod pk), then using (2.1), let

r be the least value such that
(
g(x)
pr

)
�≡ 0 (mod p). Note that the rth term in h(x) is

nonzero modulo p, but all the others are zero modulo p, since all terms after the rth

contain the factor (1 −
(
g(x)
pr

)p−1
) ≡ 0, and hence h(x) �≡ 0 (mod p).

3. Level set relations. In this section we restrict ourselves to the field Zp,
where p is a prime. For a binary string x, let |x| denote its Hamming weight, the
number of 1’s. Note that in the following, we often identify an input x ∈ {0, 1}n with
the set S = {xi | xi = 1}. By definition |x| = |S|.
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The following theorem relates the value of a polynomial at a set U with the sum
of its values on subsets of U of a fixed cardinality, provided the polynomial is of
sufficiently low degree.

Theorem 4. Let p be prime, and let g : Z
n
p → Zp be a polynomial of degree

at most pr. Let a < b be integers satisfying
(
b−1
a−1

)
�≡ 0 (mod p). Then for any

assignment U ⊂ [n] with |U | = bpr,

g(U) ≡ (1 − b/a)g(∅) +

(
b− 1

a− 1

)−1 ∑
|S|=apr

S⊂U

g(S) (mod p)

unless a ≡ 0 (mod p), in which case b/a is replaced by
(
b
a

)(
b−1
a−1

)−1
.

Proof. Let cg(S) represent the coefficient in g of the term
∏

i∈S xi. Then since g
has degree at most pr we can evaluate it at some point S with the following expression:

g(S) =
∑
l≤pr

∑
|Z|=l

Z⊂S

cg(Z).

Thus we have ∑
|S|=apr

S⊂U

g(S) =
∑

|S|=apr

S⊂U

∑
l≤pr

∑
|Z|=l

Z⊂S

cg(Z)

=
∑
l≤pr

∑
|S|=apr

S⊂U

∑
|Z|=l

Z⊂S

cg(Z)

=
∑
l≤pr

∑
|Z|=l

Z⊂U

(
bpr − l

apr − l

)
cg(Z),

where the last equality holds since there are
(
bpr−l
apr−l

)
ways to choose the remaining

apr − l elements to form a set S with Z ⊂ S ⊂ U of size apr.
From Lucas’s theorem we have that for 0 < l ≤ pr,

(
bpr−l
apr−l

)
≡

(
b−1
a−1

)
and for

l = 0,
(
bpr

apr

)
≡

(
b
a

)
. Thus we may simplify the above as follows:

∑
l≤pr

∑
|Z|=l

Z⊂U

(
bpr − l

apr − l

)
cg(Z) ≡

(
b

a

)
cg(∅) +

(
b− 1

a− 1

) ∑
l≤pr

∑
|Z|=l

Z⊂U

cg(Z)

=

[(
b

a

)
−
(
b− 1

a− 1

)]
g(∅) +

(
b− 1

a− 1

) ∑
|Z|≤pr

Z⊂U

cg(Z)

=

[(
b

a

)
−
(
b− 1

a− 1

)]
g(∅) +

(
b− 1

a− 1

)
g(U).

Rearranging terms gives us the desired result.
We would expect this theorem to be useful in proving degree lower bounds on

polynomials representing Boolean functions whose values are specified only on certain
level sets. We provide a few examples.
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4. Lower bounds. As a first application, consider a Boolean function g : {0, 1}n →
{0, 1} that has g(x) = 1 if |x| = n/4 and g(x) = 0 if |x| = 3n/4, which can be thought
of as the negation of an approximate majority function. We start with the special
case when n = 4pk and prove that deg(g, p) = Ω(n).

Theorem 5. Let p be a prime, n = 4pr, and g : {0, 1}n → {0, 1} be such that
g(x) = 0 if |x| = n/4, and g(x) = 1 if |x| = 3n/4. Then

deg(g, p) >
n

4(p− 1)
.

Proof. Consider any degree d ≤ n
4(p−1) multilinear polynomial P over Zp that

represents g. Using Lemma 2, transform P into a polynomial q that represents g over
Zp and that has q(x) ∈ {0, 1} for all x ∈ {0, 1}n. This will only increase the degree
of q by a multiplicative factor (p − 1). We now prove a lower bound of n/4 on the
degree of q.

Suppose for the sake of contradiction that we have such a polynomial of degree
n/4. From Theorem 4 with a = 1, b = 3, r = r we have

1 ≡ g([3n/4]) ≡ −2g(∅) +
∑

|S|=n/4

S⊂[3n/4]

g(S)

= −2g(∅) + 0.

Thus for g(∅) ∈ {0, 1} we have 2g(∅) ≡ −1, which implies that p = 3 and g(∅) = 1.
We now apply Theorem 4 again for a = 1, b = 2, r = r to yield

g([2n/4]) ≡ −1g(∅) +
∑

|S|=apr

S⊂[2n/4]

g(S)

= −1 + 0 ≡ 2,

contradicting the fact that q is 0 − 1 valued. Hence q must have degree greater than
n/4.

Using Lemma 3 we have the following corollary.
Corollary 6. Let p be a prime, n = 4pr and let g : {0, 1}n → {0, 1} be such

that g(x) = 0 if |x| = n/4, and g(x) = 1 if |x| = 3n/4. Then

deg(g, pk) >
n

4(2pk−1 − 1)(p− 1)
.

We note that in the above applications the number of variables n may be any
integer n ≥ 3pr. We also note that the key to our proof is the fact that the degree
of any polynomial strictly representing g is greater than n/4, which applies equally
to the negation of g. Thus the preceding and following theorems apply equally to the
approximate majority function as to its negation.

Theorem 7. Let p be a prime, n ∈ Z, A = apr, B = bpr, A < B ≤ n with
neither b nor

(
b−1
a−1

)
a multiple of p, and let g : {0, 1}n → {0, 1} be such that g(x) = 0

if |x| = A, and g(x) = 1 if |x| = B. Then the degree of any polynomial over Zp

that strictly represents g is greater than pr, with the following bound for the one-sided
representation:

deg(g, pk) >
pr

(2pk−1 − 1)(p− 1)
.
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Proof. As above we prove the degree bound for the strict representation and then
apply Lemmas 2 and 3.

Suppose for the sake of contradiction there exists a polynomial P of degree ≤ pr

that strictly represents g over Zp. Note that the conditions of the theorem imply

that a �≡ 0, for if a ≡ 0 and b �≡ 0, then Lucas’s theorem would imply
(
b−1
a−1

)
≡ 0, in

violation of our assumptions. Thus from Theorem 4 we have that

1 ≡ (1 − b/a)g(∅) + 0 ≡ (1 − b/a)g(∅) (mod p).

Since g(∅) is either 0 or 1, g(∅) must equal 1. Thus b ≡ 0, contradicting our assump-
tion. Thus any strictly representing polynomial P must have degree greater than pr,
as desired. Note that the condition that

(
b−1
a−1

)
�≡ 0 (mod p) is required by Theorem

4.

5. Upper bounds. We now use Lucas’s theorem to produce symmetric polyno-
mials to represent approximate majority functions. In many cases, these polynomials
have degrees relatively close to the lower bounds proved above.

We now work over the ring Zm, where m is some integer greater than 1. Given an
approximate majority function g(x) defined to be 0 when |x| = A and 1 when |x| = B
for some A,B, we again wish to find a one-sided representing polynomial P such that
P ≡ 0 (mod m) iff g = 0. The strategy will be to find some number k such that(

A

k

)
�≡

(
B

k

)
(mod m)

and then represent g as

P =

(
x

k

)
−
(
A

k

)
.

This leads to the following theorem.
Theorem 8. Given an approximate majority function g : {0, 1}n → {0, 1} such

that g(x) = 0 if |x| = A and g(x) = 1 if |x| = B for some A,B ≤ n, then for
m > 1, deg(g,m) ≤ pr−1, where pr−1 is the smallest power of a prime factor of m
such that A �≡ B (mod pr). Further, if m is squarefree, pr−1 is the minimum degree
of a symmetric representing polynomial.

Proof. Clearly if pr−1 is the smallest such power of a factor of m, then m contains
exactly r − 1 factors of p. Thus the rth digits (from the right) in the base p repre-
sentations of A and B must differ while the first r− 1 digits must be identical. From
Lucas’s theorem, these rth digits of A and B must equal

(
A

pr−1

)
and

(
B

pr−1

)
, respec-

tively, modulo p, which values must thus be different. Hence we may represent g as

P =

(
x

pr−1

)
−
(

A

pr−1

)
,

where the notation
(

x
pr−1

)
is taken to mean the elementary symmetric polynomial on

x of degree pr−1. Clearly when |x| = A, P (x) = 0, and when |x| = B, P (x) �≡ 0
(mod m) since P (x) �≡ 0 (mod p).

Consider now the case where m is squarefree. Let k be the smallest degree of a
symmetric function

(
x
k

)
which differs on the levels A and B modulo m. Clearly any

symmetric representing polynomial must have degree at least k, for otherwise it would
have identical values on the levels A and B. We show k ≥ pr−1. Let q be some prime
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factor of m such that
(
A
k

)
�≡

(
B
k

)
(mod q). Then for some r′ the r′th digits base q

of A and B must differ. Consider the smallest such r′. Since
(
A
k

)
�≡

(
B
k

)
(mod q),

Lucas’s theorem implies qr
′−1 ≤ k. Since the r′th digits base q of A and B differ,

we have A �≡ B (mod qr
′
). However, by hypothesis, pr−1 is the smallest power of a

factor of m with this property, so pr−1 ≤ qr
′−1. Thus pr−1 ≤ k as desired.

We note that an alternate way of defining pr−1 is as follows. Factor B −A as

B −A = pr11 . . . p
rj
j .

Then pr−1 as defined in Theorem 8 equals

min
pi|m

prii .(5.1)

This leads to the following corollary.
Corollary 9. Given an approximate majority function g : {0, 1}n → {0, 1} such

that g(x) = 0 if |x| = A and g(x) = 1 if |x| = B for some A,B ≤ n, then for m > 1,
deg(g,m) ≤ (B −A)1/q, where q is the number of distinct prime factors of m.

Proof. Factor B − A as a product of powers of prime factors of m and some
remaining factor. Clearly one of the q prime power factors must be at most (B−A)1/q,
implying the corollary by the above observation.

We note that from (5.1), if a prime factor of m does not divide B − A, then the
degree of the representing polynomial is 1!

Finally, we combine Theorems 7 and 8 to yield the following constant factor
bound. (Note that if p = 2 the conditions of the theorem will never hold.)

Theorem 10. Let p be a prime, n ∈ Z, A = apr, B = bpr, A < B ≤ n with
neither b− a, b nor

(
b−1
a−1

)
a multiple of p, and g : {0, 1}n → {0, 1} such that g(x) = 1

if |x| = A, and g(x) = 0 if |x| = B. Then

pr

(2pk−1 − 1)(p− 1)
< deg(g, pk) ≤ pr.

6. Discussion and open problems. We presented a relation between values
of a low-degree polynomial on different level sets. We studied applications of this rela-
tion toward providing degree lower bounds for polynomials representing approximate
majority functions. Further, many of these bounds lie surprisingly close to upper
bounds given by symmetric functions. We note that an interesting consequence of the
lower bound is a construction of an oracle separating EQP from MODpkP [GP01] that
is alternative to one implicit in [Bei91].

A number of open questions are left by this research. First, in Zpk , Theorem 10
provides lower and upper bounds that differ by a factor of (2pk−1 − 1)(p − 1). It
would be interesting to see how this constant size gap can be closed. Theorem 10
relies on several conditions on the relation between A,B, and p, and we are curious
to see which of these, if any, could be relaxed.

A possibly more fundamental open question raised by this paper is to find good
lower bounds on the degree of approximate majority functions over Zm for composite
m. The techniques used in section 4 seem to break down here, even for squarefree m.

Acknowledgments. The first author would like to thank Harry Buhrman and
Frederic Green for initially suggesting this problem and Leen Torenvliet and Ronald
de Wolf for some interesting and useful discussions on the subject. The second author
would like to thank Madhu Sudan for bringing this problem to his attention.
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1. Introduction. Let X be a finite set of n elements. A family F of subsets of
X is called Sperner (or inclusion-free, or an antichain) if E,F ∈ F implies E �⊂ F .
The classic result of Sperner [15] states that

|F| ≤
(

n

�n
2 �

)
(1)

with equality only when F consists either of all sets of size �n
2 � or of all sets of size

�n
2 	.

There are several generalizations and elegant proofs. However, frequently the
case of equality is left to the reader, since it could be rather complicated. The aim
for this paper is to illustrate the strength of the permutation method by presenting
new shorter proofs for Sperner-type theorems. We will give two proofs, one using
the permutation method and another using cyclic permutations, a method developed
by the senior author [8], [9] and applied successfully to Sperner theorems by Füredi
(see [10]).

1.1. Two-part families. Kleitman [11] and Katona [7] independently observed
that the statement of the Sperner theorem remains unchanged if the conditions are
weakened in the following way. Let X = X1 ∪ X2 be a partition of the underlying
set X, |Xi| = ni, n1 + n2 = n. Suppose n1 ≥ n2 for the entire paper. We say that
F is a two-part Sperner family if and only if E,F ∈ F (E �= F ), E ⊂ F implies
(F − E) �⊂ X1, X2. Kleitman [11] and Katona [7] proved that the size of a two-part
Sperner family cannot exceed the right-hand side of (1).

The family of all �n
2 �-element subsets gives equality here, too. There are, however,

many other optimal constructions. A family F is called homogeneous (with respect
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to the partition X1, X2) if F ∈ F implies E ∈ F for all sets satisfying |E ∩ X1| =
|F ∩X1|, |E ∩X2| = |F ∩X2|. A homogeneous family can be described with the set
I(F) = {(i1, i2) : |F ∩X1| = i1, |F ∩X2| = i2 for some F ∈ F}. If F is a homogeneous
two-part Sperner family, then I(F) cannot contain pairs with the same first or second
components, respectively. Consequently we have |I(F)| ≤ n2 + 1. We say that a
homogeneous family F is full if |I(F)| = n2 + 1. Then for every i2 (0 ≤ i2 ≤ n2)
there is a unique f(i2) such that (f(i2), i2) ∈ I(F). A homogeneous family is called
well-paired if it is full and

(
n2

i

)
<

(
n2

j

)
implies

(
n1

f(i)

)
≤

(
n1

f(j)

)
(2)

for every pair 1 ≤ i, j ≤ n2.

Here “well-paired” roughly means that every binomial coefficient of order n2 ob-
tains a match from the set of binomial coefficients of order n1 and a larger value
obtains a larger match. Of course this procedure is not unique. Let us illustrate the
definition by an example. Let n1 = 8, n2 = 5. Since (n2 + 1 =)6 largest binomial
coefficients of order n1 = 8 should be chosen, {f(0), f(1), f(2), f(3), f(4), f(5)} is
either {1, 2, 3, 4, 5, 6} or {2, 3, 4, 5, 6, 7}. Choose the first case.

(
5
2

)
and

(
5
3

)
are the

largest ones of the binomial coefficients of order 5; therefore
(

8
f(2)

)
and

(
8

f(3)

)
should

be two largest ones from the binomial coefficients of order 8. Choose, for instance,
f(3) = 4, f(2) = 5. Now

(
5
1

)
and

(
5
4

)
are larger than

(
5
0

)
and

(
5
5

)
, so

(
8

f(1)

)
and

(
8

f(4)

)
should be next two largest ones after

(
8
4

)
and

(
8
5

)
. Choose f(4) = 3 and f(1) = 6.

Finally, let f(0) = 1, f(5) = 2. In this way we obtained a well-paired family F
which consists of all subsets F satisfying |F ∩ X1| = i1 and |F ∩ X2| = i2, where
(i1, i2) ∈ {(1, 0), (6, 1), (5, 2), (4, 3), (3, 4), (2, 5)}.

The following characterization (although not in this form) was proved in [5]. Later
Shahriari [14] found an alternative proof.

Theorem 1.1. Let F be a two-part Sperner family with parts X1, X2, |X1| +
|X2| = n. Then

|F| ≤
(

n

�n
2 �

)

holds with equality if and only if F is a homogeneous well-paired family.

We give two new, probably shorter proofs in section 3 of the present paper.

Homogeneity type results are also true in a much more general setting. See the
paper by Füredi et al. [6] or the joint paper of the present authors with Frankl [4].
In those papers it is shown, that there is a homogeneous optimal construction. Here
we see that no other family can be optimal.

1.2. Families with no k + 1-chains. To prove Theorem 1.1 we need another
extension of the Sperner theorem, which is due to Paul Erdős. A family F of sets is
called k-Sperner if it contains no chain F0 ⊂ F1 ⊂ · · · ⊂ Fk of k + 1 different sets. It
was proved in [3] that if a family F of subsets of an n-element set is k-Sperner, then
|F| is at most the sum of the k largest binomial coefficients of order n. The following
theorem determines the cases of equality. This result is part of the folklore, but we
do not know any written reference for it. The proof is a direct generalization of the
uniqueness proof of the original Sperner theorem, due to the second author.
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Theorem 1.2. Let F be a k-Sperner family of subsets of an n-element set. Then

|F| ≤
�(n+k−1)/2�∑

i=�(n−k+1)/2�

(
n

i

)
(3)

holds with equality if and only if F is the family of all sets of sizes either in the interval

[� (n−k+1)
2 �, � (n+k−1)

2 �] or in the interval [� (n−k+1)
2 	, � (n+k−1)

2 	].
This theorem will be proved in section 2. The upper bound in the following result

is an immediate corollary. Denote by
(
X
i

)
the family of all i-element subsets of X; it

is called the ith level in X.
Theorem 1.3. Let F = F1 ∪ · · · ∪ Fk be a disjoint union of k-Sperner families

of subsets of an n-element set X. Then |F| satisfies (3) with equality if and only if
Fi =

(
X
ri

)
holds for 1 ≤ i ≤ k, where r1, . . . , rk is a permutation of the elements either

of the interval [� (n−k+1)
2 �, � (n+k−1)

2 �] or of the interval [� (n−k+1)
2 	, � (n+k−1)

2 	].
2. Uniqueness in Erdős theorem and in the generalized YBLM-inequality.

First we will prove a sharper version of Paul Erdős’s theorem (Theorem 1.2) and will
characterize the cases of equality of this sharper one. F is called homogeneous if
F ∈ F , E ⊂ X, and |E| = |F | imply E ∈ F . If F is a family of subsets, fi(F) will
denote the number of i-element members of F .

Theorem 2.1. Let F be a k-Sperner family. Then

n∑
i=0

fi(F)(
n
i

) ≤ k(4)

with equality only when F is homogeneous and contains sets of k distinct sizes.
The inequality part of this theorem can be found in [4, Theorem 5a] and is a

generalization of the well-known YBLM-inequality [16], [1], [12], [13].
Proof. The method of cyclic permutations is used. The main point of this method

is to reduce the original problem into an analogous problem on a fixed cyclic permu-
tation.

If ∅ ∈ F , then F \ {∅} is a (k − 1)-Sperner family, and we can use induction on
k. The case X ∈ F is similar. So from now on (in this section) we suppose that
f0 = fn = 0 and n > k.

Let C be a cyclic permutation of X and let F(C) denote the subfamily of F
consisting of all sets forming an interval (i.e., an arc) in C. F(C) is said to be
homogeneous if F ∈ F(C) implies that every interval E along C of the same size
(|E| = |F |) is in F(C). The proof is based on the following lemma.

Lemma 2.2.

|F(C)| ≤ nk.(5)

Here equality holds if and only if F(C) is homogeneous and it contains k distinct
sizes.

Proof of Lemma 2.2. Since ∅, X �∈ F at most k sets may start at any fixed element
of X along C in one direction. This establishes (5).

In the case of equality there must be exactly k intervals in F(C) starting from
each point of C. Let Bi(j) (1 ≤ i ≤ n, 1 ≤ j ≤ k) denote the jth interval starting
from the ith point where |Bi(1)| < |Bi(2)| < · · · < |Bi(k)| is supposed. We claim that
|Bi(j)| ≤ |Bi+1(j)| holds. Indeed, otherwise Bi+1(1) ⊂ Bi+1(2) ⊂ · · · ⊂ Bi+1(j) ⊂
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Bi(j) ⊂ · · · ⊂ Bi(k) would be a chain of intervals of length k + 1, a contradiction.
Hence we have |B1(j)| ≤ |B2(j)| ≤ · · · ≤ |Bn(j)| ≤ |B1(j)| implying |Bi(j)| =
|Bi+1(j)| for all 1 ≤ i < n and 1 ≤ j ≤ k.

Let us return to the proof of Theorem 2.1. Lemma 2.2 yields∑
C

∑
F∈F(C)

1 =
∑
C

|F(C)| ≤ (n− 1)!nk = n!k.(6)

The number of cyclic permutations C containing a given set F as an interval is
|F |!(n− |F |)! (if |F | �= 0, n). Hence∑

F∈F

∑
C:F∈F(C)

1 =
∑
F∈F

|F |!(n− |F |)!(7)

holds. Comparing (7) and (6) we obtain (4), the inequality part of Theorem 2.1.
Formula (4) can hold with equality only when (7) and (6) are equal, that is, when

(5) holds with equality for all cyclic permutations: F(C) is homogeneous for each C.
Consider any two subsets A and B (⊂ X) of equal cardinality. It is obvious that there
is a cyclic permutation C in which they are both intervals. Therefore either A,B ∈ F
or A,B �∈ F holds, and consequently F is also homogeneous.

We need a simple inequality; for completeness we supply a sketch of the proof,
standard in linear programming.

Lemma 2.3. Suppose that for integers n ≥ k ≥ 1 and nonnegative reals f1, f2 . . . , fn−1

the following inequalities hold:

∑
1≤i≤n−1

fi(
n
i

) ≤ k,

fi ≤
(
n

i

)
.

Then

∑
1≤i≤n−1

fi ≤
�(n+k−1)/2�∑

i=�(n−k+1)/2�

(
n

i

)
:= f(n, k).

Here equality holds if and only if
(a) in the case n �≡ k (mod 2), fi =

(
n
i

)
for (n − k + 1)/2 ≤ i ≤ (n + k − 1)/2

and fi = 0 otherwise,
(b) in the case n ≡ k (mod 2), fi =

(
n
i

)
for (n − k + 2)/2 ≤ i ≤ (n + k − 2)/2

and f(n−k)/2 + f(n+k)/2 =
(

n
(n−k)/2

)
and fi = 0 otherwise.

Proof. Consider a vector f = (f1, f2, . . . , fn−1) which maximizes
∑

fi. (The
domain is compact; maximum(s) exists.) For

(
n
j

)
<

(
n
i

)
the inequalities fi <

(
n
i

)
, 0 <

fj lead to a contradiction, since replacing them by fi + ε
(
n
i

)
and fj − ε

(
n
j

)
keeps the

constraint the lemma but increases the sum
∑

fi.
Proof of Theorem 1.2. The constraint of Lemma 2.3 holds for the sequence

f1(F), . . ., fn−1(F) by (4) and since fi(F) ≤
(
n
i

)
is obvious. This implies the Erdős

theorem.
We can have equality in this theorem only when (4) holds with equality. Then

Theorem 2.1 implies that F is homogeneous and consists of k distinct sizes.
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Proof of Theorem 1.3. The inequality part is trivial, since F is a k-Sperner family.
It is clear from the previous proof that the equality implies equality in (4). Since Fi

(1 ≤ i ≤ k) is a Sperner family, (4) holds for Fi with k = 1. Hence (4) with k = 1
must hold with equality for each Fi. Therefore Fi =

(
X
ri

)
for some ri. Since Fi are

disjoint, ri must be different, F is a union of k distinct levels. The maximality of |F|
implies that these k levels must be the k middle ones.

2.1. Uniqueness in the Erdős theorem using intervals. Here we give an-
other proof for Theorem 1.2.

Let F be a k-Sperner family on the n-element underlying set X = [n]. We may
suppose that ∅, X �∈ F because these cases can easily be reduced to the general case.
As in the classical proofs, consider a permutation π of X. The initial segments of π,
i.e., the sets of the form {π(1), π(2), . . . , π(i)}1≤i<n form a chain C(π) of length n−1.
The k-Sperner property of F implies that C(π) contains at most k members of F , so
we have

∑
F :F∈F,F∈C(π)

(
n

|F |

)
≤

∑
k largest binomial coefficients := f(n, k).(8)

Add this up for all the n! permutations.

∑
π

∑
F∈F,F∈C(π)

(
n

|F |

)
≤ n!f(n, k).

Here the left-hand side can be determined exactly.

∑
F :F∈F

∑
π:F∈C(π)

(
n

|F |

)
=

∑
F

|F |!(n− |F |)!
(

n

|F |

)
= n!|F|.

This gives |F| ≤ f(n, k).

If |F| = f(n, k), then equality holds in (8) for every π, so the sizes of the members
of F in C(π) form a middle interval of length k. In the case n �≡ k (mod 2) this middle
interval is unique; we get that F is homogeneous, and it consists of all sets of sizes at
least (n−k+1)/2 and at most (n+k−1)/2. In the case n �≡ k (mod 2) there are two
possibilities for a middle interval, so fi =

(
n
i

)
for (n − k + 2)/2 ≤ i ≤ (n + k − 2)/2

and f(n−k)/2 + f(n+k)/2 =
(

n
(n−k)/2

)
and fi = 0 otherwise. We also obtain that

for |F ′| = (n − k)/2, |F ′′| = (n + k)/2, F ′ ⊂ F ′′, one and only one of {F ′, F ′′}
belongs to F . Suppose that there exists an F ∈ F , |F | = (n − k)/2. We claim that
f(n−k)/2 =

(
n

(n−k)/2

)
and then f(n+k)/2 = 0, and we are done.

Consider an arbitrary pair x ∈ F and y ∈ X \F . We claim that F \{x}∪{y} ∈ F .
Indeed, consider a permutation π where F \ {x}, F and F ∪ {y} are initial segments,
and let π′ be a permutation obtained from π be exchanging the places of x and y.
The largest member of F in C(π) has (n + k − 2)/2 elements, so the same is true for
C(π′). Since the sizes of the members of C(π′)∩F form a middle interval, the smallest
member has (n− k)/2 elements. This smallest member is F \ {x} ∪ {y}.

Call two (n− k)/2-element sets F1 and F2 neighbors if |F1 ∩F2| = |F1| − 1. Then
the above property of the extremal F can be formulated as it contains all neighbors
of F whenever F ∈ F . It follows that in that case it contains the second, third, etc.
neighbors, so F contains the whole ((n− k)/2)th level.
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3. Two-part Sperner families. In the method of cyclic permutations a given
problem on subsets is reduced to intervals in a cyclic permutation of the underlying
set. In the present proof the problem will be reduced to a family of certain mixed
objects, pairs (A,B), where A is a subset of X1 and B is an interval along a fixed
cyclic permutation of X2. Therefore the method can be called the mixcyc method.

First proof of Theorem 1.1. Let C2 be a cyclic permutation of X2 and F a family
of subsets of X. Then F(C2) will denote those members of F for which F ∩X2 is an
interval along C2.

Introduce the notation

t(j) =

{
n2 if j = 0, n2,
1 if 1 ≤ j ≤ n2 − 1.

The double sum

∑
(C2,F )

F∈F(C2)

t(|F ∩X2|)
(

n2

|F ∩X2|

)
(9)

will be evaluated in two different ways. First

∑
F∈F

∑
C2: F∈F(C2)

t(|F ∩X2|)
(

n2

|F ∩X2|

)

=
∑
F∈F

t(|F ∩X2|)
(

n2

|F ∩X2|

) ∑
C2: F∈F(C2)

1.

Here

∑
C2: F∈F(C2)

1 =

{
(n2 − 1)! if F ∩X2 = ∅ or X2,

|F ∩X2|! (n− |F ∩X2|)! otherwise.

Therefore

(9) =
∑
F∈F

n2! = |F|n2!.

On the other hand, (9) is equal to

∑
C2

∑
F∈F(C2)

t (|F ∩X2|)
(

n2

|F ∩X2|

)
.(10)

Introduce the notation

w(i) = t(i)

(
n2

i

)
, i = 0, . . . , n2,

and let (j0, j1, . . . , jn2) be one of the permutations of (0, 1, . . . , n2) satisfying w(j0) ≥
w(j1) ≥ · · · ≥ w(jn2) = n2. There are four cases of w with value n2. Suppose that
jn2−1 and jn2 are chosen to be 0 and n2, respectively. Now fix a cyclic permutation
C2 = (c1, . . . , cn) of X2 and decompose its intervals into n2 chains of intervals: define

L1 = {∅, {c1}, {c1, c2}, . . . , {c1, c2, . . . , cn2−1}, {c1, . . . , cn2}} ,
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while for i = 2, . . . , n2 let

Li = {{ci}, {ci, ci+1}, . . . , {ci, ci+1, . . . , cn2
, c1, . . . , ci−3}, {ci, . . . , ci−2}} .

Consider the subsum

∑
(F∩X2)∈L1

t(|F ∩X2|)
(

n2

|F ∩X2|

)
=

n2∑
i=0

|F(ji)|w(ji),(11)

where F(j) is defined by

F(j) = {F ∩X1 : F ∈ F , |F ∩X2| = j and F ∩X2 ∈ L1} .

It is easy to see that the family F(j) is Sperner for every j and that F(jk)∩F(jl) = ∅
holds when k �= l. Formula (11) can be written as

(11) =
(
|F(j0)| + · · · + |F(jn2

)|
)
w(jn2

)

+
(
|F(j0)| + · · · + |F(jn2−1)|

)(
w(jn2−1) − w(jn2

)
)

+ · · · +
(
|F(j0)| + |F(j1)|

)(
w(j1) − w(j2)

)
+ |F(j0)|

(
w(j0) − w(j1)

)
.(12)

By the Erdős theorem the total size of k pairwise disjoint Sperner families in X1

cannot exceed the k largest levels. Therefore if m(i) =
(
n1

i

)
and (l0, l1, . . . , ln1

) is one
of the permutations of (0, 1, . . . , n1) satisfying m(l0) ≥ m(l1) ≥ · · · ≥ m(ln1), then

(12) ≤
(
m(l0) + m(l1) + · · · + m(ln2

)
)
w(jn2

)

+
(
m(l0) + m(l1) + · · · + m(ln2−1)

)(
w(jn2−1) − w(jn2)

)
+ · · ·

+
(
m(l0) + m(l1)

)(
w(j1) − w(j2)

)
+ m(l0)

(
w(j0) − w(j1)

)

=

n2∑
i=0

m(li)w(ji).(13)

The same estimations can be applied for the other n2 − 1 chains Lk (k = 2, . . . , n2):

∑
F∩X2∈Lk

t(|F ∩X2|)
(

n2

|F ∩X2|

)
≤

n2−2∑
i=0

m(li)w(ji).

Using the fact that the number of cyclic permutations C2 is (n2 − 1)! and putting
together the previous inequalities, we obtain

(10) ≤
∑
C2

(
n2

n2−2∑
i=0

m(li)w(ji) + m(ln2−1)w(jn2−1) + m(ln2
)w(jn2

)

)

= n2!

n2∑
i=0

(
n1

li

)(
n2

ji

)
= n2!

n2∑
i=0

(
n1

�n1+n2

2 	 + i

)(
n2

i

)

= n2!

n2∑
i=0

(
n1

�n1+n2

2 � − i

)(
n2

i

)
=

(
n

�n
2 �

)
.(14)
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(9) = (10) ≤ (14) finishes the proof of the two-part Sperner theorem.
To prove the equality part of Theorem 1.1 we only have to check carefully the

cases of equality in the above proof of the two-part Sperner theorem.
Define

F1(B) = {A : A ⊂ X1, A ∪B ∈ F} for B ⊂ X2.

If F is a family satisfying equality in the Erdős theorem (in the form of Theorem 1.3),
then there must be equality between (12) and (13), that is,

|F(j0)| + |F(j1)| + · · · + |F(jr)| = m(l0) + m(l1) + · · · + m(lr)(15)

holds whenever w(jr) − w(jr+1) > 0 (where w(jn2+1) = 0). It is obvious that every
second of these differences is zero, and the other ones are positive. If n2 is even, then
w(j0) − w(j1) is positive, w(j1) − w(j2) is zero, w(j2) − w(j3) is positive, and so on.
On the other hand, if n2 is odd, then this sequence starts with a zero. We should not
forget, however, that there are some irregularities at the end. First, the last coefficient
w(jn2) (first in (12)) is always positive; second, it is preceded by three zeros. This
implies, by Theorem 1.3, that in the case of even n2,F(j0) must be one of the (one or
two) largest levels in X1; F(j0),F(j1),F(j2) must be the three largest levels; and so
on. Hence F(j1) and F(j2) are the two levels next or equal in size. The same holds
for F(j2s+1) and F(j2s+2) for 0 ≤ s ≤ n2−6

2 . If n2 is odd, then F(j0) and F(j1) are
the two largest levels, F(j2) and F(j3) are the next two levels, and so on. In general
F(j2s) and F(j2s+1) (0 ≤ s ≤ n2−5

2 ) are a pair of the (2s+1)st and (2s+2)th largest
levels.

Since w(jn2) > 0 holds, F(j0), . . . ,F(jn2) are the n2 + 1 largest levels in X1.
However, we have some freedom in choosing their order, but this order must satisfy the
conditions above. Until now we have proved a restricted version of the homogeneity of
F , namely, that the subfamily {F : F ∈ F , F ∩X2 ∈ L1} is a homogenous full family.
That is, the family {F∩X1 : F ∈ F , F∩X2 = {c1, . . . , cj}} = F1({c1, . . . , cj}) = F(j)

is equal to
(
X1

w

)
for some w. Let this w be denoted by f∗(j). It remained to check

that this restriction of F is well-paired; that is, this ordering satisfies (2).
If n2 is even, then the left-hand side of (2),(

n2

ju

)
<

(
n2

jv

)
(u < n2 − 3),(16)

holds if and only if v ≤ u and u is not an even integer = v + 1. Then(
n1

f∗(ju)

)
≤

(
n1

f∗(jv)

)
(17)

is obvious. The case when n2 is odd is analogous. That is, the order follows (2) up
to n2 − 4. Consider now the case when u = n2 − 3, n2 − 2, n2 − 1, n2 and n2 − 3 > v.
Since {jn2 , jn2−1} = {0, n2} by definition, consequently we have {jn2−2, jn2−3} =
{1, n2 − 1}, and hence the last few

(
n2

ju

)
are n2, n2, 1, 1. (16) holds in these cases;

therefore (17) also must hold. It is really true since F(j0), . . . ,F(jn2−4) are n2 − 3
largest levels in X1. We do not know the monotonicity among the last four u’s. An
important consequence is that f∗(jv) cannot be �n1−n2

2 � or �n1+n2

2 	 when n2−3 > v.
The above ideas are valid for all cyclic permutations of X2; therefore F1(B) is

defined for all B ⊂ X2 and it is a full level
(
X1

j

)
for some j = j(B)(�n1−n2

2 � ≤ j ≤
�n1+n2

2 	).
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We have to show that F1(B) depends only on the size of B, that is, |B1| = |B2| im-
plies F1(B1) = F1(B2). It is sufficient to verify this statement for “neighboring” sets,
that is, when |B1 − B2| = 1. Let B1 = {x1, x2, . . . , xl}, B2 = {x2, x3, . . . , xl, xl+1}.
Consider the cyclic permutations C = (x2, x3, . . . , xl, x1, xl+1, xl+2 . . . , xn2), C

′ =
(x2, x3, . . . , xl, xl+1, x1, xl+2 . . . , xn2). They define the chains (of length n2 + 1) L1

and L′
1, which differ only in one member. The function F1 associates a family(

X1

j

)
(�n1−n2

2 � ≤ j ≤ �n1+n2

2 	) with each member of these chains, where the j’s are
different for one chain. If n1 and n2 have the same parities, then there are n2 + 1
choices for j and therefore F1(B1) = F1(B2). If their parities are different, then

F1(B1) and F1(B2) may be different: one is
( X1

�n1−n2
2 �

)
and the other is

( X1


n1+n2
2 �

)
. It

is clear from the monotonicity (17) that this can happen only when |B1| = 1 or n2−1.
This proves the statement F1(B1) = F1(B2) for 1 < |B1| = |B2| < n− 1. Moreover,

F1(B) = either

(
X1

�n1−n2

2 �

)
or

(
X1

�n1+n2

2 	

)
if |B| = 1, n− 1.

Since F is a two-part Sperner family, B ⊂ C implies F1(B) �= F1(C) (in fact,
they must be disjoint). Suppose, e.g., that j({x}) = �n1−n2

2 � holds for some x ∈ X2.
Then j(C) must be �n1+n2

2 	 for all n2 − 1-element C with the possible exception of
X2−x. But these sets cover X2; therefore j({x}) = �n1−n2

2 � must hold for all x ∈ X2,
and consequently j(C) = �n1+n2

2 	 for all n2 − 1-element C ∈ X2. We have proved
that F is homogeneous and full, and the function f is defined by f(i) = j(B), where
i = |B|.

It is almost proved that F is well-paired, by (17). The only possible exception is
that the right-hand side of (2) does not hold for one or more of the pairs (0, 1), (0, n2−
1), (n2, 1), (n2, n2 − 1). Suppose, e.g., that the pair (0, 1) is such a one. Then

|F| =

n2∑
i=0

(
n2

i

)(
n1

f(i)

)

can be increased by interchanging the values f(0) and f(1). (It increases the sum
only when n2 > 1 but the case n2 = 1 is trivial.) This contradiction shows that F is
well-paired.

The interested reader should check [5], where the optimal constructions for all
four cases (depending on the parities of n1 and n2, resp.,) are illustrated with figures.

3.1. Extremal two-part Sperner families and intervals. Here we give an-
other proof for Theorem 1.1. We need two simple lemmas. Suppose that u ≥ v ≥ 1
are integers, a1 ≥ a2 ≥ · · · au ≥ 0, b1 ≥ b2 ≥ · · · ≥ bv are reals, and g : [v] → [u] is an
arbitrary injection (i.e., g(i) �= g(j) for i �= j). Then we say that the two sequences
are well-paired by g if bi < bj implies ag(i) ≤ ag(j). Observe that if this definition is
applied for the binomial coefficients of ranks n1 and n2, respectively, and for the func-
tion defined by a homogenous two-part Sperner family, then definition (2) is obtained,
again.

Lemma 3.1. Suppose that u ≥ v ≥ 1 are integers, a1 ≥ a2 ≥ · · · ≥ au ≥ 0,
b1 ≥ b2 ≥ · · · ≥ bv are reals, and g : [v] → [u] is an arbitrary injection. Then∑

i

ag(i)bi ≤
∑

1≤i≤v

aibi,

and here equality holds if and only if the sequences are well-paired by g.
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Lemma 3.2. Let the a1, a2, . . . , an1+1 be the sequence of binomial coefficients of
rank n1 in decreasing order, and let b1, . . . , bn2+1 be the binomial coefficients of rank
n2 again in decreasing order. (We have ai =

(
n1

�(n1+i)/2�
)

and bj =
(

n2

�(n2+j)/2�
)
.) Then∑

i aibi =
(

n
�n/2�

)
.

Second proof of Theorem 1.1. Let F be a two-part Sperner family on the n-
element underlying set X = [n], with parts X1, X2, |Xi| = ni, n1 ≥ n2 > 0. Suppose
that |F| is maximal; then we have |F| ≥

(
n

�n/2�
)
. Let πi ∈ S[ni] be a permutation of

Xi, i = 1, 2. Define the (n1+1)×(n2+1) matrix M = M(π1, π2) as follows. Label the
rows by 0, 1, . . . , n1 and the columns by 0, 1, . . . , n2, and for the i, j entry, Mi,j equals
1 if the unions of the two initial segments {π1(1), π1(2), . . . , π1(i)}∪{π2(1), . . . , π2(j)}
belong to F , and Mi,j = 0 for the other entries. Such an M contains at most one
nonzero entry in each row and column.

Suppose that M is an arbitrary (n1 + 1) × (n2 + 1) matrix, labeled as above,
and suppose that each entry is 0 or 1 and each row and column contains at most
one 1. Define a two-part Sperner family H(M) by taking all sets F ⊂ X with
M|F∩X1|,|F∩X2| = 1. Then |H(M)| =

∑
Mi,j=1

(
n1

i

)(
n2

j

)
. By Lemmas 3.1 and 3.2

we have

|H(M)| ≤
∑
i,j

aibj =

(
n

�n/2�

)

with equality only when M contains a 1 in each column and the mapping defined by M
is well-paired with respect the binomial coefficients of ranks n1 and n2, respectively.

We obtain

|F|n1!n2! ≥
(

n

�n/2�

)
n1!n2! ≥

∑
(π1,π2)

|H(M(π1, π2))|

=
∑
F∈F

∑
π1,π2

F∩Xi is initial in πi

(
n1

|F ∩X1|

)(
n2

|F ∩X2|

)

=
∑
F∈F

|F ∩X1|!(n1 − |F ∩X1|)!|F ∩X2|!(n2 − |F ∩X2|)!
(

n1

|F ∩X1|

)(
n2

|F ∩X2|

)

= |F|n1!n2!.

Thus equality holds here, i.e., |F| =
(

n
�n/2�

)
, and so it does for each |H(M(π1, π2))|.

It also follows that for each (π1, π2), the matrix M(π1, π2) has a 1 in each column and
the mapping defined by M(π1, π2) is well-paired. This can be heuristically expressed
by saying that the restrictions of F for a fixed pair of permutations (of X1 and X2)
is full and well-paired. We have to show that F is homogeneous, too. In other words,
we know that the matrices M(π1, π2) are very similar (there is a little freedom in
choosing a 1 in each column), but we have to show that they are identical. Since every
permutation can be obtained by interchanging neighboring elements, it is sufficient to
show that M(π′

1, π2) and M(π1, π
′
2) are the same as M(π1, π2) if π′

i is obtained from
πi by interchanging two neighboring elements.

First check what happens if π′
2 is obtained from π2 by interchanging the elements

v and v + 1 in X2 (1 ≤ v < n2). The initial segments in X2 are the same for the two
permutations π2 and π′

2, except possibly the v-element initial segments. Therefore the
new matrices M = M(π1, π2) and M ′ = M(π1, π

′
2) have the same columns, except

eventually the vth one. Since M and M ′ are full, there are indices u and u′ such
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that Mu,v = 1 and M ′
u′,v = 1. We claim that u = u′; the two matrices are identical.

Indeed, calculating the cardinalities |H(M(π1, π2))| and |H(M(π1, π
′
2))|, both have

maximal values. They differ only in the one term, the one containing the factor
(
n2

v

)
.

This is multiplied with
(
n1

u

)
and

(
n1

u′

)
, respectively. Therefore

(
n1

u

)
=

(
n1

u′

)
must hold.

Hence either u = u′ (and we are done) or u + u′ = n1. In the latter case consider
again the sums

∑
Mi,j=1

(
n1

i

)(
n2

j

)
=

∑
M ′

i,j
=1

(
n1

i

)(
n2

j

)
.

In the second sum there is no
(
n1

u

)
, and in the first there is no

(
n1

n1−u

)
. By symmetry,

u < n1 −u can be supposed. By the lemmas, the first sum contains the largest n2 +1
values of binomial coefficients of rank n1; this implies that none of

(
n1

i

)
(i < u, n1−u ≤

i may occur. On the other hand, all other ones are there: u ≤ i < n1 − u. Since the
matrix is full, it contains a 1 in each column, and we have n1 − 2u = n2 + 1 binomial
coefficients of rank n1. The smallest one of them is

(
n1

u

)
. M is well-paired; therefore it

must be paired (multiplied) with (one of the) smallest binomial coefficient of rank n2,
namely,

(
n2

0

)
or

(
n2

n2

)
. Hence we have v = 0 or n2 in contradiction with the assumption

1 ≤ v < n2.

Compare now the pairs of permutations (π1, π2) and (π′
1, π2), where π′

1 is obtained
from π1 by interchanging the elements u and u + 1 in X1(1 ≤ u < n1). The matrices
M(π1, π2) and M(π′

1, π2) are equal except possibly in the uth row. Suppose that
both of them have an entry 1 in the uth row and in the vth and in the v′th columns,
respectively, where v �= v′. The matrix M(π1, π2) has exactly one 1 in each column,
and there is an entry Mi,j = 1 with i �= u, j = v′. Then M(π′

1, π2) has two entries
1 in the v′th column. This contradiction shows v = v′; that is, the two matrices are
identical. If neither of the two matrices has a 1 in the uth row, then they are the
same, again. Finally, if one has a 1 in the uth row and the other one has none, then
the sums H(M(π1, π2)) and H(M(π′

1, π2)) differ in one positive term; they cannot be
(maximally) equal. This contradiction completes the proof of the fact that one change
in either permutation does not change the matrix M(π1, π2); they are all the same,
and F is a homogeneous family.

The interested reader can find further applications of the permutation method in
the excellent monograph [2].
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POLYHEDRAL ANALYSIS FOR THE UNCAPACITATED HUB
LOCATION PROBLEM WITH MODULAR ARC CAPACITIES∗

HANDE YAMAN†

Abstract. We consider the problem of installing a two-level telecommunication network. Ter-
minal nodes communicate with each other through hubs. Hubs can be installed on terminal nodes
and they are interconnected by a complete network. Each terminal is connected directly to a hub
node. Integer amounts of capacity units are installed on the arcs between hub pairs and terminals
and their hubs. The aim is to minimize the cost of installing hubs and capacity units on arcs. We
present valid and facet defining inequalities for the polyhedron associated with this problem.

Key words. hub location, polyhedral analysis, lifting

AMS subject classifications. 90C10, 90C57, 90B80

DOI. 10.1137/S0895480103439157

1. Introduction. We consider the problem of locating hubs in a telecommuni-
cation network. Hubs (servers, concentrators, etc.) are installed to route the traffic
of terminals (users). Given a set of terminals, a subset is chosen to be the set of hub
locations. Each terminal that does not become a hub is directly connected to a single
hub. The network connecting the hubs is called the backbone network and a network
connecting the terminals to a hub is called a local access network (LAN). We consider
telecommunication networks where the backbone is complete and the LANs are stars.

The traffic between two terminals goes from the origin terminal to its hub, then
to the hub of the destination terminal, and then to the destination itself. So the total
traffic on the arc from a terminal to its hub is the traffic originating at that terminal
node, and the traffic on the arc from a hub to a terminal connected to that hub is the
traffic arriving at that terminal node. The total traffic to travel from hub j to hub l
is the traffic from terminals connected to hub j to terminals connected to hub l. The
traffic flows on arcs and capacity units can be installed on arcs in integer amounts.

In Figure 1.1, we see a network with three hubs. The traffic between any two
nodes is 0.5 and the capacity unit is 1 on all arcs. The amount of capacity units
to be installed on the arcs are given in the figure. For example, we need to install
�7 × 0.5� = 4 capacity units on an arc from a terminal to its hub.

The cost of installing such a telecommunication network is the sum of the cost of
locating hubs and the cost of installing capacity units on arcs. The uncapacitated hub
location problem with modular arc capacities (HLM) is the problem of locating hubs
and connecting the remaining nodes to hubs with the aim of minimizing this total
cost. Labbé and Yaman [11] prove that the special case of HLM where the cost of
installing capacity units on the backbone network is zero is NP-hard.

Campbell, Ernst, and Krishnamoorthy [3] give a survey of hub location problems.
Klincewicz [7] gives a survey of hub location problems in telecommunications.

Very little is known about the polyhedra associated with hub location problems. A
similar problem with no cost for installing capacity units on arcs but a cost for routing

∗Received by the editors December 30, 2003; accepted for publication (in revised form) January
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Fig. 1.1. A network with three hubs.

the traffic is called the uncapacitated hub location problem with single assignment
(HLs). Polyhedral analysis for this problem can be found in [12] and [10]. If, in
addition, we allow a terminal to be connected to several hubs, then the problem
is called the uncapacitated hub location problem with multiple assignment (HLm).
Polyhedral properties of HLm are studied by Hamacher et al. [6].

Chung, Myung, and Tcha [5] study a version of HLM where there is a fixed
cost of establishing a link between two hubs. In HLM, this corresponds to the case
where backbone links are uncapacitated, meaning that if two nodes become hubs,
only one capacity unit is installed between them. The authors propose a branch and
cut algorithm for this problem.

Yaman and Carello [15] consider a generalization of HLM where hubs are capac-
itated; the amount of traffic transiting through a hub is limited by the capacity of
the hub. They present a metaheuristic and a branch and cut algorithm to solve this
problem. Their branch and cut algorithm uses cuts given in [12] and [10].

In this paper, we present valid and facet defining inequalities for the polyhedron
associated with HLM. We give several lifting results which can be used to derive
further facet defining inequalities. The paper is organized as follows. In section 2, we
give a formulation of the problem. We present valid inequalities in section 3. Section
4 is devoted to polyhedral analysis. We conclude in section 5.

2. Formulation. Let I denote the set of terminal nodes with |I| = n. Any
distinct pair of terminal nodes defines a commodity. We denote by K the set of
commodities. For commodity (i,m) ∈ K, i is the origin, m is the destination, and tim
is the amount of traffic to be routed from i to m. We define tii to be 0 for all i ∈ I.

Each terminal either becomes a hub or is connected to another node which be-
comes a hub. The cost of installing a hub at node i ∈ I is denoted by Cii. Hubs are
connected by a complete directed graph. Each nonhub node is directly connected to
its hub. Integer amounts of capacity are installed on the arcs between pairs of hubs
and between terminals and their hubs. We assume that the capacity unit on all arcs
is 1 and that the demands are scaled accordingly. The capacity of each terminal-hub
and hub-terminal arc is fully determined by the chosen terminal-hub connection. The
cost of connecting node i ∈ I to node j ∈ I \ {i}, denoted by Cij , is equal to the cost
of installing �

∑
m∈I tim� + �

∑
m∈I tmi� capacity units between nodes i and j.

We define the arc set A = {(j, l) : j ∈ I, l ∈ I, j �= l}. We denote by Rjl the

cost of installing a capacity unit on arc (j, l) if it becomes a backbone arc. Let K
′

jl

be the set of commodities (i,m) such that i is connected to j and m is connected to
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l. If nodes j and l become hubs, then the amount of flow on arc (j, l) is given by∑
(i,m)∈K

′
jl
tim and �

∑
(i,m)∈K

′
jl
tim� units of capacity should be installed on this arc.

We define the assignment variable xij to be 1 if terminal i ∈ I is assigned (con-
nected) to hub j ∈ I and 0 otherwise. If node i becomes a hub, then xii is 1. We
further define zjl to be the amount of capacity units installed on arc (j, l) ∈ A.

The HLM can be formulated as follows (see [12]):

min
∑
i∈I

∑
j∈I

Cijxij +
∑

(j,l)∈A

Rjlzjl(2.1)

subject to
∑
j∈I

xij = 1 ∀i ∈ I,(2.2)

xij ≤ xjj ∀(i, j) ∈ A,(2.3)

zjl ≥
∑

(i,m)∈K′

tim(xij + xml − 1) ∀(j, l) ∈ A,K
′ ⊆ K,(2.4)

zjl integer ∀(j, l) ∈ A,(2.5)

xij ∈ {0, 1} ∀i ∈ I, j ∈ I.(2.6)

Constraints (2.2), (2.3), and (2.6) ensure that each terminal either becomes a hub
or is assigned to exactly one hub. Constraints (2.4) relate the capacity vector z to
the assignment vector x. For arc (j, l) ∈ A, because of constraints (2.5) and (2.6),
constraint set (2.4) is equivalent to

zjl ≥
⌈

max
K′⊆K

( ∑
(i,m)∈K′

tim(xij + xml − 1)

)⌉
=

⌈ ∑
(i,m)∈K

′
jl

tim

⌉
.

If Rjl > 0, then an optimal solution satisfies the inequality at equality.
The objective function (2.1) consists of the cost of locating hubs and the cost of

installing capacity units on arcs.

3. Valid inequalities. In this section, we present families of valid inequalities
for the polyhedron associated with HLM and point out the domination relations
among these valid inequalities. We investigate inequalities that involve both the
assignment and the capacity variables.

Definition 3.1. Let

F =
{
(x, z) ∈ {0, 1}n2 × Z

n(n−1) : (x, z) satisfies (2.2)–(2.6)
}

and

P = conv(F ).

Labbé, Yaman, and Gourdin [12] study the HLs which is obtained by relaxing
integrality constraints (2.5) in HLM. They derive valid inequalities by projecting out
the flow variables in a larger formulation for this relaxed problem. These inequalities
are given in the following proposition.

Proposition 3.2 (Labbé, Yaman, and Gourdin [12]). Let S and T be nonempty
disjoint subsets of I and K

′ ⊆ K. The projection inequality

∑
j∈S

∑
l∈T

zjl ≥
∑

(i,m)∈K′

tim

(∑
j∈S

xij +
∑
l∈T

xml − 1

)
(3.1)
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is valid for P .
Constraints (2.4) are projection inequalities where sets S and T are singletons.
Projection inequalities (3.1) ignore the integrality of zjl variables. Now we present

a family of inequalities which use this information.
For K

′ ⊆ K, let

O(K
′
) = {i ∈ I : ∃m ∈ I \ {i} with (i,m) ∈ K

′}

and

D(K
′
) = {i ∈ I : ∃m ∈ I \ {i} with (m, i) ∈ K

′}.

Proposition 3.3. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉(
1 −

∑
i∈O(K′ )

∑
j∈I\S

xij −
∑

m∈D(K′ )

∑
l∈I\T

xml

)
(3.2)

is valid for P .
Proof. For (x, z) ∈ F , the right-hand side of inequality (3.2) is �

∑
(i,m)∈K′ tim�

if
∑

j∈I\S xij = 0 for all i ∈ O(K
′
) and

∑
l∈I\T xml = 0 for all m ∈ D(K

′
). It is

nonpositive otherwise.
Notice that different sets K

′
can lead to the same sets O(K

′
) and D(K

′
). For a

given fractional solution, it is important to be able to choose among these subsets K
′

the one which leads to the most violated inequality.
For subsets O and D of I, let

κ(O,D) =
{
(i,m) ∈ K : i ∈ O and m ∈ D

}
.

Proposition 3.4. Let (x, z) be a fractional solution which satisfies constraints
(2.2). If there exists an inequality (3.2) violated by (x, z), then there exists a vio-
lated inequality (3.2) for some K

′ ⊆ K such that O(K
′
) ∩ D(K ′) = ∅ and K

′
=

κ(O(K
′
), D(K

′
)).

Proof. For K
′ ⊆ K, if |O(K

′
) ∩D(K

′
)| ≥ 1, then

1 −
∑

i∈O(K′ )

∑
j∈I\S

xij −
∑

m∈D(K′ )

∑
l∈I\T

xml

=
∑

i∈O(K′ )

∑
j∈S

xij +
∑

m∈D(K′ )

∑
l∈T

xml − |O(K
′
)| − |D(K

′
)| + 1

=
∑

i∈O(K′ )\D(K′ )

∑
j∈S

xij − |O(K
′
) \D(K

′
)| +

∑
m∈D(K′ )\O(K′ )

∑
l∈T

xml − |D(K
′
) \O(K

′
)|

+
∑

i∈O(K′ )∩D(K′ )

∑
j∈S∪T

xij − 2|O(K
′
) ∩D(K

′
)| + 1

≤
∑

i∈O(K′ )∩D(K′ )

∑
j∈S∪T

xij − 2|O(K
′
) ∩D(K

′
)| + 1

≤ (−|O(K
′
) ∩D(K

′
)| + 1) ≤ 0.

Therefore, inequality (3.2) for this choice of K
′
cannot be violated. This proves that

if inequality (3.2) is violated for K
′
, then O(K

′
) ∩ D(K

′
) = ∅. The second part of

the proposition is then trivial.
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If S and T are singletons, then inequality (3.2) becomes

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉(
1 −

∑
i∈O(K′ )

∑
u∈I\{j}

xiu −
∑

m∈D(K′ )

∑
u∈I\{l}

xmu

)
.(3.3)

If, in the formulation (2.1)–(2.6), we replace constraints (2.4) and (2.5) with the
set of inequalities (3.3) for all disjoint subsets O and D of I, K

′
= κ(O,D), and

(j, l) ∈ A, we obtain a valid formulation for HLM where we do not need to impose
explicitly the integrality of zjl variables. For (j, l) ∈ A, constraints (2.4) linearize the
nonlinear requirement

zjl ≥
∑

(i,m)∈K

timxijxml

by linearizing the equivalent family of nonlinear inequalities

zjl ≥
∑

(i,m)∈K′

timxijxml

for all K
′ ⊆ K. Inequalities (3.3) linearize the nonlinear requirement

zjl ≥
⌈ ∑

(i,m)∈K

timxijxml

⌉

by linearizing the equivalent family of nonlinear inequalities

zjl ≥
⌈ ∑

(i,m)∈κ(O,D)

tim

⌉
Πi∈OxijΠm∈Dxml

for all disjoint subsets O and D of I.
The following example shows that it is not possible to compare the LP relaxations

of these two formulations.
Example 3.1. Comparing the LP relaxation of formulation (2.1)–(2.6) with that

of formulation (2.1)–(2.3), (2.6), and (3.3) is equivalent to comparing the relative
strength of inequalities (2.4) and (3.3). Let I = {1, 2, 3, 4}. Consider a vector x such
that x12 = x22 = x34 = x44 = 0.6 and x11 = x21 = x33 = x43 = 0.4 (see Figure 3.1).

3 4

2

0.40.4

0.4

0.6

0.6

1

0.6

0.4

0.6

0.4

Fig. 3.1. Example 3.1: assignment of nodes.

For arc (2, 4) and K
′
= {(1, 3), (1, 4), (2, 3), (2, 4)}, constraint (2.4) reads

z24 ≥ 0.2(t13 + t14 + t23 + t24).(3.4)
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This is indeed a best choice of K
′

in the sense that it can lead to a most violated
inequality (2.4) for arc (2, 4).

Now we consider inequality (3.3) for arc (2, 4). Let O and D be disjoint subsets of
I. To find a most violated inequality, it is better to choose O ⊆ {1, 2} and D ⊆ {3, 4}.
Then, inequality (3.3) is z24 ≥ �

∑
(i,m)∈κ(O,D) tim�(1 − 0.4|O| − 0.4|D|). The right-

hand side of this inequality can be positive only if |O| = |D| = 1. If |O| = |D| = 1
and i ∈ O and m ∈ D, then the inequality is

z24 ≥ 0.2�tim�.(3.5)

The best inequality can be obtained by choosing a commodity (i,m) with maximum
tim. Assume without loss of generality that this maximum is attained at i = 1 and
m = 3.

If t13 + t14 + t23 + t24 > �t13�, then inequality (3.4) imposes a higher lower bound
than inequality (3.5). And if t13+t14+t23+t24 < �t13�, then the lower bound imposed
by inequality (3.5) is higher than the one imposed by inequality (3.4). Therefore, these
two inequalities are not comparable.

For given sets S and T , inequalities (3.1) can be separated in polynomial time
(see [12]). However, the complexity of the separation of inequalities (3.2) is open even
when S and T are given. Still, the separation is easy if x is not fractional. In this
case, sets S and T should be singletons and

K
′
=

⎧⎨
⎩(i,m) ∈ K,

∑
j∈S

xij = 1 and
∑
l∈T

xml = 1

⎫⎬
⎭ .

Yaman and Carello [15] present inequalities that dominate the projection inequal-
ities (3.1).

Proposition 3.5 (Yaman and Carello [15]). Let S and T be nonempty disjoint
subsets of I and K

′ ⊆ K. The improved projection inequality

∑
j∈S

∑
l∈T

zjl ≥
∑

(i,m)∈K′ :i 	∈S,m 	∈T

tim

( ∑
j∈S\{m}

xij +
∑

l∈T\{i}
xml + xim + xmi − 1

)

+
∑

(i,m)∈K′ :i∈S,m 	∈T

tim

( ∑
j∈S\{m}

xij +
∑
l∈T

xml + xim − 1

)

+
∑

(i,m)∈K′ :i 	∈S,m∈T

tim

(∑
j∈S

xij +
∑

l∈T\{i}
xml + xmi − 1

)

+
∑

(i,m)∈K′ :i∈S,m∈T

tim

(∑
j∈S

xij +
∑
l∈T

xml − 1

)

is valid for P .

We present inequalities that dominate inequalities (3.2) in the same manner.

Proposition 3.6. Let S, T , O, and D be nonempty subsets of I such that
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S ∩ T = ∅ and O ∩D = ∅. Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈κ(O,D)

tim

⌉[∑
i∈O

(∑
j∈S

xij +
∑

m∈D\(S∪T )

xim − 1

)

+
∑
m∈D

(∑
l∈T

xml +
∑

i∈O\(S∪T )

xmi − 1

)
+ 1

]
(3.6)

is valid for P .
Proof. If

∑
m∈D\(S∪T ) xim = 0 for all i ∈ O and

∑
i∈O\(S∪T ) xmi = 0 for all

m ∈ D, then inequality (3.6) reduces to inequality (3.2) for K
′
= κ(O,D).

If there exists i ∈ O and m ∈ D \ (S ∪ T ) such that xim = 1 (resp., m ∈ D
and i ∈ O \ (S ∪ T ) such that xmi = 1), then as xmm = 1, m �∈ T and m �∈ O, we
have

∑
l∈T xml +

∑
l∈O\(S∪T ) xml = 0 (resp.,

∑
j∈S xij +

∑
j∈D\(S∪T ) xij = 0). This

implies that the right-hand side of inequality (3.6) is nonpositive.
Inequality (3.6) remains valid if �

∑
(i,m)∈κ(O,D) tim� is changed to �

∑
(i,m)∈K′ tim�

for K
′ ⊂ κ(O,D). But these new inequalities are dominated.

Proposition 3.7. For given nonempty subsets S, T , O, and D of I such that
S ∩ T = ∅ and O ∩D = ∅, inequality (3.6) dominates inequality (3.2).

Proof. If K
′
= κ(O,D), then inequality (3.6) dominates inequality (3.2). If K

′ �=
κ(O,D), then by Proposition 3.4, inequality (3.2) for κ(O,D) dominates inequality
(3.2) for K

′
.

In inequality (3.2), when a node in O(K
′
) is assigned to some node in I \ S

or a node in D(K
′
) is assigned to some node in I \ T , the right-hand side of the

inequality is nonpositive, since the coefficients of the assignment variables are all
equal to �

∑
(i,m)∈K′ tim�. In the remaining part of this section, we present families

of valid inequalities where the assignment variables have smaller coefficients so that
even when there exist nodes in O(K

′
) which are assigned to nodes in I \ S or nodes

in D(K
′
) which are assigned to nodes in I \ T , the inequality can still give a positive

lower bound on
∑

j∈S

∑
l∈T zjl.

Proposition 3.8. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
∑

m∈D(K′ )

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.7)

is valid for P .
Proof. For a given x, define O

′
= {i ∈ O(K

′
) :

∑
j∈I\S xij = 0} and D

′
= {m ∈

D(K
′
) :

∑
l∈I\T xml = 0}. Then the right-hand side of inequality (3.7) is equal to⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )\O′

⌈ ∑
m:(i,m)∈K′

tim

⌉
−

∑
m∈D(K′ )\D′

⌈ ∑
i:(i,m)∈K′

tim

⌉

≤
⌈ ∑

(i,m)∈K′ :i∈O′ and m∈D′

tim

⌉
≤

⌈ ∑
i∈O′

∑
m∈D′

tim

⌉
.
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The last term is a valid lower bound on
∑

j∈S

∑
l∈T zjl.

Different from inequalities (3.2) and (3.6), inequalities (3.7) defined by sets K
′ �=

κ(O,D) can be nondominated. If there exists a commodity (u, v) ∈ κ(O,D) such that
�
∑

(i,m)∈κ(O,D) tim� = �
∑

(i,m)∈κ(O,D)\{(u,v)} tim�, then inequality (3.7) for κ(O,D) \
{(u, v)} either is the same as inequality (3.7) for κ(O,D) or dominates it. An example
is given.

Example 3.2. Let I = {1, 2, 3, 4}. The nonzero traffic values are as follows:
t13 = 1.25, t14 = 1, t23 = 1.95, t24 = 0.05 (see Figure 3.2).

1

3 4

2

0.051.25

1.951

Fig. 3.2. Example 3.2: nonzero traffic values.

We consider some arc (j, l). Inequality (3.7) for κ(O,D), where O = {1, 2} and
D = {3, 4}, is

zjl ≥ �t13 + t14 + t23 + t24� − �t13 + t14�(1 − x1j) − �t23 + t24�(1 − x2j)

−�t13 + t23�(1 − x3l) − �t14 + t24�(1 − x4l)

= 5 − 3(1 − x1j) − 2(1 − x2j) − 4(1 − x3l) − 2(1 − x4l).

For K
′
= {(1, 3), (1, 4), (2, 3)}, inequality (3.7) is

zjl ≥ �t13 + t14 + t23� − �t13 + t14�(1 − x1j) − �t23�(1 − x2j)

−�t13 + t23�(1 − x3l) − �t14�(1 − x4l)

= 5 − 3(1 − x1j) − 2(1 − x2j) − 4(1 − x3l) − 1(1 − x4l).

Inequality (3.7) for K
′
dominates inequality (3.7) for κ(O,D).

The complexity of the separation is open for inequalities (3.7). If one approxi-
mates the separation problem by removing the ceilings, then the new problem is the
same as the separation problem for projection inequalities (3.1).

The coefficients of some variables can be further improved as follows.

Proposition 3.9. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

For i∗ ∈ O(K
′
), inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )\i∗

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
(⌈ ∑

(i,m)∈K′

tim

⌉
−
⌈ ∑

(i,m)∈K′

tim −
∑

m:(i∗,m)∈K′

ti∗m

⌉) ∑
j∈I\S

xi∗j

−
∑

m∈D(K′ )

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.8)



HUB LOCATION WITH MODULAR ARC CAPACITIES 509

is a valid inequality for P . Similarly, for i∗ ∈ D(K
′
), inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
(⌈ ∑

(i,m)∈K′

tim

⌉
−
⌈ ∑

(i,m)∈K′

tim −
∑

m:(m,i∗)∈K′

tmi∗

⌉) ∑
l∈I\T

xi∗l

−
∑

m∈D(K′ )\i∗

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.9)

is valid for P .

Proof. We prove the validity of inequality (3.8). Validity of inequality (3.9) can
be proved in a similar way. If

∑
j∈I\S xi∗j = 0, then inequality (3.8) is the same

as inequality (3.7). If
∑

j∈I\S xi∗j = 1, then it is dominated by inequality (3.7) for

K
′′

= {(i,m) ∈ K
′
: i �= i∗}.

To conclude this section, we compare inequalities (3.2), (3.7), (3.8), and (3.9).

Proposition 3.10. For given nonempty disjoint subsets S and T of I and
K

′ ⊆ K, inequality (3.7) dominates inequality (3.2) and inequalities (3.8) and (3.9)
dominate inequality (3.7).

4. Facet defining inequalities. This section is devoted to the polyhedral anal-
ysis for the HLM polyhedron. We first prove some properties of the facet defining
inequalities and then present families of such inequalities.

4.1. Basics. We reformulate the problem by substituting xjj = 1−
∑

m∈I\{j} xjm

for all j ∈ I (see Avella and Sassano [1]). We also eliminate some inequalities (2.4). If
both j and l become hubs, then the traffic of commodities with destination j or origin
l does not travel on arc (j, l). Moreover, the traffic from node j to node l travels on
arc (j, l). Define for (j, l) ∈ A,

Kjl = K \
({

(j, l)
}
∪
{
(m, j) : m ∈ I \ {j}

}
∪
{
(l,m) : m ∈ I \ {l}

})
.

The HLM can be reformulated as follows:

min
∑
i∈I

∑
j∈I\{i}

Cijxij +
∑
i∈I

Cii

(
1 −

∑
j∈I\{i}

xij

)
+

∑
(j,l)∈A

Rjlzjl

s.t. xij +
∑

m∈I\{j}
xjm ≤ 1 ∀(i, j) ∈ A,(4.1)

zjl ≥
∑

(i,m)∈K′ ,i 	=j,m	=l

tim(xij + xml − 1)

+
∑

i∈I:(j,i)∈K′

tji

(
xil −

∑
m∈I\{j}

xjm

)

+
∑

i∈I:(i,l)∈K′

til

(
xij −

∑
m∈I\{l}

xlm

)
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+ tjl

(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
∀K ′ ⊆ Kjl, (j, l) ∈ A,(4.2)

xij ∈ {0, 1} ∀(i, j) ∈ A,(4.3)

zjl ≥ 0 ∀(j, l) ∈ A,(4.4)

zjl integer ∀(j, l) ∈ A.(4.5)

Definition 4.1. Let

PA = conv
({

(x, z) ∈ {0, 1}n(n−1) × Z
n(n−1) : (x, z) satisfies (4.1)–(4.5)

})
.

Define also

P∅ = conv
({

x ∈ {0, 1}n(n−1) : x satisfies (4.1) and (4.3)
})

.

Polytope P∅ is a special stable set polytope. (See, e.g., [2], [4], and [14] for poly-
hedral properties of the stable set polytope and see [9] for facet defining inequalities of
P∅.) Polytope P∅ is interesting since P∅ = Projx(PA). Labbé and Yaman [8] describe
the relationship between the facets of P∅ and PA. The following two propositions
are corollaries of the results in [8] and the proofs can be found in that paper. Sim-
ilar results are also proved by Labbé, Yaman, and Gourdin [12] for the polyhedron
associated with HLs.

Proposition 4.2. The polyhedron PA is full dimensional, i.e., dim(PA) = 2n(n−
1).

Proposition 4.3. The inequality πx ≤ π0 defines a facet of PA if and only if it
defines a facet of P∅.

This proposition gives a characterization of the facet defining inequalities of PA

which involve only the assignment variables, in terms of the facet defining inequalities
of P∅. Next, we investigate facet defining inequalities of PA which involve only the
capacity variables. The proofs of the following two propositions are similar to the
proofs of Proposition 4.3 and 4.4 in [12] and are omitted here.

Proposition 4.4. Every facet defining inequality of PA of the form βz ≥ β0 is
a positive multiple of zjl ≥ 0 for some (j, l) ∈ A.

This proposition implies that it is not possible to find fixed positive lower bounds
on capacity variables. This is natural since if all nodes are assigned to the same hub,
then there is no traffic in the backbone network.

Proposition 4.5. For (j, l) ∈ A, if tjl = 0, then the inequality zjl ≥ 0 defines a
facet of PA.

4.2. General lifting results. In what follows, we give some properties of facet
defining inequalities that involve both the assignment and the capacity variables.

Define exij = (x, z) (resp., ezij = (x, z)) to be the unit vector such that xlm = 0 for
all (l,m) ∈ A \ {(i, j)}, xij = 1 and zlm = 0 for all (l,m) ∈ A (resp., xlm = 0 for all
(l,m) ∈ A, zlm = 0 for all (l,m) ∈ A \ {(i, j)} and zij = 1).

Definition 4.6. For B ⊆ A, define

FB =
{
(x, z) ∈ {0, 1}n(n−1) × Z

|B| : (x, z) satisfies (4.1) and (4.3) ∀(i, j) ∈ A

and (4.2), (4.4), and (4.5) ∀(j, l) ∈ B
}

and let

PB = conv(FB).
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If B = {(j, l)}, then we write Fjl and Pjl for FB and PB, respectively.
In other words, PB is the projection of PA on the space of xij for all (i, j) ∈ A

and zjl for all (j, l) ∈ B. Facet defining inequalities of PB and PA are related in the
following way.

Theorem 4.7. For B ⊂ A, inequality βz ≥ αx + π with βjl = 0 for all (j, l) ∈
A \B is facet defining for PA if and only if it is facet defining for PB.

Proof. Assume that βz ≥ αx + π with βjl = 0 for all (j, l) ∈ A \ B is not
facet defining for PA. Then all (x, z) ∈ PA that satisfy βz = αx + π also satisfy
β

′
z = α

′
x + π

′
and (β

′
, α

′
, π

′
) �= 0 is not a positive multiple of (β, α, π). As, for

(j, l) ∈ A \B, both (x, z) and (x, z) + ezjl are in PA and satisfy βz = αx+ π, we have

β
′

jl = 0. Then βz ≥ αx + π cannot be facet defining for PB .
If βz ≥ αx + π with βjl = 0 for all (j, l) ∈ A \B is facet defining for PA, then it

is clearly facet defining for PB .
Theorem 4.7 implies that for B1 ⊂ B2 ⊂ A, facet defining inequalities of PB1 are

also facet defining for PB2 . Proposition 4.3 is a special case of Theorem 4.7 where
B = ∅. Facet defining inequalities of P∅ are facet defining for PB for every B ⊆ A.

Proposition 4.8. For B ⊆ A, if βz ≥ αx + π is facet defining for PB, then
β ≥ 0.

Proof. Let (x, z) ∈ PB be such that βz = αx + π. As, for (j, l) ∈ B, (x, z) + ezjl
is also in PB , βjl ≥ 0.

Proposition 4.8 implies that facet defining inequalities of Pjl that involve both
assignment and capacity variables are of the form zjl ≥ αx + π. We give general
properties and lifting results for these inequalities.

Definition 4.9. For A
′ ⊆ A and B ⊆ A, define

FB(A
′
) =

{
(x, z) ∈ FB : xim = 0 ∀(i,m) ∈ A \A′}

and

PB(A
′
) = conv(FB(A

′
)).

If we have a facet defining inequality for PB(A
′
), then by lifting variables xim

with (i,m) ∈ A \ A
′

sequentially, we can obtain a facet defining inequality for PB

(see, e.g., Nemhauser and Wolsey [13]).
Proposition 4.10. For (j, l) ∈ A and A

′ ⊆ A, if zjl ≥ αx + π is facet defining

for Pjl(A
′
), then αim ≥ 0 for (i,m) ∈ A

′
such that i �= j and i �= l.

Proof. Let (i,m) ∈ A
′

such that i �= j and i �= l. Suppose that zjl ≥ αx + π is

facet defining for Pjl(A
′
). Then there exists (x, zjl) ∈ Pjl(A

′
) such that zjl = αx+ π

and xim = 1. As (x, zjl) − exim is also in Pjl(A
′
), we have that αim ≥ 0.

The following three theorems give the values of the optimal lifting coefficients of
some variables.

Theorem 4.11. For (j, l) ∈ A, A
′ ⊆ A and (j, u) ∈ A \A′

, if inequality

zjl ≥
∑

(i,m)∈A′

αimxim + π(4.6)

is facet defining for Pjl(A
′
), then

zjl ≥
∑

(i,m)∈A′

αimxim + αjuxju + π
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is facet defining for Pjl(A
′ ∪ {(j, u)}), where

αju = − max
x∈F∅(A′ )

( ∑
(i,m)∈A′ :i 	=j,i 	=u and m	=j

αimxim

)
− π.

Proof. For xju, the optimal lifting coefficient αju can be computed as

αju = min
(x,zjl)∈Fjl(A

′∪{(j,u)}):xju=1

(
zjl −

∑
(i,m)∈A′

αimxim

)
− π.

For a given x such that xju = 1, best choice of zjl is 0. So,

αju = min
x∈F∅(A′∪{(j,u)}):xju=1

(
−

∑
(i,m)∈A′

αimxim

)
− π.

Moreover, as xju = 1, we have xjm = 0 for all m ∈ I \{j, u}, xij = 0 for all i ∈ I \{j}
and xum = 0 for all m ∈ I \ {u}.

Theorem 4.12. For (j, l) ∈ A, A
′ ⊆ A and (l, u) ∈ A \ A′

, if inequality (4.6) is
facet defining for Pjl(A

′
), then

zjl ≥
∑

(i,m)∈A′

αimxim + αluxlu + π

is facet defining for Pjl(A
′ ∪ {(l, u)}), where

αlu = − max
x∈F∅(A′ )

( ∑
(i,m)∈A′ :i 	=l,i 	=u and m	=l

αimxim

)
− π.

Proof. The proof is analogous to the proof of Theorem 4.11.
Theorem 4.13. For (j, l) ∈ A and A

′ ⊂ A, assume that inequality (4.6) is facet
defining for Pjl(A

′
). Let (u, v) ∈ A\A′

such that u is different from j and l. Consider
the two sets of conditions (i) and (ii):

(i) (a) (j, v) ∈ A
′
,

(b) for each m ∈ I \ {u, v, j} independently, we have (u,m) ∈ A \ A
′

or
αum = 0,

(c) for each m ∈ I \ {u, v, j} independently, we have (m,u) ∈ A \ A
′

or
αmu = 0.

(ii) (a) (l, v) ∈ A
′
,

(b) for each m ∈ I \ {u, v, l} independently, we have (u,m) ∈ A \ A
′

or
αum = 0,

(c) for each m ∈ I \ {u, v, l} independently, we have (m,u) ∈ A \ A
′

or
αmu = 0.

If at least one set of conditions (i) and (ii) is satisfied, then inequality (4.6) is also
facet defining for Pjl(A

′ ∪ {(u, v)}).
Proof. If inequality (4.6) is facet defining for Pjl(A

′
), then inequality

zjl ≥
∑

(i,m)∈A′

αimxim + αuvxuv + π
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is facet defining for Pjl(A
′ ∪ {(u, v)}), where

αuv = min
(x,zjl)∈Pjl(A

′∪{(u,v)}):xuv=1

(
zjl −

∑
(i,m)∈A′

αimxim

)
− π.

Assume that condition set (i) is satisfied. As inequality (4.6) is facet defining for
Pjl(A

′
) and by condition set (i), we know that there exists (x, zjl) in Pjl(A

′
) such

that xjv = 1, zjl =
∑

(i,m)∈A′ αimxim + π and
∑

m∈I\{u,v,j}(xum + xmu) = 0. Then

(x, zjl) + exuv is in Pjl(A
′ ∪ {(u, v)}) and so αuv ≤ 0. By Proposition 4.10, αuv ≥ 0.

Thus αuv = 0. The case where condition set (ii) is satisfied is similar.

We conclude this section with two more lifting theorems.

Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l} and A
′
= {(i, j) : i ∈ Ij} ∪ {(m, l) :

m ∈ Il}. Consider inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + π,(4.7)

which is facet defining for Pjl(A
′
). Let u ∈ I \ (Ij ∪ {j, l}). To compute the lifting

coefficient of the variable xuj , we solve a min cut problem on a directed layer graph

Guj = (Nuj , Auj) constructed as follows. Let I
′

j = {i ∈ Ij : αij − til > 0} and

I
′

l = {m ∈ Il : αml − tjm − tum > 0}. Let o and d be two dummy nodes. The node

set is Nuj = {o, d} ∪ I
′

j ∪ I
′

l . The first layer includes node o, the second layer includes

nodes of I
′

j , the third layer includes nodes of I
′

l , and the fourth layer includes node
d. Arcs go from the nodes of a layer to the nodes of the next layer. Thus, the arc
set consists of arcs from node o to nodes in I

′

j , arcs from nodes in I
′

j to nodes in I
′

l ,

and arcs from nodes in I
′

l to node d, i.e., Auj = {(o, i) : i ∈ I
′

j} ∪ {(i,m) : i ∈ I
′

j ,m ∈
I

′

l}∪{(m, d) : m ∈ I
′

l}. A cut separating nodes o and d is defined by a subset C ⊂ Nuj

with o ∈ C and d �∈ C, and the capacity of the cut is the sum of the capacities of arcs
going from nodes of C to nodes of Nuj \ C. If there is no such arc, then the cut has
zero capacity.

Theorem 4.14. Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l}, and A
′
= {(i, j) :

i ∈ Ij} ∪ {(m, l) : m ∈ Il}. Consider inequality (4.7) with integer coefficients.

Let u ∈ I \ (Ij ∪ {j, l}) and define I
′

j = {i ∈ Ij : αij − til > 0} and I
′

l = {m ∈ Il :
αml − tjm − tum > 0}. Consider the graph Guj = (Nuj , Auj) constructed above. The
capacity of arc (i,m) ∈ Auj is as follows:

wim =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmj − tml if i = o and m ∈ I
′

j ,

∞ if i = m and i ∈ I
′

j ∩ I
′

l ,

tim if i ∈ I
′

j and m ∈ I
′

l \ {i},
αil − tji − tui if m = d and i ∈ I

′

l .

Let ω be the capacity of a minimum capacity cut separating nodes o and d in the graph
Guj = (Nuj , Auj). Compute

αuj = −π +

⌈
tjl + tul −

∑
i∈I

′
j

(αij − til) −
∑
m∈I

′
l

(αml − tjm − tum) + ω

⌉
.
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If inequality (4.7) is facet defining for Pjl(A
′
), then inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + αujxuj + π

is facet defining for Pjl(A
′ ∪ {(u, j)}).

Proof. The optimal lifting coefficient of xuj can be computed as follows:

αuj = −π + min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

(
zjl −

∑
i∈Ij

αijxij −
∑
m∈Il

αmlxml

)

= −π + min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

⌈
tjl + tul +

∑
i∈Ij

(til − αij)xij

+
∑
m∈Il

(tjm + tum − αml)xml +
∑
i∈Ij

∑
m∈Il

timxijxml

⌉
.

There is an optimal solution where xij = 0 for all i ∈ Ij \ I
′

j and xml = 0 for all

m ∈ Il \ I
′

l . So,

αuj = −π +

⌈
tjl + tul + min

(x,zjl)∈Fjl(A
′∪{(u,j)}):xuj=1

(∑
i∈I

′
j

(til − αij)xij

+
∑
m∈I

′
l

(tjm + tum − αml)xml +
∑
i∈I

′
j

∑
m∈I

′
l

timxijxml

)⌉

= −π +

⌈
tjl + tul −

∑
i∈I

′
j

(αij − til) −
∑
m∈I

′
l

(αml − tjm − tum)

+ min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

(∑
i∈I

′
j

(αij − til)(1 − xij)

+
∑
m∈I

′
l

(αml − tjm − tum)(1 − xml) +
∑
i∈I

′
j

∑
m∈I

′
l

timxijxml

)⌉
.

It remains to show that ω is equal to the optimal value of the above minimization
problem. Let C be a cut separating nodes o and d in Guj . The capacity of cut C is∑

i∈I
′
j
\C

(αij − til) +
∑

m∈I
′
l
∩C

(αml − tjm − tum) +
∑

i∈I
′
j
∩C

∑
m∈I

′
l
\C

tim.

This is the cost of a solution where xij is equal to 1 if i ∈ I
′

j ∩ C and 0 otherwise for

i ∈ I
′

j and xml is equal to 1 if m ∈ I
′

l \C and 0 otherwise for m ∈ I
′

l . The solution is

infeasible if there exists i ∈ I
′

j∩I
′

l such that xij +xil = 2. Then the corresponding cut

has infinite capacity since wii = ∞ for all i ∈ I
′

j ∩ I
′

l . Therefore, any feasible solution
of the minimization problem is a cut with a finite capacity and vice versa. Besides,
the cost of a feasible solution is the same as the capacity of the corresponding cut.
So ω is the same as the optimal value of the minimization problem.
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Theorem 4.15. Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l}, and A
′
= {(i, j) :

i ∈ Ij} ∪ {(m, l) : m ∈ Il}. Consider inequality (4.7) with integer coefficients.

Let u ∈ I \ (Il ∪ {j, l}) and define I
′

j = {i ∈ Ij : αij − til − tiu > 0} and

I
′

l = {m ∈ Il : αml − tjm > 0}. Consider the graph Gul = (Nul, Aul). The node

set is Nul = {o, d} ∪ I
′

j ∪ I
′

l , and nodes o and d are dummy nodes. The arc set is

Aul = {(o, i) : i ∈ I
′

j} ∪ {(i,m) : i ∈ I
′

j ,m ∈ I
′

l} ∪ {(m, d) : m ∈ I
′

l}. The capacity of
arc (i,m) ∈ Aul is as follows:

wim =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmj − tml − tmu if i = o and m ∈ I
′

j ,

∞ if i = m and i ∈ I
′

j ∩ I
′

l ,

tim if i ∈ I
′

j and m ∈ I
′

l \ {i},
αil − tji if m = d and i ∈ I

′

l .

Let ω be the capacity of a minimum capacity cut separating nodes o and d in the
graph Gul = (Nul, Aul). Compute

αul = −π +

⌈
tjl + tju −

∑
i∈I

′
j

(αij − til − tiu) −
∑
m∈I

′
l

(αml − tjm) + ω

⌉
.

If inequality (4.7) is facet defining for Pjl(A
′
), then inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + αulxul + π

is facet defining for Pjl(A
′ ∪ {(u, l)}).

4.3. Facets of Pjl. We present families of facet defining inequalities of Pjl for
(j, l) ∈ A. By Theorem 4.7, these inequalities are also facet defining for PA.

We use sequential lifting to derive facet defining inequalities for Pjl. We start with

the inequality zjl ≥ �tjl�, which is facet defining for Pjl(∅). For a subset I
′ ⊆ I \{j, l}

and an order φ on I
′
, we first lift the variables xij for i ∈ I

′
in the order φ. The

remaining variables are lifted in the following order: xjm for m ∈ I \ {j}, xuv with

u ∈ I \{j, l} and v ∈ I \{j, u}, xlm with m ∈ I \{l}, and xuj with u ∈ I \ (I
′ ∪{j, l}).

As all lifting coefficients are optimal, the resulting inequality is facet defining for Pjl.

Theorem 4.16. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αij = −�tjl� +

⌈
tjl + til −

∑
m∈I′ :φ(m)<φ(i)

(αmj − tml)
+

⌉
.

Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+

∑
i∈I′

αij

(
xij −

∑
m∈I\{l,i}

xlm

)
(4.8)

is facet defining for Pjl.
Proof. Inequality zjl ≥ �tjl� is facet defining for Pjl(∅). We lift variables xij for

i ∈ I
′
in the order φ. Let

F i
jl =

{
(x, zjl) ∈ Fjl

({
(m, j) ∈ A : φ(m) ≤ φ(i)

})
: xij = 1

}
.
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The optimal lifting coefficient for xij is

αij = min
(x,zjl)∈F i

jl

(
zjl − �tjl� −

∑
m∈I′ :φ(m)<φ(i)

αmjxmj

)
.

For x such that xij = 1, the lowest value of zjl is⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
.

Thus,

αij = min
(x,zjl)∈F i

jl

(⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
−

∑
m∈I′ :φ(m)<φ(i)

αmjxmj

)
− �tjl�.

By induction, one can show that αmj is an integer for each m ∈ I
′
such that φ(m) <

φ(i). So,

αij = −�tjl� + min
(x,zjl)∈F i

jl

⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

(tml − αmj)xmj

⌉
.

The minimization problem can be solved by setting xmj = 1 for m ∈ I
′
with φ(m) <

φ(i) if αmj − tml ≥ 0 and at 0 otherwise.
Next we lift variables xjm. For m ∈ I \ {j}, Theorem 4.11 implies that αjm =

−�tjl�.
Now consider some xuv with u ∈ I \ {j, l} and v ∈ I \ {j, u}. We prove by

induction that αuv = 0. If xuv is the first variable with u ∈ I \{j, l} and v ∈ I \{j, u}
to lift, then as xjv is already lifted and for each m ∈ I \ {u, v, j}, xum and xmu are
not yet lifted, condition set (i) of Theorem 4.13 is satisfied and the lifting coefficient
of xuv is zero. Otherwise, assume that those xim with i ∈ I \ {j, l} and m ∈ I \ {j, i}
that are already lifted have zero coefficient. Then as xjv is already lifted and for each
m ∈ I \{u, v, j}, xum is not lifted or it has zero lifting coefficient and xmu is not lifted
or it has zero lifting coefficient, condition set (i) of Theorem 4.13 is satisfied. Hence,
the lifting coefficient of xuv is zero.

We lift variables xlm. For m ∈ I \{l}, as by Proposition 4.10 αij ≥ 0 for all i ∈ I
′

and αji ≤ 0 for all i ∈ I\{j}, Theorem 4.12 implies that αlm = −
∑

i∈I′\{m} αij−�tjl�.
Finally variables xuj with u ∈ I \ (I

′ ∪{j, l}) are lifted by applying Theorem 4.13
repeatedly. As xlj is already lifted and for each m ∈ I \{u, j, l}, the lifting coefficients
of xum and xmu are zero, condition set (ii) of Theorem 4.13 is satisfied and the lifting
coefficient of xuj is zero.

The three corollaries below present facet defining inequalities that are special
cases of inequalities (4.8) for |I ′ | ≤ 2.

Corollary 4.17. For (j, l) ∈ A, inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
(4.9)

is facet defining for Pjl.
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Corollary 4.18. For (j, l) ∈ A and u ∈ I \ {j, l}, inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.10)

is facet defining for Pjl.
Corollary 4.19. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = min{�tjl + tul + tvl� − �tjl + tul�, �tjl + tvl� − �tjl�}. Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+ a

(
xvj −

∑
m∈I\{l,v}

xlm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.11)

is facet defining for Pjl.

Theorem 4.20. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αil = −�tjl� +

⌈
tjl + tji −

∑
m∈I′ :φ(m)<φ(i)

(αml − tjm)+

⌉
.

Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+

∑
i∈I′

αil

(
xil −

∑
m∈I\{j,i}

xjm

)
(4.12)

is facet defining for Pjl.
Proof. Analogous to the proof of Theorem 4.16.
Facet defining inequalities can also be obtained by fixing the values of some vari-

ables to 1 and applying sequential lifting.
Let A0 and A1 be disjoint subsets of A. For (j, l) ∈ A, define

F jl(A0, A1) = Fjl ∩
{
(x, zjl) : xim = 0 ∀(i,m) ∈ A0 and xim = 1 ∀(i,m) ∈ A1

}
and

P jl(A0, A1) = conv
(
F jl(A0, A1)

)
.

Let I
′ ⊆ I\{j, l} and A1 = {(i, j) ∈ A : i ∈ I

′}. Inequality zjl ≥ �
∑

m∈I′ tml+tjl�
is facet defining for P jl(A \ A1, A1). To derive a facet defining inequality for Pjl,

we first lift (1 − xij) for i ∈ I
′

in some order φ, then xjm for m ∈ I \ {j}, xuv

with u ∈ I \ {j, l} and v ∈ I \ {j, u}, xlm with m ∈ I \ {l}, and finally xuj with

u ∈ I \ (I
′ ∪ {j, l}).

Theorem 4.21. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αij = −
⌈ ∑

m∈I′

tml + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tml −
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)
+

⌉
.
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Inequality

zjl ≥
∑
i∈I′

αij

(
1 − xij − xli −

∑
m∈I\{j}

xjm

)

+

⌈ ∑
m∈I′

tml + tjl

⌉(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
(4.13)

is facet defining for Pjl.

Proof. Let A1 = {(i, j) ∈ A : i ∈ I
′}. Inequality zjl ≥ �

∑
m∈I′ tml + tjl� is facet

defining for P jl(A \A1, A1). We lift (1 − xij) for i ∈ I
′
in the order φ. Let

F i
jl = F jl

(
A \A1 ∪ {(i, j)}, A1 \ {(m, j) : φ(m) ≤ φ(i)}

)
.

The optimal lifting coefficient for (1 − xij) is

αij = min
(x,zjl)∈F i

jl

(
zjl −

∑
m∈I′ :φ(m)<φ(i)

αmj(1 − xmj)

)
−
⌈ ∑

m∈I′

tml + tjl

⌉
.

For x such that xij = 0, the lowest value for zjl is

zjl =

⌈
tjl +

∑
m∈I′ :φ(m)>φ(i)

tml +
∑

m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
.

Then

αij = min
(x,zjl)∈F i

jl

(⌈
tjl +

∑
m∈I′ :φ(m)>φ(i)

tml +
∑

m∈I′ :φ(m)<φ(i)

tmlxmj

⌉

−
∑

m∈I′ :φ(m)<φ(i)

αmj(1 − xmj)

)
−
⌈ ∑

m∈I′

tml + tjl

⌉
.

By induction, one can again show that αmj is integer for each m ∈ I
′

such that
φ(m) < φ(i). So

αij = −
⌈ ∑

m∈I′

tml + tjl

⌉
+ min

(x,zjl)∈F i
jl

⌈
tjl +

∑
m∈I′\{i}

tml

−
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)(1 − xmj)

⌉

= −
⌈ ∑

m∈I′

tml + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tml −
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)
+

⌉
.

Next, we lift variables xjm. For m ∈ I \{j}, αjm = −
∑

i∈I′ αij−�
∑

i∈I′ til + tjl�
since xij = 0 for all i ∈ I

′
as xjm = 1.

Now we lift variables xuv with u ∈ I \ {j, l} and v ∈ I \ {j, u}. As condition set
(i) of Theorem 4.13 is satisfied, these variables have zero lifting coefficient (see the
proof of Theorem 4.16).
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Next, we lift variables xlm. Let m ∈ I \ {j, l}. Since αij ≤ 0 for all i ∈ I
′
and αji

is the same for all i ∈ I \ {j}, by Theorem 4.12, the optimal lifting coefficient for xlm

is

αlm = −
∑
i∈I′

αij −
⌈∑

i∈I′

til + tjl

⌉
+ min

{ ∑
i∈I′\{m}

αij ,
∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉}
.

If m �∈ I
′
, then αlm = −�

∑
i∈I′ til + tjl�. If m ∈ I

′
, then

αlm = −
∑
i∈I′

αij −
⌈∑

i∈I′

til + tjl

⌉
+ min

{∑
i∈I′

αij − αmj ,
∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉}
.

This is the same as min{−αmj − �
∑

i∈I′ til + tjl�, 0}. As

⌈
tjl +

∑
i∈I′\{m}

til −
∑

i∈I′ :φ(i)<φ(m)

(til + αij)
+

⌉
≥ 0,

we get αlm = −αmj − �
∑

i∈I′ til + tjl�.
We lift xlj . As

∑
i∈I\{j} xji = 0, αlj = −�

∑
i∈I′ til + tjl�.

Finally variables xuj with u ∈ I \ (I
′ ∪{j, l}) are lifted by applying Theorem 4.13

repeatedly and their lifting coefficients are zero (see proof of Theorem 4.16).
The resulting inequality is

zjl ≥
⌈ ∑

m∈I′

tml + tjl

⌉
+

∑
i∈I′

αij(1 − xij) −
∑

m∈I\{j}

(∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉)
xjm

−
∑

m∈I\(I′∪{l})

⌈∑
i∈I′

til + tjl

⌉
xlm −

∑
m∈I′

(
αmj +

⌈∑
i∈I′

til + tjl

⌉)
xlm.

Rearranging terms, we obtain inequality (4.13).
For I

′
= ∅ and I

′
= {u}, inequality (4.13) reduces to inequalities (4.9) and (4.10),

respectively. Inequality (4.13) for I
′
= {u, v}, φ(u) = 1 and φ(v) = 2 is given in the

following corollary.
Corollary 4.22. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = max{�tjl + tul + tvl� − �tjl + tul�, �tjl + tvl� − �tjl�}. Inequality

zjl ≥
(
�tjl + tvl� − a

)(
1 −

∑
m∈I\{j}

xjm

)
− �tjl + tul + tvl�

∑
m∈I\{l}

xlm

+

(
�tjl + tul + tvl� − �tjl + tvl�

)
(xuj + xlu) + a(xvj + xlv)(4.14)

is facet defining for Pjl.

Theorem 4.23. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αil = −
⌈ ∑

m∈I′

tjm + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tjm −
∑

m∈I′ :φ(m)<φ(i)

(tjm + αml)
+

⌉
.
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Inequality

zjl ≥
∑
i∈I′

αil

(
1 − xil − xji −

∑
m∈I\{l}

xlm

)

+

⌈ ∑
m∈I′

tjm + tjl

⌉(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
(4.15)

is facet defining for Pjl.
Proof. The proof is analogous to the proof of Theorem 4.21.
Finally, using Theorems 4.14 and 4.15, we find the following facet defining in-

equalities.
Proposition 4.24. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = min{�tjl + tjv� − �tjl�, �tjl + tjv + tul + tuv� − �tjl + tul�}. Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+ a

(
xvl −

∑
m∈I\{j,v}

xjm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.16)

is facet defining for Pjl.
Proof. Inequality zjl ≥ �tjl� is facet defining for Pjl(∅). Now lift first xuj and

then xvl using Theorems 4.14 and 4.15, respectively. Inequality

zjl ≥ �tjl� + (�tjl + tul� − �tjl�)xuj + axvl

is facet defining for Pjl({(u, j), (v, l)}). Next, by Theorem 4.11, optimal lifting coef-
ficient for xjm with m ∈ I \ {j, v} is −�tjl� − a and for xjv is −�tjl�. The optimal
coefficient of xlm for m ∈ I \ {l, u} is −�tjl + tul� and for xlu is −�tjl�.

Next, we lift variables xij with i ∈ I \ {u, l, j}. As xlj is already lifted and for
m ∈ I \ {i, j, l}, xim and xmi are not lifted, condition set (ii) of Theorem 4.13 is
satisfied and the lifting coefficient of xij is zero.

For xil with i ∈ I \{v, j, l}, as xjl is already lifted and for m ∈ I \{i, j, l}, xim and
xmi are not lifted, condition set (i) of Theorem 4.13 is satisfied. So lifting coefficient
of xil is zero.

Inequality (4.16) is facet defining for Pjl(A
′
), where A

′
= A \ {(i, k) : i ∈ I \

{j, l}, k ∈ I \ {i, j, l}}. Next we lift xik with i ∈ I \ {j, l} and k ∈ I \ {i, j, l}. Optimal
lifting coefficient is

αik = min
(x,zjl)∈Fjl(A

′∪{(i,k)}):xik=1
σ(x, zjl),

where

σ(x, zjl) =

(
zjl − �tjl�

(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
− a

(
xvl −

∑
m∈I\{j,v}

xjm

)

−
(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

))
.
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If i �= v and k �= v, then let x = exik + exjk + exvl and zjl = 0. If i �= v and k = v,
then let x = exiv + exjv and zjl = 0. If i = v and k �= u, then x = exvk + exlk + exuj
and zjl = 0. Finally, if i = v and k = u, then x = exvu + exlu and zjl = 0. Solution

(x, zjl) ∈ Fjl(A
′ ∪ {(i, k)}) with xik = 1 and σ(x, zjl) = 0. We know by Proposition

4.10 that αik ≥ 0. Therefore, αik = 0. Repeating the same argument, we can prove
that lifting coefficients of all variables xik with i ∈ I \ {j, l} and k ∈ I \ {i, j, l} are
zero.

An important issue is the separation of these inequalities. Inequalities (4.9),
(4.10), (4.11), (4.14), and (4.16) can be separated in polynomial time by enumeration.
The separation of inequalities (4.8), (4.12), (4.13), and (4.15) asks to choose a subset
I

′ ⊆ I \ {j, l} and to find an order φ on I
′
. We do not know the complexity of these

problems.

5. Conclusion. In this paper, we presented polyhedral results for the HLM. By
previous results, it was easy to characterize the facet defining inequalities that involve
only the assignment or the capacity variables. It remained to investigate strong valid
inequalities that involved both types of variables. We presented valid inequalities,
results that give the optimal lifting coefficients of some variables as well as families of
facet defining inequalities.

A future research direction is to study similar lifting results for PB where B ⊆ A
is not necessarily a singleton. Another one is to find efficient separation algorithms for
the inequalities given here and incorporate these results in a branch and cut algorithm.

Acknowledgments. The author is grateful to an anonymous referee for his or
her helpful comments on the structure and presentation and for drawing attention to
several errors.
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TRAFFIC GROOMING IN UNIDIRECTIONAL
WAVELENGTH-DIVISION MULTIPLEXED RINGS WITH
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Abstract. SONET/WDM networks using wavelength add-drop multiplexing can be constructed
using certain graph decompositions used to form a grooming, consisting of unions of primitive rings.
The cost of such a decomposition is the sum, over all graphs in the decomposition, of the number
of vertices of nonzero degree in the graph. The existence of such decompositions with minimum
cost, when every pair of sites employs no more than 1

6
of the wavelength capacity, is determined

with a finite number of possible exceptions. Indeed, when the number N of sites satisfies N ≡ 1
(mod 3), the determination is complete, and when N ≡ 2 (mod 3), the only value left undetermined
is N = 17. When N ≡ 0 (mod 3), a finite number of values of N remain, the largest being N = 2580.
The techniques developed rely heavily on tools from combinatorial design theory.

Key words. traffic grooming, combinatorial designs, block designs, group-divisible designs,
optical networks, wavelength-division multiplexing
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1. Traffic grooming in wavelength-division multiplexed rings. Many cur-
rent network infrastructures are based on the synchronous optical network (SONET).
A SONET ring typically consists of a set of nodes connected by an optical fiber in
a unidirectional ring topology. Nodes of the network insert and/or extract the data
streams on a wavelength by means of an add drop multiplexer (ADM). A wavelength-
division multiplexed (WDM) or dense WDM (DWDM) optical network can handle
many wavelengths, each with large bandwidth available. On the other hand, a single
user seldom needs such large bandwidth. Therefore, by using multiplexed access such
as time-division multiple access (TDMA) or code-division multiple access (CDMA),
different users can share the same wavelength, thereby optimizing the bandwidth us-
age of the network. Traffic grooming is the generic term for packing low rate signals
into higher speed streams (see [17, 32, 34]). By using traffic grooming, not only is the
bandwidth usage optimized, but also the cost of the network can be reduced by lessen-
ing the total number of ADMs. If traffic grooming is used, one node may or may not
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use the same wavelength (and therefore the same ADM device) in the communication
with several nodes. Depending on these choices the total number of ADMs in the
network may be reduced. Minimizing the number of ADMs is different from min-
imizing the number of wavelengths. Indeed, even for the unidirectional ring, the
number of wavelengths and the number of ADMs cannot always be simultaneously
minimized (see [11, 25] for uniform traffic), although in many cases both parameters
can be minimized simultaneously. Both minimization problems have been considered
by many authors. See [1, 15] for minimization of the number of wavelengths and
[25, 26, 28, 36, 40] for minimization of ADMs. Numerical results, heuristics, and ta-
bles have also been given (see, for example, [37]). We consider the particular case of
unidirectional rings, so that the routing is unique. There is static uniform symmetric
all-to-all traffic, i.e., there is exactly one request of a given size from i to j for each
pair (i, j), and no wavelength conversion. With a pair of nodes, {i, j}, is associated a
circle, C{i,j}, containing both the request from i to j and from j to i. We assume that
both requests use the same wavelength. For uniform symmetric traffic in an unidirec-
tional ring, this assumption is not an important restriction and it allows us to focus
on the grooming phase independent of the routing. A circle is then a reservation of a
fraction of the bandwidth in the whole ring network corresponding to a communica-
tion between two nodes. (It is also possible to consider more general classes other than
circles containing two symmetric requests packed into the same wavelength. These
components are known as circles [11, 40], circuits [37], or primitive rings [13, 14].) If
each circle requires only 1

C of the bandwidth of a wavelength, we can groom C circles
on the same wavelength. C is the grooming ratio (or grooming factor). For example,
if the request from i to j (and from j to i) is packed in an OC-12 and a wavelength
can carry up to an OC-48, the grooming factor is 4. Given the grooming ratio C and
the size N of the ring, the objective is to minimize the total number of (SONET)
ADMs used, denoted A(C,N). This lowers the network cost by eliminating as many
ADMs as possible compared to the no-grooming case.

The problem of minimizing the number of ADMs in a unidirectional ring with uni-
form traffic can be modeled by graphs, as shown in [5]. Given a unidirectional SONET

ring with N nodes,
−→
C N , and grooming ratio C, consider the complete graph KN ,

i.e., the graph with N vertices in which there is an edge (i, j) for every pair of vertices

i and j. The number of edges of KN equals the number of circles R = N(N−1)
2 . More-

over, there is a one-to-one mapping between the circles of
−→
C N , C{i,j} and the edges of

KN , (i, j). Let S be an assignment of wavelengths and time slots for all requirements
among all possible pairs of nodes requiring A ADMs. Let B� be a subgraph of KN

representing the usage of a given wavelength � in the assignment S. To be precise, let
the edges in E(B�) correspond to the circles C{i,j} groomed onto the wavelength �,

and let the vertices in V (B�) correspond to the nodes of
−→
C N using wavelength �. The

number of vertices of B�, |V (B�)| is the number of nodes using wavelength � or, alter-
natively, the number of ADMs required for wavelength �. Evidently the total number
of edges of B�, E(B�) is at most the grooming ratio C. With these correspondences
the original problem of finding the minimum number of ADMs, A(C,N), required in

a ring
−→
C N with grooming ratio C, is equivalent to the following problem in graphs.

Problem 1.1. Given a number of nodes N and a grooming ratio C, find a
partition of the edges of KN into subgraphs B�, � = 1, . . . ,W , with |E(B�)| ≤ C such
that

∑
1≤�≤W |V (B�)| is minimum.

In this paper we develop techniques for solving the unidirectional wavelength
assignment when the grooming ratio is 6. We determine the exact values of A(6, N)
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for all values of N except for a finite number of cases.

The paper is organized as follows. In section 2 we introduce some notation and
previous results. Section 3 is devoted to the lower bound; in that section we also de-
termine the structure of a decomposition that realizes the lower bound. In section 4,
we give constructions that achieve the lower bound for most values of N . That section
is divided into three parts. In section 4.1 we show some results from design theory
that will be needed later. Section 4.2 is devoted to showing constructions for small
cases. Finally, in section 4.3, we give general constructions for all values of N with
few exceptions.

2. Previous results. Optimal constructions for given grooming ratio C have
been obtained using tools of graph and design theory [12]. In particular, results are
available for grooming ratio C = 3 [3], C = 4 [6, 28], C = 5 [4], and C ≥ N(N−1)/6 [6].
The problem is also solved for large values of C [6]. Related problems have been stud-
ied in both the context of variable traffic requirements [11, 16, 27, 36, 39] and the
case of fixed traffic requirements [3, 4, 5, 6, 17, 25, 26, 28, 29, 32, 37, 40].

We now present some results to be used in later sections, leaving specific results
on design theory until section 4.1.

Let ρ(B�) denote the ratio for the subgraph B�, ρ(B�) = |E(B�)|
|V (B�)| , and ρ(m) be the

maximum ratio of a subgraph with m edges. Let ρmax(C) denote the maximum ratio
of subgraphs with m ≤ C edges. We have ρmax(C) = max {ρ(B�) | |E(B�)| ≤ C} =
maxm≤C ρ(m). For the sake of illustration, Table 2.1 gives the values of ρmax(C) for
small values of C. For example, for C = 6, ρmax(6) = 3

2 , the bound being attained
for K4.

Theorem 2.1 (see [5]). Any grooming of R circles with a grooming factor C

needs at least R
ρmax(C) ADMs, i.e., A(C,N) ≥ N(N−1)

2ρmax(C) .

The grooming problem is closely connected to problems in combinatorial design
theory. Indeed, an (N, k, 1)-design is exactly a partition of the edges of KN into
subgraphs isomorphic to Kk (these are the blocks of the design). That corresponds
to requiring in our partitioning problem that all the subgraphs B� be isomorphic to
Kk. The classical equivalent definition is, given a set of N elements, find a set of
blocks such that each block contains k elements and each pair of elements appears in
exactly one block (see [12]). More generally, a G-design of order N (see [12, section
IV.22], [7, 8]) consists of a partition of the edges of KN into subgraphs isomorphic to
a given graph G. Our interest in the existence of a G-design is shown by the following
proposition.

Proposition 2.2. If there exists a G-design of order N , where G is a graph with

at most C edges and ratio ρmax(C), then A(C,N) = N(N−1)
2ρmax(C) .

Necessary conditions 2.3 (existence of a G-design). If there exists a G-design,
then

(i) N(N−1)
2 is a multiple of E(G),

(ii) N−1 is a multiple of the greatest common divisor of the degrees of the vertices
of G.

Wilson’s theorem [31, 38] establishes that these necessary conditions are also
sufficient for large N . From that, given any value of C, for an infinite number of

values of N , A(C,N) = N(N−1)
2ρmax(C) . Unfortunately, the values of N for which Wilson’s

theorem applies are very large. Nevertheless, for small values of C, we can use exact
results from design theory. For example, from the existence of G-designs for G = K4

we obtain the following result.
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Table 2.1

Values of ρmax(C) for small C.

C 1 2 3 4 5 6 7 8 9 10

ρmax(C) 1
2

2
3

1 1 5
4

3
2

3
2

8
5

9
5

2

C 11 12 13 14 15 16 24 32 48 64

ρmax(C) 2 2 13
6

14
6

5
2

5
2

3 32
9

9
2

64
11

Theorem 2.4. A(6, N) = N(N−1)
3 when N ≡ 1 or 4 (mod 12).

The nonexistence of certain G-designs for some values of C and N implies that
KN cannot be optimally decomposed by using isomorphic copies of the same sub-
graph. This lack of regularity in the decomposition makes it harder to find optimal
decompositions and thus to find the value of A(C,N). Furthermore, the solution may
be very different for different values of C and N , and Proposition 2.3 suggests that
the solutions depend on the congruence class of N .

Theorem 2.1 suggests that the minimum number of ADMs can be achieved by
choosing subgraphs such that the average ratio is maximized, or roughly speaking, by
choosing subgraphs with a ratio equal to ρmax(C) whenever possible. Although this
last sentence is not to be taken literally, we do show in section 3 that most of the
subgraphs in optimal decompositions for C = 6 must be isomorphic to K4.

Even if G-designs do not give a direct solution to our problem, related combi-
natorial structures assist in the solution. For instance, some types of designs may
give a decomposition for a part of the graph or may help constructing solutions by
composition from smaller cases.

We introduce specific concepts and results from design theory in section 4.1 in
order not to make the presentation overly technical at the outset. See [9, 12] for
undefined terms and for a general overview of design theory.

In the remainder of the paper we use standard terms from graph theory. How-
ever, let us introduce some notation and terminology that may not be standard. Let
v1, v2, . . . , vl be nonnegative integers; the complete multipartite graph with class sizes
v1, v2, . . . , vl, denoted Kv1,v2,...,vl

is the graph with vertex set V1 ∪V2 ∪ · · · ∪Vl, where
|Vi| = vi, and two vertices x ∈ Vi and y ∈ Vj are adjacent if and only if i �= j. For
u > 0, we write Kg×u (resp., Kg×u,m) Kg,g,...,g (resp., Kg,g,...,g,m) when g occurs u
times.

Given a complete graph Kn, the graph Kn− e is the result of removing one edge.
In this paper we also use names for given graphs that are given in Table 3.1.

3. Lower bound for grooming ratio C = 6. In this section we first give
the lower bound for grooming factor C = 6 (Theorem 3.1), and then we discuss the
possible structure of any decomposition attaining the lower bound.

Theorem 3.1. Let R = N(N−1)
2 denote the number of edges of KN and A the

number of ADMs.
• If N ≡ 1 (mod 3), then A ≥ 2R

3 + ε, where ε = 2 if N ≡ 7 or 10 (mod 12)
and 0 otherwise.

• If N ≡ 2 (mod 3), then A ≥ 2R+N+2
3 .

• If N ≡ 0 (mod 3), then A ≥ 	 6R+2N
9 
+ε, where ε = 1 if N ≡ 18, 27 (mod 36),

and ε = 0 otherwise.
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Table 3.1

Graphs with v vertices and e ≤ 6 edges. gi,j is the average contribution to degree ≡ 1 (mod 3),
g′i,j the average contribution to degree ≡ 2 (mod 3), δi,j = maxg gi,j , and δ′i,j = maxg′ g

′
i,j .

Graph e v deg. seq. gi,j g′i,j

A6,4 = K4 6 4 3333 0 0

A6,5 6 5 42222 3 = δ6,5 4.5 = δ′6,5
B6,5 6 5 43221 3 3

C6,5 = K3,2 6 5 33222 1.5 3

D6,5 6 5 33321 1.5 1.5

A6,6 6 6 522111 4.5 = δ6,6 4.5 = δ′6,6
B6,6 6 6 422211 4.5 4.5

C6,6 6 6 432111 4.5 3

D6,6 6 6 322221 3 4.5

E6,6 6 6 332211 3 3

F6,6 6 6 333111 3 1.5

A6,7 6 7 5211111 6 = δ6,7 4.5

B6,7 6 7 4221111 6 4.5

C6,7 6 7 4311111 6 3

D6,7 6 7 6111111 6 3

E6,7 6 7 2222211 4.5 6 = δ′6,7
F6,7 6 7 3222111 4.5 4.5

H6,7 6 7 3321111 4.5 3

A5,4 = K4 − e 5 4 3322 1 = δ5,4 2 = δ′5,4
A5,5 5 5 42211 4 = δ5,5 3.5

B5,5 5 5 22222 2.5 5 = δ′5,5
C5,5 5 5 32221 2.5 3.5

D5,5 5 5 33211 2.5 2

A5,6 5 6 421111 5.5 = δ5,6 3.5

B5,6 5 6 511111 5.5 2.5

C5,6 5 6 322111 4 3.5

D5,6 5 6 331111 4 2

E5,6 5 6 222211 3 5 = δ′5,6
A4,4 = C4 4 4 2222 2 = δ4,4 4 = δ′4,4
B4,4 4 4 3221 2 2.5

A4,5 4 5 41111 5 = δ4,5 2.5

B4,5 4 5 22211 3.5 4 = δ′4,5
C4,5 4 5 32111 3.5 2.5

A3,3 = C3 3 3 222 1.5 = δ3,3 3 = δ′3,3
A3,4 3 4 2211 3 = δ3,4 3 = δ′3,4
B3,4 3 4 3111 3 1.5

A2,3 2 3 211 2.5 = δ2,3 2 = δ′2,3
A1,2 = K2 1 2 11 2 = δ1,2 1 = δ′1,2

Proof. Let Gi,j denote a graph with i edges and j vertices. In Table 3.1 are
indicated all the possible degree sequences of the connected graphs with i ≤ 6 (at
most six edges) and one example of such a graph. Consider a decomposition of KN

and let αi,j be the number of graphs of type Gi,j appearing in the decomposition. We
have the two following equations:

R =
N(N − 1)

2
=

∑
i,j

i · αi,j ,(3.1)
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A =
∑
i,j

j · αi,j .(3.2)

From (3.1) and (3.2) and the fact that C = 6 implies i ≤ 6, we deduce

3A = 2R + 3α6,5 + 6α6,6 + 9α6,7 + 2α5,4 + 5α5,5 + 8α5,6

+ 4α4,4 + 7α4,5 + 3α3,3 + 6α3,4 + 5α2,3 + 4α1,2.(3.3)

So we always have A ≥ 2R/3, equality being attained only if there exists a
(N, 4, 1)-design, which is true only for N ≡ 1 or 4 (mod 12) (Theorem 2.4).

Case 1. N ≡ 1 (mod 3).
If N ≡ 7 or 10 (mod 12), then R ≡ 3 (mod 6) and the decomposition must

contain some graphs having strictly less than six edges. Thus, either it contains at
least two subgraphs having less than six edges and then 3A ≥ 2R+4 or only one graph,
which is necessarily a C3; but that is impossible as KN − C3 cannot be partitioned
into K4, as the three nodes of the C3 have degree N −2 ≡ 2 (mod 3) (Condition 2.3).
Thus we have A ≥ 2R/3 + 2.

Case 2. N ≡ 2 (mod 3).
The degree of a vertex of KN is ≡ 1 (mod 3) and so in each vertex we have to

use at least either a graph Gi,j having a vertex of degree ≡ 1 (mod 3) or two graphs
Gi,j each having a vertex of degree ≡ 2 (mod 3).

For a graph Gi,j , let g1
i,j denote its number of vertices of degree ≡ 1 (mod 3) and

g2
i,j denote its number of vertices of degree ≡ 2 (mod 3). Write gi,j = g1

i,j + 1
2g

2
i,j .

For example, for A6,5 (two triangles with a common vertex) the sequence of degrees
is 42222 and so a1

6,5 = 1, a2
6,5 = 4, and a6,5 = 3, and for B6,5 with degree sequence

43221, b16,5 = 2, b26,5 = 2, and b6,5 = 3. Values of gi,j are given in Table 3.1.
Now, the condition that the sum of the degrees of a given vertex is N − 1 ≡

1 (mod 3) implies that ∑
Gi,j

gi,j ≥ N.(3.4)

Let δi,j = maxg gi,j , with the maximum taken over all the graphs with i edges
and j vertices. For example, δ6,5 = 3 (attained for A6,5 and B6,5), δ6,6 = 4.5 (attained
for A6,6, B6,6, and C6,6), and so on.

Equation (3.4) becomes ∑
i,j

αi,jδi,j ≥ N.(3.5)

That is by using the values of δi,j

3α6,5 + 4.5α6,6 + 6α6,7 + α5,4 + 4α5,5 + 5.5α5,6 + 2α4,4 + 5α4,5

+ 1.5α3,3 + 3α3,4 + 2.5α2,3 + 2α1,2 ≥ N.(3.6)

Now (3.3) plus inequality (3.6) gives

3A ≥ 2R + N + 1.5α6,6 + 3α6,7 + α5,4 + α5,5 + 2.5α5,6

+ 2α4,4 + 2α4,5 + 1.5α3,3 + 3α3,4 + 2.5α2,3 + 2α1,2(3.7)

and so A ≥ 	 2R+N
3 
. But, as N ≡ 2 (mod 3) and R ≡ 1 (mod 3), we have 	 2R+N

3 
 =
2R+N+2

3 and finally A ≥ 2R+N+2
3 .
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Case 3. N ≡ 0 (mod 3).
In this case each vertex of KN has degree ≡ 2 (mod 3). Thus we have to use in

each vertex at least either a graph Gi,j having a vertex of degree ≡ 2 (mod 3) or two
graphs Gi,j each having a vertex of degree ≡ 1 (mod 3).

For a given graph Gi,j , let us define g′i,j = g2
i,j + 1

2g
1
i,j . For example, for A6,5,

a′i,j = 4.5, but for B6,5, b
′
i,j = 3 (values of g′i,j are indicated in Table 3.1).

The condition that the sum of the degrees of a vertex is N − 1 ≡ 2 (mod 3)
implies that ∑

Gi,j

g′i,j ≥ N.(3.8)

Let δ′i,j = maxg′ g′i,j , with the maximum taken over all graphs with i edges and j
vertices. For example, δ′6,5 = 4.5 (attained only for A6,5).

Equation (3.8) becomes ∑
i,j

αi,jδ
′
i,j ≥ N(3.9)

or, replacing by the values of δ′i,j ,

4.5α6,5 + 4.5α6,6 + 6α6,7 + 2α5,4 + 5α5,5 + 5α5,6 + 4α4,4 + 4α4,5

+ 3α3,3 + 3α3,4 + 2α2,3 + α1,2 ≥ N.(3.10)

Now (3.3) with both sides multiplied by 3 and inequality (3.10) with both sides
multiplied by 2 give

9A ≥ 6R + 2N + 9α6,6 + 15α6,7 + 2α5,4 + 5α5,5 + 14α5,6 + 4α4,4 + 13α4,5

+ 3α3,3 + 12α3,4 + 11α2,3 + 10α1,2.(3.11)

As N ≡ 0 (mod 3), we have 6R ≡ 0 (mod 9) and we obtain 	 6R+2N
9 
 = 6R+2N+β

9 ,
where β = 0 when N ≡ 0 (mod 9), β = 3 when N ≡ 3 (mod 9), and β = 6 when
N ≡ 6 (mod 9).

Furthermore, if N ≡ 3 or 6 (mod 12), R ≡ 3 (mod 6) and so we cannot use
only graphs with six edges. In that case, 9A > 6R + 2N , in particular if N ≡ 18 or
27 (mod 36), we have A ≥ 6R+2N+9

9 .
Let us now examine the possible structure for a decomposition of KN in order to

match the lower bound of Theorem 3.1.
The following remarks are obtained by checking carefully the graphs in Table 3.1

and the equations in the proof of Theorem 3.1.
Remark 3.2. When N ≡ 7 or 10 (mod 12), the only way to match the lower

bound (A = 2R/3 + 2) with R ≡ 3 (mod 6) and degree N − 1 ≡ 0 (mod 3) is by
using three subgraphs G5,4 (that is, K4 − e) sharing the two vertices with degree 3. It
corresponds to a covering of KN by K4 in which an edge is covered four times.

When N ≡ 2 (mod 3) we distinguish two possible subcases, depending on the
congruence class of R. If N ≡ 2 or 11 (mod 12), that is, R ≡ 1 (mod 6), the only
possibility is α1,2 = 1 and therefore, we have the next remark.

Remark 3.3. Any decomposition attaining the lower bound with N ≡ 2 or
11 (mod 12) must contain one K2,

N−2
3 graphs of type A6,5 or B6,5, and the remaining

subgraphs being K4.
If N ≡ 5 or 8 (mod 12), that is, R ≡ 4 (mod 6), there are different possibilities.
Remark 3.4. Any decomposition attaining the lower bound with N ≡ 5 or

8 (mod 12) must contain K4 and
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• either α4,4 = 1, that is, one A4,4 or B4,4 and N−2
3 A6,5 or B6,5;

• or α4,5 = 1, that is, one A4,5 (B4,5 and C4,5 do not work as b4,5 = c4,5 =
3.5 < 5) and N−5

3 A6,5 or B6,5;

• or α5,4 = 2, that is, two A5,4 (K4 − E) and N−2
3 A6,5 or B6,5;

• or α5,4 = 1 and α5,5 = 1, that is, one A5,4, one A5,5, and N−5
3 A6,5 or B6,5;

• or α5,5 = 2, that is, two A5,5 and N−8
3 A6,5 or B6,5.

When N ≡ 0 (mod 3), (3.3), (3.10), and (3.11) can be used to determine the
structure of any decomposition attaining the lower bound. Denote by F4 the graph
consisting of two A6,5 sharing the same vertex of degree 4 (equivalently, F4 consists of
4 C3 having a common vertex). A graph F4 is decomposed into two A6,5 and therefore
despite having 9 vertices must be attributed a cost of 10.

The decomposition depends on the congruence class modulo 36 as follows.

Remark 3.5. Any decomposition attaining the lower bound must satisfy

• N ≡ 0 or 9 (mod 36): the graph is decomposed into N
9 vertex disjoint F4

plus K4;
• N ≡ 3 or 30 (mod 36): R ≡ 3 (mod 6) implies that α3,3 = 1, and therefore

the decomposition contains one C3,
N−3

9 vertex disjoint F4 plus K4.

To obtain the possible decompositions in the remaining cases we use the parameter
g′i,j in the inequalities (3.10) and (3.11) to obtain

9A ≥ 6R + 2N + 3(b′6,5 + c′6,5) + 6d′6,5 + 2a′5,4
+ 5b′5,5 + 4a′4,4 + 3a′3,3 + 7

∑
g′i,j .

(3.12)

(The last term
∑

g′i,j corresponds to graphs Gi,j different from K4, G6,5, A5,4, B5,5,
A4,4, and A3,3.) When N ≡ 12 or 21 (mod 36), R ≡ 0 (mod 6) and all subgraphs
must contain six edges. Precisely, (3.12) shows the following.

Remark 3.6. Any decomposition with N ≡ 12 or 21 (mod 36) that meets the
lower bound must contain K4 plus

• either a C6,5 (K3,2) and N−3
9 F4 all vertex disjoint;

• or a B6,5 sharing its vertex of degree 4 with an A6,5 and its vertex of degree 1
with another A6,5 and N−12

9 F4 (all these graphs having no other vertices in
common);

• or five A6,5 sharing the vertex of degree 4 and then N−21
9 F4;

• or a vertex belonging to four F4 with degree 2 in each of them;
• or a vertex belonging to three F4, once with degree 4 and twice with degree

two.

Similarly, for the remaining cases, we have the next remark.

Remark 3.7. Any decomposition with N ≡ 6 or 15 (mod 36) that meets the
lower bound must contain K4 plus

• either one C3 and same as above (one C6,5 or B6,5 or some vertex belonging
to five, four, or three F4);

• or one A4,4, one A5,4, and N−6
9 F4 disjoint except for two vertices of degree 3

in A5,4;
• or three A5,4 and N−6

9 F4, vertex disjoint except for the six vertices of degree 3
in the three A5,4.

Remark 3.8. Any decomposition with N ≡ 24 or 33 (mod 36) that meets the
lower bound must contain K4 plus

• either two C3 and N−6
9 F4 vertex disjoint;

• or only graphs with six edges like
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– one D6,5,
– two B6,5 or C6,5,
– one B6,5 or C6,5 with some vertex belonging to five, four, or three F4,
– a vertex in eight A6,5 or two vertices each in four A6,5 or other com-

binations with same vertex (or two vertices) belonging to three or more
subgraphs.

Remark 3.9. Any decomposition with N ≡ 18 or 27 (mod 36) that meets the
lower bound must contain K4 plus

• either 3 C3,
• or one C3 (and some subgraphs as in the preceding case),
• or one A4,4 and one B5,5,
• or 3 A5,4 and some vertex belonging to three or more subgraphs.

4. Upper bounds and optimal constructions.

4.1. Some results from design theory.

4.1.1. Definitions and previous results. A group divisible design (GDD) is
a triple (X,G,B), where X is a set of points, G is a partition of X into groups, and
B is a collection of subsets of X called blocks such that any pair of distinct points
from X occur together either in one group or in exactly one block, but not both. A
K-GDD of type gu1

1 gu2
2 . . . gus

s is a GDD in which every block has size from the set K
and in which there are ui groups of size gi for i = 1, 2, . . . , s.

Remark 4.1. The existence of a decomposition of Kg×u,m into K4 is equivalent
to the existence of a 4-GDD of type gum1.

A transversal design TD(k, g) is a k-GDD of type gk.
A pairwise balanced design (PBD) with parameters (K; v) is a K-GDD of type 1v.

In particular, if K = k, a PBD is a G-design with G being the complete graph Kk.
A group divisible design (X,G,B) is resolvable (and referred to as an RGDD)

if its block set B admits a partition into parallel classes, each parallel class being a
partition of the point set X. A double group divisible design (DGDD) is a quadruple
(X,H,G,B), where X is a set of points, H and G are partitions of X (into holes and
groups, respectively), and B is a collection of subsets of X (blocks) such that

(i) for each block B ∈ B and each hole H ∈ H, |B ∩H| ≤ 1, and
(ii) any pair of distinct points from X which are not in the same hole occur either

in some group or in exactly one block, but not both.
A K-DGDD of type (g1, h

v
1)

u1(g2, h
v
2)

u2 . . . (gs, h
v
s)

us is a double group-divisible
design in which every block has size from the set K and in which there are ui groups
of size gi, each of which intersects each of the v holes in hi points. Thus gi = v ·hi for
i = 1, 2, . . . , s. Not every DGDD can be expressed this way, of course, but this is the
most general type that we require. One special case, a modified group divisible design
K-MGDD of type gu, is a K-DGDD of type (g, 1g)u. A k-DGDD of type (g, hv)k is
an incomplete transversal design (ITD) (k, g;hv) and is equivalent to a set of k − 2
holey MOLS of type hv (see, e.g., [12]).

We recall some known results on designs to be used in subsequent sections.
Theorem 4.2 (see Theorem 1.27 of [12]). The multipartite graph K2×u can be

partitioned into u(u−1)
3 K4 when u ≡ 1 (mod 3), u > 4. Equivalently there exists a

4-GDD of type 2u.
Theorem 4.3 (see [10] and Chapter 7 of [9]). The multipartite graph Kg×4 can

be partitioned into K4 if and only if g �= 2, 6. Equivalently there exists a TD(4, g) if
and only if g �= 2, 6.
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The primary recursive construction that we use is Wilson’s fundamental construc-
tion (WFC) for GDDs (see, e.g., [12]).

Construction 4.4. Let (X,G,B) be a GDD, and let w : X → Z
+ ∪ {0} be a

weight function on X. Suppose that for each block B ∈ B, there exists a K-GDD of
type {w(x) : x ∈ B}. Then there is a K-GDD of type {

∑
x∈G w(x) : G ∈ G}.

We make use of the following existence result.

Theorem 4.5 (see [24]). There exists a 4-DGDD of type (mt,mt)n if and only
if t, n ≥ 4 and (t− 1)(n− 1)m ≡ 0 (mod 3) except for (m,n, t) = (1, 4, 6) and except
possibly for m = 3 and (n, t) ∈ {(6, 14), (6, 15), (6, 18), (6, 23)}.

We also make use of the following simple construction for 4-GDDs, which was
stated in [23].

Construction 4.6. If there is a 4-DGDD of type (g1, h
v
1)

u1 (g2, h
v
2)

u2 . . . (gs, h
v
s)

us ,
and for each i = 1, 2, . . . , s there is a 4-GDD of type hv

i a
1, where a is a fixed nonneg-

ative integer, then there is a 4-GDD of type hva1, where h =
∑s

i=1 uihi.

The following results on transversal designs are known (see, for example, [12]).

Theorem 4.7. A TD(k, g) exists if

1. k = 5 and g ≥ 4 and g �∈ {6, 10};
2. k = 6 and g ≥ 5 and g �∈ {6, 10, 14, 18, 22};
3. k = 7 and g ≥ 7 and g �∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}.

Finally, we make use of the following results on 4-GDDs (see, e.g., [12, 21, 22, 23,
33]).

Theorem 4.8 (see [12, III.1.3, Theorem 1.27]). Let u and t be positive integers.
Then there exists a 4-GDD of type tu if and only if the conditions in the following
table are satisfied:

Existence of 4-GDDs of Type tu

t u Necessary and Sufficient Conditions
1, 5 (mod 6) 1, 4 (mod 12) u ≥ 4
2, 4 (mod 6) 1 (mod 3) u ≥ 4, (t, u) �= (2, 4)
3 (mod 6) 0, 1 (mod 4) u ≥ 4
0 (mod 6) no constraint u ≥ 4, (t, u) �= (6, 4)

Theorem 4.9 (see [12, III.1.3, Theorem 1.28]). A 4-GDD of type 3um1 exists if
and only if either u ≡ 0 mod 4 and m ≡ 0 mod 3, 0 ≤ m ≤ (3u − 6)/2; or u ≡ 1
mod 4 and m ≡ 0 mod 6, 0 ≤ m ≤ (3u− 3)/2; or u ≡ 3 mod 4 and m ≡ 3 mod 6,
0 < m ≤ (3u− 3)/2.

Theorem 4.10 (see [21, Theorem 1.7 ]). There exists a 4-GDD of type g4m1

with m > 0 if and only if g ≡ m ≡ 0 mod 3 and 0 < m ≤ 3g
2 .

Theorem 4.11 (see [22, Theorem 1.6]). There exists a 4-GDD of type 6um1

for every u ≥ 4 and m ≡ 0 mod 3 with 0 ≤ m ≤ 3u − 3 except for (u,m) = (4, 0)
and except possibly for (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33),
(17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.

Theorem 4.12 (see [18, Theorem 3.16]). There exists a 4-GDD of type 12um1

for each u ≥ 4 and m ≡ 0 mod 3 with 0 ≤ m ≤ 6(u− 1).

We also employ current existence results on 4-RGDDs.

Theorem 4.13 (see [19, 20]). The necessary conditions for the existence of a
4-RGDD(tu), namely, u ≥ 4, tu ≡ 0 (mod 4) and t(u − 1) ≡ 0 (mod 3), are also
sufficient except for (t, u) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting
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1. t ≡ 2, 10 (mod 12): t = 2 and u ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 142,
178, 184, 202, 214, 238, 250, 334, 346}; t = 10 and u ∈ {4, 34, 52, 94}; t ∈
[14, 454] ∪ {478, 502, 514, 526, 614, 626, 686} and u ∈ {10, 70, 82};

2. t ≡ 6 (mod 12): t = 6 and u ∈ {6, 54, 68}; t = 18 and u ∈ {18, 38, 62};
3. t ≡ 9 (mod 12): t = 9 and u = 44;
4. t ≡ 0 (mod 12): t = 12 and u = 27; t = 36 and u ∈ {11, 14, 15, 18, 23}.

4.1.2. Existence of 4-GDDs of type 36um1, for small values of m. Here
we consider 4-GDDs of type 36um1 with m ∈ {3, 6, 9, . . . , 33}. Whenever we refer to
a 4-RGDD of type gu, the existence of such RGDDs comes from Theorem 4.13.

Lemma 4.14. There exists a 4-GDD of type 36um1 for each u ≥ 4, u ≡ 0, 1, 3
mod 4 and m ∈ {3, 6, 9, . . . , 33}.

Proof. Start with a TD(5, u) and adjoin an infinite point ∞ to the groups, then
delete a finite point so as to form a {5, u + 1}-GDD of type 4uu1. Each block of size
u + 1 intersects the group of size u in the infinite point ∞ and each block of size 5
intersects the group of size u, but certainly not in ∞. Now, in the group of size u,
we give ∞ weight 0 (when u ≡ 0, 1 mod 4) or 3 (when u ≡ 3 mod 4) and give the
remaining points weight 0, 3, 6, 9, or 12. Give all other points in the {5, u+ 1}-GDD
weight 9. Replace the blocks in the {5, u + 1}-GDD by 4-GDDs of types 9u, 9u31, or
94(3i)1 (from Theorem 4.10) with i ∈ {0, 1, 2, 3, 4} to obtain the 4-GDDs. Here, the
input designs that are 4-GDDs of type 9u31 when u ≡ 3 mod 4 come from [23].

This leaves only the case for u ≡ 2 mod 4 to consider.
Lemma 4.15. There exists a 4-GDD of type 366m1 for each m ∈ {3, 6, 9, . . . , 33}.
Proof. For m ∈ {3, 6, 9, 12, 15}, starting from a 4-DGDD of type (36, 66)6 from

Theorem 4.5 and applying Construction 4.6 with 4-GDDs of type 66m1 to fill in holes,
we obtain the designs. For other values of m, start from a TD(7, 9) and apply WFC
with weight 4 to the points in the first six groups and weight 1 or 4 to the remaining
points. The 4-GDD of type 4611 is from [30, 23].

Lemma 4.16. There exists a 4-GDD of type 3610m1 for each m∈{3, 6, 9, . . . , 144}.
Proof. Complete the 12 parallel classes of a 4-RGDD of type 410 to obtain a

5-GDD of type 410121. Apply WFC and give weight 9 to the points in the groups of
size 4 and weight 0, 3, 6, 9, or 12 to the remaining points. The result follows from
Theorem 4.10.

Lemma 4.17. There exists a 4-GDD of type 3614m1 for each m ∈ {3, 6, 9, . . . , 48}.
Proof. Take a 5-GDD of 415 and apply WFC with weight 9 to the points in the

first 14 groups and weight 0, 3, 6, 9, or 12 to the remaining points.
Lemma 4.18. There exists a 4-GDD of type 3618m1 for each m ∈ {3, 6, 9, . . . , 48}.
Proof. Take a (77, {5, 9∗}, 1)-PBD (the existence of such a PBD follows from [2])

and remove a point not in the single block of size 9 to obtain a {5, 9}-GDD of type 419.
The single block of size 9 can hit only 9 groups of the GDD. Apply WFC with weight 9
to the points in the first 18 groups such that the single block of size 9 is covered by
them and weight 0, 3, 6, 9, or 12 to the remaining points.

Lemma 4.19. There exists a 4-GDD of type 3622m1 for each m∈{3, 6, 9, . . . , 336}.
Proof. Complete the 28 parallel classes of a 4-RGDD of type 422 to obtain a

5-GDD of type 422281. Apply WFC and give weight 9 to the points in the groups of
size 4 and weight 0, 3, 6, 9, or 12 to the remaining points.

Lemma 4.20. There exists a 4-GDD of type 36um1 for each u ≥ 26 and u ≡ 2
mod 4 with m ∈ {3, 6, 9, . . . , 33}.

Proof. Suppose that u = 4s + 2 and s ≥ 6. Take a 4-GDD of type (36s −
36)4(216+m)1 from Theorem 4.10 and fill in 4-GDDs of type 36(s−1) and 4-GDDs of
type 366m1 to obtain the 4-GDDs.
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Combining Lemmas 4.14–4.20, we have the following.
Theorem 4.21. There exists a 4-GDD of type 36um1 for each u ≥ 4 with

m ∈ {3, 6, 9, . . . , 33}.

4.1.3. Existence of 4-GDDs of type 36um1, for large values of m and
other types. Now we consider 4-GDDs of type 36um1 with m∈{117, 822, 840, 846, 852}.

Lemma 4.22. There exists a 4-GDD of type 36um1 for each u ≥ 7,

u �∈ U = {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}

and m ≡ 0 mod 3 with 0 ≤ m ≤ 18u− 18.
Proof. Start with a TD(7, u) and adjoin an infinite point ∞ to the groups, then

delete a finite point so as to form a {7, u + 1}-GDD of type 6uu1. Each block of size
u + 1 intersects the group of size u in the infinite point ∞ and each block of size 7
intersects the group of size u, but certainly not in ∞. Now, in the group of size u,
we give ∞ weight 0 or 3u − 3 and give the remaining points weight 0, 3, 6, 9, 12,
or 15. Give all other points in the {7, u+1}-GDD weight 6. Replace the blocks in the
{7, u+1}-GDD by 4-GDDs of types 6u, 6u(3u−3)1 or 66(3i)1 with i ∈ {0, 1, 2, 3, 4, 5}
to obtain the 4-GDDs. Here, the input 4-GDDs all come from Theorem 4.11.

Recall that a necessary condition for the existence of a 4-GDD of type gum1 is
that u >= 2m/g + 1 > 0 (see [12]). This leaves the cases for m = 117 and u ∈ U as
well as m = 822, 840, 846, 852 and u = 60, 62 to treat.

Lemma 4.23. There exists a 4-GDD of type 36u1171 for each u ∈ U .
Proof. For u = 10, the proof follows from Lemma 4.16. For other values of u,

start from a 4-RGDD of type 12u and complete all the parallel classes to obtain a
5-GDD of type 12u(4u − 4)1. Give weight 0 or 3 to the points in the group of size
4u− 4 and weight 3 to the remaining points.

Lemma 4.24. There exists a 4-GDD of type 36um1 for each u = 60, 62 and
m = 822, 840, 846.

Proof. Take a 4-GDD of type 6
u
2 691 from Theorem 4.11 and adjoin an infinite

point ∞ to the groups, then delete a finite point in the group of size 69 so as to form
a {4, 7}-GDD of type 3u691. Each block of size 7 intersects the group of size 69 in
the infinite point ∞, while each block of size 4 does not. Now, we give ∞ weight
0, 3, . . . , 27 or 30 and give all the remaining points weight 12. Replace the blocks
in the {4, 7}-GDD by 4-GDDs of types 124 or 126i1 with i ∈ {0, 3, 6, . . . , 30} from
Theorem 4.12 to obtain the 4-GDDs.

We still have m = 852 and u ∈ {60, 62} to handle.
Lemma 4.25. There exists a 4-GDD of type 36u8521 for each u ∈ {60, 62}.
Proof. For u = 60, the proof is similar to that of Lemma 4.23. Here, we employ a

4-RGDD of type 660. For u = 62, take a resolvable 3-RGDD of type 1262 and apply
weight 3, using resolvable 3-MGDDs of type 33 to obtain a resolvable 3-DGDD of type
(36, 123)62. Adjoin 732 infinite points to complete the parallel classes and then adjoin
a further 120 ideal points, filling in 4-GDDs of type 12621201 from Theorem 4.12, to
obtain a 4-GDD of type 3662(732 + 120)1.

Combining Lemmas 4.22–4.25, together with the fact that a necessary condition
for the existence of a 4-GDD of type gum1 is that u >= 2m/g + 1 > 0 (see [12]), we
obtain the following result.

Theorem 4.26.

1. There exists a 4-GDD of type 36u1171 if and only if u ≥ 8.
2. There exists a 4-GDD of type 36u8221 if and only if u ≥ 47.
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3. There exists a 4-GDD of type 36um1 with m = 840, 846 if and only if u ≥ 48.
4. There exists a 4-GDD of type 36u8521 if and only if u ≥ 49.

Here we collect some partial results with g = 117 to be used later.
Lemma 4.27. There exists a 4-GDD of type 1177m1 for m ∈ {3, 21, 27, 33}.
Proof. A 4-GDD of type 117731 appears in [23]. A 4-GDD of type 97271 appears

in [23]. So fill one set of groups in a 4-DGDD of type (117, 913)7 from [24] to obtain
a 4-GDD of type 1177271.

For 1177331, start from a 4-GDD of type 127331 and give weight 7 to each point,
using 4-MGDDs of type 74. This gives a 4-DGDD of type (84, 127)7(231, 337)1. Ad-
joining 33 infinite points and filling in 4-GDDs of type 127331 and a 4-GDD of type
338, we obtain a 4-GDD of type 1177331. Similarly, we can start from a 4-GDD of
type 128211 to obtain a 4-GDD of type 1177211.

4.2. Optimal constructions for small cases. We include in this section con-
structions for small cases to be used in the general theorems. In this discussion, we
denote the graph A6,5 as {A,B,C,D,E}, where A is the vertex of degree 4 and where
{B,C} and {D,E} are edges; we denote the graph B6,5 as {A,B,C,D,E}, where A
is the vertex of degree 4, C is the vertex of degree 3, B and D the vertices of degree 2
(joined to A and C), and E is the vertex of degree 1.

Let us start this section with a trivial result.
Lemma 4.28. The lower bound is attained for N ≤ 6, i.e., A(6, 2) = 2, A(6, 3) = 3,

A(6, 4) = 4, A(6, 5) = 9, and A(6, 6) = 12.
Let us recall that the lower bound also holds for N ≡ 1 or 4 (mod 12) by Theo-

rem 2.4.
We have the following results for small values of N .
Lemma 4.29. The lower bound is not attained for N = 7. Moreover, A(6, 7) = 17.
Proof. The partition is obtained using the two K4 {0, 1, 2, 3} and {0, 4, 5, 6}, the

K2,3 between nodes 1, 2 and 4, 5, 6, and the K1,3 between node 3 and nodes 4, 5, 6.
An exhaustive search establishes that no decomposition exists with cost 16.
Lemma 4.30. The lower bound is realized for N = 8, i.e., A(6, 8) = 22.
Proof. Let the vertices of K8 be V8 = {i, i ∈ Z8}. The decomposition consists of

two K4 {0, 1, 2, 3} and {0, 4, 5, 6}, two B6,5 {{1, 4} , {1, 5} , {1, 6} , {1, 7} , {4, 7} , {5, 7}}
and {{0, 7} , {2, 7} , {3, 7} , {6, 7} , {2, 6} , {3, 6}}, and the C4 (2, 4, 3, 5).

Lemma 4.31. The lower bound is not attained for N = 9. Moreover, A(6, 9) = 27.
Proof. The general lower bound gives A(6, 9) ≥ 26. However, to obtain A(6, 9) =

26, K9 can be partitioned into one F4 and four K4, but K9 − F4 is K2,2,2,2, which
cannot be decomposed into K4. Thus A(6, 9) ≥ 27.

Furthermore, a partition of K9 is obtained using the three K4 with vertex sets

{0, 4, 5, 6} , {0, 3, 7, 8} , {1, 2, 3, 6} ,

plus the three K2,3 {3i + 1, 3i + 2|3i, 3(i + 1) + 1, 3(i + 1) + 2}, i = 0, 1, 2, indices
taken modulo 9. So altogether A(6, 9) = 27.

Lemma 4.32. The lower bound is not attained for N = 10. Moreover, A(6, 10) =
34.

Proof. First we establish that A(6, 10) ≤ 34. Form three K4 meeting in the
element 9.

The remaining edges form K3,3,3 on vertex set {0, . . . , 8}. Suppose that {0, 1, 2}
is one class of the tripartition. Choose a matching {a1, b1}, {a2, b2}, {a3, b3} on the
vertices {3, . . . , 8} and for i = 1, 2, 3, form a K4 − e on {0, 1, ai, bi} omitting the
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edge {0, 1}. The remaining 12 edges form a 6-wheel (a 6-cycle with a seventh vertex
attached to each of the six). This can be decomposed into two copies of D6,5.

There are three 4-vertex 6-edge graphs, three 4-vertex 5-edge graphs, and two
5-vertex 6-edge graphs in this partition, for a total of 34.

Any solution of cost less than 34 must have at least four K4 by (3.3), and there
is a unique way up to isomorphism to place four K4. An exhaustive examination
establishes that no such decomposition has cost less than 34.

Lemma 4.33. The lower bound is realized for N = 11, i.e., A(6, 11) = 41.

Proof. Let the vertices of K11 be V11 = {α} ∪ {β} ∪ {xj
i , i, j ∈ Z3}. The decom-

position consists of the K2 {α, β}, plus the three A6,5

{
x0
i , x

1
i+1, x

2
i+2, x

2
i+1, x

1
i+2

}
, i =

0, 1, 2, plus the three K4

{
α, x0

i , x
1
i , x

2
i

}
, i = 0, 1, 2, plus the three K4

{
β, xj

0, x
j
1, x

j
2

}
,

j = 0, 1, 2.

Lemma 4.34. The lower bound is not attained for N = 12. Moreover, A(6, 12) =
48.

Proof. The general lower bound gives A(6, 12) ≥ 47. However, to obtain A(6, 12) =
47, there must be 11 6-vertex graphs in the decomposition. The only way in which
nine of these can be K4 leaves four K3, so we need only consider situations with eight
K4 and three 6-edge graphs on five vertices. An exhaustive search establishes that no
such decomposition exists. Thus A(6, 12) ≥ 48.

Let V =
∑4

i=1 Vi with |Vi| = 3; then K3×4 can be partitioned into nine K4

(Theorem 4.3). Thus a partition of K12 uses nine K4 and four C3. So altogether
A(6, 12) = 48.

Lemma 4.35. The lower bound is realized for N = 14, i.e., A(6, 14) = 66.

Proof. Let the vertices of K14 be V14 = {α} ∪ {β} ∪ {xj
i , i ∈ Z4, j ∈ Z3}. The

decomposition consists of the K2 {α, β}, plus the four B6,5

{
x0
i , x

1
i+2, x

2
i+1, x

1
i+3, x

2
i+3

}
,

i = 0, 1, 2, 3, plus the 11 K4 {xj
0, x

j
1, x

j
2, x

j
3}, j = 0, 1, 2,

{
α, x0

i , x
1
i , x

2
i

}
, i = 0, 1, 2, 3,{

β, x0
i , x

1
i+1, x

2
i+2

}
, i = 0, 1, 2, 3.

The next lemma enables us to determine that the lower bound is attained for
several values of N .

Lemma 4.36. When N = 2t + 1, t ≡ 1 (mod 3), t > 4, then A(6, N)≤ 4 t(t−1)
3 +

5
⌊
t
2

⌋
+ ε, where ε = 3 if t is odd and 0 otherwise.

Proof. Let the vertices be α and xj
i for i ∈ Z2 and j ∈ Zt. A partition of

K2t+1 consists of a partition of K2×t into t(t−1)
3 K4 (Theorem 4.2), plus

⌊
t
2

⌋
G5,

each one formed as the union of the two C3

{
α, x2k

0 , x2k
1

}
and

{
α, x2k+1

0 , x2k+1
1

}
,

k = 0, 1, . . . ,
⌊
t
2

⌋
/2− 1, and plus the C3

{
α, xt−1

0 , xt−1
1

}
when t is odd. So altogether

we have A(6, 2t+1) ≤ 4 t(t−1)
3 +5

⌊
t
2

⌋
+ε, where ε = 3 if t is odd and 0 otherwise.

Corollary 4.37. The lower bound is realized for N ∈ {15, 21, 27, 33}: A(6, 15) =
74, A(6, 21) = 145, A(6, 27) = 241 and A(6, 33) = 360.

Proof. Application of Lemma 4.36 and Theorem 3.1.

Lemma 4.38. The lower bound is not attained for N = 19. Moreover, A(6, 19) =
119.

Proof. We first establish that A(6, 19) ≤ 119. Partition K19 into 25 K4,

{{0,1,2,4}, {0,3,5,6}, {0,7,8,9}, {0,10,11,12}, {0,13,14,15},
{0,16,17,18}, {1,3,7,10}, {1,5,8,11}, {1,6,13,16}, {1,9,14,17},
{1,12,15,18}, {2,3,8,15}, {2,5,9,18}, {2,6,10,17}, {2,7,12,13},

{2,11,14,16}, {3,4,14,18}, {3,9,12,16}, {3,11,13,17}, {4,5,12,17},
{4,6,9,15}, {5,10,15,16}, {6,7,11,18}, {6,8,12,14}, {8,10,13,18}},
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and four other graphs,

D6,5: {{4,7},{4,8},{4,16},{7,16},{8,16},{8,17}},
C6,5: {{4,10},{4,11},{4,13},{9,10},{9,11},{9,13}},
D5,5: {{5,7},{5,13},{5,14},{7,14},{10,14}}, and

C4: {{7,15},{7,17},{11,15},{15,17}}.
A maximum packing of K4 in K19 has 25 K4, but the example in [35] does not
leave edges having a partition with cost 19, as this example does. Indeed, exhaustive
computation showed that there are 249 nonisomorphic graphs that can be left by
taking 25 K4 from K19. None yields a graph with cost less than 19. The only
remaining possibility is to choose 24 K4, three 5-edge 4-vertex graphs, and two 6-edge
5-vertex graphs, but a further exhaustive computation yielded no such partition.

Lemma 4.39. The lower bound is realized for N = 20, i.e., A(6, 20) = 134.
Proof. Let the vertices of K20 be V = V1 ∪ V2 with |V1| = 5 and |V2| = 15, and

let the vertices of V1 be {i, i ∈ Z5}.
The K15 on V2 can be partitioned into seven parallel classes Cj , j ∈ Z7, each

consisting of five triangles Cj,k, k ∈ Z5, by the existence of a resolvable (15, 3, 1)-
design.

For i ∈ Z5, we construct five K4 built on node i and class Ci,k, so altogether we
have 25 K4. Furthermore, the 10 triangles of the classes C5 and C6 can be joined
in pairs to form five graphs isomorphic to A6,5 (since there exist five vertices each
belonging to exactly one triangle of C5 and one of C6). Finally, the K5 on V1 can be
decomposed into one C4 and one A6,5. Altogether we have decomposed K20 into 1
C4, 6 A6,5, and 25 K4.

Lemma 4.40. The lower bound is realized for N = 23, i.e., A(6, 23) = 177.
Proof. Let the vertices of K23 be {α}∪{β}∪{xj

i , i ∈ Z7, j ∈ Z3}. The decompo-
sition consists of the K2 {α, β}, plus the 7 A6,5

{
x0
i , x

1
i , x

2
i , x

1
i+1, x

2
i+2

}
, i ∈ Z7, and

the 35 K4, {
α, x0

i , x
1
i+2, x

2
i+4

}
,
{
β, x0

i , x
1
i+4, x

2
i+1

}
,
{
x0
i , x

1
i+3, x

1
i+5, x

1
i+6

}
,

{
x1
i , x

2
i+3, x

2
i+5, x

2
i+6

}
, and

{
x2
i , x

0
i+1, x

0
i+2, x

0
i+4

}
for i ∈ Z7.

Lemma 4.41. The lower bound is realized for N = 26, i.e., A(6, 26) = 226.
Proof. Let the vertices of K26 be {α}∪{β}∪{xj

i , i ∈ Z8, j ∈ Z3}. The decompo-
sition consists of the K2 {α, β}, plus the 8 A6,5

{
x0
i , x

2
i+5, x

1
i+6, x

2
i+2, x

1
i+7

}
, plus the

16 K4

{
α, x0

i , x
1
i , x

2
i

}
and

{
β, x0

i , x
2
i+1, x

1
i+3

}
, i ∈ Z8, plus the 24 K4 {xj

i , x
j
i+1, x

j+1
i+2 ,

xj+1
i+5}, i ∈ Z8 and j ∈ Z3, and plus the 6 K4 {xj

i , x
j
i+2, x

j
i+4, x

j
i+6}, i = 0, 1 and

j ∈ Z3.
Lemma 4.42. The lower bound is realized for N = 29, i.e., A(6, 29) = 281.
Proof. Let V = V1 ∪ V2 with |V1| = 8 and |V2| = 21, and let the vertices of V1 be

{i, i ∈ Z8}.
The K8 on V1 can be decomposed into one C4, 2 B6,5, and 2 K4. The K21 on V2

can be partitioned into 10 parallel classes Cj , j ∈ Z10, each consisting of 7 triangles
Cj,k, k ∈ Z7, by the existence of a resolvable (21, 3, 1)-design. Finally, like for N = 20
(Lemma 4.39), we build for each i ∈ Z8, 7 K4 on node i and class Ci,k, so altogether
56 K4; then we pair two by two the triangles of the last two classes C8 and C9 to
obtain 7 A6,5. Altogether we have decomposed K29 into 1 C4, 9 graphs of type A6,5

or B6,5, and 58 K4.
Lemma 4.43. The lower bound is realized for N = 32, i.e., A(6, 32) = 342.
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Proof. Let the vertices of K32 be {α, β, γ, δ, ε} ∪ V1 ∪ V2 ∪ V3, where |Vj | = 9,

J = 0, 1, 2, and Vj = {xj
i , i ∈ Z9}. The K9 on Vj can be partitioned into four parallel

classes Cj
k, k ∈ Z4, each consisting of three triangles Cj

k,l, k ∈ Z4, by the existence of

a resolvable (9, 3, 1)-design. Let Cj
3 = {{xj

i , x
j
3+i, x

j
6+i}, i ∈ Z3}.

As for N = 20 (Lemma 4.39), we build for α 9 K4 with classes Cj
0, j = 0, 1, 2,

for β 9 K4 with classes Cj
1, j = 0, 1, 2, and for γ 9 K4 with classes Cj

2, j = 0, 1, 2, so
altogether 27 K4. We also build the 45 K4

{
x0
i , x

0
i+3, x

1
i+4, x

2
i+4

}
,
{
x0
i , x

1
i+2, x

1
i+8, x

2
i

}
,{

x0
i , x

1
i , x

2
i+2, x

2
i+5

}
,
{
δ, x0

i , x
1
i+3, x

2
i+7

}
, and

{
ε, x0

i , x
1
i+5, x

2
i+8

}
, i ∈ Z9, and the 9

A6,5

{
x0
i , x

1
i+6, x

2
i+3, x

1
i+7, x

2
i+6

}
, i ∈ Z9. Finally the K5 on {α, β, γ, δ, ε} can be

decomposed into a C4 and one A6,5. Altogether we have decomposed K32 into 1
C4, 10 A6,5, and 72 K4.

Lemma 4.44. The lower bound is realized for N = 35, i.e., A(6, 35) = 409.
Proof. Let the vertices of K35 be {α} ∪ {β} ∪ {xj

i , i ∈ Z11, j ∈ Z3}. The
decomposition consists of the K2 {α, β}, plus the 11 A6,5

{
x0
i , x

1
i+3, x

2
i+5, x

1
i+6, x

2
i+6

}
,

i ∈ Z11, plus the 88 K4,{
α, x0

i , x
1
i+1, x

2
i+2

}
,
{
β, x0

i , x
1
i+2, x

2
i+7

}
,
{
x0
i , x

1
i+7, x

1
i+8, x

1
i+10

}
,

{
x1
i , x

2
i+6, x

2
i+7, x

2
i+9

}
,
{
x2
i , x

0
i , x

0
i+2, x

0
i+10

}
,
{
x0
i , x

0
i+4, x

1
i+4, x

1
i+9

}
,

{
x1
i , x

1
i+4, x

2
i+3, x

2
i+8

}
,
{
x0
i , x

0
i+5, x

2
i+4, x

2
i+8

}
for i ∈ Z11.

Lemma 4.45. The lower bound is realized for N = 36, i.e., A(6, 36) = 428.
Proof. First recall that K12 can be partitioned into four disjoint C3 plus nine

K4. Thus let the vertices of K12 be labeled αi, i ∈ Z4, and xj , j ∈ Z8, such that
{α0, α1, α2, α3} is one K4 and the four C3 are {αi, x2i, x2i+1}, i ∈ Z4.

Now let the 36 vertices be αi, i ∈ Z4, and xk
j , j ∈ Z8, and k ∈ Z4, and let

Vk =
{
xk
j , j ∈ Z8

}
.

A partition of K36 uses
• the K4 {α0, α1, α2, α3};
• eight A6,5, each the union of two C3

{
αi, x

2k
2i , x

2k
2i+1

}
and

{
αi, x

2k+1
2i , x2k+1

2i+1

}
,

i = 0, 1, 2, 3 and k = 0, 1;
• the 8 remaining K4 of the partition of the K12 on the vertices αi, i ∈ Z4 ∪{

xk
j , j ∈ Z8

}
, removing the K4 {α0, α1, α2, α3} and 4 C3

{
αi, x

k
2i, x

k
2i+1

}
, to

obtain a total of 32 K4;
• the 64 K4 of the partition of the multipartite graph K8×4 with vertex set
V0 ∪ V1 ∪ V2 ∪ V3.

Altogether the partition uses 8 A6,5 and 97 K4 and we have A(6, 36) = 428.
The following corollary facilitates a kind of induction in general constructions.
Corollary 4.46. When N = 36u + m, m = 0, 3, 6, 15, 21, 27, 33, and u ≥ 4,

then A(6, N) = 432u2 + 24um− 4u + A(6,m).
Proof. From Theorem 4.21 there exists a 4-GDD of type 36um1 for each u ≥ 4

and m ∈ {3, 6, 9, . . . , 33}. Thus A(6, 36u + m) ≥ uA(6, 36) + 4·362·u(u−1)
6·2 + 4·36·m·u

6 +
A(6,m) = 432u2 − 4u + 24um + A(6,m).

We did not find decompositions for 18, 24, or 30 nor were we able to prove that
the lower bound cannot be realized for those values.
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For this reason, we need decompositions for larger values of N in order to compose
them and obtain results for the whole congruence class (modulo 36). Moreover, since
the bound cannot be realized for N = 12 we employ another result for the same class
(see Theorem 4.51).

Lemma 4.47. The lower bound is realized for N = 117, i.e., A(6, 117) = 4550.
Proof. The design is based on Z104 with 13 infinite points to be added. Consider

the blocks

B1 = {{1,50,51,92}, {1,5,26,63}, {2,29,55,56}, {2,6,25,31}, {2,40,49,62},
{2,28,71,89},

{1,30,60,66}, {2,59,92,103}, {2,69,78,83}, {1,56,74,77}, {1,11,93,98}},
and B2 = {{8,49,102}, {5,16,89}, {3,77,92}, {6,71,90}, {4,62,74}, {7,41,43}, {1,70,72},
{2,61,99}}.

Each block in B1 generates 52 blocks, by adding 2a to each element for a ∈ Z52

and reducing modulo 104. The differences covered by B1∪B2 form the set Z104\({8a :
a ∈ Z13}∪{52}). To be precise, a difference d that occurs actually occurs twice, once
in a pair {a, a + d} with a even, and once in a pair {b, b + d} with b odd, so that all
104 pairs in the cyclic orbit comprising the pairs of difference d arise once. Adding
the block {0, 8a, 24a, 72a} covers the differences {8a : a ∈ Z13 \ {0}}, and 104 blocks
are generated by adding each element of Z104 and reducing modulo 104. The blocks
in B2 together contain 24 entries whose residues modulo 26 are Z26 \ {0, 13}. The
blocks {{b1 +26x, b2 +26x, b3 +26x} : {b1, b2, b3} ∈ B2, x ∈ Z4} form a partial parallel
class missing the elements {13a : a ∈ Z8}. Now add the infinite point ∞0 to each
block of this partial parallel class to form B2,0. Form a new partial parallel class B2,a

for 1 ≤ a ≤ 12 by adding 2a to each noninfinite point (modulo 104) and replacing ∞0

by ∞a. Now place a (13,4,1)-design on the 13 infinite points.
Finally, form 13 F4 as follows. For 0 ≤ a < 13, form an F4 with center ∞a and

containing the triangles {∞a, a + 13x, a + 13x + 52} for x ∈ Z4.
Lemma 4.48. The lower bound is met with equality for N = 7 · 117 + m for

m ∈ {3, 21, 27, 33}, i.e., for N ∈ {822, 840, 846, 852}.
Proof. Form a 4-GDD of type 1177m1, and place a decomposition with cost

A(6, 117) on each of the seven groups of size 117 and a decomposition with cost
A(6,m) on the last.

4.3. Optimal general constructions. The following three results give con-
structions that meet the lower bound. Therefore they determine the value of A(6, N)
for all values of N with few exceptions.

Theorem 4.49. The value of A(6, N) for N ≡ 1 (mod 3) is given by A(6, N) =
	 2R

3 
+ ε, where ε = 2 if N ≡ 7 or 10 (mod 12) and 0 otherwise, except for A(6, 7) =
17, A(6, 10) = 34, A(6, 19) = 119.

Proof. For N �∈ {7, 10, 19}, by a result of Mills on covering KN by K4 (see

Theorem 8.9 of [12]), there exists a covering of KN with 	N(N−1)
12 
 K4 and therefore

A = 	 2R
3 
 + ε. Lemmas 4.29, 4.32, and 4.38 give the result for the remaining values

of N .
Theorem 4.50. If N ≡ 2 (mod 3), then A(6, N) = 2R+N+2

3 , except possibly for
N = 17.

Proof.
Case 1. N ≡ 2 or 11 (mod 12).
To prove the theorem for N ≡ 2 or 11 (mod 12), we show that KN can be

decomposed into one K2,
N−2

3 A6,5 or B6,5 and K4.
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• The result is true for N = 2, 11, 14 (Lemmas 4.33 and 4.35); for N = 11 the
decomposition uses 1 K2, 3 A6,5, and 6 K4; for N = 14 the decomposition
uses 1 K2, 4 B6,5, and 11 K4.

• If N = 12u+2, u ≥ 4, then K12u+2−K2 can be decomposed into u K14−K2

and K12×u. Furthermore, each K14 − K2 can be decomposed into 4 B6,5

and 11 K4 (Lemma 4.35), and K12×u can be decomposed into 12u(u− 1) K4

(existence of a 4-GDD of type 12u by Theorem 4.12).
• If N = 12u + 11, u ≥ 4, then K12u+11 − K2 can be decomposed into u
K14 −K2, one K11 −K2, and K12×u,9. Furthermore K14 −K2 and K11 −K2

can be decomposed into A6,5 or B6,5 and K4 (Lemmas 4.33 and 4.35), and
K12×u,9 can be decomposed into K4 (existence of a 4-GDD of type 12u9 by
Theorem 4.12).

• The theorem is also true for N = 23, 26, 35 by Lemmas 4.40, 4.41, and 4.44
and for N = 38, 47; for N = 38 (resp., 47), K38 −K2 (resp., K47 −K2) can
be decomposed into four (resp., 5) K11 −K2 plus K9×4 (resp., K9×5). Each
K11 − K2 can be decomposed into A6,5 (resp., B6,5) and K4 (Lemmas 4.33
and 4.35), and K9×4 (resp., K9×5) can be decomposed into K4 (existence of
a 4-GDD of type 94 and 95).

Case 2. N ≡ 5 or 8 (mod 12).

In this case, we prove that KN can be decomposed into one C4,
N−2

3 A6,5, or
B6,5 and K4.

• That is true for N = 5, 8 (Lemmas 4.28 and 4.30); for N = 5, the decompo-
sition uses one C4 and one A6,5; for N = 8 the decomposition uses one C4,
two B6,5, and two K4.

• If N = 12u + 5 (resp., 12u + 8), u ≥ 4, then KN can be decomposed into u
K14−K2, one K5 (resp., K8), and one K12×u,3 (resp., K12×u,6). Furthermore,
each K14 − K2 can itself be decomposed into B6,5 and K4, and K12×u,3

(resp., K12×u,6) into K4 (existence of a 4-GDD of type 12u3 and 12u6).
• The theorem is also true for N = 20, 29, 32 by Lemmas 4.39, 4.42, and 4.43

and for N = 41, 44; for N = 41 (resp., 44), we use the decomposition of KN

into four K11 −K2, one K5 (resp., K8), and K9×4,3 (resp., K9×4,6).
• It remains for us to solve the case N = 17.

Theorem 4.51. If N ≡ 0 (mod 3), then A(6, N) = 	 6R+2N
9 
 + ε, where ε = 1 if

N ≡ 18, 27 (mod 36), and ε = 0 otherwise, except for N ∈ {9, 12} and possibly when

N ≡ 0 (mod 36) and N/36� ∈ {2, 3},
N ≡ 3 (mod 36) and N/36� ∈ {1, 2, 3},
N ≡ 6 (mod 36) and N/36� ∈ {1, 2, 3},
N ≡ 9 (mod 36) and N/36� ∈ {1, 2, 4, 5, 6, 7, 8, 9, 10},

N ≡ 12 (mod 36) and N/36� ≤ 70, �= 23,

N ≡ 15 (mod 36) and N/36� ∈ {1, 2, 3},
N ≡ 18 (mod 36) and N/36� ≤ 70, �= 23,

N ≡ 21 (mod 36) and N/36� ∈ {1, 2, 3},
N ≡ 24 (mod 36) and N/36� ≤ 71, �= 23,

N ≡ 27 (mod 36) and N/36� ∈ {1, 2, 3},
N ≡ 30 (mod 36) and N/36� ≤ 68, �= 22,

N ≡ 33 (mod 36) and N/36� ∈ {1, 2, 3}.
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Proof. First we treat cases when N ≡ 0, 3, 6, 15, 21, 27, 33 (mod 36). By Lemma
4.28 we have A(6, 3) = 3 and A(6, 6) = 12. By Corollary 4.37 we have A(6, 15) = 74,
A(6, 21) = 145, A(6, 27) = 241, and A(6, 33) = 360. From Lemma 4.45 we have
A(6, 36) = 428. Then applying Corollary 4.46 we have A(6, 36u + m) = 432u2 +
24um− 4u + A(6,m), u ≥ 4, and m = 0, 3, 6, 15, 21, 27, 33.

To treat N ≡ 9 (mod 36), use Lemmas 4.47 and 4.45, together with a 4-GDD
of type 36u1171 from Theorem 4.26 to establish that A(6, 36u+ 117) = u ·A(6, 36) +
A(6, 117) + 432u(u− 1) + 2808u for u ≥ 8.

Finally, to handle N = 36u + m with m ∈ {822, 840, 846, 852} (corresponding to
cases when N ≡ 30, 12, 18, 24 (mod 36)), use Lemmas 4.45 and 4.48, together with a
4-GDD of type 36um1 from Theorem 4.26 to obtain the result. The ingredient designs
are available when u ≥ 47 for m = 822, u ≥ 48 for m ∈ {840, 846}, and u ≥ 49 for
m = 852.
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DISKS ON A TREE: ANALYSIS OF A COMBINATORIAL GAME∗

TOMÁS FEDER† AND CARLOS SUBI‡

Abstract. Anderson et al. [Amer. Math. Monthly, 96 (1989), pp. 481–493] studied a combina-
torial game on an infinite path that is started with n disks at a vertex and ends with the disks spread
between k = �n/2� vertices to the left and to the right of the initial vertex. They showed that the
number of steps the game takes to converge to the final configuration is ck2 +o(k2) for some constant
c. We generalize this game to the case of an infinite rooted tree, where each vertex has degree d + 1
and where the earlier game corresponds to the case d = 1. We determine the final configuration when
the game is started with n disks at the root and show that in this final configuration all disks are at
depth at most k = Θ(logd n) for d ≥ 2. We also show that the number of steps that the game takes
to converge to the final configuration in this case is at most O(k(1+logd k)), so that the convergence
is faster than what it was for the case d = 1. We generalize the game to the case where the vertices
at depth i in the tree have di ≥ 2 children, where the di are not necessarily the same, and show that
the convergence time in this case is at most O(k1.5 + k logdmin

dmax), where dmin and dmax are the
smallest and largest di, respectively.
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1. Introduction. In this article we study a very simple combinatorial game that
can be played with several piles of disks arranged in a tree. At each unit of time, each
pile, sitting at a vertex of degree d, is divided into d equal piles, which are moved
to the d neighbors of the vertex, leaving a remainder of at most d − 1 disks at the
original vertex.

We are interested in the case of an infinite rooted tree, where the root is at depth
zero and has d0 + 1 children, and in general each vertex at depth i has di children.
The initial configuration has n disks.

This game was studied by Anderson et al. [1] in the case where all di = 1, so that
the tree is an infinite path. They determined the final configuration and showed that
this configuration is reached in c(n/2)

2
+ o(n2) steps for some 1/3 ≤ c ≤ π2/6 − 1.

Björner, Lovász, and Shor [3] studied the related slowed-down game on an arbitary
graph with n vertices and m edges, where a single move consists of selecting a vertex
of degree d with at least d disks and moving these disks to the d neighbors. They
showed that the final configuration and the number of moves depend only on the
initial configuration and that the game is infinite if the number of disks is greater
than 2m − n, is finite if the number of disks is smaller than m, and can be finite or
infinite depending on the initial configuration if the number of disks is between m and
2m − n. Tardos [27] showed that there exist graphs with an initial configuration for
which the number of steps of this slowed-down game is Ω(n4) and that the number
of steps is always bounded by 2nmd = O(n4), where d is the diameter of the graph.

Various versions of such games on graphs have been studied as chip-firing games
and Abelian sandpile models, including the work of Goles et al. [20, 21, 22, 23, 24, 25,
26], Dhar et al. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and others [2, 4].
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Back at the case of an infinite tree, if we denote by xri the number of disks at any
one vertex at depth i after r steps, then we obtain the recurrence xr0 = x(r−1)0 mod
(d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri = �x(r−1)(i−1)/(di−1 + 1)� +
x(r−1)i mod (di+1)+di�x(r−1)(i+1)/(di+1 +1)�. The base case is x00 = n and x0i = 0
for i ≥ 1.

We first determine the final configuration for this game. For this final configura-
tion, we denote by ni the number of disks sitting at a subtree rooted at a vertex at
depth i and by ei the number of disks sitting at a vertex at depth i. Then n0 = n,
e0 = n mod (d0 + 1), n1 = �n/(d0 + 1)�, ei = 1 + (ni − 1) mod di for 1 ≤ i ≤ k, and
ni+1 = �(ni − 1)/di� for 1 ≤ i ≤ k. Here k is the first i such that ni+1 = 0. In fact
no disk ever reaches depth k + 1.

We next study the number of steps it takes for the game to reach its final config-
uration. We focus on the case where all di = d ≥ 2. We first consider the special case
where n = (d + 1)(dk − 1)/(d− 1), so that all ei = 1 for 1 ≤ i ≤ k. For this case, we
show that the number of steps is bounded by O(k) = O(logd n). The proof is based
on a comparison with the fractional game where no remainder is left at a vertex.

For general n, repeated applications of the preceding result give a bound of
O(k(1 + logd k)) = O(logd n logd logd n) on the number of steps.

We next consider the case where all di ≥ 2 are not necessarily equal. Again we first
consider the special case where all ei = 1 for 1 ≤ i ≤ k. For this case, we show that the
number of steps is bounded by O(logdmin

n) = O(
∑

i≤k logdmin
di) = O(k logdmin

dmax),
where dmin and dmax denote the smallest and the largest di for 1 ≤ i ≤ k.

We then obtain bounds for general n. If 2 ≤ di ≤ dj for 1 ≤ i ≤ j, then the
number of steps is bounded by O(k logdmin

(kdmax)).
If di ≥ dj for 1 ≤ i ≤ j, then the number of steps is at most 2k2.
In the general case of n arbitrary and all di ≥ 2 for i ≥ 1, the number of steps is

bounded by O(k1.5 + logdmin
n) = O(k1.5 + k logdmin

dmax).
We finally obtain a lower bound of Ω(k+max1≤i≤k

∑
i≤j≤k logdi

dj) on the num-
ber of steps if all di ≥ 2. Thus the upper bound for the case where all ei = 1
for 0 ≤ i ≤ k is tight up to constant factors, provided logdmin

d1 = O(1), that is,

d1 ≤ d
O(1)
min .

The analysis of the game in the case where some of the di for i ≥ 1 satisfy di = 1
and some satisfy di ≥ 2 remains open.

The case of a tree is thus interesting because, unlike the case of a path, the number
of steps depends only logarithmically on the number of disks, and the dependence
seems to be essentially linear in the depth of the tree reached by the final configuration.
This contrasts with the fact that in the case of a path, the dependence is quadratic in
the length of the path, which equals in that case the number of initial disks. In fact,
none of the previously studied cases in the literature shows dependence that is only
logarithmic in the number of disks or linear in the diameter of the graph.

2. The final configuration. Recall that if we denote by xri the number of
disks at any one vertex at depth i after r steps, then we obtain the recurrence
xr0 = x(r−1)0 mod (d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri =
�x(r−1)(i−1)/(di−1 + 1)�+ x(r−1)i mod (di + 1) + di�x(r−1)(i+1)/(di+1 + 1)�. The base
case is x00 = n and x0i = 0 for i ≥ 1.

Lemma 1. The combinatorial game terminates in some final configuration.
Proof. Consider the potential function φr =

∑
i trii

2, where tri is the total number
of disks at all vertices at depth i after r steps. This potential function increases at
each step: if d0 + 1 disks at depth 0 are moved to depth 1, it increases by d0 + 1; if
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di + 1 disks at depth i are moved so that one disk goes to depth i− 1 and di disks go
to depth i + 1, it increases by (i− 1)

2
+ di(i + 1)

2 − (di + 1)i2 = 2(di − 1)i + di + 1.
Consequently no configuration ever repeats. Suppose that after some number r

of steps, all depths up to depth kr have been reached by disks. The number of disks
at depth r cannot be more than n/2kr ≥ 1. Therefore kr ≤ log2 n.

Since there is a finite number of configurations that never reach depth 2n, and
no configuration ever repeats because the potential function always increases, a final
configuration must eventually be reached.

We determine the final configuration for this game. For this final configuration,
we denote by ni the number of disks sitting at a subtree rooted at a vertex a depth i
and by ei the number of disks sitting at a vertex at depth i.

Theorem 1. The final configuration is given by n0 = n, e0 = n mod (d0 + 1),
n1 = �n/(d0 + 1)�, ei = 1 + (ni − 1) mod di for 1 ≤ i ≤ k, and ni+1 = �(ni − 1)/di�
for 1 ≤ i ≤ k. Here k is the first i such that ni+1 = 0. In fact no disk ever reaches
depth k + 1.

Proof. Since the d0 + 1 subtrees rooted at depth 1 are identical, it follows that
the total number of disks remaining in such subtrees is a multiple of d0 + 1. Since
0 ≤ e0 ≤ d0, it follows that e0 = n mod (d0 + 1), and therefore n1 = �n/(d0 + 1)�.

Consider the ni disks remaining at a subtree rooted at depth i. Since a vertex
at depth i has di identical subtrees rooted at depth i + 1, it follows that the total
number of disks remaining in such subtrees is a multiple of di. Since 0 ≤ ei ≤ di, it
follows that ei = ni mod di if ni is not divisible by di, and otherwise either ei = 0
or ei = di. We shall show that ei = 0 is not possible, so in this case ei = di, and so
in general ei = 1 + (ni − 1) mod di, implying ni+1 = �(ni − 1)/di� for i ≥ 2. Since
ni+1 = 0, no disk ever reaches depth k + 1.

It remains to show that ei = 0 is not possible for 1 ≤ i ≤ k. Suppose ei = 0.
The last time disks left depth i, each vertex at depth i− 1 received at least di−1 disks
from its children, so ei−1 = di−1. Similarly, there were 0 disks at depth i − 1 before
these di−1 disks arrived from depth i; otherwise we would later get a nonzero number
of disks at depth i, so the last time disks left depth i− 1 happened before, and each
vertex at depth i − 2 received at least di−2 disks from its children, so ei−2 = di−2.
Proceeding inductively, we obtain e1 = d1, and there were 0 disks at depth 1 before
these d1 disks arrived from depth 2, so the last time disks left depth 1, the root at
depth 0 received at least d0 + 1 disks from its children. This would give e0 ≥ d0 + 1,
contrary to the fact that e0 ≤ d0. This completes the proof.

3. The case of all di = d ≥ 2. We shall study the number of steps it takes for
the game to reach its final configuration. In this section, all di have the same value
di = d ≥ 2. If we denote by xri the number of disks at a vertex at depth i after r steps,
then we obtain the recurrence xr0 = x(r−1)0 mod (d + 1) + (d + 1)�x(r−1)1/(d + 1)�,
and for i ≥ 1, xri = �x(r−1)(i−1)/(d+1)�+x(r−1)i mod (d+1)+d�x(r−1)(i+1)/(d+1)�.
The base case is x00 = n and x0i = 0 for i ≥ 1.

There is a closely related fractional game where no remainder is left at a ver-
tex. For this fractional game, we study the recurrence yri = y(r−1)(i−1)/(d + 1) +
dy(r−1)(i+1)/(d + 1). The base case is y00 = n and y0i = 0 for i �= 0. Here we are
allowing i to be negative.

Lemma 2. The solution of the recurrence is yr(2i−r) = n(1/d)
i
(d/(d + 1))

r(r
i

)
and yri = 0 for i + r odd.

Proof. Clearly yri = 0 unless r and i are either both even or both odd. Let
zr(2i−r) = diyr(2i−r). Then z(r+1)(2i−(r+1))/d = zr(2(i−1)−r)/(d+1)+ zr(2i−r)/(d+1).
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Let wr(2i−r) = ((d + 1)/d)
r
zr(2i−r). Then w(r+1)(2i−(r+1)) = wr(2(i−1)−r) +

wr(2i−r).

Then wr(2i−r) = n
(
r
i

)
. Therefore zr(2i−r) = n(d/(d + 1))

r(r
i

)
, and so yr(2i−r) =

n(1/d)
i
(d/(d + 1))

r(r
i

)
.

We shall use the concept of slowed-down versions of the combinatorial game. Here
not all disks that could be moved at a given point in time are moved, so that moving
these disks is delayed until later. This means that the slowed-down game takes longer
to reach the final configuration than the original game. See also [3, 27]. Thus in a
slowed-down game, we still move the same number of disks to each neighbor, but we
may choose a smaller number of such disks to move, so that a number larger than
the smallest possible remainder is left at each chosen vertex. This results in partially
postponing the full move that would happen at a step, so that the rest of the move
will happen later. The result is that the number of steps is increased when we go
to the slowed-down game, yet the same final configuration is eventually reached. We
also consider at times a fractional game, where fractions of disks may be moved to
all neighbors, in the same quantity to each neighbor, as opposed to moving only full
disks, which results again in postponing the move of the remaining fraction, while
eventually reaching the same final configuration.

Lemma 3. In the combinatorial game with all di = d ≥ 2 and n = (d + 1)(dk −
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, depth k is reached in O(k)
steps (independently of d).

Proof. We slow down the combinatorial game by requiring that if there are at
least d disks at a vertex at depth i after r − 1 steps, then exactly d disks are left
at depth i for the rth step; if there are at most d disks at a vertex at depth i, then
none of these disks is moved. We show that this slowed-down fractional game reaches
depth k within O(k) steps. This implies that the original combinatorial game, which
is not slowed down, will reach depth k as well.

The numbers of disks tri for the slowed down game are upper bounded by tri ≤
d+ yri, where the yri are the quantities from the recurrence for the preceding lemma,
since disks in excess of d are moved according to fractional game defining the yri, and
so the claim follows by induction. That is, the game played above d disks always has
tri − d ≤ yri, since those excess disks satisfy the recurrence for the yri, except that
some disks may be lost if they reach a pile with fewer than d disks.

We bound the yr(2i−r) for i ≥ r/2 by

yr(2i−r) ≤ n(1/d)
i
(2d/(d + 1))

r ≤ n(4d/(d + 1)2)
r/2

.

If we let r = ck for a large constant c, then for i ≥ r/2 we have yr(2i−r) ≤ n(1/d)
c′k

for another large constant c′ depending on c.

If all vertices at depth 0 ≤ i ≤ k − 1 have d disks, then this accounts for exactly

n−1 disks. The excess yr(2i−r) ≤ n(1/d)
c′k

in the bound tri ≤ d+yri for 0 ≤ i ≤ k−1
accounts for strictly less than 1 disk if c′ is large enough. Therefore some fraction of
one disk must have reached depth k by step r = ck in the slowed-down fractional game,
so at least one disk will have reached depth k by step r = ck in the combinatorial
game.

Define a special configuration to be a configuration where the sequence xr0xr1 · · ·xrk

is given by 01∗((d + 1)d∗01∗)
∗
1 or by ((d + 1)d∗01∗)

+
1. Here x∗ denotes any nonneg-

ative number of copies of x, and x+ denotes any positive number of copies of x.
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Lemma 4. In the combinatorial game with all di = d ≥ 2 and n = (d + 1)(dk −
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, after depth k is reached, we
have a special configuration.

Proof. After depth k is reached, there will be 1 disk at each vertex at depth k. A
vertex at depth k − 1 has at most 1 disk by a count on the total number of disks. If
there is 1 disk at depth k−1, then we proceed inductively on k. If there are 0 disks at
depth k−1, then the last time disks were moved from depth k−1 we obtained at least
d disks at a vertex at depth k− 2 and at most d+ 1 disks at such a vertex by a count
on the number of disks. If there are exactly d disks, then again the last time disks
were moved from depth k− 2 we obtained at least d disks at a vertex at depth k− 3,
and so on. This accounts for the sequence ending in ((d + 1)d∗01∗)1. The number of
disks accounted by such a sequence is the same as for a sequence of the same length of
the form 1∗, so we may again proceed inductively to obtain again a sequence ending in
((d + 1)d∗01∗)

2
1, and so on for a sequence ending in ((d + 1)d∗01∗)

∗
1. The resulting

number of disks for the root at depth 0 will be either d+1 or 0, giving one of the two
kinds of special configuration.

Lemma 5. A special configuration with k ≥ 2 takes at most 2k− 3 steps to reach
the configuration 01∗ with e0 = 0 and ei = 1 for 1 ≤ i ≤ k.

Proof. We show that each step decreases by at least 1 the number of xi = d,
which is at most k− 2, in some slowed-down game. To see this, if some d is preceded
by a 1, then we must in particular have a subsequence 1(d + 1)(0(d + 1))

r
d for some

r, which gives rise in one step to the subsequence (d+1)(0(d + 1))
r+1

, decreasing the
number of d’s by 1. If the first d is not preceded by a 1, then the initial sequence is
either (0(d + 1))

r
d, giving in one step (d+1)(0(d + 1))

r
, or (d+1)(0(d + 1))

r
d, giving

in one step (0(d + 1))
r+1

, again decreasing the number of d’s by 1.

Once there remain no d’s, each step increases the number of 1’s at the end
by 1, since the sequence must be of one of the two forms 01∗((d + 1)01∗)

∗
1, or

by ((d + 1)01∗)
+
1. It thus takes at most k − 1 steps to reach 01∗ for a total of

(k − 2) + (k − 1) = 2k − 3 steps.

Combining Lemmas 3, 4, and 5, we have that the combinatorial game takes O(k)
steps to reach depth k by Lemma 3, at which point we have a special configuration
by Lemma 4, and the remaining steps that take this special configuration to a final
configuration are bounded in a slowed-down game analysis of these remaining steps
by 2k − 3, for a total of O(k) steps. We thus obtain the following.

Theorem 2. In the combinatorial game with all di = d ≥ 2 and n = (d+1)(dk−
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, it takes O(k) steps to reach
the final configuration, independent of d.

For the rest of the section, it will be convenient to change the value of d0. This
will be justified by the following.

Lemma 6. The combinatorial game with n disks and some value of d0 is equivalent
to the game with �n/(d0 +1)� disks on a tree modified to have a degree 1 root; that is,
both games take the same number of steps. Thus there is a correspondence between
different possible values of d0 via the value d0 = 0.

Proof. In both games, the first step moves �n/(d0 + 1)� disks from the root at
depth 0 to each vertex at depth 1. In subsequent pairs of steps 2i and 2i + 1, if the
root receives r disks from each vertex at depth 1 in step 2i, then it sends r disks back
to each vertex at depth 1 in step 2i + 1.

Assume still that all di = d ≥ 2 for 1 ≤ i ≤ k but set d0 = d− 2.
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Lemma 7. A slowed-down game reaches a configuration with xri ≤ (d− 1)(k+1)
and xri ≥ xrj for i ≤ j in r = O(k) steps.

Proof. Repeatedly subtract the largest n′ ≤ n from n that can be replaced by
a sequence of the form 1l with l ≤ k by the result of Theorem 2, in O(k) steps.
Each value of l will be chosen at most d − 1 times, since the sequence dl would
give instead the sequence 1l+1. Notice that this takes a total of O(k) steps, since
a slowed-down game can simultaneously carry out the different steps that lead to
each 1l.

The result, after O(k) steps of this slowed-down game, is thus at most k + 1
sequences sll with 0 ≤ sl ≤ d − 1, for 0 ≤ l ≤ k, and these sequences together prove
the lemma.

Lemma 8. In a slowed-down game, a configuration with xri ≤ (d − 1)(k + 1)
and xri ≥ xrj for i ≤ j leads to a configuration with xri = O(d(1 + logd k)) in
O(k(1 + logd k)) steps.

Proof. Subtract from each xri at most d elements so that each xri is a multiple
of d. Now decompose the configuration of resulting x′

ri into sequences of the form dl,
and replace each such sequence by a sequence of the form 1l+1 in at most 2k steps by
an application of Lemma 5. This reduces the largest xri by a factor of d.

Performing this transformation O(1 + logd k) times, we will be left just with the
O(1+logd k) remainders of at most d elements for xr′i, so that xr′i = O(d(1+logd k))
after O(k(1 + logd k)) steps.

Lemma 9. In a slowed-down game, a configuration with xri = O(d(1 + logd k))
leads to the final configuration in O(k(1 + logd k)) steps.

Proof. There exists a special configuration vi ≤ xri such that vi = d or vi = d+1
whenever xri ≥ d+1, and if vi = 0, then xri ≤ d−1. To see this, replace any sequence
of entries xri that are at least d+ 1 by a sequence (d+ 1)dl of vri, adding some extra
vi set to d at the end for xri that are equal to d as well. Insert in between blocks
of the form 01l, noting that each vi set to 0 will then correspond to xri that are at
most d − 1, since otherwise a d would have been used for vi. This gives a special
configuration.

Such a special configuration of vi leads in 2k steps to a sequence of the form 01l

by Lemma 5, thus reducing the largest xri by at least d− 1.

Performing this transformation O(1 + logd k)) times will ensure that all resulting
xri have value at most d, and we thus have a final configuration in O(k(1 + logd k))
steps.

Combining Lemmas 6, 7, 8, and 9, we obtain the following.

Theorem 3. In the combinatorial game with all di = d ≥ 2 and arbitrary n, it
takes O(k(1 + logd k)) steps to reach the final configuration.

4. The case of arbitrary di ≥ 2. In this section, the di may have different
values, but all di ≥ 2 for 1 ≤ i ≤ k. Recall that if we denote by xri the number of disks
at a vertex at depth i after r steps, then we obtain the recurrence xr0 = x(r−1)0 mod
(d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri = �x(r−1)(i−1)/(di−1 + 1)� +
x(r−1)i mod (di+1)+di�x(r−1)(i+1)/(di+1 +1)�. The base case is x00 = n and x0i = 0
for i ≥ 1.

Let d = dmin denote the mininum di for 1 ≤ i ≤ k. By Lemma 6, we may assume
d0 = dmin. We again define a closely related fractional game with no remainders,
with recurrence sri = s(r−1)(i−1)/(di−1 + 1) + dis(r−1)(i+1)/(di+1 + 1) for i ≥ 1,
sr0 = (d0 + 1)s(r−1)1/(d1 + 1). The base case is s00 = n, s0i = 0 for i ≥ 1.
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Lemma 10. The solution of the recurrence has

sr(2i−r) ≤ n(d2i−r + 1)(1/d)
i
(d/(d + 1))

r

(
r

i

)

for i ≥ r/2; otherwise uri = 0.
Proof. Define uri = sri/(di+1). We obtain the recurrence uri = u(r−1)(i−1)/(di+

1) + diu(r−1)(i+1)/(di + 1) for i ≥ 1, ur0 = u(r−1)1. Setting d = dmin, it suffices to
show ur(2i−r) ≤ yr(2i−r), with yri given as in Lemma 2.

We show this by induction on r. If i > (r + 1)/2, then u(r+1)(2i−(r+1)) =
ur(2(i−1)−r)/(d2i−(r+1)+1)+d2i−(r+1)ur(2i−r)/(d2i−(r+1)+1)≤yr(2(i−1)−r)/(d2i−(r+1)+
1) + d2i−(r+1)yr(2i−r)/(d2i−(r+1) + 1) ≤ yr(2(i−1)−r)/(d + 1) + dyr(2i−r)/(d + 1) =
y(r+1)(2i−(r+1)), since yr(2(i−1)−r) ≥ yr(2i−r) by Lemma 2. If i = (r + 1)/2, then
u(r+1)(2i−(r+1)) = ur(2i−r) ≤ yr(2i−r) ≤ y(r+1)(2i−(r+1)).

Lemma 11. In the combinatorial game with all di ≥ 2, and with e0 = 0 and all
ei = 1 for 1 ≤ i ≤ k, depth k is reached in O(logdmin

n) steps.
Proof. The proof is similar to that of Lemma 3. We slow down the combinatorial

game by requiring that if there are at least di disks at a vertex at depth i after r − 1
steps, then exactly di disks are left at depth i for the rth step; if there are at most
di disks at a vertex at depth i, then none of these disks is moved. We show that this
slowed-down fractional game reaches depth k within O(k) steps. This implies that
the original combinatorial game, which is not slowed down, will reach depth k as well.

The number of disks tri for the slowed-down game are upper bounded by tri ≤
di+sri, where the sri are the quantities from the recurrence from the preceding lemma,
since disks in excess of d are moved according to the fractional game defining the sri.

We bound the sr(2i−r) for i ≥ r/2 by ss(2i−r) ≤ n(d2i−r + 1)(4d/(d + 1)
2
)
r/2

for
d = dmin. If we let r = c logd n for a large constant c, then for i ≥ r/2, we have

sr(2i−r) ≤ (1/n)
c′

for another large constant c′.
If all vertices at depth 0 ≤ i ≤ k − 1 have di disks, then this accounts for exactly

n−1 disks. The excess sr(2i−r) ≤ (1/n)
c′

in the bound tri ≤ di + sri for 0 ≤ i ≤ k−1
accounts for strictly less than 1 disk if c′ is large enough. Therefore some fraction of
one disk must have reached depth k by step r = c logd n in the slowed-down fractional
game, so at least one disk will have reached depth k by step r = c logd n in the
combinatorial game.

Define a special configuration to be a configuration where the sequence xr0xr1 · · ·xrk

is given by 01∗((di + 1)d∗i 01∗)
∗
1 or by ((di + 1)d∗i 01∗)

+
1, where the corresponding di

is chosen for position xri. The arguments of Lemmas 4 and 5 yield the following two
lemmas.

Lemma 12. In the combinatorial game with all di ≥ 2 with e0 = 0 and all ei = 1
for 1 ≤ i ≤ k, after depth k is reached, we have a special configuration.

Lemma 13. A special configuration with k ≥ 2 takes at most 2k−3 steps to reach
the configuration 01∗ with e0 = 0 and ei = 1 for 1 ≤ i ≤ k.

Combining Lemmas 11, 12, and 13 yields the following.
Theorem 4. In the combinatorial game with all di ≥ 2, and with e0 = 0 and all

ei = 1 for 1 ≤ i ≤ k, it takes O(logdmin
n) = O(

∑
i≤k logdmin

di) = O(k logdmin
dmax)

steps to reach the final configuration, where dmin and dmax denote the smallest and
the largest di for 1 ≤ i ≤ k.

We now consider cases with arbitrary n. By Lemma 6, we may set d0 = dmin − 2.
Lemma 14. A slowed-down game reaches a configuration with xri ≤ (dmax −

1)(k + 1) and xri ≥ xrj for i ≥ j in O(logdmin
n) steps.
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Proof. The proof is as in Lemma 7. Repeatedly subtract the largest n′ ≤ n from n
that can be replaced by a sequence of the form 1l with r ≤ k by the result of Theorem
4 in O(logdmin

n) steps. Each value of l will be chosen at most dmax − 1 times, since
the sequence (d0 + 2)d1 · · · dl would give instead the sequence 1l+1.

The result, after O(logdmin
n) steps of this slowed-down game, is thus at most

k+1 sequences sll with 0 ≤ sl ≤ dmax −1, for 0 ≤ l ≤ k, and these sequences together
prove the lemma.

Lemma 15. Suppose 2 ≤ di ≤ dj for 1 ≤ i ≤ j. A configuration with xri ≤
(dmax − 1)(k + 1) and xri ≥ xrj for i ≤ j leads to a configuration with xr′i =
O((di + 1) logdmin

(kdmax)) in O(k logdmin
(kdmax)) steps.

Proof. The proof is as in Lemma 8. Subtract from each xri at most di elements so
that each xri is a multiple of di; for xr0, subtract at most d0 + 1 elements so that xr0

is a multiple of d0 + 2. Note that if xri < di, then xr(i+1) < di+1, since xr(i+1) ≤ xri

and di ≤ di+1. Now decompose the configuration of resulting x′
ri into sequences of

the form (d0 + 2)d1 · · · dl and replace each such sequence by a sequence of the form
1l+1 in at most 2k steps by an application of Lemma 13. This reduces the largest xri

by a factor of dmin.

Performing this transformation O(logdmin
(kdmax)) times, we will be left just with

the O(logdmin
(kdmax)) remainders of at most di elements for xr′i or d0+1 elements for

xr′0, so that xr′i = O((di + 1) logdmin
(kdmax)) after O(k logdmin

(kdmax)) steps.

Lemma 16. For any value V , a configuration with xr′i = O((di + 1)V ) leads to
the final configuration in O(kV ) steps.

Proof. The proof is as in Lemma 9. There exists a special configuration vi ≤ xri

such that vi = di or vi = di +1 whenever xri ≥ di +1, and if vi = 0, then xri ≤ di−1.
To see this, note that any xri = 0 will be preceded by a sequence (di + 1)dli, and
blocks of the form (di + 1)dli can be separated by blocks of the form 01l, thus giving
a special configuration.

Such a special configuration of vi leads in 2k steps to a sequence of the form 01l

by Lemma 13, thus reducing each xri ≥ di + 1 by at least di − 1.

Performing this transformation O(V ) times will ensure that all resulting xri have
value at most di, and we thus have a final configuration in O(kV ) steps.

Combining Lemmas 6, 14, 15, and 16, we obtain the following.

Theorem 5. If 2 ≤ di ≤ dj for 1 ≤ i ≤ j, then the number of steps is bounded
by O(k logdmin

(kdmax)).

Theorem 6. If di ≥ dj for 1 ≤ i ≤ j, then the number of steps is at most 2k2.

Proof. We may assume d0 = dmax by Lemma 6. We wish to reach the con-
figuration xi = ei. Suppose more generally we wish to reach a configuration x0 =
e0+(d0+1)u, xi = ei+(di−1)u for 1 ≤ i ≤ k. This configuration can be reached from
x′

0 = e0+(d0+1)(u+1+(dk−1)u), x′
i = ei+(di−1)(u+1+(dk−1)u) for 1 ≤ i ≤ k−1,

x′
k = ek − 1 in 2k− 1 steps by Lemma 13 that transforms (d0 +1)d1 · · · dk−1 into 01k.

The configuration x′
i can in turn be reached from x′

0 = e0+(d0+1)(u+ek+(dk−1)u),
x′
i = ei + (di − 1)(u + ek + (dk − 1)u) for 1 ≤ i ≤ k − 1, x′

k = 0 in 2k − 1 steps by
Lemma 13 again.

We have thus obtained a configuration x′
0 = e0 + (d0 + 1)v, xi = ei + (di − 1)v

for 1 ≤ i ≤ k − 1 in 2(2k − 1) steps, and this configuration has x′
k = 0. Repeatedly

applying the same argument, we may set x′′
k−1 = 0, x′′′

k−2 = 0, . . . in turn, until the
initial configuration is reached. The number of steps is 2(2k − 1) + 2(2(k − 1) − 1) +
2(2(k − 3) − 1) + · · · = 2k2.
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Theorem 7. In the general case of n arbitrary and all di ≥ 2 for i ≥ 1, the
number of steps is bounded by O(k1.5 + logdmin

n) = O(k1.5 + k logdmin
dmax).

Proof. Consider the slowed-down fractional game of Lemma 11 that reaches depth
k within O(logdmin

n) = O(k logdmin
dmax) steps. At the end of this fractional game,

we have tri ≤ di + sri as before, and the excesses sri account for strictly less than
one disk as before. The di for i < j together with the extra disk coming from the
sri account for less than one disk that is in the subtree rooted at a vertex at depth
j in the final solution. The reason is that a sequence (d0 + 1)d1d2 · · · dl can at most
transform to 01l+1, with one disk moving to a subtree rooted at depth l + 1.

In the extreme case, suppose each subtree is missing one disk from its parent. If
a leaf at depth k is going to receive 1 disk from its parent, then the parent at depth
k − 1 must also send 1 disk to its parent and thus receive a total of 2 disks from its
parent; then the parent at depth k − 2 must also send 2 disks to its parent and thus
receive a total of 3 disks from its parent. In general, a vertex at depth k− i will send
at most i disks to its parent and receive at most i + 1 disks from its parent.

Consequently, in the combinatorial game, after the initial

O(logdmin
n) = O(k logdmin

dmax)

steps follows a second phase during which each vertex sends at most k disks to each of
its neighbors, for a total of k2 disks when adding over all depths i. As long as a vertex
at some depth i has at least

√
k(di + 1) disks, such a vertex will send

√
k disks simul-

taneously to each of its neighbors; this can happen for at most k2/
√
k = k1.5 steps.

Once the vertices at each depth i have at most
√
k(di + 1) disks, a final configu-

ration can be reached in O(k1.5) steps by Lemma 16, completing the proof.
Theorem 8. Assume that dk = ek. If di ≥ 2 for i ≥ 1, then there is a lower

bound of Ω(k + max1≤i≤k

∑
i≤j≤k logdi

dj) on the number of steps. Thus the upper
bound of Theorem 4 is tight up to constant factors, provided logdmin

d1 = O(1), that

is, d1 ≤ d
O(1)
min (since in that case O(

∑
i≤k logdmin

di) = O(
∑

i≤k logd1
di)).

Proof. There is an immediate lower bound of Ω(k) to reach depth k. Consider
the ni disks that may reach depth i. Only a fraction di/(di + 1) of these disks will be
moved from a vertex at depth i to depth i+ 1 at one time, since a fraction 1/(di + 1)
must be moved to depth i − 1. Thus after one step, we are still left with at least
(ni − ei)/(di + 1) disks that have not yet reached depth i + 1; after two steps we

are still left with at least (ni − ei)/(di + 1)
2

disks that have not yet reached depth
i + 1; and after r steps we are still left with at least (ni − ei)/(di + 1)

r
disks that

have not yet reached depth i + 1. It will thus take at least r = logdi+1(ni − ei) steps
to move the ni − ei disks to depth i + 1. The result follows from the bound ni ≥
didi+1 · · · dk.

5. Conclusion. We have analyzed a combinatorial game played on an infinite
rooted tree where all the vertices at depth i have the same number of children di. The
analysis determines the final configuration in the general case and bounds the number
of steps needed to reach this final configuration when di ≥ 2 for i ≥ 1. The case where
all di = 1 for i ≥ 1 was previously studied by Anderson et al. [1]. It remains open
to analyze the combinatorial game when some of the di for i ≥ 1 satisfy di = 1 and
some satisfy di ≥ 2.

The fact that the dependence of the number of steps depends essentially linearly
on the depth of the tree and logarithmically in the number of disks, instead of being
quadratic as in the case of a path, indicates that the particular structure of each graph
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under consideration greatly affects the number of steps that the game takes. It thus
seems that trees are the graphs for which the convergence to the final configuration
is fastest, as it is in many cases only linear in the diameter reached by the game.
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ALGORITHMS FOR PERFECTLY CONTRACTILE GRAPHS∗

FRÉDÉRIC MAFFRAY† AND NICOLAS TROTIGNON†

Abstract. We consider the class A of graphs that contain no odd hole, no antihole of length at
least 5, and no prism (a graph consisting of two disjoint triangles with three disjoint paths between
them) and the class A′ of graphs that contain no odd hole, no antihole of length at least 5, and no odd
prism (prism whose three paths are odd). These two classes were introduced by Everett and Reed
and are relevant to the study of perfect graphs. We give polynomial-time recognition algorithms for
these two classes. In contrast we prove that determining if a general graph contains a prism (or an
even prism, or an odd prism) is NP-complete.

Key words. perfect graph, even pair, perfectly contractile, recognition algorithm
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1. Introduction. A graph G is perfect if every induced subgraph G′ of G sat-
isfies χ(G′) = ω(G′), where χ(G′) is the chromatic number of G′ and ω(G′) is the
maximum clique size in G′. Berge [1, 2, 3] introduced perfect graphs and conjectured
that a graph is perfect if and only if it does not contain as an induced subgraph an
odd hole or an odd antihole (the strong perfect graph conjecture), where a hole is a
chordless cycle with at least four vertices and an antihole is the complement of a hole.
We follow the tradition of calling a Berge graph any graph that contains no odd hole
and no odd antihole. The strong perfect graph conjecture was the object of much
research (see [13]) until it was finally proved by Chudnovsky et al. [7]: every Berge
graph is perfect. Moreover, Chudnovsky et al. [6] gave polynomial-time algorithms to
decide if a graph is Berge.

Despite those breakthroughs, some conjectures about Berge graphs remain open.
An even pair in a graph G is a pair of nonadjacent vertices such that every chordless
path between them has even length (number of edges). Given two vertices x, y in a
graph G, the operation of contracting them means removing x and y and adding one
vertex with edges to every vertex of G \ {x, y} that is adjacent in G to at least one
of x, y; we denote by G/xy the graph that results from this operation. Fonlupt and
Uhry [9] proved that if G is a perfect graph and {x, y} is an even pair in G, then the
graph G/xy is perfect and has the same chromatic number as G. In particular, given
a χ(G/xy)-coloring c of the vertices of G/xy, one can easily obtain a χ(G)-coloring
of the vertices of G as follows: keep the color for every vertex different from x, y;
assign to x and y the color assigned by c to the contracted vertex. This idea could
be the basis for a conceptually simple coloring algorithm for Berge graphs: as long as
the graph has an even pair, contract any such pair; when there is no even pair, find
a coloring c of the contracted graph and, applying the procedure above repeatedly,
derive from c a coloring of the original graph. The polynomial-time algorithm for
recognizing Berge graphs mentioned at the end of the preceding paragraph can be
used to detect an even pair in a Berge graph G; indeed, two nonadjacent vertices a, b
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An even prism

Fig. 1. Some prisms.

form an even pair in G if and only if the graph obtained by adding a vertex adjacent
only to a and b is Berge. The problem of deciding if a graph contains an even pair
is NP-hard in general graphs [5]. Given a Berge graph G, one can try to color its
vertices by contracting even pairs until none can be found. Then some questions arise:
what are the Berge graphs with no even pair? what are, on the contrary, the graphs
for which a sequence of even-pair contractions leads to graphs that are easy to color?

As a first step toward getting a better grasp on these questions, Bertschi [4]
proposed the following definitions. A graph G is even-contractile if either G is a clique
or there exists a sequence G0, . . . , Gk of graphs such that G = G0, for i = 0, . . . , k− 1
the graph Gi has an even pair {xi, yi} such that Gi+1 = Gi/xiyi, and Gk is a clique.
A graph G is perfectly contractile if every induced subgraph of G is even-contractile.
Perfectly contractile graphs include many classical families of perfect graphs, such
as Meyniel graphs, weakly chordal graphs, and perfectly orderable graphs; see [8].
Everett and Reed proposed a conjecture aiming at a characterization of perfectly
contractile graphs. To understand it, one more definition is needed: say that a graph
is a prism if it consists of two vertex-disjoint triangles (cliques of size 3) {a1, a2, a3},
{b1, b2, b3}, with three vertex-disjoint paths P1, P2, P3 between them, such that for
i = 1, 2, 3 path Pi is from ai to bi, and with no other edge than those in the two
triangles and in the three paths. We may also say that the three paths P1, P2, P3

form the prism. Say that a prism is odd (or even) if all three paths have odd length
(respectively, all have even length). See Figure 1.

Define two classes A, A′ of graphs as follows:

• A is the class of graphs that do not contain odd holes, antiholes of length at
least 5, or prisms.

• A′ is the class of graphs that do not contain odd holes, antiholes of length at
least 5, or odd prisms.

Clearly A ⊂ A′. Class A was called Artemis graphs in [8, 14].

Conjecture 1 (see [8, 14]). A graph is perfectly contractile if and only if it is
in class A′.

The if part of this conjecture remains open. The only if part is not hard to
establish, but it requires some careful checking; this was done formally in [11]. A
weaker form of this conjecture was also proposed by Everett and Reed; that statement
is now a theorem.

Theorem 1.1 (Maffray and Trotignon [12]). If G is a graph in class A and G
is not a clique, then G has an even pair whose contraction yields a graph in A (and
so G is perfectly contractile).

The preceding conjecture and theorem suggest that it may be interesting to rec-
ognize the classes A and A′ in polynomial time; this is the aim of this paper.
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To decide if a graph is in class A, it would suffice to decide separately if it is
Berge, if it has an antihole of length at least 5, and if it contains a prism. The first
question, deciding if a graph is Berge, is now settled [6]. In section 2 we will find it
convenient for our purpose to give a summary of the polynomial-time algorithm from
[6] that solves this problem. The second question is not hard: to decide if a graph G
contains a hole of length at least 5, it suffices to test, for every chordless path a-b-c,
whether a and c are in the same connected component of the subgraph of G obtained
by removing the vertices of N(a) ∩N(c) and those of N(b) \ {a, c}. This takes time
O(|V (G)|5). To decide if a graph contains an antihole of length at least 5, we need
only apply this algorithm on its complementary graph. However, the third question,
to decide if a graph contains a prism, turns out to be NP-complete; this is established
in section 8 below. Likewise, we will see that it is NP-complete to decide if a graph
contains an odd prism. Thus we cannot solve the recognition problem for class A
(or for class A′) in the fashion that is suggested at the beginning of this paragraph.
Instead, we will adapt parts of the Berge graph recognition algorithm to our purpose.
This is done in sections 3–7.

2. Recognizing Berge graphs. We give here a brief outline of the Berge graph
recognition algorithm from [6]. Given a graph G and a hole C in G, a vertex x ∈
V (G) \ V (C) is called C-major if the set N(x) ∩ V (C) is not included in a 3-vertex
subpath of C, and a set X ⊆ V (G) is called a near-cleaner for C if X contains all the
C-major vertices and X∩V (C) is included in a 3-vertex subpath of C. The algorithm
is based on the results summarized in the following theorem.

Theorem 2.1 (see [6]).
1. There exist five types of configurations (graphs) such that, for i = 1, . . . , 5, we

have the following: (a) if a graph G contains a configuration of type i, then G is not a
Berge graph, and (b) there is a polynomial-time algorithm Ai that decides if a graph
contains a configuration of type i.

2. There is a polynomial-time algorithm which, given a graph G that does not
contain a configuration of any of the five types, returns a family F of |V (G)|5 subsets
of V (G) such that for any shortest odd hole C of G, some member of F is a near-
cleaner for C.

3. There is a polynomial-time algorithm which, given a graph G that does not
contain a configuration of any of the five types and the family F produced by step 2,
decides if G contains an odd hole (and if it does, returns a shortest odd hole of G).

The five types of configurations are called types T1, T2, T3, jewel, and pyramid.
We will not give the definition of all of them, but we recall that for i = 1, . . . , 5,
the complexity of algorithm Ai given in [6] is, respectively, O(|V (G)|5), O(|V (G)|6),
O(|V (G)|6), O(|V (G)|6), O(|V (G)|9). We need to dwell on the configuration that
is called a pyramid. A pyramid is a graph that consists of three pairwise adjacent
vertices b1, b2, b3 (called the triangle vertices of the pyramid), a fourth vertex a (called
the apex of the pyramid), and three chordless paths P1, P2, P3 such that

• for i = 1, 2, 3, path Pi is between a and bi;
• for 1 ≤ i < j ≤ 3, V (Pi) ∩ V (Pj) = {a} and bibj is the only edge between
V (Pi) \ {a} and V (Pj) \ {a};

• a is adjacent to at most one of b1, b2, b3.
We may say that the three paths P1, P2, P3 form a pyramid. It is easy to see that a
pyramid contains an odd hole (since two of the paths P1, P2, P3 have the same parity,
the union of their vertex sets induces an odd hole); thus Berge graphs do not contain
pyramids. The pyramid-testing algorithm from [6] is the slowest algorithm in step 1
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of the Berge graph recognition algorithm. The algorithm of step 2 has complexity
O(|V (G)|5) [6], and the algorithm of step 3 has complexity O(|V (G)|9) [6]. Testing if
a graph G is Berge can be done by running the algorithms described in the previous
theorem on G and on its complementary graph G. Thus the total complexity is
O(|V (G)|9).

3. Recognizing pyramids and prisms. We present a polynomial-time algo-
rithm that decides if a graph contains a pyramid or a prism. This algorithm has the
same flavor as the pyramid-testing algorithm from [6]. We describe this algorithm
now.

If a graph contains a pyramid or a prism, it contains a pyramid or a prism that
is smallest in the sense that there is no pyramid or prism induced by strictly fewer
vertices. Smallest pyramids or prisms have properties that make them easier to handle.
These properties are expressed in the next two lemmas.

Whenever we deal with a chordless path P in a graph G, and a, b are two vertices
of P , we use a-P -b to denote the subpath of P whose endvertices are a, b.

Lemma 3.1. Let G be a graph. Let K be a smallest pyramid or prism in G.
Suppose that K is a pyramid, formed by paths P1, P2, P3, with triangle {b1, b2, b3} and
apex a. Let R1 be a shortest path from b1 to a whose interior vertices are not adjacent
to b2 or b3. Then the subgraph induced by V (R1)∪V (P2)∪V (P3) is a smallest pyramid
or prism in G.

Proof. Note that |V (R1)| ≤ |V (P1)| since P1 is a path from b1 to a whose interior
vertices are not adjacent to b2 or b3. Let P be the path induced by (V (P2) \ {b2}) ∪
(V (P3) \ {b3}). If no vertex of R1 \ {a} has any neighbor in P \ {a}, then R1, P2, P3

form a pyramid in G, and its number of vertices is not larger than |V (K)|, so the
lemma holds. So we may assume that some vertex c of R1 \ {a} has a neighbor in
P \ {a}, and we choose c closest to b1 along R1. Note that this choice ensures that
no vertex of the path b1-R1-c is in P \ {a}. Recall that c is not adjacent to b2 or b3,
by the definition of R1. For j = 2, 3, let b′j be the neighbor of bj along Pj (so b′2, b

′
3

are the ends of P ) and let cj be the neighbor of c closest to b′j along P .
Suppose c2 = c3. We have c3 �= a since c has a neighbor along P \ {a}. Then

the three chordless paths c2-c-R1-b1, c2-P -b2, c2-P -b3 form a pyramid with triangle
{b1, b2, b3} and apex c2; this pyramid is strictly smaller than K, because it is included
in (V (R1) \ {a}) ∪ V (P2) ∪ V (P3), a contradiction. So c2 �= c3. If c2, c3 are not
adjacent, then the three chordless paths c-R1-b1, c-c2-P -b2, c-c3-P -b3 form a pyramid
with triangle {b1, b2, b3} and apex c; again this pyramid has strictly fewer vertices
than K, a contradiction. So c2, c3 are adjacent. Then the three chordless paths c-R1-
b1, c2-P -b2, and c3-P -b3 form a prism K ′, with triangles {b1, b2, b3} and {c, c2, c3}.
If a /∈ {c2, c3}, then K ′ is smaller than K, a contradiction. So a ∈ {c2, c3} and the
prism K ′ has the same size as K, so the lemma holds.

Lemma 3.2. Let G be a graph. Let K be a smallest pyramid or prism in G.
Suppose that K is a prism, formed by paths P1, P2, P3, with triangles {a1, a2, a3} and
{b1, b2, b3}, so that, for i = 1, 2, 3, path Pi is from ai to bi. Then

1. If R1 is any shortest path from a1 to b1 whose interior vertices are not adjacent
to b2 or b3, then R1, P2, P3 form a prism of size |V (K)| in G, with triangles
{a1, a2, a3} and {b1, b2, b3}.

2. If R2 is any shortest path from a1 to b2 whose interior vertices are not adjacent
to b1 or b3, then either the three paths P1, R2 \ a1, P3 form a smallest prism
in G, or the three paths P1, R2, P3 + a1 form a pyramid of size |V (K)| in G,
with triangle {b1, b2, b3} and apex a1.
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Proof. Let us prove the first item of the lemma. Note that |V (R1)| ≤ |V (P1)|
since P1 is a path from a1 to b1 whose interior vertices are not adjacent to b2 or b3.
Let P be the path induced by (V (P2) \ {b2})∪ (V (P3) \ {b3}). If no interior vertex of
R1 is adjacent to any vertex of V (P ), then the three paths R1, P2, P3 form a prism in
G whose size is not larger than the size of K, so it must be a smallest prism and the
lemma holds. So we may assume that there is an interior vertex c of R1 that has a
neighbor in V (P ) and we choose c closest to b1 along R1. For j = 2, 3, let b′j be the
neighbor of bj along Pj (so b′2, b

′
3 are the ends of P ) and let cj be the neighbor of c

closest to b′j along P .

Suppose c2 = c3. Then the three paths c2-c-R1-b1, c2-P -b2, c2-P -b3 form a
pyramid with triangle {b1, b2, b3} and apex c2; this pyramid is strictly smaller than
K (since |V (R1 \ {a})| < |V (P1)|), a contradiction. Thus, c2 �= c3. If c2, c3 are
adjacent, then the three paths c-R1-b1, c2-P -b2, c3-P -b3 form a prism, with triangles
{b1, b2, b3} and {c, c2, c3}, that is strictly smaller than K, a contradiction. Thus,
c2, c3 are not adjacent. But then the three paths c-R1-b1, c-c2-P -b2, c-c3-P -b3 form
a pyramid with triangle {b1, b2, b3}, apex c, and this pyramid is strictly smaller than
K, a contradiction. Therefore, the first item is proved.

Now we prove the second item of the lemma. Note that |V (R2)| ≤ |V (P2)| + 1
since P2 + a1 is a path from a1 to b2 whose interior vertices are not adjacent to b2 or
b3. Let P be the path induced by (V (P1)\{b1})∪ (V (P3)\{b3}). If no interior vertex
of R2 has any neighbor in V (P \ a1), then P1, R2, P3 + a1 form a pyramid, which is
not larger than K; so it is a smallest pyramid and the theorem holds. Now assume
that some interior vertex of R2 has a neighbor in V (P ), and choose the vertex c that
has this property and is closest to b2. For i = 1, 3, let b′i be the neighbor of bi along
Pi (so b′1, b

′
3 are the ends of P ) and let ci be the neighbor of c along P that is closest

to b′i.

Suppose c1 = c3. Then c1 �= a1 since c has a neighbor in V (P \a1). Then the three
paths c1-c-R2-b2, c1-P -b1, c1-P -b3 from a pyramid with triangle {b1, b2, b3} and apex
c1. This pyramid is strictly smaller than K, a contradiction. Thus, c1 �= c3. If c1, c3
are not adjacent, then the three paths c-R2-b2, c-c1-P -b1, c-c3-P -b3 form a pyramid
with triangle {b1, b2, b3} and apex c; this pyramid has size strictly smaller than K, a
contradiction. So c1, c3 are adjacent. Then the three paths c-R2-b2, c1-P -b1, c3-P -b3
form a prism K ′, with triangles {b1, b2, b3} and {c, c1, c3}. If a1 /∈ {c1, c3}, then this
prism is strictly smaller than K, a contradiction. So a1 ∈ {c1, c3} and K ′ has the
same size as K, and the lemma holds. This completes the proof of the lemma.

On the basis of the preceding lemmas we can present an algorithm for testing if
a graph contains a pyramid or a prism.

Algorithm 1. Detection of a pyramid or prism.

Input: A graph G.

Output: An induced pyramid or prism of G, if G contains any; else the negative
answer “G contains no pyramid and no prism.”

Method: For every quadruple a, b1, b2, b3 of vertices of G such that b1, b2, b3 are
pairwise adjacent and a is adjacent to at most one of them, do: Compute a shortest
path P1 from a to b1 whose interior vertices are not adjacent to b2, b3, if any. Compute
paths P2 and P3 similarly. If the three paths P1, P2, P3 exist, and if V (P1) ∪ V (P2) ∪
V (P3) induces a pyramid or a prism, then return this subgraph of G, and stop.

If no quadruple has produced a pyramid or a prism, return the negative answer.

Complexity: O(|V (G)|6).
Proof of correctness. If G contains no pyramid and no prism then clearly the
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algorithm will return the negative answer. Conversely, suppose that G contains a
pyramid or a prism. Let K be a smallest pyramid or prism. Let b1, b2, b3 be the
vertices of a triangle of K, and let a be such that if K is a pyramid, then a is its
apex, and if K is a prism, then a is a vertex of the other triangle of K. When our
algorithm considers the quadruple a, b1, b2, b3, it will find paths P1, P2, P3 since some
paths in K do have the required properties. Then, three applications of Lemmas 3.1
and 3.2 imply that P1, P2, P3 do form a pyramid or a prism of G. So the algorithm
will detect this subgraph.

Complexity analysis. Testing all quadruples takes time O(|V (G)|4). For each
quadruple, finding the three paths takes time O(|V (G)|2) and checking that the cor-
responding subgraph is a pyramid or prism takes time O(|V (G)|2). Thus the overall
complexity is O(|V (G)|6).

We now show how the results of the preceding algorithm can be performed a little
faster.

Lemma 3.3. Let G be a graph, and let {a, b, c} be a triangle in G. Suppose
that G \ {a, b, c} is connected, that each of a, b, c has exactly one neighbor a′, b′, c′ in
G \ {a, b, c}, and that a′, b′, c′ are pairwise distinct. Then G contains a prism or a
pyramid with triangle {a, b, c}.

Proof. Let P be a shortest path in G \ {a, b, c} from a′ to b′. Let Q be a path in
G \ {a, b, c} from c′ to a vertex w that has a neighbor in P , and choose such a Q of
minimal length. Clearly P and Q exist since G\{a, b, c} is connected. Note that a′, b′,
and w are distinct. (Possibly c′ ∈ V (P ), and in that case w = c′. If c′ /∈ V (P ), then
w /∈ V (P ).) Let x be the neighbor of w along P that lies closest to a′, and y be the
neighbor of w along P that lies closest to b′. If x = y, then the three paths x-w-Q-c′-c,
x-P -a′-a, and x-P -b′-b form a pyramid with apex x and triangle {a, b, c}. If x, y are
distinct and adjacent, then the three paths w-Q-c′-c, x-P -a′-a, and y-P -b′-b form a
prism with triangles {a, b, c} and {w, x, y}. If x, y are distinct and not adjacent, then
the three paths w-Q-c′-c, w-x-P -a′-a, and w-y-P -b′-b form a pyramid with apex w
and triangle {a, b, c}.

Now we can give an algorithm.

Algorithm 2. Detection of a pyramid or prism.

Input: A graph G.

Output: The positive answer “G contains a pyramid or a prism” if it does; else
the negative answer “G contains no pyramid and no prism.”

Method: For every triple b1, b2, b3 of pairwise adjacent vertices of G do:

Step 1. Compute the set X1 of those vertices of V (G) that are adjacent to b1 and
not adjacent to b2 or b3, and the similar sets X2, X3, and compute the set X of those
vertices of V (G) that are not adjacent to any of b1, b2, b3. Compute the connected
components of X in G. For each component H of X, and for i = 1, 2, 3, if some
vertex of H has a neighbor in Xi, then mark H with label i.

Step 2. For every component H of X that has received label i ∈ {1, 2, 3}, and for
every vertex x of Xi that has a neighbor in H, assign to x the other labels of H (if
any). For each i = 1, 2, 3 and for every vertex x of Xi that has a neighbor in Xj with
j ∈ {1, 2, 3} and j �= i, assign label j to x.

Step 3. If some vertex of X1∪X2∪X3 gets two different labels, return the positive
answer and stop.

If the positive answer has not been returned at Step 3, return the negative answer.

Complexity: O(|V (G)|5).
Proof of correctness. Suppose that G contains a pyramid or a prism K. Let



ALGORITHMS FOR PERFECTLY CONTRACTILE GRAPHS 559

b1, b2, b3 be the vertices of a triangle of K, and for i = 1, 2, 3 let ci be the neighbor
of bi in K \ {b1, b2, b3}. Let us observe what the algorithm will do when it examines
the triple {b1, b2, b3}. The algorithm will place the three vertices c1, c2, c3 in the sets
X1, X2, X3, respectively. We claim that c1 receives label 2 at Step 2. Indeed, if c1
is adjacent to c2 this is clear. Else, consider the (unique) path R from c1 to c2 in
K \ {b1, b2}. The interior vertices of R lie in one component H of X, which will
therefore get labels 1 and 2 at Step 1 (because of c1, c2), and so c1 will get label 2 at
Step 2. This proves the claim. Similarly, c1 will get label 3. So the algorithm will
return the positive answer.

Conversely, suppose that the algorithm returns the positive answer when it is
examining a triple {b1, b2, b3} that induces a triangle of G. So (up to symmetry) some
vertex c1 ∈ X1 gets labels 2 and 3 at Step 2. This means that for j = 2, 3, there exists
a path Rj from c1 to a vertex of Xj such that the interior vertices of Rj (if any) lie in
X. We can apply Lemma 3.3 to the subgraph induced by V (R2)∪V (R3)∪{b1, b2, b3}
with respect to the triangle {b1, b2, b3}, which implies that this subgraph (and thus G
itself) contains a pyramid or a prism. This completes the proof of correctness.

Complexity analysis. Finding all triples takes time O(|V (G)|3). For each triple,
computing the sets X1, X2, X3, X takes time O(|V (G)|). Finding the components of
X takes time O(|V (G)|2). Marking the components at the end of Step 1 can be done
as follows. For each edge uv of G, if u is in a component H of X and v is in some
Xi then mark H with label i. This takes time O(|V (G)|2). Marking the vertices
of X1 ∪ X2 ∪ X3 at Step 2 can be done similarly. Thus the overall complexity is
O(|V (G)|5).

We observe that the above two algorithms are faster than the algorithm from [6]
for finding a pyramid.

4. Recognition of graphs in class A. We can now present the algorithm for
recognizing graphs in the class A.

Algorithm 3. Recognition of graphs in class A.
Input: A graph G.
Output: The positive answer “G is in class A” if it is; else the negative answer

“G is not in class A.”
Method:

Step 1. Test whether G contains no antihole of length at least 5 as explained at the
end of the introduction.
Step 2. Test whether G has no pyramid or prism using Algorithm 2 above.
Step 3. Test whether G is Berge using the algorithm from the preceding section.

Complexity: O(|V (G)|9).
The correctness of the algorithm is immediate from the correctness of the algo-

rithms it refers to and from the fact that Berge graphs contain no pyramid. The
complexity is dominated by the last step of the Berge recognition algorithm, which is
O(|V (G)|9). Note that the other step of complexity O(|V (G)|9) in the Berge recog-
nition algorithm (deciding if the input graph contains a pyramid) can be replaced by
Step 2. Additionally, we can remark that it is not necessary to test for the existence
of configurations of types T1, . . . , T4 when we call the Berge recognition algorithm,
because—this is not very hard to prove—any such configuration contains an antihole
of length at least 5, so it is already excluded by Step 2. But this does not bring the
overall complexity down from O(|V (G)|9).

The algorithm for recognizing graphs in class A can also be used to color graphs
in class A. Recall that Theorem 1.1 states that if a graph G is in class A and is
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not a clique, it admits a pair of vertices whose contraction yields a graph in class A.
Therefore we could enumerate all pairs of nonadjacent vertices of G and test whether
their contraction produces a graph in class A; Theorem 1.1 ensures that at least one
pair will work. We can then iterate this procedure until the contractions turn the
graph into a clique. Since each vertex of the clique is the result of contracting a stable
set of G, a coloring of this clique corresponds to an optimal coloring of G. In terms
of complexity, we may need to check O(|V (G)|2) pairs at each contraction step, and
there may be O(|V (G)|) steps. So we end up with complexity O(|V (G)|12). This is
not as good as the direct method from [12], whose complexity is O(|V (G)|6). (In fact
the complexity of that method can be brought down to O(|V (G)|2|E(G)|), as pointed
out by Bruce Reed to the authors; see [15].)

5. Even prisms. In this section we show how to decide in polynomial-time
if a graph that contains no odd hole contains an even prism. Let K be an even
prism, formed by paths P1, P2, P3 with triangles {a1, a2, a3} and {b1, b2, b3} so that
for 1 ≤ i ≤ 3 path Pi is from ai to bi. Let mi be the middle vertex of path Pi. We
say that the 9-tuple (a1, a2, a3, b1, b2, b3,m1,m2,m3) is the frame of K. When we talk
about a prism, the word small refers to its number of vertices.

Lemma 5.1. Let G be a graph that contains no odd hole and contains an even
prism, and let K be a smallest even prism in G. Let K be formed by paths P1, P2, P3

and have frame (a1, a2, a3, b1, b2, b3,m1,m2,m3) with ai,mi, bi ∈ V (Pi) (1 ≤ i ≤ 3).
Let R be any path of G whose ends are a1,m1 whose interior vertices are not adjacent
to a2, a3, b2, or b3 and which is shortest with these properties. Then a1-R-m1-P1-b1
is a chordless path R1 and R1, P2, P3 form a smallest even prism in G.

Proof. Let k be the length (number of edges) of path P1; so k is even. Note that
|E(R)| ≤ k/2 since the path a1-P1-m1 satisfies the properties required for R. Call Q
the chordless path induced by V (P2) ∪ V (P3) \ {a2, a3} and call a′2, a

′
3 the ends of Q

so that for j = 2, 3 vertex a′j is adjacent to aj .

Suppose that no interior vertex of R has any neighbor in Q. Let R′ be a shortest
path from a1 to b1 contained in a1-R-m1-P1-b1. So |E(R′)| ≤ k and R′, P2, P3 form a
prism K ′ with |V (K ′)| ≤ |V (K)|. Since G contains no odd hole, R′ has even length
(else V (R′)∪ V (P2) would induce an odd hole), so K ′ is an even prism. Thus K ′ is a
smallest even prism, and we have equality in the above inequalities; in particular, R′

is equal to a1-R-m1-P1-b1 and the theorem holds.

We may now assume that some vertex c of R has a neighbor in Q, and we choose
c closest to m1 along R. Let S be a chordless path from c to b1 contained in c-R-m1-
P1-b1. We have |E(S)| < k since |E(R)| ≤ k/2 and c �= a1. By the choice of c, no
vertex of S \ b1 has a neighbor in P2 or P3. Let x, y be the neighbors of c along Q
that are closest, respectively, to a′2 and to a′3. If x = y, then V (S) ∪ V (P2) ∪ V (P3)
induces a pyramid with triangle {b1, b2, b3} and apex x, so G contains an odd hole, a
contradiction. Thus x �= y. If x, y are not adjacent, then V (S)∪V (P2)∪V (P3) contains
a pyramid with triangle {b1, b2, b3} and apex c, a contradiction. So x, y are different
and adjacent and, up to symmetry and since c is not adjacent to b2, b3, we may assume
that x, y lie in the interior of P2. Now V (S)∪V (P2)∪V (P3) induces a prism K ′, with
triangles {b1, b2, b3} and {c, x, y}, and |V (K ′)| < |V (K)| since |E(S)| < k. Thus K ′

is an odd prism, which means that y-P2-b2 is an odd path, and so a2-P2-x is an even
path. Let R′′ be a chordless path from c to a1 contained in c-R-m1-P1-a1. We have
|E(R′′)| < k since |E(R)| ≤ k/2 and c �= a1. By the choice of c no vertex of R′′\a1 has
a neighbor in P2 or P3. Then R′′ has even length for otherwise V (R′′) ∪ V (a2-P2-x)
induces an odd hole. Now V (R′′)∪ V (P2)∪ V (P3) induces a prism K ′′ with triangles
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{a1, a2, a3} and {c, x, y}, and K ′′ is an even prism, and we have |V (K ′′)| < |V (K)|
since |E(R′′)| < k. This is a contradiction, which completes the proof.

Now we can give an algorithm.
Algorithm 4. Detection of an even prism in a graph that contains no odd hole.
Input: A graph G that contains no odd hole.
Output: An induced even prism of G if G contains any; else the negative answer

“G does not contain an even prism.”
Method: For every 6-tuple (a1, a2, a3, b1, b2, b3) of vertices of G such that the sets

{a1, a2, a3} and {b1, b2, b3} induce disjoint triangles with no edge between them, do:
Step 1. For i = 1, 2, 3, compute the set Fi of those vertices that are not adjacent to
ai+1, ai+2, bi+1, bi+2 (with indices modulo 3); for each m ∈ V (G)\{a1, a2, a3, b1, b2, b3}
look for a shortest path Ri(m) from ai to m whose interior vertices are in Fi, and look
for a shortest path Si(m) from m to bi whose interior vertices are in Fi. If Ri(m)
and Si(m) exist and their union is a chordless path from ai to bi, then call this path
Pi(m).
Step 2. For each triple of vertices {m1,m2,m3} of G \ {a1, a2, a3, b1, b2, b3}, if the
three paths P1(m1), P2(m2), P3(m3) exist and their vertices induce an even prism,
then return this prism and stop.
If no 6-tuple yields an even prism, return the negative answer.

Complexity: O(|V (G)|9).
Proof of correctness. If the algorithm returns an even prism, then clearly G

contains this prism. Conversely, suppose that G contains an even prism. Let K be
a smallest even prism, and let (a1, a2, a3, b1, b2, b3, m1,m2,m3) be the frame of K.
When the algorithm considers the 6-tuple {a1, a2, a3, b1, b2, b3} and vertex m1, it will
find paths R1(m1) and S1(m1) since some paths in K do have the required properties.
By two applications of Lemma 5.1, P1(m1) is a chordless path from a1 to b1. A similar
property holds for P2(m2) and P3(m3). By six applications of Lemma 5.1, these three
paths do form an even prism of G. So the algorithm will detect this subgraph.

Complexity analysis. The number of 6-tuples {a1, a2, a3, b1, b2, b3} to be tested is
O(|V (G)|6). Given a 6-tuple, for each vertex m, finding the two paths R1(m), S1(m),
and testing whether their union P1(m) is a chordless path, takes time O(|V (G)|2).
So Step 1 can be done in time O(|V (G)|3). Step 2 can be implemented as follows (as
in [6]). Say that a pair of vertices {m1,m2} is (1, 2)-good if the paths P1(m1), P2(m2)
are disjoint and have no edge between them except a1b1 and a2b2. For a given m1,
one can find all m2 such that {m1,m2} is a (1, 2)-good pair in time O(|V (G)|2). First
mark as forbidden all the vertices that lie in or have a neighbor in P1(m1). This takes
time O(|V (G)|2). Then for every m2, check whether P2(m2) contains a forbidden
vertex. For a given m2, this take time O(|V (G)|). Thus all (1, 2)-good pairs can be
found in time O(|V (G)|3). Repeat this for (1, 3)-good pairs and (2, 3)-good pairs.
Finally, for every triple {m1,m2,m3} check in constant time if the pairs {mi,mj}
are (i, j)-good for all 1 ≤ i < j ≤ 3. This takes time O(|V (G)|3). Thus the overall
complexity is time O(|V (G)|9).

6. Line-graphs of subdivisions of K4. The line-graph of a graph R is the
graph whose vertices are the edges of R and where two vertices are adjacent if the
corresponding edges of R have a common endvertex. Subdividing an edge xy in a
graph means replacing it by a path of length at least two. A subdivision of a graph
R is any graph obtained by repeatedly subdividing edges. Berge graphs that do not
contain the line-graph of a bipartite subdivision of K4 play an important role in the
proof of the strong perfect graph theorem [7]. Thus recognizing them may be of
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Fig. 2. Line-graph of a subdivision of K4.

interest on its own. Moreover, solving this question is also useful for later use in the
recognition of graphs in the class A′ (see section 7). Again it turns out that deciding
if a graph contains the line-graph of a subdivision of K4 is NP-complete in general;
see section 8.

We will first deal with subdivisions of K4 that are not necessarily bipartite but
are not too trivial in the following sense. Say that a subdivision of K4 is proper if
at least one edge of the K4 is subdivided. It is easy to see that the line-graph of a
subdivision of K4 is proper if and only if it has a vertex that lies in only one triangle.
If F is the line-graph of a proper subdivision R of K4, let us denote by a, b, c, d the
four vertices of K4, i.e., the vertices of degree 3 in R. Then the three edges incident
to each vertex x ∈ {a, b, c, d} form a triangle in F , which will be labeled Tx and called
a basic triangle of F . (F may have as many as two more, nonbasic, triangles.) In F
there are six paths, each path being between vertices x, y of distinct basic triangles
of F (and so this path can be labeled Rxy accordingly). Note that Rxy = Ryx, and
the six distinct paths are vertex disjoint. Some of these paths may have length 0. In
the basic triangle Tx, we denote by vxy the vertex that is the end of the path Rxy.
Thus F has paths Rab, Rac, Rad, Rbc, Rbd, Rcd, and the vertices of the basic triangles
of F are vab, vac, vad, vba, vbc, vbd, vca, vcb, vcd, vda, vdb and vdc. The graph F has
no other edge than those in the four basic triangles and those in the six paths. See
Figure 2.

For each of the six paths Rxy of F , we call mxy one vertex that is roughly in the
middle of Rxy, so that if α denotes the length of vxy-Rxy-mxy and β denotes the length
of mxy-Rxy-vyx, then α−β ∈ {−1, 0, 1}. Paths Rxy are called the rungs of F ; vertices
vxy are called the corners of F ; and the 18-tuple (vab, vac, . . . , vcd,mab, . . . ,mcd) is
called a frame of F .
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Lemma 6.1. Let G be a graph that contains no pyramid. Let F be an induced
subgraph of G that is the line-graph of a proper subdivision of K4 and F has smallest
size with this property, and let (vab, vac, . . . , vcd,mab, . . . ,mcd) be a frame of F . Let
P be a path from vab to mab such that the interior vertices of P are not adjacent
to any corner of F other than vab and P is a shortest path with these properties.
Then (V (F ) \ V (Rab))∪ V (P ) induces the line-graph of a proper subdivision of K4 of
smallest size.

Proof. Put F ′ = F \Rab. If vab,mab are equal or adjacent, then P = vab-Rab-mab

and the conclusion is immediate. So we may assume that vab,mab are distinct and
not adjacent, which also implies mab �= vba.

Claim 1. If the interior vertices of P have no neighbor in F ′, then the lemma
holds.

Proof. Let u be the vertex of vab-P -mab that has neighbors in mab-Rab-vba and
is closest to vab. Let u′ be the neighbor of u in mab-Rab-vba closest to vba. Then
vab-P -u-u′-Rab-vba is a chordless path R, and V (F ′)∪V (R) induces the line-graph of
a proper subdivision of K4. So this subgraph has size at most the size of F , which is
possible only if u = mab, and in this case V (F ′) ∪ V (R) induces the line-graph of a
proper subdivision of K4 of smallest size, so the lemma holds.

Now we may assume that there exists a vertex c1 ∈ V (P ) that has neighbors in
F ′ and choose c1 closest to vab along P . Also there exists a vertex d1 ∈ V (P ) that
has neighbors in F ′ and is chosen closest to mab along P . Let us show that this leads
to a contradiction. See Figure 3.

Claim 2.

1. The set N(c1) ∩ V (F ′) consists of an edge of F ′.

2. The set N(d1) ∩ V (F ′) consists of an edge of F ′.

Proof. Call H the hole induced by V (Rac) ∪ V (Rbc) ∪ V (Rbd) ∪ V (Rad).

First suppose that c1 has no neighbor on H. Therefore, c1 has neighbors in the
interior of Rcd. Let c2, c3 be the neighbors of c1, respectively, closest to vcd and to vdc
along Rcd. If c2 = c3, the three paths c2-c1-P -vab, c2-Rcd-vcd-vca-Rca-vac, c2-Rcd-vdc-
vda-Rad-vad form a pyramid with triangle {vab, vac, vad} and apex c2, a contradiction.
If c2, c3 are distinct and not adjacent, the three paths c1-P -vab, c1-c2-Rcd-vcd-vca-Rca-
vac, c1-c3-Rcd-vdc-vda-Rad-vad form a pyramid with triangle {vab, vac, vad}, and apex
c1, a contradiction. If c2, c3 are adjacent, we have item 1 of the claim.

Now suppose that c1 has neighbors on H. Define two chordless subpaths of H:
Hac = H \ vad and Had = H \ vac. Let c2 be the neighbor of c1 on Hac closest to vac,
and let c3 be the neighbor of c1 on Had closest to vad. If c2 = c3, then V (H) ∪ V (c1-
P -vab) induces a pyramid with triangle {vab, vac, vad} and apex c2, a contradiction.
Therefore, c2 �= c3. If c2, c3 are not adjacent, then the three paths c1-P -vab, c1-c2-
Hac-vac, and c1-c3-Had-vad form a pyramid with triangle {vab, vac, vad} and apex c1,
a contradiction. So c2, c3 are adjacent and are the only neighbors of c1 on H. Up to
symmetry, and by the definition of R, we may assume that c2, c3 are in the interior
of Rac or Rbc, because P was chosen so that no corner of F has a neighbor in it. If
c1 has no neighbor on Rcd, then conclusion 1 holds. Suppose that c1 has a neighbor
c4 on Rcd and c4 is closest to vdc. Then the three paths c1-P -vab, c1-c4-Rcd-vdc-vda-
Rda-vad, c1-c2-Hac-vac form a pyramid with triangle {vab, vac, vad} and apex c1, a
contradiction. This completes the proof of item 1.

The proof of item 2 is similar, with the following adjustment: whenever path
c1-P -vab was used for item 1, we can use for item 2 a chordless path from d1 to vba
contained in d1-P -mab-Rab-vba. This completes the proof of the claim.



564 FRÉDÉRIC MAFFRAY AND NICOLAS TROTIGNON

Fig. 3. F and P for the proof of Lemma 6.1.

Claim 3. If J is the line-graph of a subdivision of K4 with V (J) ⊆ V (F ′)∪V (P )
and c1 is a corner of J , then J is the line-graph of a proper subdivision of K4.

Proof. This claim follows immediately from the fact that c1 belongs to exactly
one triangle of J .

In view of Claim 2, let c2, c3 be the two neighbors of c1 in F ′ and d2, d3 be the
two neighbors of d1 in F ′, with c2c3, d2d3 ∈ E(G).

Claim 4. We may assume that c2, c3 lie in Rac and d2, d3 in Rcb or Rbd.

Proof. Recall from the definition of P that c2, c3, d2, d3 cannot be corners of F .
If c2c3 is an edge of Rcd, then V (vab-P -c1) ∪ V (H) ∪ V (Rcd) induces the line-graph
of a subdivision of K4, which is proper by Claim 3 and is strictly smaller than F , a
contradiction. If c2c3 is an edge of Rbc, then V (vab-P -c1) ∪ V (F ′) induces the line-
graph of a subdivision of K4, which is proper by Claim 3 and is strictly smaller than
F , a contradiction. So c2c3 is an edge of Rac or Rad. Similarly we may assume that
d2d3 is an edge of Rbc or Rbd. Then by symmetry the claim holds.

We may assume that vac, c2, c3, vca, d2, d3, vad appear in this order along H.

Claim 5. Vertices c1, d1 are distinct and not adjacent.

Proof. By Claims 2 and 4, we know that c1, d1 are distinct. If they are adjacent,
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the set V (F ′)∪{c1, d1} induces the line-graph of a subdivision of K4, which is proper
by Claim 3 and is strictly smaller than F , a contradiction.

Let e1 be the vertex of c1-P -vab that has a neighbor e2 in the interior of mab-
Rab-vab and is closest to c1. Let e4 be the vertex of d1-P -mab that has a neighbor e3

in the interior of mab-Rab-vab and is closest to d1. Given e1, e4, take e2, e3 as close to
each other as possible along Rab.

Claim 6. e1 �= vab.

Proof. Suppose e1 = vab. Then the three paths vab-P -c1, vab-vac-Rac-c2, vab-
Rab-e3-e4-P -d1-d2-Hac-c3 form a pyramid with triangle {c1, c2, c3} and apex vab, a
contradiction.

At this point we have obtained that c1-P -e1-e2-Rab-e3-e4-P -d1 is a chordless path
R whose interior vertices have no neighbor in F ′. Moreover, the subgraph FR induced
by V (F ′)∪V (R) is the line graph of a subdivision of K4, and it is proper by Claim 3.

Claim 7. |V (FR)| < |V (F )|.
Proof. We need only show that the total length of the rungs of FR is strictly

smaller than the total length of the rungs of F . Let α be the length of vab-Rab-mab,
let β be the length of vba-Rab-mab, and let δ be the number of those edges of F ′ that
belong to the rungs of F .

The total length l of the rungs of F is equal to α + β + δ = 2α − ε + δ, with
ε = α− β ∈ {−1, 0, 1} by the definition of mab.

The total length lR of the rungs of FR is at most δ+2α−3, and it is equal to this
value only in the following case: e4 = mab, there is only one vertex of Rab between
c1 and d1, e1vab ∈ E(G), e2vab ∈ E(G), and the paths P and vab-Rab-mab have the
same length. Indeed in this case the length of the rung of FR whose ends are c1, d1 is
equal to 2α− 3.

Thus in either case we have lR < l and the claim holds.

Now the preceding claim leads to a contradiction, which proves the lemma.

Lemma 6.1 is the basis of an algorithm for deciding if a graph contains a pyramid
or the line-graph of a proper subdivision of K4.

Algorithm 5. Detection of the line-graph of a proper subdivision of K4 in a
graph that contains no pyramid.

Input: A graph G that contains no pyramid.

Output: An induced subgraph of G that is the line-graph of a proper subdivision
of K4, if G contains any; else the negative answer “G does not contain the line-graph
of a proper subdivision of K4.”

Method: For every 12-tuple of vertices T = (vab, vac, . . ., vdc) such that each of
{vab, vac, vad}, {vba, vbc, vbd}, {vca, vcb, vcd}, {vda, vdb, vdc} induces a triangle, do:

Step 1. For i, j ∈ {a, b, c, d}, i < j, compute the set Fij of those vertices that are
not adjacent to the vertices of T except possibly to vij , vji; for each m ∈ V (G) \ T ,
look for a shortest path Pij(m) from vij to m whose interior vertices are in Fij, and
look for a shortest path Qij(m) from m to vji whose interior vertices are in Fi. If
Pij(m) and Qij(m) exist and their union is a chordless path from vij to vji, then call
this path Rij(m).

Step 2. For each 6-tuple of vertices {mab, . . . ,mcd} of G \ T , if the six paths
Pab(mab), . . . , Pcd(mcd) exist and their vertices induce the line-graph of a proper sub-
division of K4, then return this subgraph and stop.

If no 12-tuple yields the line-graph of a proper subdivision of K4, return the neg-
ative answer.

Complexity: O(|V (G)|18).
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Proof of correctness. If the algorithm returns the line-graph of a proper subdivi-
sion of K4, then clearly G contains this subgraph. Conversely, suppose that G contains
the line-graph of a proper subdivision of K4. Let F be a smallest such subgraph, and
let (vab, . . . , vdc, mab, . . . ,mcd) be a frame of F . When the algorithm considers the
12-tuple (vab, . . . , vdc) and vertex mab, it will find paths Pab(mab) and Qab(mab) since
some paths in F do have the required properties. By two applications of Lemma 6.1,
Rab(mab) is a chordless path from vab to vba. A similar property holds for Rac(mac),
. . . , Rcd(mcd). By 12 applications of Lemma 6.1, the vertices of these six paths do
induce the line-graph of a proper subdivision of K4. So the algorithm will detect this
subgraph.

Complexity analysis. The number of 12-tuples to be tested is O(|V (G)|12). Given
a 12-tuple, for each pair i, j ∈ {a, b, c, d} and each vertex m, finding the two paths
Pij(m) and Qij(m), and testing whether their union Rij(m) is a chordless path, takes
time O(|V (G)|2). So Step 1 can be done in time O(|V (G)|3). Step 2 can be imple-
mented as follows. Say that a pair of vertices {mab,mac} is (ab, ac)-good if the paths
Rab(mab), Rac(mac) are disjoint and have no edge between them except for vabvac; and
say that a pair of vertices {mab,mcd} is (ab, cd)-good if the paths Rab(mab), Rcd(mcd)
are disjoint and have no edge at all between them. For a given mab, one can find all
mac such that {mab,mac} is an (ab, ac)-good pair in time O(|V (G)|2). First mark
as forbidden all the vertices that lie in or have a neighbor in Rab(mab). This takes
time O(|V (G)|2). Then for every mac, check whether Rac(mac) contains no forbidden
vertex. For a given mac, this takes time O(|V (G)|). Thus all (ab, ac)-good pairs can
be found in time O(|V (G)|3). Repeat this for (ab, ad)-good pairs, etc., and similarly
for all (ab, cd)-good pairs, (ac, bd)-good pairs, and (ad, bc)-good pairs.

Finally, for every 6-tuple {mab,mac,mad,mbc,mbd,mcd} check in constant time
if two vertices mij ,mkl form an (ij, kl)-good pair for all 1 ≤ i < j ≤ 3, 1 ≤ k < l ≤ 3.
This takes time O(|V (G)|6). Thus the overall complexity is time O(|V (G)|18).

Let us now focus on finding line-graphs of bipartite subdivisions of K4.

Lemma 6.2. Let R be a subdivision of K4 and F be the line-graph of R. Then
either R = K4, or F contains an odd hole, or R is a bipartite subdivision of K4.

Proof. Suppose R �= K4. Call a, b, c, d the four vertices of the K4 of which R
is a subdivision (i.e., the vertices of degree 3 in R), and for i, j ∈ {a, b, c, d} with
i �= j, call Cij the subdivision of edge ij. Suppose that F contains no odd hole and
R is not bipartite. Then R contains an odd cycle Z. This cycle must be a triangle,
for otherwise L(R) contains an odd hole, a contradiction. So we may assume up to
symmetry that a, b, c induce a triangle. Since R �= K4, we may assume that Cad has
length at least 2. But then one of E(Cad)∪{ac}∪E(Ccd) or E(Cad)∪{ab}∪{bc}∪Ccd

is the edge set of an odd cycle of R, of length at least 5, so L(R) contains an odd
hole, a contradiction.

Now we can devise an algorithm that decides if a graph with no odd hole contains
the line-graph of a bipartite subdivision of K4. This algorithm is simply Algorithm 5
applied to graphs that contain no odd hole, by the preceding lemma.

7. Recognition of graphs in class A′. To decide if a graph is in class A′, it
suffices to decide separately if it is Berge, if it has an antihole of length at least 5, and
if it contains an odd prism. But again it turns out that this third question—deciding
if a graph contains an odd prism—is NP-complete (see section 8). However, we can
decide in polynomial time if a graph with no odd hole contains an odd prism. For
this purpose the next lemmas will be useful.
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Fig. 4. A graph with six odd prisms.

Lemma 7.1. Let F be the line-graph of a bipartite subdivision of K4. Then F
contains an odd prism.

Proof. Let R be a bipartite subdivision of K4 such that F is the line-graph of R,
and let a, b, c, d be the four vertices of degree 3 in R. We may suppose without loss
of generality that a, b lie on the same side of the bipartition of R. Thus edge ab is
subdivided to a path Rab of even length, with the usual notation. Now it is easy to
see that F \ V (Rcd) is an odd prism.

Before we present an algorithm for recognizing graphs in class A′, we can remark
that the technique which worked well for detecting even prisms tends to fail for odd
prisms. The graph featured in Figure 4 illustrates this problem. This graph G is the
line-graph of a bipartite graph, so it is a Berge graph. For any two gray triangles,
there exists one (and only one) odd prism that contain these two triangles. Moreover,
the paths P1, P2, P3 form an odd prism of G of minimal size. Yet, replacing P1 (or
the path a1-P1-m1) by a shortest path with the same ends does not produce an odd
prism. Thus an algorithm that would be similar to the even prism testing algorithm
presented above may work incorrectly. We note, however, that in this example the
graph G contains the line-graph of a proper subdivision of K4 (the subgraph obtained
by forgetting the black vertices). The next lemma shows that this remark holds in
general.

Lemma 7.2. Let G be a graph that contains no odd hole and no line-graph of
a proper subdivision of K4. Let H be a prism in G, with triangles {a1, a2, a3} and
{b1, b2, b3}, formed by paths P1, P2, P3, where for i = 1, 2, 3 path Pi is from ai to bi.
Let P be any chordless path from a1 to b1 whose interior vertices are not adjacent to
a2, a3, b2, b3. Then the three paths P, P2, P3 form a prism of G of the same parity
as H.

Proof. Note that we are not assuming that H is a smallest prism or that P is a
shortest path. If the interior vertices of P have no neighbor on P2∪P3, then the lemma
holds. (Note that P has the same parity as P2 and P3 since G contains no odd hole.)
So suppose that some interior vertex c1 of P has neighbors on P2 ∪P3, and choose c1
closest to a1 along P . Define paths H2 = P2 + P3 \ {a3} and H3 = P2 + P3 \ {a2}.
For i = 2, 3, let ci be the neighbor of c1 closest to ai along Hi.

If c2 = c3, then the three paths c2-c1-P -a1, c2-H2-a2, c2-H3-a3 form a pyramid
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with triangle {a1, a2, a3} and apex c2, so G contains an odd hole, a contradiction.
Thus c2 �= c3. If c2, c3 are not adjacent, then the three paths c1-P -a1, c1-c2-H2-a2,
c1-c3-H3-a3 form a pyramid with triangle {a1, a2, a3} and apex c1, a contradiction.
Thus c2, c3 are adjacent. Up to symmetry and since c1 is not adjacent to b2, b3, we
may assume that c2c3 is an edge of P2. If c1, b1 are adjacent, then the three paths
c1-b1, c1-c3-P2-b2, c1-P -a1-a3-P3-b3 form a pyramid with triangle {b1, b2, b3} and apex
c1, a contradiction. Thus c1, b1 are not adjacent. Let a′1 be the neighbor of a1 in P1.
Let d1 be the vertex of a′1-P -c1 that has neighbors in P1 and is closest to c1. Let
d2, d3 be the neighbors of d1 along P1 that are closest to a1 and b1, respectively.

If d2 = d3, then either d1 �= a′1 or d2 = a1, and in either case the three paths
d2-d1-P -c1, d2-P1-a1-a2-P2-c2, d2-P1-b1-b2-P2-c3 form a pyramid with triangle
{c1, c2, c3} and apex d2, a contradiction. Thus, d2 �= d3. If d2, d3 are not adja-
cent, then the three paths d1-d2-P1-a1, d1-d3-P1-b1-b3-P3-a3, d1-P -c1-c2-P2-a2 form
a pyramid with triangle {a1, a2, a3} and apex d1, a contradiction. Thus, d2, d3 are
adjacent. Then the four triangles {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}, {d1, d2, d3} and
the six paths P3, a2-P2-c2, a1-P1-d2, b2-P2-c3, b1-P1-d3, c1-P -d1 form the line-graph
of a subdivision of K4, and it is not the line-graph of K4 since a3 �= b3; so G contains
the line-graph of a proper subdivision of K4, a contradiction.

Now we can present an algorithm that decides if a graph with no odd hole contains
an odd prism.

Algorithm 6. Detection of an odd prism in a graph that contains no odd hole.

Input: A graph G that contains no odd hole.
Output: An odd prism induced in G, if G contains any, else the negative answer “G
contains no odd prism.”

Method: Using Algorithm 5, test whether G contains the line-graph of a proper
subdivision of K4. If G contains such a subgraph F , for each of the six rungs R of F ,
test if F \ V (R) is an odd prism, and if it is, return this odd prism. If Algorithm 5
answers that G does not contain the line-graph of a proper subdivision of K4, then for
every 6-tuple (a1, a2, a3, b1, b2, b3) do:

For i = 1, 2, 3 compute a shortest path Pi from ai to bi whose interior vertices
are not adjacent to ai+1, ai+2, bi+1, and bi+2 (subscripts are understood modulo 3).
If paths P1, P2, P3 exist and form an odd prism, return this prism and stop.

If no 6-tuple has produced an odd prism, return the answer no.

Complexity: O(|V (G)|18).
Proof of correctness. If G contains the line-graph of proper subdivision of K4,

this will be detected by Algorithm 5. If G contains no odd hole and no odd prism,
then Lemma 7.1 ensures that G cannot contain the line-graph of a proper subdivision
of K4. So the algorithm will return the correct answer.

Now suppose that G does not contain the line graph of a proper subdivision of
K4 and G contains an odd prism, with triangles {a1, a2, a3} and {b1, b2, b3}. Then
in some step the algorithm will consider these six vertices, and it will find paths Pi

since the corresponding paths of the prism have the required properties. By three
applications of Lemma 7.2, we obtain that P1, P2, P3 form an odd prism, and so the
algorithm will detect it.

Complexity analysis. The complexity is clearly determined by its costliest step,
which is Algorithm 5.

Now deciding if a graph is in class A′ can be done as follows. Test if G contains
an antihole of length at least 5 as explained earlier; test if G is Berge using the
algorithm from section 2; then use Algorithm 6 to test if G contains no odd prism.
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The complexity is the same as that of Algorithm 6.
We note that a conjecture stronger than Conjecture 1 was proposed in [8]: If G is a

graph in A′ and G is not a clique, then G admits an even pair whose contraction yields
a graph in A′. This stronger conjecture could actually be false even if Conjecture 1
is true. We would like to remark that if the stronger conjecture is true, then the
algorithm for recognizing graphs in class A′ can be used to color optimally the vertices
of any graph G ∈ A′ (even if a proof of the stronger conjecture is not algorithmic);
this can be done similarly to the remark made at the end of section 4, as follows.
Enumerate all pairs of nonadjacent vertices of G and test whether their contraction
produces a graph in class A′; the assumed validity of the stronger conjecture ensures
that at least one pair will work. Then iterate this procedure until the contractions turn
the graph into a clique. In terms of complexity, since we may need to check O(|V (G)|2)
pairs at each contraction step, and there may be O(|V (G)|) steps, we end up with
total complexity O(|V (G)|21). Thus it is desirable to find a proof of Conjecture 1 or
of the stronger conjecture that produces an algorithm with lower complexity.

8. NP-complete problems. In this section we show that the following five
problems are NP-complete:

1. Decide if a graph contains a prism.
2. Decide if a graph contains an even prism.
3. Decide if a graph contains an odd prism.
4. Decide if a graph contains the line-graph of a proper subdivision of K4.
5. Decide if a graph contains the line-graph of a bipartite subdivision of K4.

We have seen in the preceding sections that all these problems are polynomial when
the input is restricted to the class of graphs that contain no odd hole.

The above NP-completeness results can all be derived from the following theorem.
Let us call problem Π the decision problem whose input is a triangle-free graph G
and two nonadjacent vertices a, b of G of degree 2 and whose question is, “Does G
have a hole that contains both a, b?” Bienstock [5] mentions that this problem is
NP-complete in general (i.e., not restricted to triangle-free graphs). We adapt his
proof here for triangle-free graphs.

Theorem 8.1. Problem Π is NP-complete.
Proof. Let us give a polynomial reduction from the problem 3-Satisfiability of

Boolean functions to problem Π. Recall that a Boolean function with n variables is a
mapping f from {0, 1}n to {0, 1}. A Boolean vector ξ ∈ {0, 1}n is a truth assignment
for f if f(ξ) = 1. For any Boolean variable x in {0, 1}, we write x := 1− x, and each
of x, x is called a literal. An instance of 3-Satisfiability is a Boolean function f
given as a product of clauses, each clause being the Boolean sum ∨ of three literals;
the question is whether f admits a truth assignment. The NP-completeness of 3-
Satisfiability is a fundamental result in complexity theory; see [10].

Let f be an instance of 3-Satisfiability, consisting of m clauses C1, . . . , Cm on
n variables x1, . . . , xn. Let us build a graph Gf with two specialized vertices a, b, such
that there will be a hole containing both a, b in Gf if and only if there exists a truth
assignment for f .

For each variable xi (i = 1, . . . , n), make a graph G(xi) with eight vertices
ai, bi, ti, fi, a

′
i, b

′
i, t

′
i, f

′
i , and 10 edges aiti, aifi, biti, bifi (so that {ai, bi, ti, fi} induces

a hole), a′it
′
i, a

′
if

′
i , b

′
it
′
i, b

′
if

′
i (so that {a′i, b′i, t′i, f ′

i} induces a hole), and tif
′
i , t

′
ifi. See

Figure 5.
For each clause Cj (j = 1, . . . ,m), with Cj = u1

j ∨ u2
j ∨ u3

j , where each up
j (p =

1, 2, 3) is a literal from {x1, . . . , xn, x1, . . . , xn}, make a graph G(Cj) with five vertices
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Fig. 5. Graph G(xi).

Fig. 6. Graph G(Cj).

cj , dj , v
1
j , v

2
j , v

3
j and six edges so that each of cj , dj is adjacent to each of v1

j , v
2
j , v

3
j .

See Figure 6. For p = 1, 2, 3, if up
j = xi then add two edges vpj fi, v

p
j f

′
i , while if up

j = xi

then add two edges vpj ti, v
p
j t

′
i. See Figure 7.

The graph Gf is obtained from the disjoint union of the G(xi)’s and the G(Cj)’s
as follows. For i = 1, . . . , n− 1, add edges biai+1 and b′ia

′
i+1. Add an edge b′nc1. For

j = 1, . . . ,m− 1, add an edge djcj+1. Introduce the two specialized vertices a, b and
add edges aa1, aa

′
1 and bdm, bbn. See Figure 8. Clearly the size of Gf is polynomial

(actually linear) in the size n + m of f . Moreover, it is easy to see that Gf contains
no triangle and that a, b are nonadjacent and both have degree 2.

Suppose that f admits a truth assignment ξ ∈ {0, 1}n. We build a hole in G by
selecting vertices as follows. Select a, b. For i = 1, . . . , n, select ai, bi, a

′
i, b

′
i; moreover,

if ξi = 1 select ti, t
′
i, while if ξi = 0 select fi, f

′
i . For j = 1, . . . ,m, since ξ is a truth

assignment for f , at least one of the three literals of Cj is equal to 1, say, up
j = 1 for

some p ∈ {1, 2, 3}. Then select cj , dj , and vpj . Now it is a routine matter to check
that the selected vertices induce a cycle Z that contains a, b and that Z is chordless,
so it is a hole. The main point is that there is no chord in Z between some subgraph
G(Cj) and some subgraph G(xi), for that would be either an edge tiv

p
j (or t′iv

p
j ) with

up
j = xi and ξi = 1 or, symmetrically, an edge fiv

p
j (or f ′

iv
p
j ) with up

j = xi and ξi = 0,
in either case a contradiction to the way the vertices of Z were selected.

Conversely, suppose that Gf admits a hole Z that contains a, b. Clearly Z contains
a1, a

′
1 since these are the only neighbors of a in Gf .
Claim 8. For i = 1, . . . , n, Z contains exactly six vertices of G(xi): four are

ai, a
′
i, bi, b

′
i and the other two are either ti, t

′
i or fi, f

′
i .

Proof. First we prove the claim for i = 1. Since a, a1 are in Z and a1 has only
three neighbors a, t1, f1, exactly one of t1, f1 is in Z. Likewise, exactly one of t′1, f

′
1 is

in Z. If t1, f
′
1 are in Z, then the vertices a, a1, a

′
1, t1, f

′
1 are all in Z and they induce a

hole that does not contain b, a contradiction. Likewise, we do not have both t′1, f1 in
Z. Therefore, up to symmetry we may assume that t1, t

′
1 are in Z and f1, f

′
1 are not.
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Fig. 7. The two edges added to Gf in the case u1
j = xi.

Fig. 8. Graph Gf .

If a vertex vpj of some G(Cj) (1 ≤ j ≤ m, 1 ≤ p ≤ 3) is in Z and is adjacent to t1,
then, since this vpj is also adjacent to t′1, we see that the vertices a, a1, a

′
1, t1, t

′
1, v

p
j are

all in Z and induce a hole that does not contain b, a contradiction. Thus the neighbor
of t1 in Z \ a1 is not in any G(Cj) (1 ≤ j ≤ m), so that neighbor is b1. Likewise b′1 is
in Z. So the claim holds for i = 1. Since b1 is in Z and exactly one of t1, f1 is in Z,
and b1 has degree 3 in Gf , we obtain that a2 is in Z, and similarly a′2 is in Z. Now
the proof of the claim for i = 2 is essentially the same as for i = 1, and by induction
the claim holds up to i = n.

Claim 9. For j = 1, . . . ,m, Z contains cj , dj, and exactly one of v1
j , v

2
j , v

3
j .

Proof. First we prove this claim for j = 1. By Claim 8, b′n is in Z and exactly one
of t′n, f

′
n is in Z, so (since b′n has degree 3 in Gf ) c1 is in Z. Consequently, exactly one

of v1
1 , v

2
1 , v

3
1 is in Z, say, v1

1 . The neighbor of v1
1 in Z \ c1 cannot be a vertex of some

G(xi) (1 ≤ i ≤ n), for that would be either ti (or fi) and thus, by Claim 8, t′i (or f ′
i)

would be a third neighbor of v1
1 in Z, a contradiction. Thus the other neighbor of v1

1

in Z is d1, and the claim holds for j = 1. Since d1 has degree 4 in Gf and exactly
one of v1

1 , v
2
1 , v

3
1 is in Z, it follows that its fourth neighbor c2 is in Z. Now the proof

of the claim for j = 2 is the same as for j = 1, and by induction the claim holds up
to j = m.

We can now make a Boolean vector ξ as follows. For i = 1, . . . , n, if Z contains
ti, t

′
i set ξi = 1; if Z contains fi, f

′
i set ξi = 0. By Claim 8 this is consistent. Consider

any clause Cj (1 ≤ j ≤ m). By Claim 9 and up to symmetry we may assume that
v1
j is in Z. If u1

j = xi for some i ∈ {1, .., n}, then the construction of Gf implies
that fi, f

′
i are not in Z, so ti, t

′
i are in Z, so ξi = 1, so clause Cj is satisfied by xi. If

u1
j = xi for some i ∈ {1, .., n}, then the construction of Gf implies that ti, t

′
i are not

in Z, so fi, f
′
i are in Z, so ξi = 0, so clause Cj is satisfied by xi. Thus ξ is a truth

assignment for f . This completes the proof of the theorem.
Now we can prove the main result of this section.
Theorem 8.2. The following problems are NP-complete:
1. Decide if a graph contains a prism.
2. Decide if a graph contains an odd prism.
3. Decide if a graph contains an even prism.
4. Decide if a graph contains the line-graph of a proper subdivision of K4.
5. Decide if a graph contains the line-graph of a bipartite subdivision of K4.
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Fig. 9. Problem 1: G and G′.

Proof. For each of these five problems we show a reduction from problem Π to
this problem. So let (G, a, b) be any instance of problem Π, where G is a triangle-free
graph and a, b are nonadjacent vertices of G of degree 2. Let us call a′, a′′ the two
neighbors of a and b′, b′′ the two neighbors of b in G.

Reduction to problem 1. Starting from G, build a graph G′ as follows (see Fig-
ure 9). Replace vertex a by five vertices a1, a2, a3, a4, a5 with five edges a1a2, a1a3,
a2a3, a2a4, a3a5, and put edges a4a

′ and a5a
′′. Do the same with b, with five ver-

tices named b1, . . . , b5 instead of a1, . . . , a5 and with the analogous edges. Add an
edge a1b1. Since G has no triangle, G′ has exactly two triangles {a1, a2, a3} and
{b1, b2, b3}. Moreover we see that G′ contains a prism if and only if G contains a hole
that contains a and b. Thus every instance of Π can be reduced polynomially to an
instance of problem 1, which proves that problem 1 is NP-complete.

Reduction to problem 2. Starting from G, build the same graph G′ as above.
Then build four graphs Gi,j (i, j ∈ {0, 1}) as follows. If i = 1, subdivide the edge
a2a4 into a path of length 2; else do not subdivide it. Likewise, subdivide the edge
a3a5 if and only if j = 1. Now G contains a hole that contains a and b if and only if
at least one of the four graphs Gi,j contains an odd prism. Thus every instance of Π
can be reduced polynomially to four instances of problem 2.

Reduction to problem 3. Starting from G, build the four graphs Gi,j as above and
in each of them subdivide the edge a1b1. Then G contains a hole that contains a and
b if and only if at least one of these four new graphs contains an even prism. Thus
every instance of Π can be reduced polynomially to four instances of problem 3.

Reduction to problem 4. Starting from G, build a graph G′′ as follows (see Fig-
ure 10). Remove vertices a and b and add 12 vertices vab, vac, vad, vba, vbc, vbd,
vca, vcb, vcd, vda, vdb, vdc. Add edges such that each of {vab, vac, vad}, {vba, vbc, vbd},
{vca, vcb, vcd}, and {vda, vdb, vdc} is a triangle. Add edges vabvba, vdcvcd, vbdvdb, vbcvcb,
vada

′, vaca
′′, vdab

′, vcab
′′. The graph G′′ contains exactly four triangles, and G con-

tains a hole through a and b if and only if G′′ contains the line-graph of a proper
subdivision of K4. Thus every instance of Π can be reduced polynomially to an
instance of problem 4.

Reduction to problem 5. Starting from G′′, make four graphs G′′
i,j (i, j ∈ {0, 1})

as follows. If i = 1 subdivide the edge vada
′ into a path of length 2, else do not
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Fig. 10. Problem 4: G and G′′.

subdivide it. Subdivide likewise the edge vaca
′′ if and only if j = 1. Now G contains a

hole through a and b if and only if one of the four graphs G′′
i,j contains the line-graph

of a bipartite subdivision of K4. So every instance of Π can be reduced polynomially
to four instances of problem 5. This completes the proof of the theorem.

9. Conclusion. We summarize the complexity results mentioned in this paper
in the following table, whose columns correspond to the class of graphs taken as
instances and whose lines correspond to the subgraph that we look for. The symbol
n refers to the number of vertices of the input graph; 1 means trivial, NPC means
NP-complete, and a question mark means unsolved.

General graphs Graphs with Graphs with
no pyramid no odd hole

Pyramid or prism n5 n5 n5

Pyramid n9 [6] 1 1
Prism NPC n5 n5

LGPSK4 NPC n18 n18

LGBSK4 NPC ? n18

Odd prism NPC ? n18

Even prism NPC ? n9
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ON THE 3-TERMINAL CUT POLYHEDRON∗

MOHAMED DIDI BIHA†

Abstract. Given G = (V,E) an undirected graph and A = {n1, n2, n3} ⊆ V a specified set of
terminal nodes, a 3-terminal cut is a subset of edges whose removal disconnects each terminal from

the rest. Given a nonnegative cost vector c ∈ R
|E|
+ , the optimal 3-terminal cut problem is to find

a 3-terminal cut of minimum cost. In this paper we consider the polyhedron LP(G,A), the linear
relaxation of the 3-terminal cuts polyhedron P(G,A). We give a characterization of the pairs (G,A)
for which LP(G,A) is integer. This result was conjectured by Cunningham in [Reliability of Compter
and Communications Networks, AMS, Providence, RI, 1991, pp. 105–120].

Key words. A-cut, polyhedron

AMS subject classifications. 90C27, 90C57

DOI. 10.1137/S0895480104445149

1. Introduction. Let G = (V,E) be an undirected graph and A = {n1, . . . , nk}
be a set of k specified nodes or terminals. A k-terminal cut, or an A-cut, is a set of
edges F ⊆ E such that the removal of F of E disconnects each terminal from all the

others. The optimal A-cut problem is, given G, A, and a cost vector c ∈ R
|E|
+ , to find

an A-cut of minimum cost.

The optimal A-cut problem arises in the minimization of communication costs in
parallel computing systems [7]. Other applications involve partitioning files among
the nodes of the network, assigning users to base computers in a multicomputer
environment, and partitioning the elements of a circuit into the subcircuits that go in
different chips [5].

For any k ≥ 3, the optimal k-terminal cut is NP-hard even if c(e) = 1 for all e ∈ E
[5]. For any fixed k the optimal k-terminal cut problem can be solved in polynomial
time on planar graphs [5]. When k = 2 the problem is reduced to the maximum flow
problem and thus can be solved in polynomial time.

In [1], Călinescu, Karloff, and Rabani gave a new linear programming relaxation
for the optimal A-cut problem and an approximation algorithm having performance
guarantee 1.5 − 1

k . For |A| = 3, Cunningham and Tang [4] gave an approximation
algorithm for the optimal A-cut problem having performance guarantee 12

11 .

The present paper concerns only the optimal A-cut problem when |A| = 3.

If G = (V,E) is a graph and F ⊆ E, the 0− 1 vector xF ∈ R
|E| with xF (e) = 1 if

e ∈ E and xF (e) = 0 if not is called the incidence vector of F . Define the polyhedron

P(G,A) = conv{xF | F is an A−cut} + R
|E|
+ .

P(G,A) is called the A-cut polyhedron. Notice that it is the dominant of the convex
hull of A-cut vectors. If c ≥ 0 then the A-cut problem is equivalent to solving the

∗Received by the editors July 13, 2004; accepted for publication (in revised form) February 6,
2005; published electronically November 15, 2005.
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linear program

min

{∑
e∈E

c(e)x(e), x ∈ P(G,A)

}
.

Chopra and Rao [2] and Cunningham [3] have studied the polyhedron P(G,A) and
given various families of facet defining inequalities.

Let G = (V,E) be a graph and a set A = {n1, n2, n3} of terminals. An A-path
is the edge set of a simple path in G from one terminal to another. An A-tree is the
edge set of a tree such that the set of degree-one nodes is a subset of A. Notice that
an A-path is also an A-tree. For the rest, when we consider an A-tree T we suppose
that the set of degree-one nodes is A (i.e., T is not an A-path). Given w ∈ R

|E| and
F ⊆ E, w(F ) will denote

∑
e∈F w(e). If F is an A-cut, then xF must satisfy the

following inequalities:

x(P) ≥ 1 for each A-path P,(1.1)

x(T ) ≥ 2 for each A-tree T .(1.2)

The inequalities (3.1) are called A-path inequalities and the inequalities (3.2) are
called A-tree inequalities. Define the polyhedron

LP(G,A) = {x ≥ 0;x satisfies (3.1) and (3.2)}.
Chopra and Rao [2] and Cunningham [3] have shown that the A-cut problem can be
formulated as

min
∑
e∈E

c(e)x(e)

s.t. x ∈ LP(G,A),

x integer.

The separation problem for inequalities (3.1) and (3.2) (i.e., the problem that consists
of finding whether a given vector x ∈ R

|E| satisfies inequalities (3.1) and (3.2), and if
not to find an inequality which is violated by x) can be solved in polynomial time [3].
This implies by the ellipsoid method [6] that the optimal A-cut problem can be solved
in polynomial time on pairs (G,A) for which LP(G,A) is integer. In [3], Cunningham
called these pairs nice pairs. In this paper we give a characterization of these pairs.

The paper is organized as follows. In the next section we give more notation and
definitions, and we give some structural properties of the extreme points of LP(G,A).
In section 3 we give a characterization of the nice pairs (G,A). Then in the fourth
section we shall prove the main theorem of this paper.

The remainder of this section is devoted to more definitions and notation.
The graphs we consider are finite and undirected. We denote a graph by G =

(V,E), where V is the node set and E is the edge set. If e is an edge with end-nodes u
and v, then we write e = (uv). If W ⊆ V , the set of edges having one end-node in W
and the other one in W = V \W is called a cut and is denoted by δ(W ). If W = {v}
for some v ∈ V , then we write δ(v) for δ(W ). The set of edges having both end-nodes
in W will be denoted E(W ). If W1, W2 are disjoint subsets of V , then [W1,W2]
denotes the set of edges of G which have one node in W1 and the other one in W2.
For U ⊆ V we denote by G(U) the induced subgraph on U (i.e., G(U) = (U,E(U)).
If F ⊆ E, then V (F ) denotes the set of nodes of F and G(F ) the subgraph of G
induced by F .
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2. Preliminaries. Let G = (V,E) be a graph and A = {n1, n2, n3} be a set of
terminal nodes. Let X be an extreme point of LP(G,A) and E0(X) be the set of
edges e such that X(e) = 0. Define

P(X) = {P an A−path | X(P) = 1} and T (X) = {T an A−tree | X(T ) = 2}.

Since X is an extreme point of LP(G,A), there must exist P∗(X) ⊆ P(X) and
T ∗(X) ⊆ T (X) such that X is the unique solution of the system S(X) defined by

S(X)

⎧⎪⎪⎨
⎪⎪⎩

x(e) = 0 ∀ e ∈ E0(X),

x(P) = 1 ∀ P ∈ P∗(X),

x(T ) = 2 ∀ T ∈ T ∗(X),

where |E0(X)| + |P∗(X)| + |T ∗(X)| = |E|.
We have the following lemmas.
Lemma 2.1. X(e) ≤ 1 for all e ∈ E.
Proof. Suppose that there exists e0 ∈ E such that X(e0) > 1. Since no path

P ∈ P(X) contains e0, there must exist T ∈ T ∗(X) such that e0 ∈ T . Let P be
the only A-path in G(T ) from n1 to n2. Without loss of generality (w.l.o.g.), we
can suppose that e0 �∈ P. As X(P) + X(e0) ≤ X(T ) = 2 and X(e0) > 1, we have
X(P) < 1. But this contradicts the fact that X ∈ LP(G,A).

Lemma 2.2. Let G = (V,E) be a graph, A = {n1, n2, n3} be a terminal set,
and X be an extreme point of LP(G,A). Suppose that there exists f ∈ E such that
X(f) = 1. Then X∗, the restriction of X to the graph G∗ = (V,E \ {f}), is an
extreme point of LP(G∗, A).

Proof. Assume that X∗ is not an extreme point of LP(G∗, A). Let S∗(X) be
the system obtained from S(X) by deleting all the equalities containing x(f) with a
nonzero coefficient. There must exist an extreme point Y of LP(G∗, A) such that Y
is a solution of S∗(X). Let X̄ ∈ R

|E| be the following solution:

X̄(e) =

{
Y (e) if e ∈ E \ {f},
1 if e = f.

Let P ∈ P∗(X) such that f �∈ P. Since the system S∗(X) contains the equation
x(P) = 1, we have X̄(P) = Y (P) = 1. Similarly, we have X̄(T ) = 2 for all T ∈ T ∗(X)
such that f �∈ T .

Let us now consider P ∈ P∗(X) such that f ∈ P. As X(f) = 1, we have X(e) = 0
for all e ∈ P \ {f}. Thus, P \ {f} ⊂ E0(X). This implies X̄(e) = Y (e) = 0 for all
e ∈ P \ {f}. Consequently, X̄(P) = 1. Let T ∈ T ∗(X) such that f ∈ T . W.l.o.g.,
we can suppose that f �∈ P, where P is the unique path in G(T ) from n1 to n2. It is
easy to see that X(P) = 1 and X(e) = 0 for all e ∈ T \ (P ∪ {f}). Since X(P) = 1
and f �∈ P, we have X̄(P) = Y (P) = 1 and X̄(e) = Y (e) = 0 for all e ∈ T \ (P ∪{f}).
Thus, X̄(T ) = 2. We conclude that X̄ is a solution of S(X), which is a contradiction,
since X̄ �= X.

Let G = (V,E) be a graph and A = {n1, n2, n3} be a terminal set. A graph G∗

is a minor of G if we can obtain it from G by deleting and contracting edges (and
deleting isolated nodes). The terminal nodes of G∗, A∗ will be defined as follows:
after deleting an edge, the terminals remain the same, and after contracting an edge
e = (uv), the new node is a terminal if and only if at least one of u, v was a terminal.
The pair (G∗, A∗) will be called a minor of (G,A).
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Theorem 2.3 (see [3]). Every minor of a nice pair is nice.
Definition 2.4 (see [3]). The pair (G,A) will be called a minimal pair if it is

not nice but all its proper minors are nice.
We have the following lemma; its proof is analogous to that of Lemma 2.2 and is

omitted.
Lemma 2.5. Let G = (V,E) be a graph, A = {n1, n2, n3} be a terminal set,

and X be an extreme point of LP(G,A). Suppose that there exists e ∈ E such that
X(e) = 0. Let (G∗, A∗) be a minor pair of (G,A) obtained from it by contracting e.
Then X∗, the restriction of X on the graph G∗, is an extreme point of LP(G∗, A∗).

An immediate consequence of Lemmas 2.2 and 2.5 is the following.
Lemma 2.6. Let (G,A) be a minimal pair and X be a noninteger extreme point

of LP(G,A). Then 0 < X(e) < 1 for all e ∈ E.
Cunningham [3] gave the two pairs, which are minimal, shown in Figure 2.1.

Fig. 2.1. Minimal pairs.

The solution X(e) = 1
2 for all e is an extreme point of LP(Ĝ1, Â1). The solution

X(e) = 1
2 if e ∈ δ({n1, n2, n3}) and X(e) = 1

4 elsewhere is an extreme point of

LP(Ĝ2, Â2)
Given a graph G = (V,E) and a set A = {n1, n2, n3} ⊂ V of terminals nodes, we

denote by Q(G,A) the polytope defined by

Q(G,A) = {x ∈ R
|E| | 0 ≤ x ≤ 1;x satisfies (3.1) and (3.2)}.

It is clear that Q(G,A) ⊂ LP(G,A) and, by Lemma 2.1, every extreme point of
LP(G,A) is also an extreme point of Q(G,A). We can also see that if X is an
extreme point of Q(G,A) such that X(e) < 1 for all e ∈ E, then X is also an extreme
point of LP(G,A).

Lemma 2.7. Let (G,A) be a minimal pair and X be a nonintegral extreme point
of Q(G,A). Then X(e) < 1 for all e ∈ E and consequently, X is an extreme point of
LP(G,A).

Proof. Let X be a nonintegral extreme point of Q(G,A). Assume that there
exists a set of edges F ⊂ E such that X(e) = 1 for all e ∈ F and X(e) < 1 for all
e ∈ E \F . Then X∗, the restriction of X to the graph G∗ = (V,E \F ), is an extreme
point of Q(G∗, A) and consequently, it is also an extreme point of LP(G,A). But this
contradicts the minimality of (G,A).

An immediate consequence of Lemma 2.7 is the following.
Lemma 2.8. Let (G,A) be a minimal pair and X be a noninteger extreme point

of LP(G,A). Let f be an edge of E such that 0 < X(e) < 1. Consider the following
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solution:

X̄(e) =

{
X(e) if e ∈ E \ {f},
1 if e = f.

Then X̄ can be written as a convex combination of integral extreme points of Q(G,A).

3. The main result. In this section we give necessary and sufficient conditions
for a pair (G,A) to be nice.

Theorem 3.1. A pair (G,A) is nice if and only if it contains neither (Ĝ1, Â1)

nor (Ĝ1, Â2) as a minor.
Note that by Theorem 2.3 we need only to prove that a minimal pair is either

(Ĝ1, Â1) or (Ĝ1, Â1). To prove this theorem we start from a minimal pair (G,A),
where G = (V,E), and a noninteger extreme point X of LP(G,A). We are going to
establish properties of (G,A) and X.

As a consequence of Lemma 2.6, we have E0(X) = ∅ and E({n1, n2, n3}) = ∅.
Proposition 3.2. The graph G(V \A) is connected.
Proof. Assume that G(V \ A) is not connected. Let U ⊂ V \ A be such that

G(U) is a connected component of G(V \ A). Since E({n1, n2, n3}) = ∅, it is easy
to see that if L ⊂ E is an A-path or an A-tree, then either L ⊂ E(U ∪ A) or
L ⊂ E(V \ U). Let X1 (resp., X2) be the restriction of X on E(U ∪ A) (resp.,
E(V \ U)). Obviously, X1 ∈ LP(G(U ∪ A), A) and X2 ∈ LP(G(V \ U), A). By
hypothesis, (G(U ∪ A), A) and (G(V \ U), A) are nice. Thus, there exists an integer
extreme point Y1 ∈ LP(G(U ∪ A), A) (resp., Y2 ∈ LP(G(V \ U), A)) such that every
tight constraint for X1 (resp., X2) is also tight for Y1 (resp., Y2). The solution Y
defined by Y (e) = Y1(e) if e ∈ E(U ∪ A) and Y (e) = Y2(e) elsewhere is a solution of
S(X), which is a contradiction since Y �= X.

Proposition 3.3. Each variable x(e) has a nonzero coefficient in at least two
equations of S(X).

Proof. It is clear that each variable x(e) must have a nonzero coefficient in at
least one of the equations of S(X). Assume that there exists an edge e0 ∈ E such that
x(e0) has a nonzero coefficient in exactly one equation of S(X), say, x(L) = p, where
p = 1 if L is an A-path and p = 2 if L is an A-tree. Let G∗ be the graph obtained from
G by deleting e0 and X∗ be the restriction of X on E \{e0}. Let S∗(X) be the system
obtained from S(X) by deleting the equation x(L) = p. By hypothesis, (G∗, A) is
nice. Since X∗ is not integer, it is not an extreme point of LP(G∗, A). Thus, there
exists an extreme point Y ∈ LP(G∗, A) such that it is a solution of S∗(X). Notice
that Y is integer. Now consider the following solution:

X̄(e) =

{
Y (e) if e �= e0,
p− Y (L \ {e0}) if e = e0.

Since Y is integer X̄ is also integer. Thus, X̄ �= X. Moreover, X̄ is a solution of
S(X), which is impossible.

Let Pninj = {P ∈ P(X); P is a path from ni to nj}, i, j ∈ {1, 2, 3}, i �= j. Note
that Pninj = Pnjni . Let us consider the four subsets V1, V2, V3, V0 = V \ (A ∪ V1 ∪
V2 ∪ V3) defined by

V1 = {v ∈ V \A | ∃ P ∈ Pn1n2 such that v ∈ V (P)},

V2 = {v ∈ V \A | ∃ P ∈ Pn2n3
such that v ∈ V (P)},
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V3 = {v ∈ V \A | ∃ P ∈ Pn1n3
such that v ∈ V (P)}.

Proposition 3.4. {V0, V1, V2, V3} is a partition of V \A.
Proof. We need only to prove that Vi ∩ Vj = ∅ for all i, j ∈ {1, 2, 3} such that

i �= j. If, say, V1 ∩ V2 �= ∅, let v be a node of v ∈ V1 ∩ V2. Therefore, there are
P1 ∈ Pn1n2 and P2 ∈ Pn2n3 such that v ∈ V (P1) ∩ V (P2). Let T ⊂ P1 ∪ P2 be
an A-tree (obviously, such A-tree exists). If there is some edge e ∈ P1 ∩ P2, then
2 ≤ X(T ) ≤ X(P1 ∪ P2) ≤ X(P1) + (P2) −X(e) = 2 −X(e) < 2, a contradiction.

Now suppose that P1 ∩ P2 = ∅. We have 2 ≤ X(T ) < X(P1 ∪ P2) ≤ X(P1) +
X(P2) = 2, a contradiction.

Proposition 3.5. P∗(X) �= ∅.
Proof. Assume the contrary. Let X̄ be the solution defined as

X̄(e) =

{
2 if e ∈ δ(n1),
0 otherwise.

Let T ∈ T ∗(X). Since |T ∩ δ(n1)| = 1, we have X̄(T ) = 2. Thus, X̄ is also a solution
of S(X). This contradicts the fact that X is the unique solution of S(X).

Proposition 3.6. T ∗(X) �= ∅.
Proof. Suppose on the contrary that T ∗(X) = ∅. Let X̄ be the solution given by

X̄(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 if e ∈ δ(n1) ∩ δ(V3),
1 if e ∈ δ(n2) ∩ δ(V1),
1 if e ∈ δ(n3) ∩ δ(V2),
0 otherwise.

X̄ is also a solution of S(X); this contradicts the extremality of X, since X̄ �= X.
Proposition 3.7. Pninj

�= ∅, i, j ∈ {1, 2, 3}, i �= j.
Proof. If, say, Pn1n2 = ∅, then let X̄ be the following solution:

X̄(e) =

{
1 if e ∈ δ(n1) ∪ δ(n2),
0 otherwise.

If P ∈ P(X) = Pn1n3 ∪ Pn2n3
, then |P ∩ (δ(n1) ∪ δ(n2))| = 1. Thus, X̄(P) = 1. Let

T ∈ T (X). Since |T ∩ (δ(n1) ∪ δ(n2))| = 2, we have X̄(T ) = 2. Thus, X̄ is also a
solution of S(X), which is a contradiction.

Since X(e) < 1 for all e ∈ E, Proposition 3.7 implies that Vi �= ∅, i = 1, 2, 3. (If,
for instance, V1 = ∅, then e0 = (n1n2) ∈ E and X(e0) = 1, which is impossible.)

Proposition 3.8. If v ∈ V \A, then |δ(v)| ≥ 3.
Proof. It is easy to see that |δ(v)| ≥ 2 for all v ∈ V \A. Assume that there exists

some u ∈ V \A such that δ(u) = {e1, e2}. Let X̄ be the solution given by

X̄(e) =

⎧⎨
⎩

X(e) if e ∈ E \ δ(u),
X(e1) + X(e2) if e = e1,
0 if e = e2.

X̄ is also a solution of S(X), which is a contradiction.
Proposition 3.9. δ(Vi) \ (δ(ni) ∪ δ(ni+1)) �= ∅, i = 1, 2, 3. (For convenience,

n4 = n1.)
Proof. The proof is an immediate consequence of Proposition 3.2.
Proposition 3.10. δ(Vi) ∩ δ(ni+2) = ∅, i = 1, 2, 3 (mod 3).



ON THE 3-TERMINAL POLYHEDRON 581

Proof. Assume, for instance, that there exists some node v1 ∈ V1 such that
f = (v1n3) ∈ E. By Lemma 2.6, X(f) < 1. Let P ∈ Pn1n2

such that v1 ∈ V (P) and
T = P ∪ {e}. T is an A-tree such that X(T ) = X(P) + X(e) = 1 + X(f) < 2, a
contradiction.

Proposition 3.11. If P is a path from ni to some node v ∈ Vi+1 (for convenience
V4 = V1), i ∈ {1, 2, 3}, then X(P ) ≥ 1.

Proof. Consider the case i = 1. (The proofs for others cases are similar.) W.l.o.g.,
we can suppose that V (P )∩V2 = {v}. It is clear that X(P ) ≥ 1 if V (P ) contains n2 or
n3. Suppose that n2, n3 �∈ V (P ). Let P ∈ Pn2n3 such that v ∈ V (P) and T = P ∪P.
Since T is an A-tree, we have X(T ) = X(P ) + X(P) ≥ 2. Thus, X(P ) ≥ 1.

Proposition 3.12. If P is a path from ni to vi+1 ∈ Vi+1 such that V (P )∩ Vi �=
∅ �= V (P ) ∩ Vi+2, then X(P ) > 1.

Proof. We consider the case i = 1. By Proposition 3.11, X(P ) ≥ 1. Suppose
that X(P ) = 1. Let v1 ∈ V (P ) ∩ V1 and v3 ∈ V (P ) ∩ V3. Suppose, w.l.o.g., that
v1 �∈ V (Pv2v3) and V (Pv2v3) ∩ V3 = {v3}, where Pv2v3 is a part of P from v2 to
v3. Since v3 ∈ V3 there must exist P ∈ Pn1n3

such that v3 ∈ V (P1). Note that
P ∩ Pv2v3 = ∅. Let Pv3n1 be a part of P from v3 to n1. Since Pv3n1 ∪ Pv2v3 is path
from n1 to v2, Proposition 3.11 gives X(Pv3n1

∪ Pv2v3
) = X(Pv3n1

) + X(Pv2v3
) ≥ 1.

Thus,

X(Pv2v3) ≥ 1 −X(Pv3n1) = X(P \ Pv3n1).(3.1)

Now let F = (P \Pv2v3)∪ (P \Pv3n1). Since G(F ) is connected and {n1, n3} ⊂ V (F ),
we have 1 ≤ X(F ) ≤ X(P ) − X(Pv2v3) + X(P \ Pv3n1). From (3.1), we obtain
1 ≤ X(F ) ≤ X(P ) = 1. Thus, X(F ) = 1 and hence F is a path from n1 to n3. Since
v1 ∈ V (F ), then by definition v1 ∈ V3. Thus, v1 ∈ V1 ∩ V3, contradicting Proposition
3.4.

Proposition 3.13. Let T ∈ T ∗(X) and v ∈ V be the unique node such that
|δ(v) ∩ T | = 3. Suppose that v ∈ Vi for a certain i ∈ {1, 2, 3}. Then T = P ∪ P ,
where P ∈ Pnini+1 and P is a path from v to ni+2 such that V (P ) ∩ Vi+1 = ∅ or
V (P ) ∩ Vi+2 = ∅.

Proof. We consider the case i = 1. Let P be the unique path in G(T ) from
n1 to n2. It is clear that v ∈ P. Let P = T \ P. Since P is a path from v to
n3, then by Proposition 3.11 X(P ) ≥ 1. This implies that X(P) = 1 and X(P ) =
1. Consequently, P ∈ Pn1n2

. By Proposition 3.12 we have V (P ) ∩ Vi+1 = ∅ or
V (P ) ∩ Vi+2 = ∅.

Proposition 3.14. Let T ∈ T ∗(X). Let v ∈ V be the unique vertex such that
|δ(v)∩T | = 3. Suppose that v ∈ V0. Let Pi be the unique path from v to ni, i = 1, 2, 3.
Then V (Pi) ⊂ V0 ∪ Vj for a certain j ∈ {i, i + 2}. Moreover, if V (Pi) ∩ Vj �= ∅, then
there exists some node u ∈ Vj such that Pi = P 1

i ∪P 2
i , where P 1

i is a path from v to u
such that V (P 1

i ) ⊂ V0∪{u} and P 2
i is a path from u to ni such that V (P 2

i ) ⊂ Vj∪{ni}.
Proof. We are going to prove the result for i = 1. Let u ∈ V (P1) \ V0 and P 1

1

be the path in G(T ) from u to n1. If u ∈ V2, then by Proposition 3.11 we have
X(P 1

1 ) ≥ 1. This implies that X(P1) > 1 and, consequently, X(P2 ∪ P3) < 1, which
is impossible since P2 ∪ P3 is a path from n2 to n3.

Suppose now, w.l.o.g., that u ∈ V1. We shall prove that V (P 1
1 ) ⊂ V1 ∪ {n1}. Let

u′ ∈ V (P 1
1 ) \ {u, n1}. Since u ∈ V1, there must exist P ∈ Pn1n2 such that u ∈ V (P).

If u′ ∈ V (P), then u′ ∈ V1. Suppose that u′ �∈ V (P). Let P∗ be the path in G(P)
from n2 to u, and let P ′ = P∗ ∪P 1

1 . It easy to see that X(P ′) = 1. Since P ′ is a path
from n1 to n2 and u′ ∈ V (P ′), by definition of V1, we have u′ ∈ V1.
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Proposition 3.15. Let T ∈ T ∗(X) and v ∈ V (T ) such that |δ(v) ∩ T | = 3.
Suppose that there are vi ∈ Vi and vj ∈ Vj, i, j ∈ {1, 2, 3}, i �= j, such that f =
(vivj) ∈ T . Then v ∈ {vi, vj}.

Proof. Suppose, on the contrary, that v �∈ {vi, vj}. W.l.o.g., suppose that i = 1
and j = 3. Let Ps be the unique path in G(T ) from ns to v, s = 1, 2, 3. We claim that
f ∈ P1. In fact, if f ∈ P2, then by Proposition 3.11 and the assumption v �∈ {v1, v3}
we will have X(P2) > 1. This implies X(P1 ∪ P3) < 1, since T = P1 ∪ P2 ∪ P3

and X(T ) = 2. But P1 ∪ P2 is a path from n1 to n3, a contradiction. By the same
arguments, we can proof that f �∈ P3. Consequently, we have f ∈ P1.

Let Pn1v1 be the unique path in G(T ) from n1 to v1. (Note that Pn1v1 ⊂ P1.)
Suppose that f ∈ Pn1v1 . (The case f �∈ Pn1v1 is similar.) Let P1 ∈ Pn1n2

such that v1 ∈ V (P1). Let Pn2v1 be the path in G(P1) from n2 to v1 and Pv1n1

be the path in G(P1) from v1 to n1. Let T1 = (T \ Pn1v1) ∪ Pv1n1 . We have,
2 ≤ X(T1) ≤ X(T ) −X(Pn1v1) + X(Pv1n1). Hence,

X(Pv1n1
) ≥ X(Pn1v1

).(3.2)

Let P ′ = Pn2v1 ∪ Pn1v1
. We have

1 ≤ X(P ′) ≤ X(Pn2v1
) + X(Pn1v1

) = X(P1) −X(Pv1n1
) + X(Pn1v1

).

This implies that

X(Pn1v1) ≥ X(Pv1n1).(3.3)

By (3.2) and (3.3), we have X(Pv1n1
) = X(Pn1v1

). We then obtain X(P ′) = 1.
Since v3 ∈ V (P ′) and P ′ ∈ Pn1n2 , we have v3 ∈ V1. Thus, v3 ∈ V1 ∩ V3, which is
impossible.

4. Proofs of Theorem 3.1. To complete the proof of our theorem we shall
distinguish two cases.

Case 1. There exists an edge f ∈ [V1, V2] ∪ [V1, V3] ∪ [V2, V3]. W.l.o.g., suppose
that f = (v1v3) ∈ [V1, V3], where v1 ∈ V1 and v3 ∈ V3.

Claim 1. We can choose S(X) such that x(f) has a nonzero coefficient in exactly
two equations of S(X).

Proof. Let T1 ∈ T ∗(X) such that f ∈ T1. By Proposition 3.15, either |δ(v1)∩T1| =
3 or |δ(v3) ∩ T1| = 3. Suppose, w.l.o.g., that |δ(v1) ∩ T1| = 3. Suppose that there is
T ′

1 ∈ T ∗(X) such that f ∈ T ′
1 and |δ(v1)∩T ′

1 | = 3. By Proposition 3.13, T1 = P1 ∪P1

and T ′
1 = P ′

1 ∪ P ′
1, where P1, P ′

1 ∈ Pn1n2 and V (P1) ∩ V2 = ∅ = V (P ′
1) ∩ V2. Since

X(P1) = X(P ′
1) = 1, we have X(P1 \ {f}) = X(P ′

1 \ {f}). It is clear that if P
is a path from n3 to v3, then X(P ) ≥ X(P1 \ {f}) = X(P ′

1 \ {f}). Otherwise,
T = P1 ∪ (P ∪{f}) would be an A-tree such that X(T ) < 2, which is impossible. Let
P∗ ∈ Pn1n3 such that v3 ∈ V (P∗). P∗ = P ∗

1 ∪ P ∗
2 , where P ∗

1 is a path from n3 to v3

and P ∗
2 is a path from v3 to n1. Clearly, X(P ∗

1 ) ≤ X(P1 \ {f}) = X(P ′
1 \ {f}). Thus,

X(P ∗
1 ) = X(P1\{f}) = X(P ′

1\{f}). Let P∗
1 = (P1\{f})∪P ∗

2 and P∗
2 = (P ′

1\{f})∪P ∗
2 .

Thus, P∗
1 , P∗

2 ∈ Pn1n3
. Hence x(T ′

1 ) = 2 is redundant with respect x(T1) = 2,
x(P1) = 1, x(P ′

1) = 1, x(P∗
1 ) = 1, and x(P∗

2 ) = 1. Consequently, one may assume
that x(T ′

1 ) = 2 does not belong to S(X). By Proposition 3.3, there is T2 ∈ T ∗(X)
such that f ∈ T2 and T2 �= T1. Thus, |δ(v3) ∩ T2| = 3. Using the same arguments
as above, we can prove that if T ∈ T ∗(X) such that |δ(v3) ∩ T | = 3 and T �= T2,
then S(X) can be chosen such that T �∈ S(X), and this completes the proof of our
claim.
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Claim 2. X(e) ∈ {α, 1 − α} for a certain α ∈]0, 1[ for all e ∈ E.
Proof. Let X̄ be the solution given by

X̄(e) =

{
X(e) if e ∈ E \ {f},
1 if e = f.

Since X̄ is not an integer (otherwise, X would be a noninteger extreme point with
one fractional component, which is impossible), by Lemma 2.6, X̄ is not an extreme
point of LP(G,A). By Lemma 2.8, there must exist t ≥ 2 integral extreme points of
Q(G,A) and t scalars 0 < λi < 1, i = 1, . . . , t, such that

X̄ =

t∑
i=1

λiYi and

t∑
i=1

λi = 1.

By Claim 1, S(X) can be chosen such that f belongs to exactly two A-trees of T ∗(X),
namely, T1 and T2. Let S∗(X) be the system obtained from S(X) by removing
x(T1) = 2 and x(T2) = 2. Clearly, Yi is a solution of S∗(X) and Yi(f) = 1 for
i = 1, . . . , t. Since X̄(T1) + X̄(T2) = 4 + 2 − 2X(f) < 6, there must exist a certain
i ∈ {1, . . . , t} such that Yi(T1) + Yi(T2) < 6. W.l.o.g., suppose that i = 1. Since
Y1 is integer, we have Y1(T1) + Y1(T2) ≤ 5. If Y1(T1) + Y1(T2) = 4, then we would
have Y1(T1) = Y1(T2) = 2. Thus, Y1 is also a solution of S(X), a contradiction.
Consequently, Y1(T1) + Y1(T2) = 5. W.l.o.g., we can suppose that Y1(T1) = 2 and
Y1(T2) = 3. Since X̄(T2) = 2+1−X(f) < 3, there must exist a certain j ∈ {1, . . . , t}
such that Yj(T2) < 3. Since Yj is integer, we have Yj(T2) = 2. Thus, j �= 1. W.l.o.g.,
suppose that j = 2. Obviously, Y2(T1) ≥ 3. Define

α =
Y2(T1) − 2

Y2(T1) − 1
and Z∗ = αY1 + (1 − α)Y2.

It is easy to check that α ∈]0, 1[ and Z∗(T1) = Z∗(T2). Thus, Z∗(T1 \ {f}) =
Z∗(T2 \ {f}). Let Z be the following solution:

Z(e) =

{
Z∗(e) if e ∈ E \ {f},
2 − Z∗(T1 \ {f}) if e = f.

Clearly Z is a solution of S(X) (we need only to check that Z(T1) = Z(T1) = 2). This
implies that X = Z. Since 0 < X(e) < 1 for all e ∈ E, we have Y1(e)Y2(e) = 0 for all
e ∈ E \ {f}. (If, for instance, there is e0 �= f such that Y1(e0) = Y2(e0) = 1, then we
would have X(e0) = 1.) Thus, X(e) ∈ {α, 1−α} for all e ∈ E \{f}. Furthermore, we
have X(f) = Z(f) = 2 − Z∗(T2 \ {f}) = 2 − (αY1(T2 \ {f}) + (1 − α)Y2(T2 \ {f}) =
2 − (2α + (1 − α)) = 1 − α.

Claim 3. |P| = 2 for all P ∈ P(X) and |T | = 4 for all T ∈ T (X).
Proof. Suppose that there is P ∈ P(X) such that |P| ≥ 3. Since X(e) ∈ {α, 1−α}

for all e ∈ E, there are at least two edges e1, e2 ∈ P such that X(e1) = X(e2).
Suppose, w.l.o.g., that X(e1) = X(e2) = α. Thus, Y1(e1) = Y1(e2) = 1. (Y1 and Y2

are defined in Claim 2.) Consequently, Y1(P) ≥ 2. This contradicts the fact that Y1

is a solution of S∗(X). By the same approach we can prove that |T | = 4.
An immediate consequence of the last claim is E(Vi) = ∅ for all i ∈ {1, 2, 3}.
Claim 4. V \A = V1 ∪ V2 ∪ V3.
Proof. Suppose that V0 = V \ (A ∪ V1 ∪ V2 ∪ V3) �= ∅. Let T0 ∈ T ∗(X) such that

E(T0) ∩ δ(V0) �= ∅. Let v0 be the only node such that |δ(v0) ∩ T0| = 3. By Claim 3
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E(T0) = {e1 = (v0ni), e2 = (v0nj), e3 = (v0u0), e4 = (u0nl)}, where {i, j, l} = {1, 2, 3}
and u0 ∈ V \ (A ∪ {v0}). Suppose, w.l.o.g., that i = 2, j = 3 and consequently l = 1.
First, we shall prove that v0 ∈ V1 ∪ V2 ∪ V3. If v0 �∈ V2, then we should have
X(e1) + X(e2) > 1. This implies that X(e1) = X(e2) (otherwise, X(e1) + X(e2) =
α + 1 − α = 1). Suppose, w.l.o.g., that X(e1) = X(e2) = α. Since X(e) = αY1(e) +
(1 − α)Y2(e) for all e ∈ E \ {f} (Y1 and Y2 are the same points defined in Claim 2),
we have Y2(e1) = Y2(e2) = 0. This contradicts that Y2 ∈ LP(G,A). Consequently,
v0 ∈ V1 ∪ V2 ∪ V3. Since E(T0) ∩ δ(V0) �= ∅, we have u0 ∈ V0.

Now consider the solution X̄ defined as

X̄(e) =

⎧⎨
⎩

X(e) if e ∈ E \ ([{u0}, V2] ∪ {e4}),
1 if e = (u0n1),
0 if e ∈ [{u0}, V2].

Let T ∈ T (X). If T ∩ ([{u0}, V2] ∪ {(u0n1)}) = ∅, then X̄(T ) = X(T ) = 2. Suppose
that T ∩ ([{u0}, V2]∪ {(u0n1)}) �= ∅. Let v be the only node such that |δ(v)∩T | = 3.
Since v ∈ V1 ∪ V2 ∪ V3, T ∩ ([{u0}, V2] ∪ {(u0n1)}) �= ∅, and |T | = 4, Proposition
3.13 implies that T = {(vn2), (vn3), (vu0), (u0n1) ∈ T and X(vu0) + X(u0n1) = 1.
Thus, X̄(T ) = X(T ) = 2. Consequently, X̄ is also a solution of S(X), which is
impossible.

Claim 5. [V1, V2] �= ∅ �= [V2, V3].

Proof. As V0 = ∅, by Proposition 3.2 we have [V1, V2] ∪ [V2, V3] �= ∅. Suppose,
w.l.o.g., that [V2, V3] �= ∅. If [V1, V2] = ∅, then the solution defined by

X̄(e) =

{
1 if e ∈ δ(n3) ∪ [V2, V3] ∪ [{n2}, V1],
0 otherwise,

is also a solution of S(X), a contradiction.

Claim 6. G(V1 ∪ V2 ∪ V3) is a Hamilton cycle.

Proof. Let L = |E(V1 ∪V2 ∪V3)|. By Claim 3, |E| = 2(|V1|+ |V2|+ |V3|) +L. For
every v ∈ V1 ∪ V2 ∪ V3, P = δ(v) ∩ δ({n1, n2, n3}) is an A-path such that X(P ) = 1.
Every e ∈ E(V1 ∪ V2 ∪ V3) belongs to exactly two A-trees of T ∗(X). Thus, by using
Claims 3 and 4, |T ∗(X)| = 2L. It is not hard to see that we can choose S(X) such
that P∗(X) = P(X). Since X is the unique solution of S(X), we then have |E| =
|P∗(X)|+ |T ∗(X)| = 2(|V1|+ |V2|+ |V3|)+L. This implies that L = |V1|+ |V2|+ |V3|.

Now we are going to show that |δ(v)∩E(V1∪V2∪V3)| = 2 for all v ∈ V1∪V2∪V3.
First, let us prove that |δ(v)∩E(V1 ∪V2 ∪V3)| ≥ 2. Since G(V \A) = G(V1 ∪V2 ∪V3)
is connected, |δ(v)∩E(V1 ∪ V2 ∪ V3)| ≥ 1. Suppose that there exists u ∈ V1 ∪ V2 ∪ V3

such that δ(u) ∩ E(V1 ∪ V2 ∪ V3) = {(uv)}, where v ∈ (V1 ∪ V2 ∪ V3) \ {u}. W.l.o.g.,
suppose that u ∈ V2 and v ∈ V3. Let us consider the graph G′ obtained from G by
deleting the set of edges {(un2), (un3), (uv)}. Let X ′ be the restriction of X to G′.
By hypothesis, (G′, A) is a nice pair. So there must exist an integral extreme point
Y ′ ∈ LP(G′, A) such that every tight constraint for X ′ is also tight for Y ′. Let Y be
the solution given by

Y (e) =

⎧⎨
⎩

Y ′(e) if e ∈ E \ δ(u),
Y ′(vn3) if e ∈ {(un3), (uv)},
Y ′(vn1) if e = (un2).

Y is also a solution of S(X), a contradiction.
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Now suppose that there exists s ∈ V1∪V2∪V3V3 such that |δ(v)∩E(V1∪V2∪V3)| ≥
3. We have

2L =
∑

v∈(V1∪V2∪V3)\{s}
|[{v}, V1 ∪ V2 ∪ V3]| + |[{s}, V1 ∪ V2 ∪ V3]|

≥ 2(L− 1) + 3 = 2L + 1,

a contradiction. We have proved that |δ(v)∩E(V1∪V2∪V3)| = 2 for all v ∈ V1∪V2∪V3.
Since G(V1 ∪V2 ∩V3) is connected, we then obtain that G(V1 ∪V2 ∪V3) is a Hamilton
cycle.

Consequently, (Ĝ1, Â1) is a minor of (G,A). Thus, (G,A) = (Ĝ1, Â1) since (G,A)
is minimal.

Case 2. [V1, V2] ∪ [V1, V3] ∪ [V2, V3] = ∅.
Since G(V \A) is connected (Proposition 3.2), we have V0 = V \(A∪V1∪V2∪V3) �=

∅. If G(V0) is connected, then (Ĝ2, Â2) is a minor of (G,A). Thus, (G,A) = (Ĝ2, Â2).
Suppose that G(V0) is not connected. Since G(V \ A) is connected, there must

exist V ′
k ⊆ Vk, V

′
s ⊆ Vs, {k, s} ⊂ {1, 2, 3} and k �= s, and V 1

0 ⊂ V0 such that V ′
k (resp.,

V ′
s ) induces a connected component of G(Vk) (resp., G(Vs)) and for all v ∈ V 1

0 there
is a path P from some node uk of V ′

k to some node us of V ′
s such that v ∈ V (P) and

V (P) \ {uk, us} ⊂ V 1
0 . Suppose, w.l.o.g., that k = 1 and s = 3.

Let V ′
2 be a subset of V2 such that G(V ′

2) is a connected component of G(V2).
If there is a path P from some node v0 ∈ V 1

0 to some node v2 ∈ V ′
2 such that

V (P)∩ (V ′
1 ∪V ′

3) = ∅, then (Ĝ2, Â2) is a minor of (G,A). Thus, (G,A) = (Ĝ2, Â2). If
there exist a path P1 from some node of V ′

2 to some node of V ′
1 and a path P2 from

some node of V ′
2 to some node of V ′

3 such that V (P1) ∩ V ′
3 = ∅ = V (P2) ∩ V ′

1 = ∅,
then (Ĝ1, Â1) is a minor of (G,A). And hence (G,A) = (Ĝ1, Â1) .

Suppose now, w.l.o.g., that if P is a path from some node of V ′
2 to some node of

V ′
3 , then V (P) ∩ V ′

1 �= ∅. Let V 2
0 be a set of nodes v ∈ V0 such that there exists a

path P from some node of V ′
1 to some node of V ′

2 and v ∈ V (P).
Let f1 = (v1

0v
′
1), where v1

0 ∈ V 1
0 and v′1 ∈ V ′

1 . Since v′1 ∈ V1, there exists a
path P0 ∈ Pn1n2

such that v′1 ∈ V (P0). Let U1 (resp., U2) be the subset of nodes
v ∈ V ′

1 \ V (P0) such that there exists a path P from v to some node of V ′
3 (resp.,

V ′
2) and V (P) ∩ V (P0) = ∅. Let U3 = V ′

1 \ (V (P0) ∪ U1 ∪ U2). If U1 ∩ U2 �= ∅, then

(Ĝ2, Â2) is a minor of (G,A). By minimality of (G,A), (G,A) = (Ĝ2, Â2).
So we can assume from now on that Ui ∩ Uj = ∅ and [Ui, Uj ] = ∅ for all i, j ∈

{1, 2, 3}, i �= j. Before ending the second part of our proof we need to establish the
three following claims.

Claim 7. We can choose S(X) such that if P ∈ Pn1n2 , then V (P) ∩ V ′
1 ⊂

V (P0) ∪ Uk for a certain subscript k ∈ {1, 2, 3}.
Proof. Consider a pair u, ū of V (P)∩V (P0) such that V (P0)∩V (Pu) = {u, ū} and

V (Pu)\{u, ū} �= ∅, where Pu is the unique path in G(P) from u to ū. Since Ui∩Uj = ∅
and [Ui, Uj ] = ∅ for all i, j ∈ {1, 2, 3}, i �= j, we must have V (Pu) \ {u, ū} ⊂ Uk for a
certain subscript k ∈ {1, 2, 3}. Let Pu = (P0 \P )∪Pu, where P is the unique path in
G(P0) from u to ū. It is easy to see that Pu ∈ Pn1n2

and V (Pu) ∩ V ′
1 ⊂ V (P0) ∪ Uk.

The equation x(P) = 1 can be obtained from x(P0) = 1 and x(Pu) = 1 for every pair
(u, ū) described as above.

Claim 8. We can choose S(X) such that if T ∈ T ∗(X) and V (T )∩V ′
1 �= ∅, then

V (T ) ∩ V ′
1 ⊂ V (P0) ∪ Uk for a certain subscript k ∈ {1, 2, 3}.

Proof. Let T ∈ T ∗(X) and v be the only node such that |δ(v)∩T | = 3. If v ∈ V ′
1 ,

then by Proposition 3.13, T = P ∪ P , where P ∈ Pn1n2
and P is the unique path in
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G(T ) from v to n3. First, suppose that v ∈ V (P0). Let T ′ = P0∪P . Clearly, we have
X(T ′) = 2. Thus, the equation x(T ) = 2 can be obtained from x(T ′) = 2, x(P0) = 1
and x(P) = 1. Suppose now that v ∈ Uk for some k ∈ {1, 2, 3}. Let Pk be the unique
path in G(P ∪ P0) from n1 to n2 such that V (P) ∩ Uk ⊂ V (Pk), and T ∗ = Pk ∪ P .
It is easy to see that X(T ∗) = 2 and X(Pk) = 1. Thus, the equation x(T ) = 2 can
be obtained from x(T ∗) = 2, x(Pk) = 1 and x(P) = 1. In both cases, by Claim 7, we
can choose S(X) such that V (P) ∩ V ′

1 ⊂ V (P0) ∪ Uj for a certain j ∈ {1, 2, 3}.
So suppose that v �∈ V ′

1 . Let u be the only node in V (T )∩V ′
1 such V (Pvu)∩V ′

1 =
{u}, where Pvu is the unique path in G(T ) from v to u. Let P̄ = T ∩ (E(V ′

1) ∪
[V ′

1 , {n1, n2}]. P̄ is a path from u to one of the two nodes n1 and n2. Suppose,
w.l.o.g., that P̄ is from u to n2. Since u ∈ V1, there must exist a path Pu ∈ Pn1n2

such that u ∈ V (Pu). Let P1
u (resp., P2

u) be the path in G(Pu) from n2 to u (resp.,
from u to n1). We have X(P1

u) = X(P̄ ) and P ∗ = P̄ ∪ P2
u ∈ Pn1n2 . Thus, T ∈ T (X)

(i.e., T is an A-tree such that X(T ) = 2), where T = (T \ P̄ ) ∪ P1
u. The equation

x(T ) = 2 can be obtained from x(T ) = 2, x(Pu) = 1 and x(P ∗) = 1. The result thus
follows from Claim 7.

Let S1 (resp., S2) be the set of nodes v ∈ V \ (A∪V (P0)) such that there is some
path P in G \A from v to some node of U1 (resp., U2) such that V (P) ∩ V (P0) = ∅.
(We consider that Ui ⊂ Si, i = 1, 2.) Let S3 = V \ (A ∪ S1 ∪ S2 ∪ V (P0)). Note
that V ′

3 ⊂ S1 and V ′
2 ⊂ S2. Let Ei = E(Si ∪ A ∪ Ui ∪ V (P0)), i = 1, 2, 3. Thus,

Ei ∩Ej ⊆ E(V (P0)) for i, j ∈ {1, 2, 3}, i �= j. If L ∈ P∗(X)∪T ∗(X), then by Claims
7 and 8, L ⊂ Ek for a certain k ∈ {1, 2, 3}.

Claim 9. E(V (P0)) = P0.
Proof. Suppose that there exists e = (uv) ∈ E(V (P0)) \ P0. Let P be the

unique path in G(P0) from u to v. Since (P0 \ P ) ∪ {e} is a path from n1 to n2,
we have X(e) ≥ X(P ). Since X is an extreme point of LP(G,A), there must exist
L ∈ P∗(X) ∪ T ∗(X) such that e ∈ L. Let Le = (L \ {e}) ∪ P . Since X(L) =
X(e) + X(L \ {e}) ≤ X(Le) ≤ X(P ) + X(L \ {e}), we have X(e) ≤ X(P ). Thus,
X(e) = X(P ) and Le ∈ P(X)∪T (X). Let Ḡ be the graph obtained from G by deleting
e and X̄ be the restriction of X to E \ {e}. Since X̄ ∈ Q(Ḡ, A) and X̄(f) < 1 for all
f ∈ E \ {e}, then X̄ is not an extreme point of Q(G,A). Otherwise, X̄ also would
be an extreme point of LP(Ḡ, A), which is impossible since (G,A) is minimal. Hence,
there must exist an extreme point Ȳ of Q(Ḡ, A) such that every tight constraint for
X̄ is also tight for Ȳ . Let X ′ be the solution defined by

X ′(f) =

{
Ȳ (f) if f ∈ E \ {e},
Ȳ (P ) if f = e.

X ′ is also a solution of S(X), which is impossible since X ′ �= X.
Let ei be an edge of Ei \ P0, i = 1, 2, and e0 be the only edge in δ(n2) ∩ P0. Let

Xi, i = 1, 2, be the solutions defined by

Xi(e) =

{
X(e) if e ∈ E \ {ei},
1 if e = ei.

Since (G,A) is a minimal pair and X1 is not integral, it is not an extreme point of
LP(G,A). Hence, there exist t ≥ 2 integral extreme points X1

1 , . . . , X
t
1 of Q(G,A)

and t scalars 0 < αk < 1, k = 1, . . . , t, such that

X1 =

t∑
k=1

αkX
k
1 and

t∑
k=1

αk = 1.
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Every tight constraint for X1 is also tight for Xk
1 , k = 1, . . . , t. In particular, we

have Xk
1 (P0) = 1, k = 1, . . . , t. Since 0 < X1(e0) < 1, there must exist a certain j ∈

{1, . . . , t} such that Xj
1(e0) > 0. Since Xj

1 is integral, then Xj
1(e0) = 1. Thus, Xj

1(e) =
0 for all e ∈ P0 \ {e0}. W.l.o.g., suppose that j = 1. By the same arguments, there
must exist an integral extreme point X1

2 ∈ Q(G,A) such that every tight constraint
by X2 is also tight by X1

2 , X1
2 (e0) = 1 and X1

2 (e) = 0 for all e ∈ E(P0) \ {e0}. Let Y
be the solution defined by

Y (e) =

{
X1

1 (e) if e ∈ E2 ∪ E3,
X1

2 (e) if e ∈ E1.

We can easily see that Y is also a solution of S(X). Since Y �= X, this contradicts
the fact that X is the unique solution of S(X). This ends the proof of our theorem.
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A BROOKS-TYPE THEOREM FOR THE GENERALIZED LIST
T -COLORING∗

JIŘÍ FIALA† , DANIEL KRÁL’† , AND RISTE ŠKREKOVSKI‡

Abstract. We study the notion of a generalized list T -coloring which is a common generalization
of the channel assignment problem and the T -coloring. An instance of the generalized list T -coloring
is described by a triple (G,Λ, t), where G is a graph, Λ is a mapping which assigns the vertices
of G lists of numbers (colors), and t is a mapping which assigns each edge of G a set of forbidden
differences. We require that 0 ∈ t(e) for each edge e of G. The goal is to find a labeling c of the
vertices of G with c(v) ∈ Λ(v) for each vertex v, and |c(u)− c(v)| �∈ t(uv) for each edge uv of G. An
instance is balanced if the size of the list Λ(v) for each vertex v is equal to the sum of the sizes of
t(e) for edges e incident with v.

We state and prove a Brooks-type theorem for the generalized list T -coloring problem. This
generalizes and unifies the previously known Brooks-type theorems for the channel assignment prob-
lem and for the T -coloring. The theorem characterizes balanced instances of the generalized list
T -coloring with a good labeling. As a consequence, if G is a connected graph different from a Gallai
tree, then all balanced instances on G have good labelings.

Key words. graph coloring, channel assignment problem, T -coloring, Brooks’ theorem
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1. Introduction. In this paper, we study a common generalization of the graph
coloring, the list coloring, the T -coloring, and the (list) channel assignment problem.
We call this coloring problem the generalized list T -coloring. Our approach unifies
several previously known Brooks-type results, in particular [4, 10, 14, 22]. The ad-
dressed coloring problem was suggested by Hale [8] under the name of “frequency
constrained channel assignment problem” as a model for assigning frequencies to ra-
dio transmitters. The generalized list T -coloring is a more flexible model for frequency
assignment problems compared to the channel assignment problem because it has an
additional capability: you may prevent every pair of transmitters from assigning fre-
quencies which have certain special differences. E.g., the choice T = {0, 7, 14, 15}
gives a model for interferences for the UHF standard television transmitters [13].

An instance of the generalized list T -coloring is described by a triple (G,Λ, t)
where G is a graph, Λ : V (G) → 2N, and t : E(G) → 2N, where N denotes the set of
all nonnegative integers. In the rest, we write V (G) and E(G) for the vertex set and
the edge set of a graph G. The elements of the sets Λ(v) are called colors and the
elements of the set t(e) are called forbidden differences for the edge e. The function
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t must satisfy 0 ∈ t(e) for each edge e ∈ E(G) (this condition is more essential than
it might seem at the first sight; see our concluding remarks in section 6, in particular
an example given in Proposition 6.2). An instance of the generalized list T -coloring is
also called a generalized list T -coloring problem. The goal of the problem is to find a
mapping c : V (G) → N with c(v) ∈ Λ(v) for each v ∈ V (G) and |c(x) − c(y)| �∈ t(xy)
for each edge xy ∈ E(G). Such a mapping is called a good labeling.

The t-degree degt(v) of a vertex v is equal to the sum
∑

vw∈E(G) |t(vw)|. An

instance (G,Λ, t) is called balanced if |Λ(v)| = degt(v) holds for each vertex v ∈ V (G).
The problem is called overbalanced if |Λ(v)| ≥ degt(v) holds for each v ∈ V (G) and
the inequality is strict for least at one vertex. The main result of this paper can be
summarized as follows: every overbalanced instance of the generalized list T -coloring
problem allows a good labeling (Theorem 3.1), and a complete description of balanced
instances with no good labelings (Theorem 5.1) is provided. In particular, we show
that if G is a connected graph distinct from a Gallai tree, then all balanced instances
(G,Λ, t) allow a good labeling. Recall that a Gallai tree is a connected graph whose
every block is an odd cycle or a complete graph.

We now explain how our results translate to the other coloring concepts mentioned
above:

Graph coloring. An instance of the generalized list T -coloring problem corresponds
to an instance of the usual graph k-coloring if Λ is the function constantly
equal to {1, . . . , k} and t is the function constantly equal to {0} at every
edge. Theorem 3.1 translates to the well-known inequality χ(G) ≤ Δ(G) + 1
and Theorem 5.1 to Brooks’ theorem [4]. An elegant short proof of Brooks’
theorem was given by Lovász [14]. An extension of Brooks’ theorem to hy-
pergraphs can be found in [9].

List coloring. The list coloring is a variant of the graph coloring where each vertex
has to be assigned a color from its list [12, 20]. In our setting, Λ is just
the function assigning lists of colors to the vertices and t is again a constant
mapping equal to {0} at every edge. Theorem 3.1 translates to the claim
that each graph G is (Δ(G) + 1)-choosable and Theorem 5.1 coincides with
Brooks-type theorems for choosability and the list coloring from [2, 3, 6, 21].
Another theorem for the list coloring in the spirit of Brooks’ theorem can be
found in [11].

T -coloring and list T -coloring. In the T -coloring, the goal is to assign numbers (col-
ors) to the vertices of a graph in such a way that the difference between the
numbers assigned to two adjacent vertices does not belong to a certain fixed
set of integers T (the set of forbidden differences); see [1, 13, 18, 23]. It is
required that 0 ∈ T . This condition assures that each T -coloring is also a
coloring in the usual sense. In the list T -coloring, each vertex is also equipped
with a list of available numbers (colors) and the assigned color must belong to
the prescribed list. The generalized list T -coloring restricts to the T -coloring
and the list T -coloring when the function t is a constant function equal to the
set T . Our Theorem 5.1 for such a function t is just the Brooks-type theorem
for the list T -coloring proved by Waller [22]: a 2-connected graph G is not
(|T | · Δ(G))-T -choosable if and only if T is an arithmetic set and G is either
a complete graph or an odd cycle. A set A of integers is called an arithmetic
set with a difference d if A = {0, d, 2d, . . . , d(k− 1)} for some integer k. Note
that a set {0} is arithmetic for all possible differences.

(List) channel assignment problem. Instances of the channel assignment problem are
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graphs with edges labeled by positive integers. The numbers assigned to
adjacent vertices must differ by at least the weight of the edge between the
vertices [15]. The notion of the channel assignment problem also includes
a so-called L(p, q)-labeling problem in which numbers assigned to adjacent
vertices must differ by at least p and numbers assigned to vertices at distance
two by at least q; see [5, 7, 19]. Theorem 3.1 translates to a counterpart
of the inequality χ ≤ Δ + 1 for the channel assignment problem proved by
McDiarmid [16] and Theorem 5.1 extends the Brooks-type theorem for the
list channel assignment problem from [10].

2. Preliminaries. We write A � B for the union of disjoint sets A and B; this
notation is used only to emphasize that the sets A and B are disjoint. Arithmetic
sets are often considered in the paper, so we define Ard(k) = {0, d, 2d, . . . , d(k − 1)}.
For a set A of integers and an integer k0, A + k0 denotes the set {k + k0 | k ∈ A}.
If convenient, we use k0 + A instead of A + k0. Similarly, A − k0 denotes the set
{k − k0 | k ∈ A} and k0 −A denotes the set {k0 − k | k ∈ A}.

Let (G,Λ, t) be a generalized list T -coloring problem, v a vertex of a graph G,
and α an element of Λ(v). We say that the problem (G′,Λ′, t′) = (G,Λ, t)[v → α] is
obtained from the problem (G,Λ, t) by assigning the color α to the vertex v. Formally,
(G′,Λ′, t′) is the following problem:

• G′ = G \ v is the subgraph of G induced by the vertex set V (G) \ {v}; i.e.,
V (G′) = V (G) \ {v} and E(G′) = {ww′ | ww′ ∈ E(G) & w,w′ ∈ V (G′)}.

• For each vertex w of G′, the list Λ′(w) is a subset of Λ(w) consisting of the
colors which do not conflict with the color assigning to the vertex v. Formally,
Λ′(w) = {k | k ∈ Λ(w) & |k − α| �∈ t(vw)}.

• The function t′ is the restriction of the function t to E(G′); i.e., t′(e) = t(e)
for all e ∈ E(G′).

Clearly, the problem (G′,Λ′, t′) = (G,Λ, t)[v → α] has a good labeling if and only if
the original problem (G,Λ, t) has a good labeling c with c(v) = α. For a generalized
list T -coloring problem (G,Λ, t), Λmin and Λmax denote the minimal and the maximal
colors contained in the union

⋃
v∈V (G) Λ(v) of all lists.

The following lemma illustrates the just introduced notation.

Lemma 2.1. If (G,Λ, t) is a balanced generalized list T -coloring problem, α is
Λmin or Λmax, and v is an arbitrary vertex of G with α ∈ Λ(v), then the problem
(G,Λ, t)[v→α] is balanced or overbalanced. In particular, if there is a neighbor v′ of
v with that α �∈ Λ(v′), then (G,Λ, t)[v→α] is overbalanced.

Proof. By symmetry, it is enough to prove the lemma for α = Λmin. The as-
signment of the color Λmin to the vertex v reduces the size of the list Λ(v′) of each
neighbor v′ of the vertex v by at most |t(vv′)|. Namely, only the elements of the set
t(vv′) + Λmin can be removed. Observe that the t-degree of v′ in (G,Λ, t)[v→α] is
degt(v

′) − |t(vv′)|. Thus, if (G,Λ, t) is balanced and t(vv′) + Λmin ⊆ Λ(v′) for each
neighbor v′ of v, then the new problem is balanced, too. If the latter condition is
not satisfied for some neighbor v′ of v, then the size of the list of v′ is decreased by
at most |t(vv′)| − 1, and thus the new problem is overbalanced. In particular, this
happens if Λmin �∈ Λ(v′).

3. The counterpart of the inequality χ ≤ Δ + 1. In this section, we prove
the counterpart of the well-known graph inequality χ ≤ Δ + 1.

Theorem 3.1. An overbalanced generalized list T -coloring problem (G,Λ, t) has
a good labeling whenever G is a connected graph.
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Proof. The proof is by induction on the number of vertices of G. If |V (G)| = 1,
then Λ(v) �= ∅ for the single vertex v of G, and hence (G,Λ, t) has a good labeling.
Assume in the rest that |V (G)| ≥ 2. Let Vmin be the set of vertices v of G such that
Λmin ∈ Λ(v), and let v0 be a vertex of G with degt(v0) < |Λ(v0)|. In the proof, we
distinguish three cases with respect to the vertex v0 and the set Vmin.

If Vmin contains a vertex v which is not a cut-vertex of G and v �= v0, then assign
the color Λmin to the vertex v and obtain an overbalanced problem (G′,Λ′, t′) =
(G,Λ, t)[v→Λmin]. Since G′ is connected, the problem (G′,Λ′, t′) has a good labeling
by the induction hypothesis. Hence, the problem (G,Λ, t) has a good labeling, too.

If the first case does not hold and |Vmin| ≥ 2, it can be easily seen that Vmin

contains a cut vertex v, v �= v0, with the following property: if K is the component
of G \ v which contains the vertex v0, then each component of G \ v distinct from
K contains no vertices of Vmin. Consider now the problem (G′,Λ′, t′) obtained by
assigning the color Λmin to the vertex v. The problem (G′,Λ′, t′) restricted to the
component K is overbalanced because K contains the vertex v0. The corresponding
problems obtained by restricting to the other components are also overbalanced: each
of the other components contains a neighbor of v whose list Λ(v) does not contain
the color Λmin. Each of these restricted problems is overbalanced by Lemma 2.1 and
its underlying graph is connected. Hence, they all have good labelings, and thus the
generalized list T -coloring problem (G,Λ, t) also has a good labeling.

The remaining case is Vmin = {v0}. Consider now the problem (G′,Λ′, t′) obtained
by assigning the color Λmin to v0 and its restrictions to all the components of G \ v0.
Each of these restrictions is overbalanced by Lemma 2.1 because v0 is the only vertex
whose list contains the color Λmin. By the induction hypothesis, all of them have
good labelings, and thus the problem (G,Λ, t) has a good labeling, too.

4. The case of 2-connected graphs. In this section, we characterize balanced
generalized list T -coloring problems (G,Λ, t) with 2-connected graphs G which have
no good labelings. These results are then used in section 5 where a characterization of
all balanced generalized list T -coloring problems with no good labeling is presented.

Lemma 4.1. Let (G,Λ, t) be a balanced generalized list T -coloring problem such
that G is 2-connected. If there is a vertex v such that Λmin �∈ Λ(v) or Λmax �∈ Λ(v),
then the problem (G,Λ, t) has a good labeling.

Proof. By symmetry, it is enough to prove the lemma for the case that Λmin

is not contained in all lists. In such case, since G is connected, there must be ad-
jacent vertices v and w such that Λmin �∈ Λ(v) and Λmin ∈ Λ(w). The problem
(G,Λ, t)[w→Λmin] is overbalanced by Lemma 2.1. And since G \ w is a connected
graph, it follows from Theorem 3.1 that (G,Λ, t)[w→Λmin] has a good labeling. Thus,
the original problem (G,Λ, t) has a good labeling, too.

The following well-known lemma can be found in [17, Lemma 1.15].
Lemma 4.2. Every 2-connected graph G, which is neither a cycle nor a com-

plete graph, contains three vertices x, y, and z such that x and y are neighbors of z,
the vertices x and y are nonadjacent, and the graph G \ {x, y} is connected.

Lemma 4.2 allows us to focus on the problems where G is either an odd cycle or
a complete graph. The next lemma deals with balanced generalized list T -coloring
problems whose underlying graphs are 2-connected but they are neither odd cycles
nor complete graphs. The cases of odd cycles and complete graphs are considered in
separate subsections later.

Lemma 4.3. If a balanced generalized list T -coloring problem (G,Λ, t) does not
have a good labeling and G is 2-connected, then G is either an odd cycle or a complete
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graph.

Proof. Suppose G is neither an odd cycle nor a complete graph and (G,Λ, t) does
not have a good labeling. By Lemma 4.1, the color Λmin is contained in the list Λ(v)
for every vertex v ∈ V (G). Let us first consider the case that G is an even cycle. Let
v1, . . . , vn be the vertices of the cycle G enumerated in a cyclic order. Let ki be a
color of Λ(vi) \ ((t(vi−1vi) + Λmin)∪ (t(vivi+1) + Λmin)) for each 1 ≤ i ≤ n. Since the
problem is balanced (recall that 0 ∈ t(vi−1vi) ∩ t(vivi+1)), such a number ki always
exists. Then we can define a good labeling c as follows:

c(vi) =

{
Λmin if i is odd,
ki otherwise.

The remaining case is that the graph G is neither a complete graph nor a cycle.
Let x, y, and z be vertices of G with the properties as described in the statement
of Lemma 4.2. Recall that the color Λmin is contained in the list Λ(v) of every
vertex v ∈ V (G). Consider now the problem (G′,Λ′, t′) obtained from (G,Λ, t)
by assigning the color Λmin to the vertices x and y. By Lemma 2.1, the prob-
lem (G,Λ, t)[x→Λmin] is balanced and the color Λmin for (G,Λ, t)[x→Λmin] is not
contained in the list of z. Note that z is a neighbor of y. Hence, the problem
(G′,Λ′, t′) = ((G,Λ, t)[x→Λmin])[y→Λmin] is overbalanced by Lemma 2.1. However,
the problem (G′,Λ′, t′) has a good labeling by Theorem 3.1, and thus the original
problem (G,Λ, t) has a good labeling, too.

The following lemma is a corollary of the Brooks-type theorem for the T -coloring
proved by Waller [22, Lemma 7]. We provide here its complete proof for the sake of
completeness.

Lemma 4.4. If (K2,Λ, t) is a balanced generalized list T -coloring problem with
K2 = uv, then (K2,Λ, t) admits no good labeling if and only if t(uv) is arithmetic and
Λ(u) = Λ(v) = Λmin + t(uv).

Proof. By Lemma 4.1, it holds that Λmin ∈ L(u) and Λmin ∈ L(v). If Λ(u) �=
Λmin + t(uv), then there is a good labeling which assigns Λmin to v and a color of
Λ(u) \ (Λmin + t(uv)) to u. Hence, Λ(u) = Λmin + t(uv), and similarly, Λ(v) =
Λmin + t(uv).

If t(uv) is not arithmetic, then K2 has a good labeling from any pair of lists of size
|t(uv)|; let 0 = i1 < i2 < · · · < ik be the elements of t(uv) = Λ(u)−Λmin = Λ(v)−Λmin

and let k0 be the largest index such that the set {i1, . . . , ik0} is arithmetic. Since
t(uv) is not arithmetic, we have 2 ≤ k0 < k. Observe now that ik0+1 − i2 �∈ t(uv)
by the choice of k0. However, the labeling c that is defined as c(u) = Λmin + i2 and
c(v) = Λmin + ik0+1 is good.

4.1. The case of odd cycles. Throughout this subsection, we consider cycles
Cn of odd length n. The vertices of a cycle Cn are denoted by v1, . . . , vn. In the
next lemma, we study a possible structure of sets t(e) in balanced generalized list
T -coloring problems (Cn,Λ, t) with no good labelings.

Lemma 4.5. Let (Cn,Λ, t) be a balanced generalized list T -coloring problem where
Cn is an odd cycle. If the set t(e) is not arithmetic for an edge e of Cn or Λmax−Λmin ∈
t(e), then the problem (Cn,Λ, t) has a good labeling.

Proof. Suppose that (Cn,Λ, t) does not have a good labeling. We may assume
that the colors Λmin and Λmax are contained in all the lists Λ(v), v ∈ V (Cn) by
Lemma 4.1. Assume that the edge e from the statement of the lemma is the edge
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v1v2. We first define a sought good labeling c for vertices v3, . . . , vn as follows:

c(vi) = Λmin for i = 3, 5, . . . , n and
c(vi) ∈ Λ(vi) \ ((Λmin + t(vi−1vi)) ∪ (Λmin + t(vi+1vi))) for i = 4, 6, . . . , n− 1.

Note that the set Λ(vi) \ ((Λmin + t(vi−1vi)) ∪ (Λmin + t(vi+1vi))) is nonempty for
each i = 4, 6, . . . , n− 1 because the problem (Cn,Λ, t) is balanced and 0 ∈ t(vi−1vi)∩
t(vi+1vi).

Consider now the problem (G′,Λ′, t′) obtained by assigning the color c(vi) to
every vertex vi for i = 3, . . . , n. Note that G′ is isomorphic to K2 (it is just the
edge v1v2) and the problem (G′,Λ′, t′) is balanced or overbalanced (follow the proof
of Lemma 4.1). If t(e) is not arithmetic, then the problem (G′,Λ′, t′) has a good
labeling by Lemma 4.4. Otherwise, Λmax − Λmin ∈ t(e) = t′(e) by the assumption of
the lemma. Since the vertices v3 and vn are colored with Λmin, the colors contained
in the list Λ′(v1) and Λ′(v2) are integers between Λmin + 1 and Λmax. Hence, the
problem (G′,Λ′, t′) has a good labeling by Lemma 4.4 in this case, too. Thus, the
original problem (G,Λ, t) has a good labeling in both the cases.

The following lemma relates contents of lists Λ(v) to sets t(e) for balanced gen-
eralized list T -coloring problems (Cn,Λ, t) with no good labelings.

Lemma 4.6. If (Cn,Λ, t) is a balanced generalized list T -coloring problem with
no good labeling, then the following equalities hold for each i, 1 ≤ i ≤ n (indices are
taken modulo n):

Λ(vi) = (Λmin + t(vi−1vi)) � (Λmax − t(vivi+1))(4.1)

= (Λmin + t(vivi+1)) � (Λmax − t(vi−1vi)).(4.2)

Proof. By Lemma 4.1, each list Λ(vi) contains both the colors Λmin and Λmax.
In addition, by Lemma 4.5, there is no edge e = vivi+1 with Λmax − Λmin ∈ t(e).
Suppose that there is a vertex vi whose list L(vi) does not satisfy the equality of
(4.1), i.e., either the sets Λmin + t(vi−1vi) and Λmax − t(vivi+1) are not disjoint or
Λ(vi) �= (Λmin + t(vi−1vi)) � (Λmax − t(vivi+1)). Since the problem is balanced,
the size of the list L(vi) is |t(vi−1vi)| + |t(vivi+1)| and there is a color k such that
k ∈ Λ(vi) \ ((Λmin + t(vi−1vi)) ∪ (Λmax − t(vivi+1))) in both the cases. Consider now
the following labeling c (indices are taken modulo n):

c(vj) =

⎧⎨
⎩

k for j = i,
Λmin for j = i + 2, i + 4, . . . , i− 1,
Λmax for j = i + 1, i + 3, . . . , i− 2.

The labeling c is good by the choice of the color k and the fact that Λmax−Λmin �∈ t(e)
for all edges e of the cycle. The equality (4.2) can be proven analogously.

Before stating Theorem 4.7, we define three special types of vertices for the prob-
lems whose underlying graphs are cycles. Let (Cn,Λ, t) be a balanced generalized list
T -coloring problem. We say that the vertex vi is of the first, second, or third type if
it satisfies the following condition 1, 2, or 3, respectively:

1. t(vi−1vi) = t(vivi+1) is arithmetic and Λ(vi) = (Λmin + t(vi−1vi)) � (Λmax −
t(vi−1vi)).

2. The sets t(vi−1vi) and t(vivi+1) are arithmetic with the same difference d but
t(vi−1vi) �= t(vivi+1). The list Λ(vi) is Λmin +Ard(k), where k = |t(vi−1vi)|+
|t(vivi+1)|. In particular, Λmax − Λmin = d(k − 1).
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Fig. 4.1. An example of a balanced generalized list T -coloring problem with an underlying graph
being C5. The sets of forbidden differences are at the centers of the corresponding edges and the
lists of colors for the vertices are on the right.

3. Both t(vi−1vi) and t(vivi+1) are arithmetic sets with at least two elements,
and their differences d and d′ are distinct. Then t(vi−1vi) = Ard(k) and
t(vivi+1) = Ard′(k′), where kd = k′d′ = lcm(d, d′). In addition, Λmax −
Λmin = lcm(d, d′) and

Λ(vi) = (Λmin+Ard(k))�(Λmax−Ard′(k
′)) = (Λmin+Ard′(k

′))�(Λmax−Ard(k)).

Note that both the unions in the above expression are disjoint because of the
equality kd = k′d′ = lcm(d, d′) = Λmax − Λmin.

As an example, consider the generalized list T -coloring problem depicted in Figure 4.1.
The vertices v1 and v5 are of the first type, the vertices v2 and v4 are of the second
type, and the vertex v3 is of the third type. Note that the problem depicted in
Figure 4.1 has no good labeling.

We finally characterize balanced generalized list T -coloring problems (Cn,Λ, t)
with no good labelings.

Theorem 4.7. A balanced generalized list T -coloring problem (Cn,Λ, t), where
Cn is an odd cycle, does not have a good labeling if and only if

• the colors Λmin and Λmax are contained in all the lists Λ(v), v ∈ V (Cn),
• each vertex is one of the three types described above; in particular, all the sets
t(e), e ∈ E(Cn), are arithmetic, and

• there is at least one vertex of the first or of the second type.

Proof. We first prove that if a balanced problem (Cn,Λ, t) does not have a good
labeling, then it is of the form described in the statement. The colors Λmin and Λmax

are contained in all the lists by Lemma 4.1, and all the sets t(e), e ∈ E(Cn) are
arithmetic by Lemma 4.5. Fix an arbitrary vertex vi of Cn. We show that the vertex
vi is one of the three types introduced before this theorem.

If t(vi−1vi) = t(vivi+1), then Λ(vi) = (Λmin + t(vi−1vi)) � (Λmax − t(vi−1vi)) by
Lemma 4.6. Hence, the vertex vi is of the first type.

We may now assume that t(vi−1vi) �= t(vivi+1). Let t(vi−1vi) = Ard(k) and
t(vivi+1) = Ard′(k′). If k = 1 or k′ = 1, i.e., the set assigned to the corresponding
edge incident with vi is {0}, then we may assume that the differences d and d′ are
equal. However, if d = d′, then, by Lemma 4.6 we have the following:

Λ(vi) = (Λmin + Ard(k)) � (Λmax − Ard(k
′)) = (Λmin + Ard(k

′)) � (Λmax − Ard(k)).

But this is possible only if Λmax −Λmin = d(k+ k′ − 1). Hence, the vertex vi is of the
second type.
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The final case is that d �= d′, say d < d′, and both k and k′ are at least 2. By
Lemma 4.6, we have:

Λ(vi) = (Λmin + Ard(k)) � (Λmax − Ard′(k′)) = (Λmin + Ard′(k′)) � (Λmax − Ard(k)).

But this is possible only if Λmax − Λmin = lcm(d, d′) = kd = k′d′. Indeed, the set
Λ(vi) contains the element Λmin + d by the middle part of the equality. Since d < d′,
then Λmin + d must be equal to Λmax − (k− 1)d by the right part of the equality. We
now have Λmax − Λmin = kd, as desired. Since the unions in the above equality are
disjoint, we have also Λmax −Λmin = k′d′ and lcm(d, d′) = kd = k′d′. Hence, we have
inferred that the vertex vi is of the third type.

In order to complete the proof of the first implication of the theorem, it remains
to exclude the case that all the vertices are of the third type. So, assume now that
all the vertices are of the third type. Let di be the difference of the arithmetic set
t(vivi+1). Consider the labeling c defined as c(vi) = Λmin + di for each i = 1, . . . , n.
Since Λmin+di ∈ Λ(vi), the labeling cannot be a good labeling only if there is an index
i such that |(Λmin + di+1)− (Λmin + di)| = |di+1 − di| ∈ t(vivi+1). Then di|(di+1 − di)
and di|di+1. Hence, lcm(di, di+1) = di+1 and t(vi+1vi+2) = Ardi+1

(1). But then, the
vertex vi+1 is not of the third type.

We now prove the opposite implication of the theorem, namely, that a balanced
generalized list T -coloring problem of the form described in the theorem does not have
a good labeling. The proof proceeds by contradiction, which is eventually obtained
when several claims have been established. Let c be a good labeling of such a problem
(Cn,Λ, t) and let di be the difference of the arithmetic set t(vivi+1). We construct
another function μ : V (Cn) → N ∪ {Min,Max} based on the labeling c:

μ(vi) =

⎧⎪⎪⎨
⎪⎪⎩

Min if c(vi) ∈ (Λmin + t(vi−1vi)) ∩ (Λmin + t(vivi+1)),
Max if c(vi) ∈ (Λmax − t(vi−1vi)) ∩ (Λmax − t(vivi+1)),
di−1 if c(vi) ∈ (Λmin + t(vi−1vi)) \ (Λmin + t(vivi+1)), (∗)
di if c(vi) ∈ (Λmin + t(vivi+1)) \ (Λmin + t(vi−1vi)). (∗∗)

Since all the vertices are of one of the three types, all the lists Λ(vi) satisfy the
equalities (4.1) and (4.2) from Lemma 4.6. Hence, the function μ is well defined.
Observe that if vi is of the first type (in which t(vi−1vi) = t(vivi+1)), then Λmin +
t(vi−1vi) = Λmin + t(vivi+1). Hence, μ(vi) for such a vertex vi is either Min or Max.
In particular, we have the following.

Claim 4.7.1. If μ(vi) �∈ {Min,Max}, then vi is of the second type or the third
type.

We now prove the following two claims.
Claim 4.7.2. If c is a good labeling, then no two adjacent vertices are simulta-

neously assigned by μ both the label Min or both the label Max.
If two adjacent vertices vi and vi+1 are both mapped to Min, then c(vi) ∈ (Λmin+

t(vivi+1)) and c(vi+1) ∈ (Λmin + t(vivi+1)) by the definition of μ. This immediately
yields that |c(vi)− c(vi+1)| ∈ t(vivi+1) (recall that the set t(vivi+1) is arithmetic). A
similar argument excludes the case that both vi and vi+1 are mapped to Max.

Claim 4.7.3. If the vertex vi is assigned by μ the difference di−1, i.e., the
condition in (∗) is satisfied, then di−1|Λmax − Λmin and the following holds:

{Λmin,Λmin+di−1,Λmin+2di−1, . . . ,Λmax} ⊆ (c(vi)−t(vi−1vi))∪(c(vi)+t(vi−1vi)). (�)
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Since vi is assigned by μ neither Min nor Max, the vertex vi is of the second
type or the third type by Claim 4.7.1. Hence, di−1|Λmax − Λmin. If vi is of the third
type, then t(vi−1vi) = Ardi−1(k), where k = (Λmax − Λmin)/di−1 − 1. Since μ(vi)
is neither Min nor Max, the color c(vi) is neither Λmin nor Λmax. We infer from
c(vi) �= Λmin,Λmax that c(vi) ∈ {Λmin + di−1,Λmin + 2di−1, . . . ,Λmax − di−1}. Hence,
the inclusion (�) indeed holds.

Next, we consider the case in which vi is of the second type. Let ki−1 = |t(vi−1vi)|
and ki = |t(vivi+1)|. Note that ki−1 > ki by (∗) and Λmax−Λmin = (ki−1+ki−1)di−1

because vi is of the second type. By the condition from (∗), the color c(vi) is one
of the numbers Λmin + kidi,Λmin + (ki + 1)di, . . . ,Λmin + (ki−1 − 1)di and thus the
inclusion (�) holds in this case, too. This establishes the claim.

Similar to the proof of Claim 4.7.3, we can prove the following claim (the details
are left to the reader).

Claim 4.7.4. If the vertex vi is assigned by μ the difference di, i.e., the condition
in (∗∗) is satisfied, then di|Λmax − Λmin and the following holds:

{Λmin,Λmin+di,Λmin+2di, . . . ,Λmax} ⊆ (c(vi)−t(vivi+1))∪(c(vi)+t(vivi+1)). (��)

Now, some edges of the cycle are oriented in the following way: if vi is labeled
by μ with di−1 according to (∗), then the edge vi−1vi is oriented from vi to vi−1. If
vi is labeled by μ with di according to (∗∗), then the edge vivi+1 is oriented from vi
to vi+1. Since c is a good labeling, each edge is oriented in at most one direction.
Indeed, assume for the sake of contradiction that both the vertex vi satisfies (∗∗) and
the vertex vi+1 satisfies (∗). We can now infer from (��) that di|(c(vi) − Λmin); in
particular, c(vi) ∈ {Λmin,Λmin+di,Λmin+2di, . . . ,Λmax} holds. Since the vertex vi+1

satisfies (�), we conclude that |c(vi+1) − c(vi)| ∈ t(vivi+1).
The proof of the second implication is completed by the following four claims.
Claim 4.7.5. No edge can be oriented to a vertex which is assigned by μ either

Min or Max.
Assume the opposite and say, e.g., that the edge vivi+1 is oriented from vi to

vi+1 and μ(vi+1) = Min. Then c(vi) ∈ (Λmin + t(vivi+1)) \ (Λmin + t(vi−1vi)) and the
vertex vi is assigned by μ the difference di. In particular, Λmax − Λmin is divisible
by di and (c(vi) + t(vivi+1)) ∪ (c(vi) − t(vivi+1)) ⊇ Λmin + Ardi(k + 1) by (��),
where k = (Λmax − Λmin)/di. Since the vertex vi+1 is assigned by μ the label Min,
the difference c(vi+1)−Λmin is divisible by di and thus c(vi+1) ∈ Λmin + Ardi

(k + 1).
Then |c(vi) − c(vi+1)| ∈ t(vivi+1) and the labeling c is not good.

Claim 4.7.6. All edges of the cycle are oriented.
If all the vertices of the cycle are assigned by μ one of the labels Min or Max, then

the vertices of the cycle should be assigned the labels Min and Max alternately. But
this is impossible because the length of the cycle is odd. Hence, there is a vertex vi
assigned by μ neither Min nor Max. In particular, there is an edge leaving the vertex
vi and this edge must lead to a vertex which is again assigned by μ neither Min nor
Max by Claim 4.7.5. There is also an edge leaving this vertex and it again leads to a
vertex assigned by μ neither Min nor Max. In this way, we go around the whole cycle
and show that all the edges are oriented.

Claim 4.7.7. All the vertices of the cycle are of the second type or the third
type.

By Claim 4.7.6, all edges of the cycle are oriented. Since no edge can be oriented
to a vertex which is assigned by μ either Min or Max by Claim 4.7.5, all the vertices
are of the second or the third type by Claim 4.7.1.
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Claim 4.7.8. All the vertices of the cycle are of the third type.
Assume that the vertex vi is of the second type. By symmetry, it can be assumed

that t(vi−1vi) ⊆ t(vivi+1). Since vi is of the second type, it holds that t(vi−1vi) ⊂
t(vivi+1). Now let ki−1 and ki be such integers that t(vi−1vi) = Ardi−1(ki−1) and
t(vivi+1) = Ardi(ki). Note that ki−1 < ki and ki−1 + ki = (Λmax − Λmin)/di−1 + 1.
In particular, ki−1 < (Λmax − Λmin)/di−1. Since all the edges are oriented, the
edge vi−1vi is oriented from vi−1 to vi. If the vertex vi−1 were of the third type,
then it would hold that ki−1 = (Λmax − Λmin)/di−1 (by the definition of the third
vertex type). However, this does not hold. Hence, vi−1 is of the second type and
t(vi−2vi−1) = t(vivi+1) = Ardi(ki). But then the edge vi−1vi cannot be oriented from
vi−1 to vi because t(vi−1vi) ⊆ t(vi−2vi−1). This establishes the claim.

By Claim 4.7.8, all the vertices are of the third type, but then the balanced
generalized list T -coloring problem is not as described in the statement of the theorem.
This completes the proof of the second implication and so the proof of the whole
theorem.

4.2. The case of complete graphs. We first formulate a lemma that is an
immediate corollary of Theorem 4.7 but that is useful in the analysis of the case of
complete graphs.

Lemma 4.8. Let (C3,Λ, t) be a balanced generalized list T -coloring problem and
let V (C3) = {x, y, z}. If (C3,Λ, t) does not have a good labeling, then the sets t(xy),
t(xz), and t(yz) are arithmetic. Moreover, if each of the sets t(xy) and t(xz) contains
at least two elements and the differences of the arithmetic sets t(xy) and t(xz) are
distinct, then t(yz) = {0}.

Proof. Since the problem (C3,Λ, t) does not have a good labeling, it is of the type
described in the statement of Theorem 4.7. Therefore, the sets t(xy), t(xz), and t(yz)
are arithmetic. If each of the arithmetic sets t(xy) and t(xz) contains at least two
elements and their differences are distinct, then the vertex x must be of the third type.
Consequently, at least one of the vertices y and z is of the first or the second type
by Theorem 4.7. Assume that this vertex is y. Then the difference of the arithmetic
set t(yz) and the difference of the arithmetic set t(yx) are the same. Let d be this
difference. Since x is of the third type, we have t(yx) = Ard((Λmax −Λmin)/d) by the
definition of the third type. By Lemma 4.6, the sets Λmin + t(yx) and Λmax − t(yz)
are disjoint. But this is possible only if t(yz) = {0} (recall that the difference of t(yz)
is d).

Next, we show that a balanced generalized list T -coloring problem with no good
labeling can be reduced to a smaller one with the same property.

Lemma 4.9. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem with
no good labeling. If U be a subset of V (Kn) of size n′ ≥ 2, then there is a balanced
generalized list T -coloring problem (Kn′ ,Λ′, t′) which does not have a good labeling,
V (Kn′) = U , and t′(uu′) = t(uu′) for u, u′ ∈ U .

Proof. The proof proceeds by induction on n−n′. If n−n′ = 0, then the problems
(Kn,Λ, t) and (Kn′ ,Λ′, t′) are the same.

Assume n−n′ = 1. Since the problem (Kn,Λ, t) does not have a good labeling, it
follows that the color Λmin is contained in each list Λ(v) by Lemma 4.1. Consider the
problem (Kn,Λ, t)[v→Λmin] where v is the only vertex of Kn outside the set U . In
particular, the problem (Kn,Λ, t)[v→Λmin] is balanced and it does not have a good
labeling.

If n− n′ ≥ 2, consider a set U ′ of the vertices of Kn such that U ⊂ U ′ ⊂ V (Kn).
By the induction hypothesis, for the set U ′ there is a balanced generalized list T -
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coloring problem which does not have a good labeling. Now, by induction applied to
this new problem, there is a balanced generalized list T -coloring problem for the set
U which does not have a good labeling.

As an immediate corollary of Lemma 4.9, we obtain that if a balanced generalized
list T -coloring problem on a complete graph does not have a good labeling, then all
sets t(e) must be arithmetic.

Lemma 4.10. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem. If
Kn has an edge e such that t(e) is not arithmetic, then the problem (Kn,Λ, t) allows
a good labeling.

Proof. Let u and v be the end-vertices of the edge e such that t(e) is not arithmetic.
If the problem (Kn,Λ, t) does not have a good labeling, then apply Lemma 4.9 with
U = {u, v} to get a balanced generalized list T -coloring problem (K2,Λ

′, t′) with
no good labeling such that t′(e) = t(e) is not arithmetic. But this is impossible by
Lemma 4.4.

We now focus on the relation between lists Λ : V (G) → 2N and forbidden sets
t : E(G) → 2N in generalized list T -coloring problems on complete graphs with no
good labelings.

Lemma 4.11. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem.
Let v1, . . . , vn be an arbitrary ordering of the vertices of Kn. If (Kn,Λ, t) does not
have a good labeling, then there exist numbers k1 < k2 < · · · < kn−1 such that

Λ(vn) =
⊎

1≤i≤n−1

(t(vivn) + ki).

Moreover, for each ki, i = 1, . . . , n− 1, and each j = i, . . . , n,

ki = min

⎛
⎝Λ(vj) \

⋃
1≤i′<i

(t(vi′vj) + ki′)

⎞
⎠ .

In particular, k1 = Λmin.
Proof. The proof proceeds by induction on n. The lemma vacuously holds for

n = 1. For n = 2, the lemma follows from Lemma 4.4. Suppose now that n ≥ 3
and set k1 = Λmin. Let (Kn−1,Λ

′, t′) = (Kn,Λ, t)[v1→Λmin]. Note that the problem
(Kn−1,Λ

′, t′) is balanced, since otherwise the problem (Kn,Λ, t) would have a good
labeling. By the induction hypothesis, there are numbers k2 < · · · < kn−1 such that

Λ′(vn) =
⊎

2≤i≤n−1

(t′(vivn) + ki).

Moreover, for all i ∈ {2, . . . , n− 1} and j ∈ {i, . . . , n}, the following holds:

ki = min

⎛
⎝Λ′(vj) \

⋃
2≤i′<i

(t′(vi′vj) + ki′)

⎞
⎠ .

Since Λ′(vj) = Λ(vj) \ (t(v1vj) + Λmin) and t(e) = t′(e) for each edge of Kn−1, we
have

Λ(vn) = Λ′(vn) � (t(v1vn) + k1) =
⊎

1≤i≤n−1

(t(vivn) + ki).
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Similarly, we have for all i with 2 ≤ i ≤ n− 1, and all j with i ≤ j ≤ n,

ki = min

⎛
⎝Λ(vj) \

⋃
1≤i′<i

(t(vi′vj) + ki′)

⎞
⎠ .

The final equality, which follows for all 1 ≤ j ≤ n from the choice of k1 and the fact
that Λmin is contained in all lists (by Lemma 4.1), is

k1 = min

⎛
⎝Λ(vj) \

⋃
1≤i′<1

(t(vi′vj) + ki′)

⎞
⎠ = min Λ(vj) = Λmin.

Roughly speaking, if a balanced generalized list T -coloring problem (Kn,Λ, t)
does not have a good labeling, all sets t(e) incident with the same vertex must share
the same difference, as stated in the next lemma.

Lemma 4.12. Let (Kn,Λ, t), n ≥ 4, be a balanced generalized list T -coloring
problem. If (Kn,Λ, t) has no good labeling, then all the sets t(e), e ∈ E(Kn) are
arithmetic, and all the sets t(e) for all edges e incident with the same vertex v share
the same difference.

Proof. It follows from Lemma 4.10 that all the sets t(e) are arithmetic. By
Lemma 4.9, it is enough to prove the claim for n = 4. Let us assume that n = 4
and v, x, y, and z are the vertices of K4 such that the sets t(e) for the edges e
incident with the vertex v do not share the same difference. Let dx, dy, and dz be the
differences and kx, ky, and kz the sizes of the arithmetic sets t(vx), t(vy), and t(vz),
respectively. By our assumption, at most one of the three numbers kx, ky, and kz is
equal to one. Hence, we may assume that kx ≥ 1, ky ≥ 2, and kz ≥ 2. Moreover, the
three differences dx, dy, and dz are not all the same by the choice of v. We distinguish
three cases and eventually derive a contradiction in each of them:

• kx = 1, ky ≥ 2, kz ≥ 2, and dy < dz (the case dy > dz is symmetric)
Note that t(vx) = {0}. Consider the problem (K4,Λ, t)[x → Λmax] obtained
by assigning the color Λmax to the vertex x. This is a balanced generalized
list T -coloring problem which does not have a good labeling. Note that its
underlying graph is a triangle. Recall that the sets of forbidden differences
on its edges are t(vy) = Ardy (ky) and t(vz) = Ardz (kz). Hence, t(yz) = {0}
by Lemma 4.8. By Theorem 4.7, the vertex v must be of the third type
since dy �= dz. In addition, ky and kz satisfy kydy = kzdz = lcm(dy, dz). In
particular, dz is not divisible by dy (recall that ky ≥ 2 and kz ≥ 2). Since
the vertex v is of the third type in (K4,Λ, t)[x → Λmax], its list in the new
problem (K4,Λ, t)[x → Λmax] is equal to the following set:

(Λmin + Ardy (ky)) ∪ (Λmin + Ardz (kz)) ∪ {Λmin + lcm(dy, dz)}.

Hence, we infer that

Λ(v) = (Λmin + Ardy (ky)) ∪ (Λmin + Ardz (kz)) ∪ {Λmin + lcm(dy, dz),Λmax}.
(4.3)

Similarly, considering the problem (K4,Λ, t)[x → Λmin] yields

Λ(v) = (Λmax − Ardy (ky)) ∪ (Λmax − Ardz (kz)) ∪ {Λmax − lcm(dy, dz),Λmin}.
(4.4)
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The second largest element of Λ(v) according to (4.3) is Λmin + lcm(dy, dz)
and according to (4.4) is Λmax − dy. Hence, Λmax −Λmin = lcm(dy, dz) + dy.
On the other hand, the largest element of Λ(v) which is not congruent to
Λmax modulo dy is equal to Λmin + lcm(dy, dz) − dz according to (4.3) and
equal to Λmax−dz according to (4.4) (recall that kydy = kzdz = lcm(dy, dz)).
Hence, we infer that Λmax − Λmin = lcm(dy, dz) contradicts our previously
established equality Λmax − Λmin = lcm(dy, dz) + dy.

• kx ≥ 2, ky ≥ 2, kz ≥ 2, and dx < dy < dz
The problem obtained by assigning the color Λmax to the vertex z does not
have a good labeling. In this new problem, the vertex v must be of the third
type described in Theorem 4.7 because the differences of the sets of the edges
incident with v are different. We infer that kxdx = kydy = lcm(dx, dy). Since
kx ≥ 2 and ky ≥ 2, dy is not divisible by dx. And by Lemma 4.8, it must
be t(xy) = {0}. Symmetric arguments yield kxdx = kzdz = lcm(dx, dz),
kydy = kzdz = lcm(dy, dz), and t(xz) = t(yz) = {0}. Let l be the following
number:

l = kxdx = kydy = kzdz = lcm(dx, dy) = lcm(dx, dz) = lcm(dy, dz).(4.5)

Consider again the problem (K4,Λ, t)[z → Λmax] obtained by assigning the
color Λmax to the vertex z. Since t(xz) = t(yz) = {0}, the color Λmin remains
in the lists of the vertices of x and y. Then the color Λmin must remain also
in the list of the vertex v by Lemma 4.1. Hence, the list of v in the obtained
problem is equal to the following:

(Λmin + t(vx)) ∪ (Λmin + t(vy)) ∪ {Λmin + l}.

The following inclusion immediately follows:

(Λmin + Ardx(kx)) ∪ (Λmin + Ardy (ky)) ∪ {Λmin + l} ⊆ Λ(v).

By symmetry, we also have the following:

(Λmin + Ardx(kx)) ∪ (Λmin + Ardz (kz)) ∪ {Λmin + l} ⊆ Λ(v).

The size of the following set is kx + ky + kz − 1 by (4.5):

(Λmin + Ardx(kx)) ∪ (Λmin + Ardy (ky)) ∪ (Λmin + Ardz (kz)) ∪ {Λmin + l}.
(4.6)

Since the problem (K4,Λ, t) is balanced, the size of Λ(v) is kx + ky + kz. We
now have (observe that the missing color in (4.6) can be only Λmax)

Λ(v) = (Λmin+Ardx(kx))∪(Λmin+Ardy (ky))∪(Λmin+Ardz (kz))∪{Λmin+l,Λmax}.
(4.7)
A symmetric argument based on the problems obtained by assigning the color
Λmin to some of the vertices gives the following equality:

Λ(v) = (Λmax−Ardx(kx))∪(Λmax−Ardy (ky))∪(Λmax−Ardz (kz))∪{Λmax−l,Λmin}.
(4.8)
Now, the equalities (4.7) and (4.8) are compared: the second largest element
of Λ(v) according to (4.7) is Λmin + l and according to (4.8) is Λmax − dx.
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Hence, we can infer that Λmax − Λmin = l + dx. The largest element of
Λ(v) which is not congruent to Λmax modulo dx is equal to Λmin + l − dy
according to the equalities (4.5) and (4.7). But the largest element which
is not congruent to Λmax modulo dx is equal to Λmax − dy according to the
equalities (4.5) and (4.8). Hence, we have Λmax−Λmin = l, which contradicts
Λmax − Λmin = l + dx.

• kx ≥ 2, ky ≥ 2, kz ≥ 2, and dx = dy �= dz
As in the previous case, consider the problems (K4,Λ, t)[x → Λmax] and
(K4,Λ, t)[y → Λmax] and conclude that t(xz) = t(yz) = {0}. In particular, it
is possible to define l = kxdx = kydy = kzdz = lcm(dx, dz) and kx = ky.
Consider again the problem (K4,Λ, t)[y → Λmax]. Since t(yz) = {0}, the
color Λmin remains in the list of the vertex z. Then the color Λmin must also
remain in the list of the vertex v by Lemma 4.1. Hence, the list of v in the
new problem is equal to the following set:

(Λmin + t(vx)) ∪ (Λmin + t(vz)) ∪ {Λmin + l}.

The way in which the new problem was obtained immediately implies the
following equality:

Λ(v) = ((Λmin + Ardx(kx)) ∪ (Λmin + Ardz
(kz)) ∪ {Λmin + l})

� (Λmax − Ardy (ky)).(4.9)

A symmetric argument which is based on the problem obtained by assigning
the color Λmin to the vertex y gives the following:

Λ(v) = ((Λmax − Ardx(kx)) ∪ (Λmax − Ardz (kz)) ∪ {Λmax − l})
� (Λmin + Ardy (ky)).(4.10)

The equalities kx = ky and dx = dy imply that Λmin + Ardx(kx) = Λmin +
Ardy (ky) and Λmax − Ardx

(kx) = Λmax − Ardy
(ky). This combined with the

equalities (4.9) and (4.10) yields the following:

(Λmin+dz+Ardz (kz−1))�{Λmin+l} = (Λmax−dz−Ardz (kz−1))�{Λmax−l}.
(4.11)
Since l = kzdz, we can simplify (4.11) to the following equality:

Ardz
(kz) + Λmin + dz = Λmax − dz − Ardz

(kz).

Hence, we can infer (by considering the largest and the smallest element in
the sets above) that Λmax − Λmin = l + dz.
Let us consider now the problem (K3,Λ

′, t′) = (K4,Λ, t)[z → Λmax]. First, we
have by the equality (4.10) (the union in the next equality is disjoint because
the new problem must be balanced)

Λ′(v) = Λ(v) \ (Λmax − t(vz)) = Λ(v) \ (Λmax − Ardz
(kz))

= (Λmin + Ardx(kx)) � (Λmax − dx − Ardx(kx)).

Observe that, by Lemma 4.9, the problem (K3,Λ
′, t′) is a balanced generalized

list T -coloring problem which does not have a good labeling. Let Λ′
min and
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Λ′
max be the smallest and the largest element contained in the lists Λ′. Since

Λ′
min = Λmin and Λ′

max = max{Λmin + l − dx,Λmax − dx} = Λmax − dx =
Λmin + l+dz −dx are not congruent modulo dx, all the vertices v, x, and y in
the problem (K3,Λ

′, t′) must be of the first type described in the statement
of Theorem 4.7. Hence, we infer that t(xy) = t′(xy) = Ardx(kx) and

Λ′(x) = Λ′(y) = Λ′(v) = (Λmin + Ardx(kx)) � (Λmax − dx − Ardx(kx)).

In particular,

(Λmin + Ardx(kx)) � (Λmax − dx − Ardx(kx)) ⊆ Λ(x).(4.12)

A symmetric argument based on the problem obtained by assigning the color
Λmin to the vertex z yields the following inclusion:

(Λmax − Ardx(kx)) � (Λmin + dx + Ardx(kx)) ⊆ Λ(x).(4.13)

By comparing the inclusions (4.12) and (4.13), we get the following:

(Λmin + Ardx
(kx + 1)) � (Λmax − Ardx

(kx + 1)) ⊆ Λ(x).

Thus the size of Λ(x) must be at least 2kx+2. On the other hand, the t-degree
of x in the problem (Kn,Λ, t) is |t(xy)| + |t(xz)| + |t(xv)| = 2kx + 1. This
contradicts the assumption that the problem (Kn,Λ, t) is balanced.

Now, we extend the argument from the previous lemma and show that all the
sets t(e) must share the same difference. Note that we cannot derive this conclusion
immediately from Lemma 4.12 since there could exist edges e with t(e) = {0}.

Lemma 4.13. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem. If
(Kn,Λ, t) has no good labeling and n ≥ 4, then all the sets t(e) for e ∈ E(Kn) are
arithmetic sets with the same difference.

Proof. By Lemma 4.12, all the sets t(e) are arithmetic and the sets t(e) for edges e
incident with the same vertex have the same difference. If there are edges e and e′ with
|t(e)|, |t(e′)| ≥ 2 such that t(e) and t(e′) do not have the same difference, then the edges
e and e′ cannot be incident. Let e = vw and e′ = xy. By Lemma 4.9, it is enough now
to prove the statement for n = 4, i.e., a balanced generalized list T -coloring problem
whose underlying graph is the complete graph of order four comprised of the vertices
v, w, x, and y. By Lemma 4.12, we have t(vx) = t(wx) = t(vy) = t(wy) = {0}. Let
kvw and kxy be the sizes of the sets t(vw) and t(xy), respectively. Similarly, let dvw
and dxy be their differences. Recall that we have assumed that dvw �= dxy.

Consider the problem (G′,Λ′, t′) = (Kn,Λ, t)[y → Λmax]. The problem (G′,Λ′, t′)
is balanced and it does not have a good labeling. Theorem 4.7 implies the following
equalities:

Λ′(v) = Λ′(w) = Λmin + Ardvw(kvw + 1) and

Λ′(x) = {Λmin,Λmin + dvwkvw}.(4.14)

Hence, Λmin + Ardvw(kvw + 1) ⊆ Λ(v). Next, consider the problem (Kn,Λ, t)[y →
Λmin]. By a similar argument as before, we obtain that Λmax−Ardvw(kvw+1) ⊆ Λ(v).
Since |Λ(v)| = degt(v) = kvw + 2, we can infer that Λmax −Λmin = dvw(kvw + 1) and
Λ(v) = Λmin + Ardvw

(kvw + 2). Similarly, we may determine that the lists of the
vertices w, x, and y are as follows:

Λ(v) = Λ(w) = Λmin + Ardvw
(kvw + 2) and

Λ(x) = Λ(y) = Λmin + Ardxy
(kxy + 2).
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But we know that Λmin + dvwkvw = Λmax − dvw ∈ Λ(x) by (4.14). Since Λ(x) =
Λmin + Ardxy (kxy + 2), all the elements of Λ(x) are congruent with Λmax modulo
dxy. In particular, Λmax − dvw and Λmax are congruent modulo dxy. We infer that
dxy | dvw. By symmetry, we also infer that dvw | dxy. Hence, we conclude dxy = dvw—
a contradiction.

Finally, we extend our arguments to get some properties of the lists in balanced
generalized list T -coloring problems (Kn,Λ, t) with no good labeling.

Lemma 4.14. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem
with n ≥ 3, which does not have a good labeling, and let v be a vertex of the graph
Kn. If all the sets t(e) for edges e incident with the vertex v are arithmetic with the
same difference d but there exist two edges e, e′ ∈ E(Kn) incident with v for which
t(e) �= t(e′), then all the elements of the list Λ(v) are congruent modulo d.

Proof. We prove by induction on n that if the elements of Λ(v) are not congruent
modulo d, then the problem (Kn,Λ, t) has a good labeling. This will establish the
claim of the lemma. If n = 3, this is true by Theorem 4.7 because the vertex v must
be of the second type.

Suppose now that n ≥ 4. Let kmin and kmax be the minimum and the maximum
size of the lists t(e) for edges e incident with the vertex v. By the assumptions of
the lemma, kmin < kmax. Let vmin and vmax be vertices of G such that t(vvmin) =
Ard(kmin) and t(vvmax) = Ard(kmax). By Lemma 4.1, we can also assume that the
colors Λmin and Λmax are contained in the lists of all the vertices. We consider three
cases:

• If the number of elements of Λ(v) congruent with Λmin modulo d is smaller
than kmax, then Λmin + t(vvmax) = Λmin + Ard(kmax) �⊆ Λ(v). Hence, the
problem (Kn,Λ, t)[vmax → Λmin] is overbalanced. The problem (Kn,Λ, t) has
then a good labeling by Lemma 2.1 and Theorem 3.1.

• If the number of elements of Λ(v) congruent with Λmin modulo d is greater
than kmax, we proceed as follows: let u be a vertex distinct from v, vmin,
and vmax. The problem (Kn,Λ, t)[u→Λmin] is overbalanced or the list of the
vertex v contain two elements which are not congruent modulo d. In the
former case, it has a good labeling by Theorem 3.1. In the latter case, it
has a good labeling by induction. Hence, the problem (Kn,Λ, t) has a good
labeling by Lemma 2.1.

• The final case is that the number of elements of Λ(v) congruent with Λmin

modulo d is exactly kmax. If there is a vertex u �= vmin with |t(vu)| < kmax,
then (Kn,Λ, t)[u→Λmin] is overbalanced or the list of the vertex v contains two
elements which are not congruent modulo d. Similarly, as in the previous case,
we conclude that the problem (Kn,Λ, t) has a good labeling. The other possi-
bility is that for each vertex u �= vmin, we have t(vu) = t(vvmax) = Ard(kmax).
Consider now the problem (Kn−1,Λ

′, t′) = (Kn,Λ, t)[vmin → Λmin]. Since
the problem (Kn,Λ, t) is assumed not to have a good labeling, the problem
(Kn−1,Λ

′, t′) should admit no good labeling as well. In particular, the prob-
lem (Kn−1,Λ

′, t′) is balanced. By Lemma 4.11, the number of elements with
the same remainder modulo d contained in the set Λ′(v) is divisible by kmax

because t′(e) = Ard(kmax) for every edge e incident with v. But the set Λ′(v)
contains exactly kmax − kmin < kmax elements congruent modulo d with Λmin

(of the original problem (Kn,Λ, t)).

We may now extend the arguments of Lemma 4.14 to show that all elements of
the lists are congruent modulo d, where d is the common difference of all the sets t(e).
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Lemma 4.15. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem
which does not have a good labeling. If all t(e) for e ∈ E(Kn) are arithmetic sets with
the same difference d and there exist edges e, e′ ∈ E(Kn) such that t(e) �= t(e′), then
all the elements of the union

⋃
v∈V (Kn) Λ(v) are congruent modulo d.

Proof. By the assumption of the lemma, there is a vertex w of Kn which satisfies
the assumption of Lemma 4.14. Hence, the elements of the list Λ(w) are congruent
modulo d. Let w′ be a vertex distinct from w. Order vertices of Kn in the sequence
v1, v2, . . . , vn in such a way that vn−1 = w and vn = w′. By Lemma 4.11, there exist
numbers k1 < k2 < · · · < kn−1 such that

Λ(w′) =
⊎

1≤i≤n−1

(t(w′vi) + ki).

In addition, the following holds for each i, 1 ≤ i ≤ n− 1:

ki = min

⎛
⎝Λ(w) \

⋃
1≤i′<i

(t(wvi) + ki)

⎞
⎠ .

In particular, ki ∈ Λ(w) and since all the sets t(w′vi) have the same difference d, all
the elements of the list Λ(w′) are congruent with all the elements of Λ(w) modulo d.
Since the choice of w′ was arbitrary, the proof is completed.

In the proof of the main theorem of this subsection, we use the Brooks-type theo-
rem for the channel assignment problem on complete graphs from [10]. We formulate
it in our notation.

Theorem 4.16. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem
such that each list t(e) for e ∈ E(Kn) is an arithmetic set with difference 1. Let
V (Kn) = {v1, . . . , vn}. The problem (Kn,Λ, t) does not have a good labeling if and
only if one of the following holds:

• There exist integers 1 ≤ a and 0 ≤ k1 < · · · < kn−1 such that
– ki + a ≤ ki+1 for each i = 1, . . . , n− 2,
– t(e) = Ar1(a) for each edge e ∈ E(Kn), and
– Λ(vi) =

⋃
1≤j≤n−1(kj + Ar1(a)) for each vertex vi of Kn.

• There exist integers 1 ≤ a < b and 0 ≤ k such that (possibly after an appro-
priate permutation of the vertices)

– t(e) =

{
Ar1(a) if e is incident with the vertex vn,
Ar1(b) otherwise.

– Λ(vi) =

{
k + Ar1(a + b(n− 2)) if i �= n,⋃

0≤j≤n−2(k + bj + Ar1(a)) otherwise.
We can now characterize in a similar way balanced generalized list T -coloring

problems whose underlying graph is a complete graph and which do not have a good
labeling (an example of such a balanced generalized list T -coloring problem with no
good labeling can be found in Figure 4.2).

Theorem 4.17. Let (Kn,Λ, t) be a balanced generalized list T -coloring problem
with n ≥ 4. Let V (Kn) = {v1, . . . , vn}. The problem (Kn,Λ, t) does not have a good
labeling if and only if it is one of the following two types:

• There exist integers 1 ≤ a, 1 ≤ d, and 0 ≤ k1 < · · · < kn−1 such that
– t(e) = Ard(a) for all e ∈ E(Kn) and
– Λ(vi) =

⊎
1≤j≤n−1(kj + Ard(a)) for all 1 ≤ i ≤ n.

• There exist integers 1 ≤ a < b, 1 ≤ d, and 0 ≤ k such that (possibly after an
appropriate permutation of the vertices)
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Fig. 4.2. An example of a balanced generalized list T -coloring problem with an underlying graph
being K4. The sets of forbidden differences are at the centers of the corresponding edges and the
lists of colors for the vertices are on the right.

– t(e) =

{
Ard(a) if e is incident with the vertex vn,
Ard(b) otherwise.

– Λ(vi) =

{
k + Ard(a + b(n− 2)) if i �= n,⋃

0≤j≤n−2(k + bjd + Ard(a)) otherwise.

Proof. It is easy to check that if a problem (Kn,Λ, t) is of one of the above
two types, then it is balanced. If it is of the first type described above, then in any
labeling from the lists, at most one vertex of Kn has a color from kj + Ard(a). By
the pigeon-hole principle, the problem (Kn,Λ, t) cannot have a good labeling. If the
problem (Kn,Λ, t) is of the second type described above, we can assume without loss
of generality that d | k. Observe that the problem (Kn,Λ, t) has a good labeling if
and only if the problem (Kn,Λ

′, t′) with the parameters a′ = a, b′ = b, d′ = 1, and
k′ = k/d has a good labeling. But this problem has no good labeling by Theorem 4.16.

We show that each balanced generalized list T -coloring problem (Kn,Λ, t) with
no good labeling is of one of the two types described in the statement of the theorem.
By Lemma 4.10, for each e ∈ E(G) the set t(e) is arithmetic. By Lemma 4.13, all
the sets t(e), e ∈ E(G) have the same difference d. If there are edges e and e′ such
that t(e) �= t(e′), then all the elements of all the lists Λ(v), v ∈ V (Kn) are congruent
modulo d by Lemma 4.15. We may assume that d | Λmin, i.e., all the elements of all
the lists Λ(v) are divisible by d. Consider now the balanced problem (Kn,Λ

′, t′) with
Λ′(v) = {k

d | k ∈ Λ(v)} and t′(e) = {k
d | k ∈ t(e)}. Observe that the problem (Kn,Λ, t)

has a good labeling if and only if the problem (Kn,Λ
′, t′) has a good labeling. Then,

by the assumption, the problem (Kn,Λ
′, t′) does not have a good labeling. Since the

common difference of all the sets t′(e) is one and there are edges e and e′ such that
t′(e) �= t′(e′), it must be of the second type described in Theorem 4.16. Let a′, b′, and
k′ be the parameters from the statement of Theorem 4.16. We may conclude that
the problem (Kn,Λ, t) is of the second type with the parameters a = a′, b = b′, and
k = k′d.

The remaining case is that all the sets t(e) for e ∈ E(G) are the same. Suppose
that they are equal to Ard(k). By Lemma 4.11, there exist integers k1 < · · · < kn−1

such that for all the vertices v of Kn,

Λ(v) =
⊎

1≤i≤n−1

(Ard(k) + ki).
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Fig. 5.1. An example of a balanced generalized list T -coloring problem with no good labeling
such that the underlying graph of the problem is not 2-connected. The problem is obtained by gluing
the problems depicted in Figures 4.1 and 4.2.

Hence, the problem is of the first type described in the statement of this theorem.
This completes the proof of the theorem.

5. The general case. We show that Lemma 4.4 and Theorems 4.7 and 4.17
can be combined to provide a full characterization of all balanced generalized list
T -coloring problems which do not have a good labeling (an example of a balanced
generalized list T -coloring problem with no good labeling whose underlying graph is
not 2-connected can be found in Figure 5.1).

Theorem 5.1. Let (G,Λ, t) be a balanced generalized list T -coloring problem
where G is a connected graph and let B1, . . . , Bl be the blocks of G. The problem
(G,Λ, t) does not have a good labeling if and only if there exists Λi : V (Bi) → 2N and
ti : E(Bi) → 2N, 1 ≤ i ≤ l, such that

1. it holds Λ(v) =
⊎

1≤i≤l
v∈V (Bi)

Λi(v) for each v ∈ V (G),

2. t(e) = ti(e) for the unique index i satisfying e ∈ E(Bi), and
3. each generalized list T -coloring problem (Bi,Λi, ti) is balanced and does not

have a good labeling.

In particular, if (G,Λ, t) has no good labeling, then G is a Gallai tree and each
(Bi,Λi, ti) is as described in Lemma 4.4 and in Theorems 4.7 and 4.17.

Proof. We first prove that a balanced generalized list T -coloring problem (G,Λ, t)
of the type described in the statement does not have a good labeling. The proof is
by induction on the number l of the blocks. If l = 1, the statement straightforwardly
follows from Lemma 4.4 and Theorems 4.7 and 4.17. Otherwise, let Bl be an end-
block of the graph G. Let v be the cut-vertex contained in Bl. Assume for the
sake of contradiction that there is a good labeling c for the problem (G,Λ, t). If
c(v) ∈ Λl(v), then c restricted to Bl is a good labeling for the problem (Bl,Λl, tl),
which is impossible. If c(v) �∈ Λl(v), then c is a good labeling for the balanced problem
(G′,Λ′, t′):

V (G′) =
⋃

1≤i<l

V (Bi),

E(G′) =
⋃

1≤i<l

E(Bi),
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Λ′(v) =
⋃

1≤i<l,v∈V (Bi)

Λi(v), and

t′(e) = ti(e) for the unique i such that e ∈ E(Bi).

But this is impossible by the assumption of the induction.
We now prove that if a problem (G,Λ, t) does not have a good labeling, then it is

of the type described in the statement of the theorem. The proof again proceeds by
induction on the number l of the blocks of G. If l = 1, the statement easily follows
from Lemma 4.4 and Theorems 4.7 and 4.17.

Assume that l ≥ 2. Let B1 be an end-block of the graph G, let v be the cut-vertex
contained in B1, and let G′ be the graph comprised by the blocks B2, . . . , Bl. Let
Λ1 and Λ′ be the function Λ restricted to V (B1) and V (G′), respectively. Similarly,
let t1 and t′ be the function t restricted to E(B1) and E(G′), respectively. Let L1

be the set of all the colors k ∈ Λ(v) = Λ1(v) such that there is not a good labeling
c for the problem (B1,Λ1, t1) with c(v) = k. By Theorem 3.1, |L1| ≤ degt1(v).
Let L′ be the set of all the colors k ∈ Λ(v) = Λ′(v) such that there is not a good
labeling c for the problem (G′,Λ′, t′) with c(v) = k. By Theorem 3.1, |L′| ≤ degt′(v).
If |L1 ∪ L′| < degt1(v) + degt′(v) = degt(v), then there is a good labeling c for
the problem (G,Λ, t) such that c(v) = k, where k ∈ Λ(v) \ (L1 ∪ L′). Otherwise,
|L1| = degt1(v), |L′| = degt′(v), and thus Λ(v) = L1 � L′. Reset Λ1(v) = L1 and
Λ′(v) = L′. By the induction hypothesis, both problems (B1,Λ1, t1) and (G′,Λ′, t′)
are of the type described in the statement of the theorem. Hence, it easily follows
that the problem (G,Λ, t) is also of the desired type.

It is straightforward to check that all the proofs in this paper are algorithmic and
hence we may conclude with the following.

Corollary 5.2. There is a polynomial-time algorithm which for each over-
balanced generalized list T -coloring problem finds a good labeling. There is also a
polynomial-time algorithm which for each balanced generalized list T -coloring problem
decides whether the problem has a good labeling and, if so, the algorithm finds such a
labeling.

6. Conclusion. Throughout the paper, all considered generalized list T -coloring
problems (G,Λ, t) satisfy that 0 ∈ t(e) for all sets of forbidden differences (as a part
of the definition of the generalized list T -coloring). A natural question to ask is what
happens if we dismiss this requirement. In particular, the following problem naturally
arises.

Problem 6.1. Which (over)balanced generalized list T -coloring problems (G,Λ, t)
do not have a good labeling when we do not require that 0 ∈ t(e) for all e ∈ E(G)?

Surprisingly, it is not true that each such overbalanced generalized list T -coloring
problem (G,Λ, t), where G is a connected graph, has a good labeling (this contrasts
with the statement of Theorem 3.1 for overbalanced generalized list T -coloring prob-
lems with the requirement 0 ∈ t(e) for each set of forbidden differences). The example
in Figure 6.1, which was derived in discussions of the second author and Jǐŕı Sgall,
shows that such a statement is not true. Moreover, this example has some interesting
properties, such as its underlying graph is 2-connected but it is neither a cycle nor a
complete graph, each set of forbidden differences is of size one, all the lists of vertices
are the same except for a single vertex, etc.

Proposition 6.2. If we dismiss a requirement that 0 ∈ t(e), then there exists an
overbalanced generalized list T -coloring problem (G,Λ, t) which does not have a good
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Fig. 6.1. An example of an overbalanced generalized list T -coloring problem (G,Λ, t) which
does not have a good labeling if we dismiss the condition 0 ∈ t(e). Each edge has a single forbidden
difference which is represented by the number at the middle of the edge. The lists Λ(v), v ∈ V (G),
are described in the right part of the figure.

labeling and which, in addition, satisfies

• G is a 2-connected cubic graph.
• Each Λ(v), v ∈ V (G) is equal to {1, 2, 3} except for a single vertex whose list

is {1, 2, 3, 4}.
• Each t(e), e ∈ E(G) is either {0}, {1}, or {2}. In particular, |t(e)| = 1 for

every edge e ∈ E(G).

Proof. Consider the problem (G,Λ, t) depicted in Figure 6.1. It is easy to see that
the problem has the properties from the statement of the proposition except that it
does not have a good labeling. We now show that the problem (G,Λ, t) does not have
a good labeling.

Assume for the sake of contradiction that the problem (G,Λ, t) has a good labeling
λ. Let us consider first the case that λ(b) = 2. Then λ(d) cannot be 1 or 3 because
of the edge bd. Since λ(c) is either 1 or 3 (the edge bc), λ(d) cannot be 2 (the edge
cd) either. But then the labeling λ cannot be proper. Hence, we can conclude that
λ(b) �= 2. Let λ(c) �= 2 without loss of generality. We can now infer that λ(a) = 2
(consider the triangle abc) and λ(b), λ(c) ∈ {1, 3}. By symmetry, it can actually be
assumed that λ(b) = 1 and λ(c) = 3. Finally, we derive that λ(d) is 1 or 3 (consider
the edges bd and cd).

Since λ(d) ∈ {1, 3}, the vertex δ cannot be assigned by the labeling λ the number
2, i.e., λ(δ) �= 2. By symmetry, we can assume that λ(β) = 2 (consider the triangle
βγδ). Thus, λ(γ) is equal to 1 or 3. If λ(γ) = 3, then λ(α) cannot be 1 or 3 because
of the edge αβ, and it cannot be 2 or 4 because of the edge γδ. Thus, λ(γ) = 1
and λ(α) = 4. We eventually obtain the contradiction since λ(a) = 2, λ(α) = 4, and
t(aα) = {2}.

We remark that it is not hard to show that the decision problem of whether an
overbalanced generalized list T -coloring problem has a good labeling is NP-complete
when we dismiss the requirement 0 ∈ t(e) for all edges e. This contrasts the fact
that the corresponding problem for overbalanced generalized list T -coloring problems
with this requirement is trivial (the answer is simply always “yes” if the underlying
graph is connected), and even the corresponding problem for balanced generalized list
T -coloring problems can be solved in polynomial time (Corollary 5.2).
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MULTILEVEL DISTANCE LABELINGS FOR PATHS AND CYCLES∗
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Abstract. For a graph G, let diam(G) denote the diameter of G. For any two vertices u and
v in G, let d(u, v) denote the distance between u and v. A multilevel distance labeling (or distance
labeling) for G is a function f that assigns to each vertex of G a nonnegative integer such that for
any vertices u and v, |f(u) − f(v)| ≥ diam(G) − dG(u, v) + 1. The span of f is the largest number
in f(V ). The radio number of G, denoted by rn(G), is the minimum span of a distance labeling for
G. In this paper, we completely determine the radio numbers for paths and cycles.

Key words. channel assignment, distance two labeling, radio labeling, diameter
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1. Introduction. Multilevel distance labeling can be regarded as an extension
of distance two labeling which is motivated by the channel assignment problem intro-
duced by Hale [10]. For a set of given cities (or stations), the task is to assign to each
city a channel, which is a nonnegative integer, so that interference is prohibited, and
the span of the channels assigned is minimized.

Usually, the level of interference between any two stations is closely related to the
geographic locations of the stations—the closer the stations are, the stronger the in-
terference is. Suppose we consider two levels of interference, major and minor. Major
interference occurs between two very close stations; to avoid it, the channels assigned
to a pair of very close stations have to be at least two apart. Minor interference occurs
between close stations; to avoid it, the channels assigned to close stations have to be
different.

To model this problem, we construct a graph G by representing each station by
a vertex and connecting two vertices by an edge if the geographical locations of the
corresponding stations are very close. Two close stations are represented by, in the
corresponding graph G, a pair of vertices that are distance two apart.

Let dG(u, v) denote the distance (the shortest length of a path) between u and
v in G (or simply d(u, v) when G is clear in the context). Thus, for a graph G,
a distance two labeling (or L(2, 1)-labeling) with span k is a function, f : V (G) →
{0, 1, 2, . . . , k}, such that the following are satisfied: (1) |f(x)−f(y)| ≥ 2 if d(x, y) = 1
and (2) |f(x) − f(y)| ≥ 1 if d(x, y) = 2.

Distance two labeling has been studied extensively in the past decade (cf. [1, 2,
5, 6, 7, 8, 9, 11, 12, 13, 14, 15]). One of the main research focuses has been the
λ-number for a graph G, denoted by λ(G), which is the smallest span k of a distance
two labeling for G.
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Practically, interference among channels might go beyond two levels. We consider
interference levels from one through the largest possible value—the diameter of G,
denoted by diam(G), which is the largest distance between two vertices of G.

A multilevel distance labeling (or distance labeling for short), with span k, is a
function f : V (G) → {0, 1, 2, . . . , k}, so that for any vertices u and v,

|f(u) − f(v)| ≥ diam(G) − dG(u, v) + 1.

The radio number (as suggested by the FM radio frequency assignment [4]) for G,
denoted by rn(G), is the minimum span of a distance labeling for G. Note that if
diam(G) = 2, then distance two labeling coincides with multilevel distance labeling,
and in this case, λ(G) = rn(G).

Besides its motivation from the channel assignment problem, distance labeling
itself is an interesting, relatively new notion in graph coloring and worthy of further
investigation for its own sake. It is surprising that determining the radio number
seems a difficult problem even for some basic families of graphs. For instance, the
radio number for paths and cycles has been studied by Chartrand et al. [3] and
Chartrand, Erwin, and Zhang [4]. In [4] and [3], some bounds of the radio numbers
for paths and cycles, respectively, were presented, while the exact values remained
unknown at that time.

In this article, we completely determine the radio numbers for paths and cycles.
Note that, to be consistent with distance two labelings, we allow 0 to be used as a color
(or channel). However, in [4, 3] only positive integers can be used as colors. Therefore,
the radio number defined in this article is one less than the radio number defined
in [4, 3]. Being consistent throughout the article, we make necessary adjustments,
reflecting this “one less” difference, for all the results quoted from [4, 3].

2. The radio number for paths. Let Pn be the path on n vertices. Chartrand,
Erwin, and Zhang [4] proved the following upper bounds for rn(Pn).

Theorem 1 (see [4]). For any positive integer n,

rn(Pn) ≤
{

2k2 + k if n = 2k + 1,
2(k2 − k) + 1 if n = 2k.

Moreover, the bound is sharp when n ≤ 5.
In this section, we completely determine the radio numbers for paths. We first

prove the following lemma.
Lemma 2. Let Pn be a path with vertex set V (Pn) = {v1, v2, . . . , vn}, in which

vi ∼ vi+1 for i = 1, 2, . . . , n−1. Let f be an assignment of distinct nonnegative integers
to V (Pn). Let (x1, x2, . . . , xn) be the ordering of V (Pn) such that f(xi) < f(xi+1).
The following three statements are equivalent.

(1) For any 1 ≤ i ≤ n− 2, min{d(xi, xi+1), d(xi+1, xi+2)} ≤ n/2.
(2) If f(xi+1)− f(xi) ≥ n− d(xi, xi+1) for all 1 ≤ i ≤ n− 1, then f is a distance

labeling.
(3) If f(xi+1)− f(xi) = n− d(xi, xi+1) for all 1 ≤ i ≤ n− 1, then f is a distance

labeling.
Proof. Note that diam(Pn) = n− 1.

(1) ⇒ (2) Assume (1) For any 1 ≤ i ≤ n− 2, min{d(xi, xi+1), d(xi+1, xi+2)} ≤ n/2

and (2) f(xi+1)− f(xi) ≥ n− d(xi, xi+1) for all 1 ≤ i ≤ n− 1. We need to show that
for any i �= j, |f(xi) − f(xj)| ≥ n− d(xi, xj).
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For each i = 1, 2, . . . , n− 1, set

fi = f(xi+1) − f(xi).

Assume i < j. Then

f(xj) − f(xi) = fi + fi+1 + · · · + fj−1.

Assumptions (1) and (2) imply that fi ≥ n − d(xi, xi+1), fi+1 ≥ n − d(xi+1, xi+2),
and for any i,

max{fi, fi+1} ≥ n/2.

Thus, if j ≥ i+4, then f(xj)− f(xi) ≥ n > n− d(xi, xj), and we are done. It suffices
to consider the cases that j = i + 2 or j = i + 3.

Assume j = i + 2. Without loss of generality, we may assume that d(xi, xi+1) ≥
d(xi+1, xi+2), and hence d(xi+1, xi+2) ≤ n/2. Since d(xi, xi+2) ≥ d(xi, xi+1) −
d(xi+1, xi+2), we have

f(xj) − f(xi) = fi + fi+1

≥ (n− d(xi, xi+1)) + (n− d(xi+1, xi+2))

= 2n− 2d(xi+1, xi+2) − (d(xi, xi+1) − d(xi+1, xi+2))

≥ n− d(xi, xi+2).

Assume j = i+3. If the sum of some pair of the distances d(xi, xi+1), d(xi+1, xi+2),
and d(xi+2, xi+3) is at most n, then f(xi+3)− f(xi) = fi + fi+1 + fi+2 ≥ n, so we are
done.

Thus, we assume that the sum of every pair of the distances d(xi, xi+1), d(xi+1, xi+2),
and d(xi+2, xi+3) is greater than n. This implies that

d(xi+1, xi+2) ≤ n/2 and d(xi, xi+1), d(xi+2, xi+3) > n/2.

Let xi = va, xi+1 = vb, xi+2 = vc, xi+3 = vd. Let m and m′ be, respectively, the
maximum and the minimum of {a, b, c, d}. Then {m,m′} = {a, d}. For otherwise,
say m′ = b, then we have b < c < d, implying that d(xi+1, xi+2) + d(xi+2, xi+3) ≤ n,
which is contrary to our assumption. Hence, one has

d(xi, xi+3) = d(xi, xi+1) + d(xi+2, xi+3) − d(xi+1, xi+2) > n/2.

So, f(xi+3) − f(xi) = fi + fi+1 + fi+2 > fi+1 ≥ n/2 > n− d(xi, xi+3).

(2) ⇒ (3) Trivial.

(3) ⇒ (1) Let f(x1) = 0, and let f(xi) = f(xi−1) + n− d(xi, xi+1) for all i. By (3),

f is a distance labeling of Pn. Assume, to the contrary of (1), that there is an index
i such that

min{d(xi, xi+1), d(xi+1, xi+2)} > n/2.

Without loss of generality, we assume that d(xi, xi+1) ≥ d(xi+1, xi+2). Then

d(xi, xi+2) = d(xi, xi+1) − d(xi+1, xi+2),
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and thus

f(xi+2) − f(xi) = n− d(xi, xi+1) + n− d(xi+1, xi+2)

= 2n− 2(d(xi+1, xi+2)) − d(xi, xi+2)

< n− d(xi, xi+2),

contrary to the assumption that f is a distance labeling.
Theorem 3. For any n ≥ 3,

rn(Pn) =

{
2k2 + 2 if n = 2k + 1,
2k(k − 1) + 1 if n = 2k.

Proof. Note that, for even paths, by Theorem 1 it suffices to show that rn(P2k) ≥
2k(k − 1) + 1. However, for completeness, we present a proof here without using
Theorem 1.

First, we show that rn(P2k+1) ≤ 2k2 + 2 and rn(P2k) ≤ 2k(k − 1) + 1. Assume
P2k+1 = (v1, v2, . . . , v2k+1), where vi ∼ vi+1. Order the vertices of P2k+1 as follows:

vk, vk+k, v1, v1+k, v1+k+k, v3, v3+k, v4, v4+k, v5, v5+k, . . . , vk−1, vk−1+k, v2, v2+k.

Rename the vertices of P in the above ordering by x1, x2, . . . , x2k+1. Namely, let
x1 = vk, x2 = vk+k, . . . , x2k+1 = v2+k.

Let f be the mapping defined as f(x1) = 0, and for i = 2, 3, . . . , 2k + 1,

f(xi) = f(xi−1) + 2k + 1 − d(xi−1, xi).

It is easy to verify that the ordering and the mapping f satisfy the conditions of
Lemma 2(1) and (3). Therefore f is a distance labeling of P2k+1.

It remains to show that f(x2k+1) = 2k2 + 2. By definition,

f(x2k+1) =

2k∑
i=1

[2k + 1 − d(xi, xi+1)]

= 2k(2k + 1) −
2k∑
i=1

d(xi, xi+1).

Thus, it suffices to show that

2k∑
i=1

d(xi, xi+1) = 2k2 + 2k − 2.

Note that if xi = vj and xi+1 = vj′ , then d(xi, xi+1) = |j − j′|, which is equal to
either j − j′ or j′ − j, whichever is positive. By replacing each term d(xi, xi+1) with
the corresponding j−j′ or j′−j, whichever is positive, we obtain a summation whose
entries are ±j for j ∈ {1, 2, . . . , 2k + 1}.

For the ordering above, if j ≤ k, then the vertex preceding vj is vj′ for some
j′ ≥ k + 2, and the vertex following vj is vj′′ for some j′′ ≥ k + 1. Therefore, for each
1 ≤ j ≤ k, whenever ±j occurs in the summation above, it occurs as a −j. Similarly,
if k + 2 ≤ j ≤ 2k + 1, then whenever ±j occurs in the summation it occurs as a +j.
The number k+1 occurs once as +(k+1) and once as −(k+1). Also it is easy to see
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that each j occurs twice in the summation, except that each of j = k and j = k + 2
occurs only once in the summation. Hence, we have

2k∑
i=1

d(xi, xi+1) = 2

⎛
⎝ 2k+1∑

j=k+2

j −
k∑

j=1

j

⎞
⎠− (k + 2 − k)

= 2k2 + 2k − 2.

The case for even paths is similar. Order the vertices of P2k as follows:

vk, vk+k, v2, v2+k, v3, v3+k, . . . , vk−1, vk−1+k, v1, v1+k.

Rename the vertices so that the ordering above is x1, x2, . . . , x2k. Namely, let x1 =
vk, x2 = vk+k, . . . , x2k = v1+k.

Let f be the mapping defined as f(x1) = 0, and for i = 2, 3, . . . , 2k,

f(xi) = f(xi−1) + 2k − d(xi−1, xi).

Then the ordering and the mapping f satisfy the conditions of Lemma 2(1) and (3).
Therefore f is a distance labeling of P2k.

Similarly, in the summation
∑2k−1

i=1 d(xi, xi+1), each j ∈ {1, 2, . . . , k − 1} occurs
twice as −j, k occurs once as a −k, each of j ∈ {k + 2, k + 3, . . . , 2k} occurs twice as
+j, and k + 1 occurs once as a +(k + 1). Therefore,

2k−1∑
i=1

d(xi, xi+1) = 2

⎛
⎝ 2k∑

j=k+2

j −
k−1∑
j=1

j

⎞
⎠ + k + 1 − k

= 2k2 − 1.

This implies

f(x2k) =

2k−1∑
i=1

[2k − d(xi, xi+1)]

= 2k(2k − 1) −
2k−1∑
i=1

d(xi, xi+1)

= 4k2 − 2k − 2k2 + 1

= 2k(k − 1) + 1.

Next, we show that rn(P2k+1) ≥ 2k2 + 2. Let f be a distance labeling of P2k+1.
Order the vertices of P2k+1 as x1, x2, . . . , x2k+1 such that f(xi) < f(xi+1) for all i.
Assume xi = vσ(i). Then σ is a permutation of {1, 2, . . . , 2k+1}. We shall prove that
f(x2k+1) ≥ 2k2 + 2.

By definition, f(x1) ≥ 0 and f(xi) ≥ f(xi−1) + 2k + 1 − d(xi−1, xi) for i =
2, 3, . . . , 2k + 1. Thus

f(x2k+1) ≥
2k∑
i=1

[2k + 1 − d(xi, xi+1)]

= 2k(2k + 1) −
2k∑
i=1

d(xi, xi+1).
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If
∑2k

i=1 d(xi, xi+1) ≤ 2k2 +2k− 2, then f(x2k+1) ≥ 2k2 +2, and we are done. Hence,

assume
∑2k

i=1 d(xi, xi+1) > 2k2 + 2k − 2.

Claim 1. If
∑2k

i=1 d(xi, xi+1) > 2k2 +2k−2, then
∑2k

i=1 d(xi, xi+1) = 2k2 +2k−1
and there is an index i such that f(xi+1) − f(xi) ≥ n− d(xi+1, xi) + 1.

Proof of Claim 1. Note that d(xi, xi+1) is equal to either σ(i) − σ(i + 1) or
σ(i + 1) − σ(i), whichever is positive. By replacing each term d(xi, xi+1) with the
corresponding σ(i) − σ(i + 1) or σ(i + 1) − σ(i), whichever is positive, we obtain a
summation whose entries are ±j for j ∈ {1, 2, . . . , 2k + 1}.

All together, there are 4k terms in the summation
∑2k

i=1 d(xi, xi+1), half of them
positive and half negative. Each j ∈ {1, 2, . . . , 2k + 1} occurs as ±j exactly twice in
the summation, except for two values each of which occurs only once.

To maximize the summation
∑2k

i=1 d(xi, xi+1), one needs to minimize the absolute
values for the negative terms while maximizing the values of the positive terms. It is
easy to verify that there are two combinations achieving the maximum summation:
Case 1. Each of the numbers in {k + 2, k + 3, k + 4, . . . , 2k + 1} occurs twice as a

positive, each of {1, 2, . . . , k − 1} occurs twice as a negative, and each of k
and k + 1 occurs once as a negative.

Case 2. Each of the numbers in {k + 3, k + 4, . . . , 2k + 1} occurs twice as a positive,
each of {1, 2, . . . , k} occurs twice as a negative, and each of k + 1 and k + 2
occurs once as a positive.

In both cases, we have

2k∑
i=1

d(xi, xi+1) = 2k2 + 2k − 1.

In Case 1, we must have {σ(1), σ(2k + 1)} = {k + 1, k}. Moreover, σ(i) ≥ k + 2
if and only if σ(i + 1) ≤ k + 1. In particular, if σ(i) = 1, then σ(i − 1) ≥ k + 2
and σ(i + 1) ≥ k + 2. This violates (1) in Lemma 2. As f is a distance labeling,
it follows from Lemma 2(3) that there exists some i such that f(xi+1) − f(xi) ≥
n− d(xi, xi+1) + 1.

In Case 2, we must have {σ(1), σ(2k+1)} = {k+1, k+2}. Moreover, σ(i) ≥ k+1
if and only if σ(i + 1) ≤ k. In particular, if σ(i) = 2k + 1, then σ(i − 1) ≤ k and
σ(i + 1) ≤ k. Again, this violates (1) in Lemma 2, and it follows from Lemma 2(3)
that there exists some i such that f(xi+1) − f(xi) ≥ n− d(xi, xi+1) + 1.

By some calculation, it follows from Claim 1 that if
∑2k

i=1 d(xi, xi+1) > 2k2+2k−2,
we also have f(x2k+1) ≥ 2k2 + 2, completing the proof for odd paths.

We now show that rn(P2k) ≥ 2(k2 − k) + 1. Let f be a distance labeling of P2k.
Let x1, x2, . . . , x2k be the ordering of the vertices of P2k such that f(xi) < f(xi+1)
for all i. Then

f(x2k) ≥
2k−1∑
i=1

[2k − d(xi, xi+1)]

= 2k(2k − 1) −
2k−1∑
i=1

d(xi, xi+1).

Similarly, in the summation
∑2k−1

i=1 d(xi, xi+1), each j ∈ {1, 2, . . . , 2k} occurs
twice as ±j, except for two values which each occur only once. Moreover, 2k − 1
of the terms are positive and 2k − 1 of them are negative. Thus to maximize the
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summation subject to the constraint, each number in {1, 2, . . . , k − 1} occurs twice
as negative terms, and each number in {k + 2, k + 3, . . . , 2k} occurs twice as positive
terms, while k and k + 1 occur once, respectively, as a negative term and a positive
term. Hence, we have

2k−1∑
i=1

d(xi, xi+1) ≤ 2(k2 − 1) + 1,

implying

f(x2k) ≥ 2k(2k − 1) − 2(k2 − 1) − 1 ≥ 2k(k − 1) + 1.

3. The radio number for cycles. Let Cn denote the cycle on n vertices.
Chartrand et al. [3] proved the following bounds for rn(Cn).

Theorem 4 (see [3]). For k ≥ 3,

rn(Cn) ≤
{
k2 if n = 2k + 1,
k2 − k + 1 if n = 2k.

Moreover, rn(Cn) ≥ 3	n
2 − 1
 − 1 for n ≥ 6.

In this section, we completely determine the radio number for cycles. For any
integer n ≥ 3, let

φ(n) =

{
k + 1 if n = 4k + 1,
k + 2 if n = 4k + r for some r = 0, 2, 3.

Theorem 5. Let Cn be the n-vertex cycle, n ≥ 3. Then

rn(Cn) =

{
n−2

2 φ(n) + 1 if n ≡ 0, 2 (mod 4),

n−1
2 φ(n) if n ≡ 1, 3 (mod 4).

First we prove that the desired numbers in Theorem 5 are lower bounds for
rn(Cn). Assume V (Cn) = {v0, v1, v2, . . . , vn−1}, where vi ∼ vi+1 and vn−1 ∼ v0. Let
f be a distance labeling for Cn. We order the vertices of V (Cn) by x0, x1, x2, . . . , xn−1

with f(xi) < f(xi+1).
Denote d = diam(Cn). Then d = �n/2. For i = 0, 1, 2, . . . , n− 2, set

di = d(xi, xi+1) and fi = f(xi+1) − f(xi).

By definition, fi ≥ d− di + 1 for all i.
To proceed with the proof of Theorem 5, we need the following two results.
Lemma 6. For any 0 ≤ i ≤ n− 3, fi + fi+1 ≥ φ(n).
Proof. Assume to the contrary that for some i, fi + fi+1 ≤ φ(n) − 1. Then

fi, fi+1 ≤ φ(n)−2. So, we have di ≥ d−fi+1 ≥ d−φ(n)+3 and di+1 ≥ d−φ(n)+3,
implying that di, di+1 > d/2. Therefore, d(xi, xi+2) is equal to either |di − di+1| or
n − (di + di+1). In the former case, d(xi, xi+2) ≤ d − (d − φ(n) + 3) = φ(n) − 3,
implying that

fi + fi+1 = f(xi+2) − f(xi) ≥ d− (φ(n) − 3) + 1 ≥ φ(n),

contrary to our assumption.
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If it is the latter case, then by definition all of the following hold:

f(xi+1) − f(xi) ≥ d− di + 1,

f(xi+2) − f(xi+1) ≥ d− di+1 + 1,

f(xi+2) − f(xi) ≥ d− (n− di − di+1) + 1.

Hence, 2(f(xi+2) − f(xi)) ≥ 3d − n + 3. Easy calculation shows that fi + fi+1 =
f(xi+2) − f(xi) ≥ φ(n), a contradiction.

Corollary 7. For any integer n ≥ 3,

rn(Cn) ≥
{

n−2
2 φ(n) + 1 if n ≡ 0, 2 (mod 4),

n−1
2 φ(n) if n ≡ 1, 3 (mod 4).

Proof. If n = 4k or n = 4k + 2, by Lemma 6, the span of a distance labeling f
for Cn is

f(xn−1) =

n−2∑
i=0

fi =

(n−4)/2∑
i=0

(f2i + f2i+1) + fn−2 ≥ n− 2

2
φ(n) + 1.

If n = 4k + 1 or n = 4k + 3, by Lemma 6 the span of a distance labeling f for Cn is

f(xn−1) =

n−2∑
i=0

fi =

(n−3)/2∑
i=0

(f2i + f2i+1) ≥
n− 1

2
φ(n).

To complete the proof of Theorem 5, it remains to find distance labelings for Cn

with spans equal to the desired numbers. We consider four cases. For each case, we
present a distance labeling f of Cn, achieving the bound.

In each of the four cases, the labeling is generated by two sequences, the distance
gap sequence

D = (d0, d1, d2, d3, . . . , dn−2)

and the color gap sequence

F = (f0, f1, f2, . . . fn−2).

The distance gap sequence, in which each di ≤ d is a positive integer, is used to
generate an ordering of the vertices of Cn. Let τ : {0, 1, . . . , n−1} → {0, 1, . . . , n−1}
be defined as τ(0) = 0 and

τ(i + 1) = τ(i) + di (mod n).

We will show that for each of the distance sequences given below, the corresponding τ
is a permutation. Let xi = vτ(i) for i = 0, 1, 2, . . . , n− 1. Then x0, x1, . . . , xn−1 is an
ordering of the vertices of Cn. Since 1 ≤ di ≤ d for each i, we have d(xi, xi+1) = di.

The color gap sequence is used to assign labels to the vertices of Cn. Let f be
the labeling defined by f(x0) = 0, and for i ≥ 1,

f(xi+1) = f(xi) + fi.

Since fi = f(xi+1) − f(xi) and d(xi, xi+1) = di, to show that f is indeed a distance
labeling, it suffices to prove that all of the following hold for any i:
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(1) τ is a permutation,
(2) fi ≥ d− di + 1,
(3) fi + fi+1 ≥ d− d(xi, xi+2) + 1,
(4) fi + fi+1 + fi+2 ≥ d− d(xi, xi+3) + 1,
(5) fi + fi+1 + fi+2 + fi+3 ≥ d.
For all the labelings given below, (5) is trivial, (2) is obvious, and (3) and (4)

are also easy to verify. In all the cases, we sketch a proof for (1), and leave it to the
reader to verify (2)–(5).

Case 1. n = 4k In this case, d = 2k. The distance gap sequence D is given by

di =

⎧⎨
⎩

2k if i is even,
k if i ≡ 1 (mod 4),
k + 1 if i ≡ 3 (mod 4).

The color gap sequence F is given by

fi =
{

1 if i is even,
k + 1 if i is odd.

Then we have, for i = 0, 1, 2, . . . , k − 1,

τ(4i) = 2ik + i (mod n),
τ(4i + 1) = (2i + 2)k + i (mod n),
τ(4i + 2) = (2i + 3)k + i (mod n),
τ(4i + 3) = (2i + 1)k + i (mod n).

We prove that τ is a permutation. Assume to the contrary that τ(4i + j) =
τ(4i′+j′) for some i, i′ ∈ {0, 1, 2, . . . , k−1} and j, j′ ∈ {0, 1, 2, 3} with 4i+j < 4i′+j′.
Then, clearly i < i′ and

(2i + t)k + i ≡ (2i′ + t′)k + i′ (mod n) for some t, t′ = 0, 1, 2, 3.

Therefore, we have 2(i′ − i)k + (t′ − t)k ≡ i − i′ (mod n), which is impossible, as
0 < i′ − i < k and 2(i′ − i)k + (t′ − t)k ≡ sk (mod n) for some integer s.

The span of f is equal to f0 + f1 + f2 + · · · + fn−2 = (k + 2)(2k − 1) + 1.

Case 2. n = 4k + 2 In this case, d = 2k+1. The distance gap sequence D is defined

by

di =
{

2k + 1 if i is even,
k + 1 if i is odd.

The color gap sequence F is defined by

fi =
{

1 if i is even,
k + 1 if i is odd.

Hence, for i = 0, 1, . . . , 2k, we have

τ(2i) = i(3k + 2) (mod n),
τ(2i + 1) = i(3k + 2) + 2k + 1 (mod n).

We show that τ is a permutation. Note that (n, k) ≤ 2 and 3k+2 ≡ −k (mod n).
Thus, (i− i′)(3k + 2) ≡ k(i′ − i) �≡ 0 (mod n) if 0 < i− i′ < n/2. This implies that
τ(2i) �= τ(2i′) and τ(2i + 1) �= τ(2i′ + 1) if i �= i′.
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If τ(2i) = τ(2i′ + 1), then similarly, we get (i − i′)k ≡ 2k + 1 = n/2 (mod n).
Since gcd(n/2, k) = 1 and |i− i′| ≤ 2k < n/2, this is impossible.

The span of f is f0 + f1 + · · · + fn−2 = 2k(k + 2) + 1.

Case 3. n = 4k + 1 In this case, d = 2k. The distance gap sequence D is defined

by

d4i = d4i+2 = 2k − i and d4i+1 = d4i+3 = k + 1 + i.

The color gap sequence F is defined by

fi = d− di + 1 = 2k − di + 1.

Then, the mapping τ on the vertices of Cn has

τ(2i) = i(3k + 1) (mod n)
= −ik (mod n), 0 ≤ i ≤ 2k,

τ(4i + 1) = 2i(3k + 1) + 2k − i (mod n)
= 2(i + 1)k (mod n), 0 ≤ i ≤ k − 1,

τ(4i + 3) = (2i + 1)(3k + 1) + 2k − i (mod n)
= (2i + 1)k (mod n), 0 ≤ i ≤ k − 1.

We show that τ is indeed a permutation. Let

S = {−i : 0 ≤ i ≤ 2k} ∪ {2(i + 1) : 0 ≤ i ≤ k − 1}
∪ {2i + 1 : 0 ≤ i ≤ k − 1}

= {−2k,−(2k − 1), . . . , 0, 1, . . . , 2k}.

By the definition of τ , for any 0 ≤ j ≤ 4k, we have τ(j) = ajk (mod n) for some
aj ∈ S and aj �= aj′ if j �= j′. Thus to prove τ(j) �= τ(j′) for j �= j′, it suffices to
show that for any distinct elements a, a′ of S, ak �= a′k (mod n). This is obvious,
as (n, k) = 1 (mod n) and for any two distinct elements a, a′ of S, 0 < |a− a′| < n.
So (a− a′)k �≡ 0 (mod n), and hence τ is a permutation.

Using the fact that d2i + d2i+1 = 3k + 1 for any i, the span of f is

f0 + f1 + f2 + · · · + fn−2 = (4k)(2k) − (d0 + d1 + · · · + dn−2) + 4k

= 8k2 − 2k(3k + 1) + 4k

= 2k(k + 1).

Case 4. n = 4k + 3 In this case, d = 2k+1. The distance gap sequence D is defined

by

d4i = d4i+2 = 2k + 1 − i, d4i+1 = k + 1 + i, d4i+3 = k + 2 + i.

The coloring gap sequence F is

fi =

{
d− di + 1 = 2k − di + 2, i �≡ 3 (mod 4),
d− di + 2 = 2k − di + 3 otherwise.
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Then the mapping τ on the vertices of Cn has

τ(4i) = i(6k + 5) (mod n)
= 2i(k + 1) (mod n), 0 ≤ i ≤ k,

τ(4i + 1) = 2i(k + 1) + 2k + 1 − i (mod n)
= (i + 1)(2k + 1) (mod n)
= −2(i + 1)(k + 1) (mod n), 0 ≤ i ≤ k,

τ(4i + 2) = (i + 1)(2k + 1) + k + 1 + i (mod n)
= (i + 1)(2k + 2) + k (mod n)
= 2(i + 1)(k + 1) − 3(k + 1) (mod n)
= (2i− 1)(k + 1) (mod n), 0 ≤ i ≤ k,

τ(4i + 3) = 2i(k + 1) + 3k + 2 + 2k + 1 − i (mod n)
= i(2k + 1) + k (mod n)
= −i(2k + 2) − 3(k + 1) (mod n)
= −(2i + 3)(k + 1) (mod n), 0 ≤ i ≤ k − 1.

Now we prove that τ is a permutation. Let

S = {2i : 0 ≤ i ≤ k} ∪ {−2(i + 1) : 0 ≤ i ≤ k}
∪ {2i− 1 : 0 ≤ i ≤ k} ∪ {−(2i + 3) : 0 ≤ i ≤ k − 1}

= {−(2k + 2),−(2k + 1), . . . , 0, 1, . . . , 2k}.

By the definition of τ , for any 0 ≤ j ≤ 4k+2, we have τ(j) = aj(k+1) (mod n)
for some aj ∈ S, and aj �= aj′ if j �= j′. Thus, to prove τ(j) �= τ(j′) for j �= j′, it
suffices to show that for any distinct elements a, a′ of S, a(k+1) �= a′(k+1) (mod n).
This is obvious, as (n, k + 1) = 1 (mod n) and for any two distinct elements a, a′ of
S, 0 < |a− a′| < n. Hence, τ is a permutation.

The span of f is

f0 + f1 + · · · + fn−2 = 2k(4k + 2) − (d0 + d1 + · · · + dn−2) + 2(4k + 2) + k

= 2k(4k + 2) − [k(6k + 5) + 3k + 2] + 9k + 4

= (k + 2)(2k + 1).

This completes the proof of Theorem 5.

Acknowledgment. The authors wish to thank the referees for their careful read-
ing and constructive comments on earlier versions of this article, which resulted in
better presentation of this article.
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GRAPH-THEORETIC GENERALIZATION OF THE SECRETARY
PROBLEM: THE DIRECTED PATH CASE∗

GRZEGORZ KUBICKI† AND MICHA�L MORAYNE‡

Abstract. We consider the following on-line decision problem. The vertices of a directed path
of a known length are being observed one by one in some random order by a selector. At time t the
selector examines the tth vertex and knows the directed graph induced by the t vertices that have
been already examined. The selector’s aim is to choose the currently examined vertex maximizing
the probability that this vertex is the “uppermost” one, i.e., the only one that does not have an
outgoing edge. An optimal algorithm for such a choice (in other words, optimal stopping time) is
given. For a cardinality n of the directed path considered, the probability pn of the right choice
according to the optimal algorithm is given, and it is shown that pn

√
n →

√
π/2 as n → ∞.

Key words. graph, directed path, secretary problem, best choice

AMS subject classification. 60G40

DOI. 10.1137/S0895480104440596

1. Introduction. The celebrated secretary problem (known also as the best
choice problem) can be stated as follows: there are n elements (candidates for a job
of a secretary) which are linearly ordered from the worst to the best, c1, . . . , cn, and
which are observed one by one in some random permutation cπ1 , . . . , cπn by a selector
who is to make at some moment τ an on-line decision picking the presently examined
candidate cτ maximizing the probability P [πτ = n]. The choice of the selector is
based only on his knowledge of the relative ranks of the candidates examined so far
and the number n of all candidates. At the moment of choice, the selector has no
knowledge of the ranks of the future candidates.

This problem was solved in [GM]. Its potential usefulness going far beyond the
entertaining original statement, and, probably, also its irresistible beauty, stimulated
many authors to enrich its original content and to consider many variants of it. It
seems now to be a field of research on its own, having a large bibliography and many
interesting results. For a comprehensive treatment of the subject the reader is advised
to consult [F] and [BG].

Further generalizations opened up when it was realized that sometimes the choice
must be made from elements that are not necessarily comparable in some absolute
sense. This led to a partial order version of the secretary problem that has the
formulation fully analogous to that where candidates are linearly ordered. The set P
to be examined is now equipped with some partial order ≺ and at a moment t the
selector knows only the candidates cπ1 , . . . , cπt that have been examined so far and
their relative ranks or, in other words, the induced order ≺ ∩{cπ1

, . . . , cπt
}2. The

aim of the selector is to pick the presently considered candidate in such a way that the
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probability that it belongs to the set of maximal elements with respect to the partial
order ≺ is maximal possible. In some situations giving an optimal stopping time
seems to be very hard, therefore the algorithms were searched where the probability
of choosing a maximal element was sufficiently high.

The partial order version of the secretary problem was, for instance, considered in
the series of papers by Baryshnikov, Berezovskiy, and Gnedin, which are well surveyed
in [G] (threshold stopping times), [M] (optimal stopping time for the partial orders
whose Hasse diagram is a finite complete binary tree of a given length), and [P]
and [KMN] (universal randomized stopping times for partially ordered sets of known
cardinality in the case where the selector has no prior knowledge of the order).

All these considerations may still be viewed from a broader graph-theoretic per-
spective. Namely, if with a partially ordered set (P,≺) we associate its directed Hasse
diagram, picking a maximal element is picking an element that is never a starting
point of a directed edge. This statement, however, no longer requires a partial order
structure. It is enough to deal with a directed graph. The role of maximal elements
is played now by those vertices which are never starting points of directed edges.
Actually, there is no obstacle to formulate a still more general problem where for a
given graph (not necessarily directed) we want to choose in the online decision process
described above a vertex from some predefined set of vertices. Effective algorithms for
such a choice may be potentially applicable, for instance, in searches for appropriate
servers which are a part of a known computer network.

In this paper we consider the case of a directed path of given cardinality n. We
find an optimal algorithm (stopping time) for the choice of the maximal element.

2. Definitions and notation. For a set X let P(X) denote the family of all
subsets of X. N denotes the set of positive integers. Let Sn be the family of all
permutations of the set {1, 2, . . . , n}. A graph is a pair (V,E), where V is a set
of vertices and E is a family of nonempty subsets of V of cardinality at most two.
Each such subset is called an edge (connecting its elements). In a directed graph
(V,E) the set E is a set of ordered pairs of elements of V . Therefore every edge has
a direction. A simple graph is a graph (directed or not) having at most one edge
between any two vertices and having no edge connecting a vertex to itself. A directed
path is a directed graph G = (V,E), where V = {v1, . . . , vn}, vi �= vj for i �= j,
and E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}. A maximal vertex of a directed graph
G = (V,E) is any vertex v ∈ V such that (v, u) /∈ E for every u ∈ V . The set of
all maximal vertices of G = (V,E) will be denoted by Max G or MaxEV or, if E is
known from the context, simply by Max V. Thus if (V,E) is the directed path defined
above, we have MaxEV = {vn}. A graph G = (V,E) (directed or not) is connected
if for any u, v ∈ V there is a sequence u = u0, u1, . . . , uk = v such that there is an
edge (no condition is imposed on its direction) between ui and ui+1, 0 ≤ i < k. For a
graph G = (V,E), its induced subgraph G′ = (W,E ∩W 2) (induced by W ), W ⊂ V ,
is called a connected component if it is a maximal connected induced subgraph.

Let G = (V,E) be a directed graph and v1, v2, . . . , vk be a sequence of pairwise
different vertices of G. Let R ⊆ N2. We write (v1, . . . , vk) ∼= R if for all i, j ≤ k,
i �= j, (vi, vj) ∈ E if and only if (i, j) ∈ R.

Let (Ω,F , P ) be a probability space. Let F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ F be a
sequence of σ-algebras. We call such a sequence a filtration. We say that a random
variable τ : ω → {1, 2, . . . , n} is a stopping time with respect to a filtration (Ft)

n
t=1 if

τ−1({t}) ∈ Ft for each t ≤ n.

If we think of τ(ω), ω ∈ Ω as a moment when to stop observing a certain process
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depending on ω and t = 1, 2, . . . , n, then the condition τ−1({t}) ∈ Ft means that our
decision to stop at t is based only on the events that took place until this moment
and does not depend on any information about the future events.

3. Formal model. Though in this paper we consider only the case of directed
path, for the problem we want to consider it is worthwhile to give a more general
probabilistic model concerning any directed graph.

Thus let G = (V,E) be a fixed directed graph. Let V = {v1, v2, . . . , vn}. Let
Ω = Sn, where Sn is the set of all permutations of 1, 2, . . . , n. Let F = P(Ω). Let the
probability measure P : F → [0, 1] be defined by P ({π}) = 1/n! for each π ∈ Sn (i.e.,
we assume a uniform distribution). Let

Ft = σ{{π ∈ Ω : (vπ1 , vπ2 , . . . , vπt)
∼= R} : R ⊆ N2}, 1 ≤ t ≤ n.

The extension of the secretary problem to the case of the directed graph G consists
now in finding a stopping time τ∗ : Ω → {1, 2, . . . , n} such that

P [vπτ∗ ∈ MaxG] = max
τ

P [vπτ ∈ MaxG],

where τ runs over the set of all stopping times with respect to the filtration (Ft)
n
t=1

and [vπτ
∈ MaxG] denotes the set {π ∈ Ω : vπτ ∈ MaxG} (we shall use similar

notation throughout this paper).
We shall now give an example of possible selector’s consecutive observations in

the case of a directed path of length 7:

({1, . . . , 7}, ({(1, 2), (2, 3), . . . , (6, 7)}).

Let π = (3, 2, 5, 1, 6, 7, 4) (see Figure 1).
One can easily notice that only when t = 1, 3, 5, 6 does the selector have a chance

to make the right choice. One can also notice that if the choice was not made until
t = 6, there is no chance to get n at the last step. Actually, we can infer from the
situation at t = 6 that π7 = 4.

4. Optimal stopping time. For a fixed n ∈ N, let us consider a directed path

Pn = ({1, 2, . . . , n}, {(1, 2), . . . , (n− 1, n)}).

For a subset A ⊆ {1, 2, . . . , n}, c(A) is the number of connected components of the
graph (A, {(1, 2), . . . , (n − 1, n) ∩ A2). Within the model defined in the previous
section, let

τ (n)(π)

= min{t ≤ n : c({π1, . . . , πt}) = n− t + 1 and πt ∈ Max {π1, . . . , πt}},

using the convention min ∅ = n.
Note that if at time t, c({π1, . . . , πt}) = n − t + 1, then there is no hope that n

can be still among the elements to come, namely πt+1, πt+2, . . . , πn, because we need
at least n− t vertices to connect the components we have at time t, and thus all the
remaining elements of Pn must be used for this purpose. Therefore the strategy τ (n)

can be described as follows.
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Fig. 1.

Stop when there is a positive conditional (given history) probability that the pres-
ently examined candidate is the maximal one and the probability that the maximal one
can be among the future candidates is equal to zero.

We are going to prove the following theorem.
Theorem 4.1. For a directed path Pn, the stopping time τ (n) is optimal; i.e.,

P [πτ(n) = n] = max
τ

P [πτ = n],

where τ runs over the set of all stopping times.
We also have

P [πτ(n) = n] =
1

n

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
,(1)
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with the convention that the first term of the above sum is equal to 1.
To prove Theorem 4.1 we shall need Lemma 4.2, stated below.

For a relation R ⊆ N2, let A
(m)
R = {π ∈ Sn : (π1, . . . , πm) ∼= R}.

Lemma 4.2. Let m ≤ n. Let R ⊆ N2, π ∈ Sn, and π ∈ A
(m)
R . We assume that

πm ∈ Max{π1, . . . , πm} (this is, of course, a property of R; i.e., for every permutation

ρ ∈ A
(m)
R we also have ρm ∈ Max{ρ1, . . . , ρm}). We assume also that for some (or,

equivalently, each) π ∈ A
(m)
R , the set {π1, . . . , πm} has p components.

Then

P [πm = n|A(m)
R ] =

1

n−m + 1
.(2)

If m < n,

P [n ∈ {πm+1, . . . , πn}|A(m)
R ] =

n− p−m + 1

n−m + 1
.(3)

Proof. Each component is a sequence of some consecutive elements from among
1, . . . ,m. Let these components be numbered according to the time of the appearance
of their latest elements (the ones that came the last of all the elements of a given
component): C1, . . . , Cp.

Assume, losing no generality, that the remaining n − m elements πm+1, . . . , πn

will appear in the order πm+1 < · · · < πn.
Add to the remaining elements πm+1, . . . , πn one dummy element d > πn. There

are
(
n−m+1

p

)
p! possible choices of different elements e1, . . . , ep from among πm+1, . . . ,

πn, d such that ej is immediately above Cj , j ≤ p. Now a permutation from A
(m)
R is

uniquely determined.
Assume that πm = n. Thus m ∈ Cp. There are

(
n−m
p−1

)
(p − 1)! choices of p − 1

different elements e1, . . . , ep−1 from among πm+1, . . . , πn such that ej is immediately

above Cj , j ≤ p − 1. Now a permutation π ∈ A
(m)
R such that πm = n is uniquely

determined.
Thus

P [πm = n|A(m)
R ] =

(
n−m
p−1

)
(p− 1)!(

n−m+1
p

)
p!

=
1

n−m + 1
,

as required.

As the number of permutations from A
(m)
R for which Ci1 < · · · < Cip is the same

for all permutations (i1, . . . , ip) of 1, . . . , p, we get

P [n ∈ {π1, . . . , πm}|A(m)
R ] = P [n ∈

p⋃
i=1

Ci|A(m)
R ]

= p · P [n ∈ Cp|A(m)
R ] = p · P [n = πm|A(m)

R ] =
p

n−m + 1
.

Hence

P [n ∈ {πm+1, . . . , πn}|A(m)
R ] = 1 − p

n−m + 1
,

as required. This completes the proof.
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We can now prove Theorem 4.1.
Proof of Theorem 4.1. Let us first make an intuitively obvious, and easy to

formalize, observation. Namely, it is sufficient to maximize P [πτ = n] only over the
stopping times τ such that for each π ∈ Sn, πτ ∈ Max{π1, . . . , πτ} or τ(π) = n.

Now, aiming at contradiction, let us assume that τ (n) is not optimal. Thus there
exists a stopping time τ such that P [πτ(n) = n] < P [πτ = n]. Of course, we can
assume that τ is optimal and, according to the remark above, that τ(π) = t only if
πt ∈ Max{π1, . . . , πt} or t = n. We can also assume that there is no optimal stopping
time τ̄ ≥ τ , τ̄ �= τ .

Let τ(π) = n. If πn = n, then by the definition of τ (n) we also have τ (n)(π) = n.
Thus

P [πτ = n|τ = n] ≤ P [πτ(n) = n|τ = n].

Let us now consider the complementary event [τ < n].

The event [τ < n] is a union of disjoint events of the form A
(m)
R , where R ⊆

{1, . . . ,m}2 is a relation defined by

(i, j) ∈ R ⇔ δj = δi + 1, 1 ≤ i, j ≤ m,m < n,

where δ is a permutation such that τ(δ) = m < n. Thus for at least one A
(m)
R we

must have

P [πτ = n|A(m)
R ] > P [πτ(n) = n|A(m)

R ].(4)

Thus on A
(m)
R we have τ < τ (n).

For τ and R being considered now, let a new stopping time τ̄ be defined by

τ̄(ρ) =

⎧⎪⎨
⎪⎩

τ(ρ) if ρ /∈ A
(m)
R ,

minM(ρ,m) if ρ ∈ A
(m)
R and M(ρ,m) �= ∅,

n in the remaining cases

for ρ ∈ Sn, where

M(ρ,m) = {t > m : ρ(t) ∈ Max{ρ1, . . . , ρt}}.

From (4) and the definition of τ (n), we infer that τ̄ �= τ and τ̄ ≥ τ . We are going to
show that

P [πm �= n|A(m)
R ] · P [πτ̄ = n|A(m)

R ∩ [πm �= n]] ≥ P [πm = n|A(m)
R ].(5)

This implies P ([πτ̄ = n] ∩ A
(m)
R ∩ [πm �= n]) ≥ P ([πm = n] ∩ A

(m)
R ) and, thus,

P ([πτ̄ = n] ∩ A
(m)
R ) ≥ P ([πτ = n] ∩ A

(m)
R ), which gives P [πτ̄ = n] ≥ P [πτ = n]. This

together with τ̄ ≥ τ and τ̄ �= τ will contradict our assumption on maximality of τ
among all optimal stopping times.

The event that n does not appear at the moment m can be replaced in (5) by
the event V that n appears after time m, i.e., V = [n ∈ {πm+1, . . . , πn}]. Indeed, to
prove (5), it is enough to show that

P (V |A(m)
R ) · P [πτ̄ = n|A(m)

R ∩ V ] ≥ P [πm = n|A(m)
R ](6)
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because

P (V |A(m)
R ) · P [πτ̄ = n|A(m)

R ∩ V ] =
P (V ∩A

(m)
R )

P (A
(m)
R )

· P ([πτ̄ = n] ∩A
(m)
R ∩ V )

P (A
(m)
R ∩ V )

=
P ([πτ̄ = n] ∩A

(m)
R ∩ [πm �= n])

P (A
(m)
R )

,

the last equality being a consequence of

[πτ̄ = n] ∩A
(m)
R ∩ [πm �= n] = [πτ̄ = n] ∩A

(m)
R ∩ V = [πτ̄ = n] ∩A

(m)
R .

Let Ā
(m)
R = A

(m)
R ∩ V . By (3) of Lemma 4.2 we have

P (V |A(m)
R ) · P [πτ̄ = n|Ā(m)

R ]

=
n− p−m + 1

n−m + 1

n∑
t=m+1

P ([πt = n] ∩ [τ̄ = t]|Ā(m)
R )

=
n− p−m + 1

n−m + 1

n∑
t=m+1

P ([πt = n] ∩ [τ̄ = t] ∩ Ā
(m)
R )

P (Ā
(m)
R ∩ [τ̄ = t])

· P ([τ̄ = t] ∩ Ā
(m)
R )

P (Ā
(m)
R )

=
n− p−m + 1

n−m + 1

n∑
t=m+1

P [πt = n|[τ̄ = t] ∩ Ā
(m)
R ] · P [τ̄ = t|Ā(m)

R ].

Let us now evaluate P [πt = n|[τ̄ = t] ∩ Ā
(m)
R ] for t > m.

Note that for t > m, we have at least p−(t−m)+1 components of {π1, . . . , πt−1},
and each of them, maybe with the exception of the first one, is bounded from below
by an immediate predecessor that has not appeared by the time t. If π ∈ [τ̄ = t], then
none of these predecessors is equal to πt, because πt ∈ Max{π1, . . . , πt}. Thus there
are at most

(n− t + 1) − (p− (t−m)) = n− p−m + 1

elements that can be equal to πt. As π ∈ V and π ∈ [τ̄ = t], the element n is still
among {1, . . . , n} \ {π1, . . . , πt−1}. Hence

P [πt = n|[τ̄ = t] ∩ Ā
(m)
R ] ≥ 1

n− p−m + 1
.

Thus, using (2) of Lemma 4.2 in the last equality below, we finally get

P (V |A(m)
R ) · P [πτ̄ = n|Ā(m)

R ]

≥ 1

n−m + 1

n∑
t=m+1

P [τ̄ = t|Ā(m)
R ] =

1

n−m + 1
= P [πm = n|A(m)

R ].

This proves (6) and the optimality of τ (n).
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Now we are going to justify (1).
Let

Bj = [πj ∈ Max{π1, . . . , πj}],

Cj = [c({π1, . . . , πj}) = n− j + 1],

Aj = Bj ∩ Cj .

As Cj = ∅ for j < n+1
2 , we have

P [πτ(n) = n] =

n∑
j=�n+1

2 �
P [πτ(n) = n|Aj ] · P (Aj)

=

n∑
j=�n+1

2 �
P [πτ(n) = n|Aj ] · P (Bj |Cj) · P (Cj).

We have

P (Bj |Cj) =
n− j + 1

j

and

P (Cj) =

(
j−1
n−j

)
j!(n− j)!

n!

for j ≥ n+1
2 . Note that

(
j−1
n−j

)
is the number of 0, 1 sequences (ai)

n
i=1 such that ai = 0

implies 1 < i < n, ai−1 = ai+1 = 1, and |{i : ai = 0}| = n− j. One can see that this
is the case by first forming a sequence of j 1s and then out of all but the first element
choosing n− j 1s that will be preceded by 0. The product j!(n− j)! is the number of
the permutations in which the i indices in which ai = 1 are at the first j places.

We have

P [πτ(n) = n|Aj ] =
1

n− j + 1

because c({π1, . . . , πj}) = n− j + 1. Thus

P [πτ(n) = n] =

n∑
j=�n+1

2 �

1

j

(
j − 1

n− j

)
j!(n− j)!

1

n!

or, when summed in reverse order,

P [πτ(n) = n] =

�n−1
2 ∑

i=0

1

n− i

(
n− i− 1

i

)
(n− i)!i!

1

n!
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=
1

n

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
.

This completes the proof of Theorem 4.1.
We shall now prove a theorem establishing the asymptotics of P [πτ(n) = n]. It

turns out that P [πτ(n) = n] = O( 1√
n
). Namely, the following theorem holds.

Theorem 4.3. We have

lim
n→∞

P [πτ(n) = n]
√
n =

√
π

2
.(7)

Proof. Let q = 2m be a fixed positive even integer. For a positive integer n, let a
nonnegative integer kn satisfy q2k4

n < n ≤ q2(kn + 1)4.
As n−1

2 ≥ mqk4
n ≥ mqk2

n, we have

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
>

mqk2
n∑

i=1

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)

=

mq∑
t=1

tkn∑
j=(t−1)kn+1

jkn∑
i=(j−1)kn+1

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)

≥
mq∑
t=1

tkn∑
j=(t−1)kn+1

jkn∑
i=(j−1)kn+1

(
n− 2i

n− i

)i

≥ kn

mq∑
t=1

tkn∑
j=(t−1)kn+1

(
n− 2jkn
n− jkn

)jkn

= kn

mq∑
t=1

tkn∑
j=(t−1)kn+1

[(
1 − jkn

n− jkn

)n−jkn−1 (
1 − jkn

n− jkn

)] jkn
n−jkn

≥ kn

mq∑
t=1

tkn∑
j=(t−1)kn+1

e−
j2k2

n
n−jkn

(
1 − jkn

n− jkn

) jkn
n−jkn

≥ kn

mq∑
t=1

(
1 − tk2

n

n− tk2
n

) tk2
n

n−tk2
n

tkn∑
j=(t−1)kn+1

(
e
− tk3

n
n−tk2

n

)j

= kn

mq∑
t=1

(
1 − tk2

n

n− tk2
n

) tk2
n

n−tk2
n

1 −
(
e
− tk3

n
n−tk2

n

)kn

1 − e
− tk3

n
n−tk2

n

(
e
− tk3

n
n−tk2

n

)(t−1)kn+1

.

Let

An,t = kn

(
1 − tk2

n

n− tk2
n

) tk2
n

n−tk2
n

1 −
(
e
− tk3

n
n−tk2

n

)kn

1 − e
− tk3

n
n−tk2

n

(
e
− tk3

n
n−tk2

n

)(t−1)kn+1

.
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If n → ∞, then also kn → ∞. It is not hard to see that

lim
n→∞

An,t√
n

=
q

t

(
1 − e

− t
q2

)
e
− t(t−1)

q2 .

Thus, for every even positive integer q = 2m, we have

lim inf
n→∞

1√
n

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
≥

mq∑
t=1

q

t

(
1 − e

− t
q2

)
e
− t(t−1)

q2 .

Estimations similar to those from above can be made if in the series of inequalities
above we start with

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
=

mqk2
n∑

i=1

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
+ R(q, n)

≤
mq∑
t=1

tkn∑
j=(t−1)kn+1

jkn∑
i=(j−1)kn+1

(
n− i− 1

n− 1

)i

+ R(q, n),

where R(q, n) denotes the sum of the remaining terms; this term disappears after the
limit operation corresponding to the one performed above. Namely, we obtain

lim sup
n→∞

1√
n

�n−1
2 ∑

i=0

(n− i− 1) . . . (n− 2i)

(n− 1) . . . (n− i)
≤ 1

q
+

mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)
e
− (t−1)(t−1)

q2

for every positive even integer q = 2m. Applying Lagrange’s mean value theorem to

the term e
− (t−2)(t−1)

q2 − e
− (t−1)(t−1)

q2 below, one can also quite easily see that

lim
q→∞

(
mq∑
t=1

q

t

(
1 − e

− t
q2

)
e
− t(t−1)

q2 −
mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)
e
− (t−1)(t−1)

q2

)

= lim
q→∞

(
mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)
e
− (t−2)(t−1)

q2 −
mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)
e
− (t−1)(t−1)

q2

)

= lim
q→∞

mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)(
e
− (t−1)(t−1)

q2 − e
− (t−1)(t−2)

q2

)
= 0

and that, taking only the first term of the Taylor expansion of 1−e
− t−1

q2 , we also have

lim
q→∞

(
mq∑
t=2

q

t− 1

(
1 − e

− t−1

q2

)
e
− (t−1)(t−1)

q2 −
mq∑
t=1

1

q
e
− (t−1)(t−1)

q2

)
= 0.

Since the expression
mq∑
t=1

1

q
e
− (t−1)(t−1)

q2

is a Riemann sum approximating the integral∫ ∞

0

e−x2

dx =

√
π

2
,

the proof of Theorem 4.3 is complete.
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SIMPLICIAL COMPLEXES OF GRAPHS AND HYPERGRAPHS
WITH A BOUNDED COVERING NUMBER∗

JAKOB JONSSON†

Abstract. For 1 ≤ p ≤ n− 1, define Covn,p as the family of graphs on the vertex set {1, . . . , n}
with a covering number of at most p (equivalently, with an independence number of at least n− p).
Since the underlying vertex set is fixed, we may identify each graph in Covn,p with its edge set.
In particular, we may view Covn,p as a simplicial complex. For i ≥ −1, we show that the rank of
the ith homology group of Covn,p is a linear combination, with coefficients being polynomials in
n, of the ranks of the ith homology groups of Covp+2,p, . . . ,Cov2p+1,p. Our proof takes place in a
more general setting where we consider complexes of hypergraphs. In addition, we show that the
(2p− 1)-skeleton of Covn,p is shellable, which implies that Covn,p is (2p− 2)-connected. For p ≤ 3,
we give a complete description of the homology groups of Covn,p.

Key words. monotone graph property, simplicial homology, vertex cover, discrete Morse theory

AMS subject classifications. 05E25, 05C69, 06A11, 55U10

DOI. 10.1137/S0895480104443680

1. Introduction. A (simple) hypergraph H consists of a vertex set V and a
family E of nonempty subsets of V referred to as edges. For a set S of positive
integers, H is an S-hypergraph if |e| ∈ S for every e ∈ E. If H is an {r}-hypergraph
(i.e., all edges have the same size r), then H is r-uniform. A hypergraph property is a
family of hypergraphs on a fixed vertex set V such that the family is invariant under
permutations of V . Since V is fixed, we may identify a given hypergraph with its
edge set. A hypergraph property is monotone if the property is a simplicial complex
(i.e., the property is closed under deletion of edges). Let n, p, r be positive integers.
The purpose of this paper is to examine the topology of the following property:

• H is an r-uniform hypergraph on the vertex set [n] = {1, . . . , n} such that
there is a vertex set of size at most p intersecting every edge in H.

We are particularly interested in the case that all edges have size two, which means
that the hypergraphs are ordinary simple graphs.

Formally, we proceed as follows. A hypergraph H is covered by a vertex set W if
every edge in H contains at least one vertex from W . We refer to W as a |W |-cover
of H. The covering number τ(H) of a hypergraph H is the smallest integer p such
that H has a p-cover. For 1 ≤ p ≤ n and 1 ≤ r ≤ n, let Covn,p,r be the simplicial
complex of r-uniform hypergraphs on the vertex set [n] with covering number at most
p. The main results of this paper are as follows:

• In sections 6 and 7, we show, for any fixed p and r, that the Betti numbers
of Covn,p,r over any field F are polynomials in n. Specifically,

dim H̃i(Covn,p,r,F) =

γ+1∑
k=p+r

(−1)γ+1−kfk,γ(n) dim H̃i(Covk,p,r,F),
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where each fk,γ(n) is a polynomial in n and γ = γ(p, r) is an integer. For
r = 2, we have that γ = 2p, which turns out to imply that the degree of
fk,γ(n) is at most 2p in this case.

• In section 8, we give explicit formulas for the homology of Covn,p,2 for p ≤ 3;
for p = 2 and p = 3, our results are based on computer calculations with
Heckenbach’s program homology [7]. Notably, there is 2-torsion in dimension
six in the homology of Covn,3,2 for n ≥ 6.

• In section 9, we demonstrate, for any p ≥ 1, that the (2p − 1)-skeleton
of Covn,p,2 is vertex-decomposable (see section 3 for definition) and hence
shellable. As a consequence, Covn,p,2 is (2p − 2)-connected and has no ho-
mology in dimension i ≤ 2p− 2. For p ≤ 3 and n ≥ 2p+ 1, we have detected
nonzero homology in dimension 2p− 1. We have not been able to find mean-
ingful counterparts of these results for Covn,p,r when r ≥ 3.

Our results rely heavily on Forman’s discrete Morse theory [8]; we give a brief summary
of this theory in section 2. In section 5, we introduce a complex Cov#

n,p,r with the
same homotopy type as Covn,p,r and with certain nice properties that allow for a

smooth analysis. We apply discrete Morse theory to Cov#
n,p,r in section 6 and derive

the polynomial property of the Betti numbers in section 7.
The graph theory presented in section 4 is equally crucial for our theorems and

is used throughout the paper. This is classical theory—basically Chapter 13 in Berge
[2]—concerning graphs with the property that each vertex is contained in the com-
plement of a cover of minimum size.

1.1. Related work. There are plenty of monotone graph properties in the lit-
erature; some examples are complexes of matchings (see Wachs [21]), not k-connected
graphs [1, 11, 18, 19, 20], non-Hamiltonian graphs [11], graphs not containing any
k-matching [15], and t-colorable graphs [14]. Among all these complexes, the last two
seem particularly interesting from our point of view:

• Linusson, Shareshian, and Welker [15] proved that the complex of graphs on
n vertices that do not contain any k-matching is homotopy equivalent to a
wedge of a certain number of spheres of dimension 3k − 4. For fixed k, this
number is a polynomial in n of degree 3k − 3.

• Linusson and Shareshian [14] also examined the complex of t-colorable graphs
on n vertices and discovered that all homology is contained in one single
dimension for t = n− 2 and t = n− 3. Moreover, the nonzero Betti number
is a polynomial in n in each of the two cases.

What makes these complexes interesting in the present context is the fact that the
Betti numbers are given by polynomials in n, just as for Covn,p,r. Note that the
complexes are defined in terms of cliques and independent sets (which are basically
identical concepts, as a clique in a graph is an independent set in the complement of
the graph). Namely, one may interpret a k-matching as k disjoint cliques of size 2.
Moreover, a graph is t-colorable if and only if it admits a partition of the vertex set
into t independent sets. Since the complexes to be examined in this paper are also
defined in terms of independent sets (at least for r = 2), one may ask whether there
is some nice unifying property shared by all these complexes that forces the Betti
numbers to be polynomials.

Yet another family of graph properties with Betti numbers given by polynomials
appears in the author’s thesis [12]. The graphs under consideration have the property
that the vertex set is the disjoint union of two independent sets such that one of the
sets has size at most some fixed p. This means that the graphs are two-colorable with
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at most p “black” vertices. In particular, the graphs are bipartite.

1.2. Basic concepts. Let H = (V,E) be a simple hypergraph. We denote the
edge {a1, a2, . . . , ar} as a1a2 · · · ar; thus the edge {a, b} is denoted as ab. A vertex is
covered in H if the vertex is contained in some edge in G and uncovered otherwise.
Whenever the underlying vertex set V is fixed, we identify H with its edge set E;
e ∈ H means that e ∈ E. H is empty if E = ∅ and nonempty otherwise. We write
H − e = (V,E \ {e}) and H + e = (V,E ∪{e}). For W ⊂ V , let H(W ) be the induced
subhypergraph of H on the vertex set W obtained by removing V \W along with all
edges containing some element from V \W . A vertex set U in H is independent if no
edge in H is a subset of U . The independence number α(H) of H is the maximum
size of an independent set in H. This means that α(H) = |V | − τ(H).

A simplicial complex on a finite set V is a family of subsets of V closed under
deletion of elements. Members of a simplicial complex Σ are called faces. The dimen-
sion of a face σ is defined as |σ| − 1. The dimension of a complex Σ is the maximal
dimension of any face in Σ. A complex is pure if all maximal faces have the same
dimension. For d ≥ −1, the d-simplex is the simplicial complex of all subsets of a set
V of size d+1. Note that the (−1)-simplex is the complex containing only the empty
set. Whenever we discuss the homology of a simplicial complex, we are referring to
the reduced simplicial Z-homology unless otherwise specified. For a simplicial com-
plex Δ and a face σ, the link linkΔ(σ) is the simplicial complex of all ρ ∈ Δ such that
ρ ∩ σ = ∅ and ρ ∪ σ ∈ Δ. The deletion delΔ(σ) is the simplicial complex of all ρ ∈ Δ
such that ρ ∩ σ = ∅.

We obtain the (one-point) wedge Δ∨Γ of two simplicial complexes Δ and Γ—with
respect to vertices x ∈ Δ, y ∈ Γ—by taking the disjoint union of Δ and Γ and then
identifying x and y. The homotopy type of Δ ∨ Γ does not depend on the choice of
x and y as long as each of Δ and Γ is (path-) connected. The reduced homology of
Δ ∨ Γ is the direct sum of the underlying reduced homologies of Δ and Γ.

2. Discrete Morse theory for simplicial complexes. We give a short review
of Forman’s discrete Morse theory [8]. Chari [5] and Shareshian [19] have given more
elaborate combinatorial interpretations.

Let X be a set and let Δ be a finite family of finite subsets of X. A matching on
Δ is a family M of pairs {σ, τ} with σ, τ ∈ Δ such that no set is contained in more
than one pair in M. A set σ in Δ is critical or unmatched with respect to M if σ is
not contained in any pair in M.

We say that a matching M on Δ is an element matching if every pair in M is of
the form {σ− x, σ + x} for some x ∈ X and σ ⊆ X. All matchings considered in this
paper are element matchings.

Consider an element matching M on a family Δ. Let D = D(Δ,M) be the
digraph with vertex set Δ and with a directed edge from σ to τ if and only if either
of the following holds:

1. {σ, τ} ∈ M and τ = σ + x for some x /∈ σ.
2. {σ, τ} /∈ M and σ = τ + x for some x /∈ τ .

Thus every edge in D corresponds to an edge in the Hasse diagram of Δ ordered by set
inclusion; edges corresponding to pairs of matched sets are directed from the smaller
set to the larger set, whereas the other edges are directed the other way around. An
element matching M is an acyclic matching if D is acyclic, that is, σ −→ τ and
τ −→ σ implies that σ = τ .

An (order-preserving) poset map between two posets P and Q is a function f :
P → Q such that f(x) ≤ f(y) whenever x ≤ y. Note that any family of sets has a
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natural poset structure with order given by set inclusion. In an earlier paper [11], the
following simple lemma was provided.

Lemma 2.1 (cluster lemma). Let Δ ⊆ 2X and let f : Δ → Q be a poset map,
where Q is an arbitrary poset. For q ∈ Q, let Mq be an acyclic matching on f−1(q).
Let

M =
⋃
q∈Q

Mq;

M is an element matching on Δ. Then M is an acyclic matching on Δ.
Remark. Hersh [10] discovered Lemma 2.1 independently of our work. Björner

(personal communication) suggested the formulation in terms of poset maps.
For the remainder of this section, Δ is a simplicial complex; for convenience, we

assume that Δ � {∅}. Given an acyclic matching M on Δ, we may without loss of
generality assume that the empty set ∅ is contained in some pair in M. Namely, if all
sets of size 1 are matched with larger sets, then there is obviously a cycle in D(Δ,M).

Theorem 2.2 (see Forman [8]). Let Δ be a simplicial complex and let M be an
acyclic matching on Δ such that the empty set is not critical. Then Δ is homotopy
equivalent to a cell complex with one cell of dimension p ≥ 0 for each critical face of
dimension p in Δ plus one additional 0-cell.

We write σ −→ τ if there is a directed path from σ to τ in D(Δ,M). For families
V and W, we write V −→ W if there are V ∈ V and W ∈ W such that V −→ W .
The symbol �−→ is used to denote the nonexistence of such a directed path. Let
U = U(Δ,M) be the family of critical faces in Δ with respect to M. For a (possibly
empty) family V ⊆ U , let

ΔV = {σ ∈ Δ : V −→ σ} ∪ {∅, {x}},(2.1)

where {x} is the set matched with the empty set in M. If V is nonempty, then
ΔV = {σ ∈ Δ : V −→ σ}.

Lemma 2.3 (see [11]). ΔV is a subcomplex of Δ and U(ΔV ,MV) = ΔV ∩
U(Δ,M), where MV is the restriction of M to ΔV .

Theorem 2.4 (see [11]). Suppose that V ⊆ U = U(Δ,M) has the property that
U \ V �−→ V and V �−→ U \ V. Then Δ is homotopy equivalent to ΔV ∨ ΔU\V . In
particular, Δ is homotopy equivalent to ΔU . More generally, if U is the disjoint union
of families V1, . . . ,Vr with the property that Vi �−→ Vj if i �= j, then Δ is homotopy
equivalent to

∨r
i=1 ΔVi .

We obtain the latter statement in Theorem 2.4 from the former statement via a
simple induction argument.

3. Vertex-decomposable complexes. In this section, we review the basics on
vertex-decomposable complexes and present some elementary properties of vertex-
decomposable skeletons of simplicial complexes.

Definition 3.1. We define the class of vertex-decomposable (V D) simplicial
complexes recursively as follows:

(i) The void complex ∅, the (−1)-simplex {∅}, and any 0-simplex {∅, {v}} are V D.
(ii) If Δ is pure and contains a vertex x—a shedding vertex—such that delΔ(x) and

linkΔ(x) are V D, then Δ is also V D.
Provan and Billera [17] introduced V D complexes.
Theorem 3.2 (see Provan and Billera [17]). V D complexes are shellable. As a

consequence, a d-dimensional V D complex is (d− 1)-connected.
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Lemma 3.3. Let Δ be simplicial complex and let v be a vertex in Δ. If the
(d−1)-skeleton of linkΔ(v) and the d-skeleton of delΔ(v) are V D, then the d-skeleton
of Δ is V D.

The following simple lemma is used in the proof of Theorem 9.1.

Lemma 3.4. Let Δ1, . . . ,Δk be simplicial complexes and let d1, . . . , dk be integers
such that the di-skeleton of Δi is V D for each i; di ≥ −1. Then the (

∑
i di + k − 1)-

skeleton of the join Δ1 ∗ · · · ∗ Δk is V D.

Proof. Use double induction on the size of Δ1 ∗ · · · ∗Δk and d =
∑

i di + k− 1. If
d = −1, then we are done. Otherwise, let i be such that di ≥ 0; say that i = k. Let
v be a shedding vertex for the dk-skeleton Σk of Δk; linkΣk

(v) and delΣk
(v) are V D.

Write Δ = Δ1 ∗ · · · ∗ Δk−1.

If v is a cone point in Σk, then Σk = Δk, and so the (dk−1)-skeleton of delΔk
(v) =

linkΔk
(v) coincides with delΣk

(v) = linkΣk
(v). By induction, Δ ∗ linkΔk

(v) has a V D
(d−1)-skeleton. Δ∗Δk is the cone over this complex and hence has a V D d-skeleton.

If v is not a cone point in Σk, then the dk-skeleton of delΔk
(v) and the (dk − 1)-

skeleton of linkΔk
(v) are V D. By induction, Δ ∗ delΔk

(v) has a V D d-skeleton,
whereas Δ ∗ linkΔk

(v) has a V D (d− 1)-skeleton. By Lemma 3.3, we obtain that the
d-skeleton of Δ is V D, and we are done.

4. Solid hypergraphs. Let us say that a hypergraph H = (V,E) with covering
number p is (p, r)-solid if, for every vertex set U of size at most r − 1, there is a
p-cover W of H such that U ∩W = ∅. In this section, we present some useful results
about (p, r)-solid [r]-hypergraphs; recall that a hypergraph is an S-hypergraph if all
edges are of size an integer in S.

Lemma 4.1. If an [r]-hypergraph H is (p, r)-solid, then H is r-uniform. More-
over, every covered vertex is contained in a p-cover of H.

Proof. For the first statement, since H is (p, r)-solid, a vertex set of size at most
r − 1 cannot form an edge in H. For the second statement, let v be a covered vertex
and let e be an edge in H containing v; clearly, |e \ {v}| = r− 1. H being (p, r)-solid
means that some p-cover does not intersect e\{v}. Since this cover must then contain
v, we are done.

By Lemma 4.1, we may restrict our attention to r-uniform hypergraphs. First,
we make a simple observation.

Lemma 4.2. If H is r-uniform and has covering number p, then the number of
vertices in H is at least p + r − 1. In particular, this is true if H is (p, r)-solid.

Proof. Any r-uniform hypergraph on at most p + r − 2 vertices has a covering
number of at most p− 1.

The bound in Lemma 4.2 is tight; the complete r-uniform hypergraph on p+r−1
vertices is (p, r)-solid.

We will use the following lemma in section 7 to prove that the Betti numbers of
Covn,p,r are polynomials in n for each fixed p and r.

Lemma 4.3. For every p, r ≥ 1, there is a positive integer γ(p, r) such that if H
is a (p, r)-solid and r-uniform hypergraph with no uncovered vertices, then the number
of vertices in H is at most γ(p, r).

Proof. Let H be (p, r)-solid without uncovered vertices. If we remove an edge
e such that τ(H) = τ(H − e), then H − e is again (p, r)-solid with no uncovered
vertices. Namely, assume to the contrary that some vertex v ∈ e is uncovered in
H − e. By Lemma 4.1, there is a p-cover W of H containing v. However, this implies
that W \ {v} is a (p− 1)-cover of H − e, which is a contradiction.
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Starting with H, remove edges not affecting the covering number until we have a
τ -critical hypergraph H ′, meaning that the removal of any edge in H ′ decreases the
covering number of H ′ (this is equivalent to H ′ being α-critical as defined by Berge
[2, sec. 13.3]). By a result of Bollobás [4], the number of edges in a τ -critical r-uniform
hypergraph with covering number p is at most

(
p+r−1

r

)
; see Lovász [16, Ex. 13.32].

This implies that the number of vertices in H ′ is at most r ·
(
p+r−1

r

)
(this is a very

loose bound), and the lemma follows.

For r = 2, we can establish a tight bound on γ(p, r).

Theorem 4.4 (see Berge [2, Thm. 13.13]). If G is a simple graph with τ(G) = p
such that G contains no uncovered vertices and such that every vertex is contained in
a p-cover, then the number of vertices in G is at most 2p. As a consequence, if G is
(p, 2)-solid with no uncovered vertices, then the number of vertices in G is at most 2p.

The bound 2p is tight, as the 2p-cycle is (p, 2)-solid. The first statement in the
theorem is basically a consequence of some results due to Hajnal [9]; see Berge [2,
Thm. 13.8–9]. Unfortunately, these results seem hard to generalize to hypergraphs.
By Lemma 4.1, the second statement in the theorem is a consequence of the first.

Finally, we state and prove a few results that we will use in section 9 to prove
that the (2p−1)-skeleton of Covn,p,2 is V D; hence we restrict our attention to graphs.

Lemma 4.5. Let H be a graph with covering number p and with connected com-
ponents C1, . . . , Ck. Then H is (p, 2)-solid if and only if there are integers p1, . . . , pk
summing up to p such that Ci is (pi, 2)-solid for each i.

Proof. With pi = τ(Ci), it is clear that
∑

i pi = τ(H) = p. Suppose that some
vertex v ∈ Ci is contained in every pi-cover of Ci. Then v is contained in every p-cover
of H; we cannot cover H \ Ci with fewer than p− pi vertices. Conversely, if v is not
contained in a given pi-cover of Ci, then we can extend this cover to a p-cover of H
not containing v by picking an arbitrary pj-cover of every other Cj .

Lemma 4.6. A (p, 2)-solid graph H contains at least 2p− k edges, where k is the
number of connected components in H with at least two vertices.

Proof. The lemma is clear for p = 1; assume that p ≥ 2. We may assume that H
contains no uncovered vertices. Let the connected components of H be C1, . . . , Ck.
With pi = τ(Ci), we have that Ci is (pi, 2)-solid for each i by Lemma 4.5. In particular,
if k ≥ 2, then we may use induction on p to conclude that Ci contains at least 2pi− 1
edges. Summing over i and using the fact that

∑
i pi = p, we obtain that H contains

at least 2p− k edges.

Thus assume that H is connected. As in the proof of Lemma 4.3, note that if
we remove an edge that does not affect the covering number of H, then the resulting
graph is again (p, 2)-solid with no uncovered vertices. Remove such edges from H
until we have a τ -critical graph H ′; the removal of any edge from H ′ decreases the
covering number.

If the obtained graph H ′ is disconnected with k components, then we remove at
least k− 1 edges, and by the same induction argument as above, H ′ contains at least
2p− k edges. Hence H contains at least 2p− 1 edges as desired.

Assume that H ′ is connected; for simplicity, let us write H instead of H ′. Berge
[2, Thm. 13.6] proved that a τ -critical and connected graph is 2-connected. We want
to find a vertex x in H such that the induced subgraph K obtained by removing x from
H is (p−1, 2)-solid. By induction, this will imply that K contains at least 2(p−1)−1
edges, which in turn will imply that H contains at least 2(p − 1) − 1 + 2 = 2p − 1
edges as desired. Namely, we get rid of at least two edges when we remove x, and the
resulting graph K is connected, as H is 2-connected.
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To find the vertex x, let y ≤ z mean that any p-cover of H containing y also
contains z. This defines a partial order. Namely, since H is τ -critical, we have, for
each y, w such that yw ∈ H, that the graph H − yw has a (p − 1)-cover Q with the
property that y, w /∈ Q. If z /∈ Q, then y �≤ z, as Q ∪ {y} is a p-cover of H not
containing z. If z ∈ Q, then z �≤ y, as Q ∪ {w} is a p-cover of H containing z but
not y. Now, pick x maximal with respect to the given partial order. This means, for
any y �= x, that there is a p-cover of H containing x but not y. In particular, there is
a (p− 1)-cover not containing y of the induced subgraph K obtained by removing x
from H. However, this means that K is (p− 1, 2)-solid, and we are done.

The bound in Lemma 4.6 is tight: Let G be the graph consisting of a path of
vertex length 2(p− k + 1) and k − 1 additional components, each of vertex size two.
Then G is (p, 2)-solid and contains k − 1 + 2p− 2k + 1 = 2p− k edges.

5. A related simplicial complex. For n, p, r ≥ 1, let Cov#
n,p,r be the simplicial

complex of [r]-hypergraphs on the vertex set [n] with covering number at most p.
Hence Cov#

n,p,r consists of hypergraphs with edges of size between 1 and r, whereas

Covn,p,r consists of r-uniform hypergraphs. As it turns out, Cov#
n,p,r has several

attractive properties that make the complex easier to handle than the original Covn,p,r.

Lemma 5.1. For 1 ≤ p ≤ n and 1 ≤ r ≤ n, Covn,p,r � Cov#
n,p,r.

Proof. We show how to collapse Cov#
n,p,r down to Covn,p,r. Fix a linear order

on
(
[n]
r

)
; this is the family of edges of maximum size r. For a hypergraph H ∈

Cov#
n,p,r \ Covn,p,r, let e = e(H) be maximal with respect to this linear order such

that e contains an edge e′ ∈ H of size at most r−1; e itself is not necessarily contained
in H. For each e of size r, let F(e) be the family of hypergraphs H ∈ Cov#

n,p,r\Covn,p,r
such that e(H) = e. It is clear that the families F(e) satisfy the Cluster Lemma 2.1.

Namely, H �→ e(H) ∈
(
[n]
r

)
is a poset map with the given linear order on

(
[n]
r

)
. Now,

we obtain a perfect matching on F(e) by pairing H +e with H−e for each H ∈ F(e).
Namely, adding or deleting e does not affect e(H). Also, the covering number remains
the same when e is added or deleted, as H already contains an edge e′ � e. By the
Cluster Lemma 2.1, we are done.

Next, we prove that Cov#
n,p,r and Cov#

n,r,p are homotopy equivalent; we may hence
swap p and r without affecting the homotopy type. For this, we will need the following
special case of the Nerve Theorem.

Theorem 5.2 (see Björner [3]). For a given simplicial complex Δ, let the nerve
N(Δ) of Δ be the simplicial complex with one vertex for each maximal face in Δ and
with {σi : i ∈ I} a face in N(Δ) if and only if the intersection

⋂
i∈I σi is nonempty.

Then Δ and N(Δ) are homotopy equivalent.
Proposition 5.3. For n, p, r ≥ 1, we have that Cov#

n,p,r � Cov#
n,r,p. In particu-

lar, Covn,p,r � Covn,r,p whenever n ≥ max{p, r}.
Proof. For 1 ≤ n ≤ p + r − 1, Cov#

n,p,r and Cov#
n,r,p are both cones and hence

collapsible; every edge of maximum size is a cone point. Assume that n ≥ p + r.
Consider the nerve complex Nn,p,r = N(Cov#

n,p,r). We may identify the vertices in

Nn,p,r with subsets of [n] of size p. Namely, every maximal hypergraph H ∈ Cov#
n,p,r

has a unique p-cover consisting of those x with the property that the singleton edge
x belongs to H.

For a set U of size p, let HU be the maximal hypergraph in Cov#
n,p,r with unique

p-cover U . A family W of vertices in Nn,p,r forms a face of Nn,p,r if and only if the
intersection

⋂
W∈W HW is nonempty. This means that there is a set S of size at most

r such that |W ∩S| ≥ 1 for each W ∈ W. However, this is exactly the condition that
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the hypergraph ([n],W) admits a cover of size at most r. As a consequence, we may
identify Nn,p,r with Covn,r,p. Thus

Cov#
n,p,r � Nn,p,r

∼= Covn,r,p � Cov#
n,r,p;

the first equivalence follows from Theorem 5.2, whereas the last equivalence follows
from Lemma 5.1.

6. An acyclic matching. The purpose of this section is to present an acyclic
matching on Cov#

n,p,r such that the unmatched graphs have certain rather strong
properties. Observant readers may note that our matching is quite similar in nature
to the matching that Linusson and Shareshian [14, sec. 5] provided for complexes of
t-colorable graphs; see section 2 for information about the underlying discrete Morse
theory.

For an [r]-hypergraph H on the vertex set [n], let X (H) be the family of all
subsets of [n − 1] of size at most r − 1 that have nonempty intersection with every
p-cover of H([n− 1]). Note that if H ∈ Cov#

n,p,r, then we may add the edge X ∪ {n}
to H for any X ∈ X (H) without ending up outside Cov#

n,p,r.
Define

An,p,r = {H ∈ Cov#
n,p,r : H([n− 1]) ∈ Cov#

n−1,p−1,r};
Bn,p,r = {H ∈ Cov#

n,p,r : H([n− 1]) /∈ Cov#
n−1,p−1,r and X (H) �= ∅};

Cn,p,r = {H ∈ Cov#
n,p,r : H([n− 1]) /∈ Cov#

n−1,p−1,r and X (H) = ∅}.

It is clear that Cov#
n,p,r is the disjoint union of An,p,r, Bn,p,r, and Cn,p,r, and that

An,p,r and An,p,r ∪ Cn,p,r are both simplicial complexes. This implies that the three
families satisfy the Cluster Lemma 2.1. We want to prove that there are perfect
acyclic matchings on An,p,r and Bn,p,r. The remaining family Cn,p,r is the family of
all [r]-hypergraphs H such that H([n−1]) has covering number p and such that every
subset of [n− 1] of size at most r− 1 is disjoint from some p-cover of H([n− 1]). This
means that H([n− 1]) is (p, r)-solid.

We obtain a perfect acyclic matching on An,p,r by pairing H − n with H + n; we
match with the singleton edge n. Namely, for any cover W of H([n− 1]), W ∪ {n} is
a cover of H.

For a family X of subsets of [n − 1], let Bn,p,r(X ) be the family of hypergraphs
H ∈ Bn,p,r such that X (H) = X . It is clear that the families Bn,p,r(X ) satisfy the
Cluster Lemma 2.1. Namely, H �→ X (H) is a poset map; X (H) cannot grow when
we delete edges from H. Let X(H) be minimal in X (H) with respect to some fixed
linear order. If H ∈ Bn,p,r(X ), then the same is true for H + X(H)n; every p-cover
of H contains an element from X(H), and X(H) has size at most r − 1. X (H) does
not depend on the set of edges containing n, which means that we obtain a perfect
matching on Bn,p,r(X ) by pairing H −X(H)n with H + X(H)n. Taking the union
over all X , we get a perfect acyclic matching on Bn,p,r.

Combining our two perfect acyclic matchings on An,p,r and Bn,p,r, we obtain an

acyclic matching on Cov#
n,p,r with Cn,p,r as the set of critical graphs. Theorem 2.4

yields the following proposition.
Proposition 6.1. With notation as above and as in (2.1) in section 2,

Cov#
n,p,r � (Cov#

n,p,r)Cn,p,r .

Also, given an acyclic matching on Cn,p,r with ci critical sets of dimension i for each

i, Cov#
n,p,r is homotopy equivalent to a cell complex with ci cells of dimension i for

each i and one additional 0-cell.
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7. Homotopy type and homology. Before proceeding, let us examine some
special cases. First of all, note that Cov#

n,p,r is a cone and hence collapsible whenever

1 ≤ n ≤ p+r−1. Also, by Lemma 5.1, Cov#
p+r,p,r is homotopy equivalent to Covp+r,p,r,

which contains all r-uniform hypergraphs on the vertex set [p+r] except the complete
hypergraph. This implies that

Cov#
p+r,p,r � SC(p+r,r)−2,(7.1)

where C(m, k) =
(
m
k

)
.

Next, consider p = 1; the complex Cov#
n,1,r consists of star hypergraphs, which

are hypergraphs covered by a single vertex. By Proposition 5.3, Cov#
n,1,r is homotopy

equivalent to Cov#
n,r,1 = Covn,r,1. Now, the latter complex is obviously the (r − 1)-

skeleton of an (n−1)-simplex. As a consequence, we have the following simple result.

Proposition 7.1. For n, r ≥ 1, Cov#
n,1,r and Cov#

n,r,1 are both homotopy equiv-

alent to a wedge of
(
n−1
r

)
spheres of dimension r − 1.

Now, proceed with general n, p, r. Recall that Cn,p,r is the set of critical hyper-

graphs in Proposition 6.1 and that a hypergraph H in Cov#
n,p,r belongs to Cn,p,r if and

only if H([n− 1]) is (p, r)-solid. For a nonempty vertex set J ⊆ [n− 1], let Cn,p,r(J)
be the family of hypergraphs H in Cn,p,r such that J is the set of vertices that are
covered in H([n− 1]). Write

Λn,p,r(J) = (Cov#
n,p,r)Cn,p,r(J) (notation as in (2.1));

Λk,p,r = Λk,p,r([k − 1]).

Lemma 7.2. Let n, p, r ≥ 1. For any nonempty vertex set J ⊆ [n− 1], Λn,p,r(J)
is the union of Cn,p,r(J) and a collapsible subcomplex of the complex An,p,r defined in
section 6. Moreover, we have that

Λn,p,r(J) � Λ|J|+1,p,r.(7.2)

Proof. For the first claim, let H be a hypergraph in Cn,p,r(J). We want to prove
that H �−→ Cn,p,r(I) if I �= J . Note that if we remove an edge e from H, then we
obtain a hypergraph in Cn,p,r(I) for some I ⊆ J or a hypergraph in An,p,r. If n ∈ e,
then H − e ∈ Cn,p,r(J); thus assume that n /∈ e. It is clear that An,p,r �−→ Cn,p,r,
which means that we only have to prove that if the new hypergraph G = H−e belongs
to Cn,p,r(I), then I = J .

Assume the opposite. Then some x ∈ e is uncovered in G([n − 1]). Since H ∈
Cn,p,r, there is a p-cover W of H([n − 1]) such that (e \ {x}) ∩ W = ∅. Since e ∈
H([n − 1]), we must have that x ∈ W . However, since x is uncovered in G([n − 1]),
W \{x} covers G([n−1]), which implies that G ∈ An,p,r, contradictory to assumption.
Thus our claim is proved.

For the second claim, we have that the first claim implies that Λn,p,r(J) is the
union of Cn,p,r(J) and a collapsible subcomplex T of An,p,r. To see that T is collapsi-
ble, just note that H−n ∈ T if and only if H+n ∈ T ; this is by definition of Λn,p,r(J)
and Lemma 2.3. In particular, T is a cone with the singleton edge n forming a cone
point. Cn,p,r(J) ∪ T is easily seen to be homotopy equivalent to Cn,p,r(J) ∪ An,p,r.
Namely, we obtain a perfect acyclic matching on An,p,r \ T by pairing H − n with
H + n whenever H ∈ An,p,r \ T ; An,p,r and T are both cones with cone point n.

Let C′
n,p,r(J) be the subfamily of Cn,p,r(J) consisting of those H with the property

that all vertices in [n− 1] \ J are uncovered in H (not only in H([n− 1])). We obtain
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a perfect acyclic matching on Cn,p,r(J) \ C′
n,p,r(J) in the following manner. In a

hypergraph H ∈ Cn,p,r(J) \ C′
n,p,r(J), define e(H) as the maximal edge in H with

respect to some fixed linear order such that e(H) contains some vertex in [n− 1] \ J .
Let Cn,p,r(J, e) be the subfamily of Cn,p,r(J)\C′

n,p,r(J) consisting of those H satisfying
e(H) = e.

It is clear that the families Cn,p,r(J, e) satisfy the Cluster Lemma 2.1. Namely,
H �→ e(H) is a poset map; e(H) cannot increase when edges are removed from H.
Write e′(H) = (e(H) ∩ J) ∪ {n}. We claim that we may define a perfect matching
on Cn,p,r(J, e) by pairing H − e′(H) with H + e′(H) whenever H ∈ Cn,p,r(J, e); note
that e′(H) is the same for all H ∈ Cn,p,r(J, e). To prove the claim, it suffices to
prove that H − e′(H) ∈ Cn,p,r(J) if and only if H + e′(H) ∈ Cn,p,r(J); e(H) does not
depend on whether the edge e′(H) is present in H. To prove this, we need only show
that H + e′(H) ∈ Cov#

n,p,r whenever H ∈ Cn,p,r(J). Now, every p-cover W of H is
contained in J by assumption; otherwise, we would have a (p−1)-cover of H([n−1]).
This implies that W must contain an element from e(H)∩ J = e′(H) \ {n}. Thus W
intersects e′, and we are done.

The conclusion is that the simplicial complex Cn,p,r(J)∪An,p,r is homotopy equiv-
alent to C′

n,p,r(J) ∪ An,p,r. Now, C′
n,p,r(J) ∪ An,p,r(J) is a simplicial complex, where

An,p,r(J) is the set of all graphs in An,p,r such that all vertices in [n− 1] \ J are un-
covered. We may collapse C′

n,p,r(J)∪An,p,r down to C′
n,p,r(J)∪An,p,r(J) by matching

H − n with H + n whenever H ∈ An,p,r \ An,p,r(J). The resulting complex is clearly
isomorphic to C|J|+1,p,r([|J |]) ∪ A|J|+1,p,r. By the proof above, we may collapse this
complex down to Λ|J|+1,p,r, and we are done.

Define

γ(p, r) = min{γ : Cn,p,r(J) = ∅ whenever |J | > γ}.(7.3)

Such a γ(p, r) exists by Lemma 4.3, and γ(p, 2) = 2p by Theorem 4.4.
Theorem 7.3. Let n, p, r ≥ 1. With notation as above,

Cov#
n,p,r �

γ(p,r)+1∨
k=p+r

∨
(n−1
k−1)

Λk,p,r =

min{γ(p,r)+1,n}∨
k=p+r

∨
(n−1
k−1)

Λk,p,r,(7.4)

where γ = γ(p, r) is defined as in (7.3); γ(p, r) = pr for 1 ≤ r ≤ 2.
Remark. Since the 1-skeleton of Cov#

n,p,r is full as soon as p ≥ 2, the right-hand

side in (7.4) is unambiguous from a homotopy point of view. For p = 1, Cov#
n,p,r is

homotopy equivalent to a wedge of spheres in a fixed dimension by Proposition 7.1,
which immediately yields unambiguity.

Proof. First, note that Lemma 7.2 implies that

Cov#
n,p,r �

∨
J⊆[n−1]

Λn,p,r(J) �
n∨

k=1

∨
(n−1
k−1)

Λk,p,r.

Namely, by the proof of the lemma, Cn,p,r(J) �−→ Cn,p,r(I) if I �= J ; hence Theorem 2.4
yields the desired result. To settle the theorem, it remains to prove that Cn,p,r(J) is
empty unless p + r ≤ |J | + 1 ≤ γ(p, r) + 1. The lower bound follows by Lemma 4.2,
whereas the upper bound is by definition of γ(p, r); see (7.3).

Corollary 7.4. Let p, r ≥ 1 and n ≥ γ(p, r)+1. For any field F and any integer

i ≥ −1, H̃i(Cov#
n,p,r,F) is nonzero if and only if H̃i(Cov#

γ(p,r)+1,p,r,F) is nonzero.
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Moreover, the connectivity degrees of the complexes Cov#
n,p,r and Cov#

γ(p,r)+1,p,r are

the same. In particular, for n ≥ 2p + 1, H̃i(Cov#
n,p,2,F) is nonzero if and only if

H̃i(Cov#
2p+1,p,2,F) is nonzero, and the connectivity degrees of Cov#

n,p,2 and Cov#
2p+1,p,2

are the same.
Proof. Whenever n ≥ γ(p, r) + 1, H̃i(Cov#

n,p,r,F) is nonzero if and only if

H̃i(Λk,p,r,F) is nonzero for some k such that p + r ≤ k ≤ γ(p, r) + 1; use Theo-

rem 7.3. By the same theorem, the connectivity degree of Cov#
n,p,r is the minimum of

the connectivity degrees of Λk,p,r for p + r ≤ k ≤ γ(p, r) + 1. Since these conditions
do not depend on n, we are done. For the last claim, apply Theorem 4.4.

Proposition 7.5 (folklore). Let d ≥ 0 and let f be a polynomial of degree at
most d. Then, for any s ∈ Z and all x ∈ C,

f(x) =

d+s∑
k=s

(−1)d+s−k

(
x− s

k − s

)(
x− 1 − k

d + s− k

)
f(k);

the binomial coefficients are interpreted as polynomials in the natural manner.
Proof. It is easily checked that the left-hand and right-hand sides coincide for

x = s, 1 + s, . . . , d + s. A polynomial of degree at most d is uniquely determined by
its values on any d + 1 points, which concludes the proof.

Corollary 7.6. Let n, p, r ≥ 1. For any field F and any integer i ≥ −1, the
Betti number βi(Cov#

n,p,r,F) = dim H̃i(Cov#
n,p,r,F) satisfies

βi(Cov#
n,p,r,F) =

γ+1∑
k=p+r

(−1)γ+1−k

(
n− 1

k − 1

)(
n− 1 − k

γ + 1 − k

)
βi(Cov#

k,p,r,F);

γ = γ(p, r). In particular, βi(Cov#
n,p,r,F) is a polynomial in n of degree at most

γ(p, r).
Remark. Since γ(p, 2) = 2p by Theorem 4.4, we have that

βi(Cov#
n,p,2,F) =

2p+1∑
k=p+2

(−1)k−1

(
n− 1

k − 1

)(
n− 1 − k

2p + 1 − k

)
βi(Cov#

k,p,2,F).

By Proposition 5.3, we may choose γ(p, r) = pr in the corollary whenever p ≤ 2.
Proof. By Theorem 7.3, we know that fp,r,i(n) = βi(Cov#

n,p,r,F) defines a poly-
nomial in n of degree at most γ(p, r) such that fp,r,i(k) = 0 for 1 ≤ k ≤ p+ r− 1. By
Proposition 7.5 with s = 1, we are done.

For the remainder of this section, we confine ourselves to the case r = 2.
Corollary 7.7. Let F be a field or Z. For 1 ≤ p ≤ n − 2, H̃i(Covn,p,2,F) =

H̃i(Cov#
n,p,2,F) is zero unless i ≤ p · min{p + 1, n+1

2 } − 1. Hence, for 2 ≤ q ≤ n − 1,

H̃i(Covn,n−q,2,F) is zero unless i ≤ � (n+1)(n−q)
2 �−1, which implies that the Alexander

dual of Covn,n−q,2 has no homology strictly below dimension � (q−2)(n+1)
2 � − 1.

Proof. It is clear that all hypergraphs G ∈ Ck,p,2([k − 1]) are ordinary graphs;
since G([k − 1]) is (p, 2)-solid, G([k − 1]) has this property (apply Lemma 4.1), and
the singleton edge k cannot be present in G. We claim that a graph G ∈ Ck,p,2([k−1])
has at most p · k+1

2 edges; inserting k = min{2p+1, n} yields the desired bound. Now,
by construction, the degree of each vertex in G([k − 1]) is at most p; otherwise some
vertices would necessarily be part of every p-cover of G([k− 1]). Also, the vertex k is
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not part of any p-cover, which implies that the degree of k is at most p. Summing, we
get p · k−1

2 + p = p · k+1
2 as claimed. The last statement follows by Alexander duality;(

n
2

)
− ( (n+1)(n−q)

2 − 1) − 3 = (q−2)(n+1)
2 − 1.

Remark. In section 9, we show that H̃i(Covn,p,2) is zero unless i ≥ 2p− 1.

The last statement in Corollary 7.7 looks a bit similar to a result of Linusson and
Shareshian [14], which states that the complex Coltn of t-colorable graphs on n vertices

is (� (t−1)(n−1){2
� − 2)-connected. In this context, it might be worth noting that Coltn

is contained in the Alexander dual of Covn,n−(t+1),2; a t-colorable graph does not
contain any (t+1)-cliques. Since our acyclic matching is closely related to the acyclic
matching of Linusson and Shareshian [14], it is therefore not too surprising that our
bound is only slightly different from theirs; see section 11 for a potential improvement
of this bound.

Finally, we prove a minor result about the reduced Euler characteristic χ̃(Cov#
n,p,2)

of Cov#
n,p,2. Note that Corollaries 7.6 and 7.7 imply that χ̃(Cov#

n,p,2) defines a poly-
nomial in n of degree at most 2p for each fixed p.

Proposition 7.8. Let p ≥ 1 and let fp be the polynomial with the property that

fp(n) = χ̃(Cov#
n,p,2) for n ≥ 1. Then fp(0) = −1. Moreover, let Yn,p be the family

of hypergraphs in Cov#
n,p,2 with no uncovered vertices. Then χ̃(Yn,p) = 0 whenever

n > 2p, where χ̃(Yn,p) = −
∑

Y ∈Yn,p
(−1)|Y |.

Proof. Define Cov#
0,p,2 = Y0,p = {∅}. Clearly,

χ̃(Cov#
n,p,2) =

n∑
k=0

(
n

k

)
χ̃(Yk,p)(7.5)

for all n ≥ 0. Moreover, for n ≥ 1,

χ̃(Cov#
n,p,2) = fp(n) =

∑
k≥0

(
n

k

)
yk,(7.6)

where yk = 0 for k > 2p; the degree of fp is at most 2p. One easily derives from (7.5)
and (7.6) that

yn − χ̃(Yn,p) = (−1)n(y0 − χ̃(Y0,p)) = (−1)n(y0 + 1)

for n ≥ 0. Thus it suffices to prove that χ̃(Yn,p) = 0 for some n > 2p; this will imply

that y0 = χ̃(Y0,p) = −1 and hence that fp(0) = χ̃(Cov#
0,p,2) = −1 as desired. As a

byproduct, we will also obtain that χ̃(Yn,p) = 0 for all n > 2p.

Now, for a given hypergraph H ∈ Yn,p, let H∗ be the graph obtained from H
by removing all singleton edges. Let Xn,p be the subfamily of Yn,p consisting of all
hypergraphs H such that some vertex x is contained in every p-cover of the underlying
graph H∗. For each H ∈ Xn,p, let x(H) be minimal with this property. We obtain a
perfect element matching on Xn,p by pairing H − {x(H)} and H + {x(H)}.

Let H ∈ Yn,p \ Xn,p and let W be a p-cover of H. By assumption, for each
w ∈ W , there is a p-cover of H∗ not containing w, which implies that w is adjacent
to at most p vertices in H. It follows that there are at most p + p2 covered vertices
in H; hence Yn,p \ Xn,p = ∅ whenever n > p + p2. As a consequence, χ̃(Yn,p) = 0
whenever n > p + p2, and we are done.
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8. Computations. Corollary 7.6 reduces the problem of determining the ho-
mology of Covn,p,r � Cov#

n,p,r for general n ≥ p + r to the special cases p + r ≤
n ≤ γ(p, r) + 1. For r = 2, we know by Theorem 4.4 that it suffices to consider
p+ 2 ≤ n ≤ 2p+ 1. Using the computer program homology [7], we have been able to
compute the homology of Covn,p = Covn,p,2 for p = 2, 3; the results are presented in
Theorems 8.1 and 8.2.

For integers m, r, define C(m, r) =
(
m
r

)
.

Theorem 8.1. For n ≥ 4, the kth homology group of Covn,2 is zero unless
3 ≤ k ≤ 4, in which case we have that

H̃3(Covn,2) ∼= Z
C(n−1,4);

H̃4(Covn,2) ∼= Z
C(n,4).

In particular, the reduced Euler characteristic of Covn,2 is
(
n−1

3

)
.

Proof. Running homology [7] on the complex Cov5,2, we obtain that

H̃3(Cov5,2) ∼= Z;

H̃4(Cov5,2) ∼= Z
5.

By (7.1), Cov4,2 � S4. Thus Corollary 7.6 yields that the homology of Covn,2 is
torsion-free and that

dim H̃3(Covn,2,Q) =
(
n−1
5−1

)(
n−5−1
4−5+1

)
=

(
n−1

4

)
;

dim H̃4(Covn,2,Q) = −
(
n−1
4−1

)(
n−4−1
4−4+1

)
+ 5

(
n−1
5−1

)(
n−5−1
4−5+1

)
=

(
n
4

)
.

Remark. We have not been able to determine the homotopy type of Covn,2.
Theorem 8.2. For n ≥ 5, the kth homology group of Covn,3 is zero unless

5 ≤ k ≤ 8, in which case we have that

H̃5(Covn,3) ∼= Z
C(n−1,6);

H̃6(Covn,3) ∼= (Z2)
C(n,6);

H̃7(Covn,3) ∼= Z
9C(n,6);

H̃8(Covn,3) ∼= Z
C(n,5).

In particular, the reduced Euler characteristic of Covn,3 is −
(
n−1

4

)
· 5n2−31n+15

15 . By
Proposition 5.3, the same holds for the complex Covn,2,3.

Proof. Computations with homology [7] yield that

⎧⎪⎨
⎪⎩

H̃6(Cov6,3) ∼= Z2;

H̃7(Cov6,3) ∼= Z
9;

H̃8(Cov6,3) ∼= Z
6

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H̃5(Cov7,3) ∼= Z;

H̃6(Cov7,3) ∼= (Z2)
7;

H̃7(Cov7,3) ∼= Z
63;

H̃8(Cov7,3) ∼= Z
21.

By (7.1), we know that H̃i(Cov5,3) = Z if i = 8 and 0 otherwise. By Corollary 7.6,

there is no torsion in H̃i(Covn,3,Z) unless i = 6, in which case there is 2-torsion but
no free homology. Corollary 7.6 yields that

dim H̃5(Covn,3,Q) =
(
n−1

6

)(
n−8

0

)
=

(
n−1

6

)
;

dim H̃6(Covn,3,Z2) = −
(
n−1

5

)(
n−7

1

)
+ 7

(
n−1

6

)(
n−8

0

)
=

(
n
6

)
;

dim H̃7(Covn,3,Q) = − 9
(
n−1

5

)(
n−7

1

)
+ 63

(
n−1

6

)(
n−8

0

)
= 9

(
n
6

)
;

dim H̃8(Covn,3,Q) =
(
n−1

4

)(
n−6

2

)
− 6

(
n−1

5

)(
n−7

1

)
+ 21

(
n−1

6

)(
n−8

0

)
=

(
n
5

)
.
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Table 1

The homology of Λk,p,2 for all interesting (k, p) such that 2 ≤ p ≤ 3 and for (k, p) = (6, 4), (7, 4)
(we obtained the latter homology via a computer calculation of the homology of Cov7,4).

H̃i(Λk,p,2,Z) i = 3 4 5 6 7 8 9 10 11 12 13

(k, p) = (4, 2) - Z - - - - - - - - -

(5, 2) Z Z - - - - - - - - -

(5, 3) - - - - - Z - - - - -

(6, 3) - - - Z2 Z
9

Z - - - - -

(7, 3) - - Z Z2 Z
9 - - - - - -

(6, 4) - - - - - - - - - - Z

(7, 4) - - - - - - - Z Z
55 ⊕ Z2 - Z

Remark. Note that all Betti numbers are integer multiples of binomial coefficients.
This is due to Theorem 7.3 and the simple structure of the homology of Λk,p,2; see
Table 1. We would be surprised if this property held in general; see Proposition 11.1
(e) for a potential conjecture that might be a bit more realistic.

9. Connectivity degree of Covn,p,2. We prove a result about the connectiv-
ity degree of Covn,p = Covn,p,2. Specifically, we prove that Covn,p has a vertex-
decomposable (V D) (2p − 1)-skeleton; see section 3 for definition. Note that we

consider the graph complex Covn,p, not the hypergraph complex Cov#
n,p,2 We have

not been able to prove anything of interest about the connectivity degree of Covn,p,r
for r ≥ 3.

For a simplicial complex Δ and disjoint vertex sets I and E, we define

Δ(I, E) = {σ : I ∪ σ ∈ Δ, (I ∪ E) ∩ σ = ∅} = linkdelΔ(E)(I).

Theorem 9.1. For 1 ≤ p ≤ n − 2, the (2p − 1)-skeleton of Covn,p is V D. In
particular, Covn,p is (2p− 2)-connected.

Proof. Let Y =
(
[n−1]

2

)
and En = {1n, . . . , (n − 1)n}. For any disjoint subsets

A,B of Y , let

dp(A,B) = p + min{p− 1, |Y \B|} − |A|;

dp(A,B) = 2p − 1 − |A| if |Y \ B| ≥ p − 1. We claim that the dp(A,B)-skeleton of
Covn,p(A,B) is V D. The special case A = B = ∅ yields the theorem, since |Y | ≥ p−1.

To prove the claim, we use induction on |Y \B|. We distinguish three cases:
(i) |Y \ B| ≤ p − 1. Then the covering number of the graph with edge set Y \ B

is at most p − 1. As a consequence, the graph with edge set En ∪ (Y \ B) has
covering number at most p, which implies that all edges in En ∪ (Y \ (A ∪ B))
are cone points in Covn,p(A,B). In particular, Covn,p(A,B) is the full simplex
on

|En| + |Y \B| − |A| = n− 1 + |Y \B| − |A| ≥ dp(A,B) + 1

elements (n−1 ≥ p+1). This implies that the dp(A,B)-skeleton of Covn,p(A,B)
is V D as desired.

(ii) |Y \ B| ≥ p and A � Y \ B. Then let e ∈ Y \ (A ∪ B). We have by induction
on |Y \ (A∪B)| that the link Covn,p(A+ e,B) has a V D (2p− 2− |A|)-skeleton
and that the deletion Covn,p(A,B + e) has a V D (2p − 1 − |A|)-skeleton. As a
consequence, the (2p− 1− |A|)-skeleton of Covn,p(A,B) is V D; use Lemma 3.3.
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(iii) |Y \ B| = |A| ≥ p and A = Y \ B. In this case, we consider complexes
Covn,p(A, Y \ A) such that |A| ≥ p. Note that all faces of Covn,p(A, Y \ A)
are subsets of En. Let H be the graph with edge set A. We identify three
subcases:
(a) τ(H) ≤ p− 1. Then all n− 1 edges in En are cone points in Covn,p(A,B),

and we are done; |En| − 1 = n− 2 ≥ p ≥ 2p− |A| > dp(A, Y \A).
(b) τ(H) = p and some vertex x is contained in every p-cover of H. Then the

edge xn is a cone point in Covn,p(A,B). In particular, the (2p − 1 − |A|)-
skeleton of Covn,p(A, Y \A) is V D if and only if the (2p− 2− |A|)-skeleton
of Covn,p(A + xn, Y \A) is V D.
Define A0 and Y0 as the sets obtained from A and Y by removing all edges
containing x; hence Y0 =

(
[n−1]\{x}

2

)
. We have that Covn,p(A + xn, Y \ A)

coincides with Covn−1,p−1(A0, Y0\A0), where we remove the vertex x (rather
than n) to obtain Covn−1,p−1. Namely, a graph G containing H and being
contained in H + En has a p-cover if and only if G([n] \ {x}) has a (p− 1)-
cover. By induction on n, the dp−1-skeleton of Covn−1,p−1(A0, Y0 \ A0) is
V D, where dp−1 = dp−1(A0, Y0 \A0).
We need to prove that

dp−1 ≥ 2p− 2 − |A|.

Now,

dp−1 = p− 1 + min{p− 2, |A0|} − |A0|.

If p− 2 ≥ |A0|, then dp−1 = p− 1, which is at least 2p− 1− |A|, as |A| ≥ p.
If p− 2 < |A0|, then dp−1 = 2p− 3 − |A0|, which is at least 2p− 2 − |A| as
|A \ A0| ≥ 1. In fact, we must have |A \ A0| > 1, because x is contained in
every p-cover. Thus we are done.

(c) τ(H) = p and no vertex is contained in every p-cover of H. This means
that H is (p, 2)-solid. As a consequence, Lemma 4.6 yields that |A| ≥
2p− k, where k is the number of connected components of H with at least
two vertices. Thus it suffices to prove that Δ = Covn,p(A, Y \ A) has
a V D (k − 1)-skeleton. Let C1, . . . , Ck be the connected components of
H(uncovered vertices excluded); by Lemma 4.5, each Ci is (pi, 2)-solid for
some pi ≥ 1 satisfying

∑
i pi = p. Let Ti be the set of edges xn ∈ En with

one endpoint x in Ci. Let Δi be the induced subcomplex of Δ on the set
Ti. It is clear that Δ = Δ1 ∗ · · · ∗ Δk; we can add a subset Q of En to H
without increasing p = τ(H) if and only if we can add the corresponding
subsets Q ∩ Ti without increasing pi = τ(Ci).
Now, each vertex in Ci is contained in a pi-cover of Ci by Lemma 4.1, and
pi ≥ 1 for each i. As a consequence, the 0-skeleton of Δi is V D for each i,
which implies by Lemma 3.4 that the (k − 1)-skeleton of Δ is V D. Thus
we are done.

We conjecture that there is homology in dimension 2p − 1 for n ≥ 2p + 1; this
would imply that Covn,p is not (2p−1)-connected in general; see section 11 for further
discussion.

10. Triangle-free graphs. Note that Covn,p is the Alexander dual of the com-
plex of graphs on n vertices that do not contain a clique of size n− p. For p = n− 3,
we obtain the complex �n of triangle-free graphs on n vertices. In this section, we
summarize our humble results for this very important graph property.
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Table 2

The homology of �n for 4 ≤ n ≤ 7. The figures are collected from Table 1 and translated via
Alexander duality.

H̃i(�n,Z) i = 2 3 4 5 6 7 8

n = 4 Z
3 - - - - - -

5 - Z
5

Z - - - -

6 - - Z
6

Z
9 ⊕ Z2 - - -

7 - - - Z
7

Z2 Z
55

Z

Corollary 10.1. For n ≥ r + 2,

Covn,n−r−1,r � Λn,n−r−1,r ∨
∨
n−1

Λn−1,n−r−1,r � Λn,n−r−1,r ∨
∨
n−1

SC(n−1,r)−2,

where C(m, k) =
(
m
k

)
. In particular, for r = 2, the dual complex �n of triangle-

free graphs on n vertices has the property that H̃n−2(�n,Z) contains Z
n−1 as a free

subgroup.
Proof. The first equivalence is Theorem 7.3. The second equivalence follows from

the fact that

Λp+r,p,r � Covp+r,p,r � SC(p+r,r)−2;

use Theorem 7.3 and (7.1) with p = n− r− 1. For the final statement, use Alexander
duality.

We have no complete description of the homology of �n except for n ≤ 7; see
Table 2. However, we know that there is no homology below dimension n− 2.

Proposition 10.2 (see Jonsson [12]). For n ≥ 2, the (n − 2)-skeleton of �n is
VD; hence �n is (n− 3)-connected.

11. Concluding remarks and open problems. We have not been able to
compute the homology of Covn,p,r for general n, p, and r, and we have very little
hope to ever see this being achieved; see the complexity-theoretic remark below for
some further discussion. Nevertheless, the homology of Covn,p = Covn,p,2 certainly
has plenty of structure, and our computations for small values of n and p suggest that
there is quite some more structure to be found. In the following proposition, note
that we restrict our attention to p ≤ 3.

Proposition 11.1. The following hold for 1 ≤ p ≤ 3:
(a) Covn,p has no homology over any field strictly above dimension

(
p+2
2

)
− 2. Equiv-

alently, the Alexander dual of Covn,n−r has no homology strictly below dimension
dn,r = n(r − 2) −

(
r−1
2

)
− 1.

(b) For p+2 ≤ n ≤ 2p+1, Covn,p has no homology strictly below dimension 2p− 1+(
2p−n+2

2

)
.

(c) For p = 2 and p = 3, H̃(p+2
2 )−2(Covn,p,Z) is free of rank

(
n

p+2

)
.

(d) H̃2p−1(Covn,p,Z) is free of rank
(
n−1
2p

)
.

(e) For i ≥ 2p and for any field F,

2p+1∑
k=p+2

(−1)kβi(Λk,p,2,F) = 0.
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Equivalently, for i ≥ 2p, the polynomial fp,i(n) = βi(Covn,p,F) satisfies fp,i(0) =
0.

(f) All roots of the polynomial fp,i are real and nonnegative (they are indeed integers).
Moreover, the Euler characteristic of Covn,p is a polynomial in n with only real
and positive roots.

Note that properties (a)–(d) are also true for p = 4 and n ≤ 7; see Table 1.
Moreover, by Proposition 10.2, property (a) is true whenever p = n− 3.

Proposition 11.1 suggests the following problem.

Question 11.2. Among the six properties listed in Proposition 11.1, which of
them hold for general p?

We are particularly interested in knowing whether property (a) remains true for
general p. First, this relates to the important problem of determining the connectivity
degree of the complex of Kn−p-free graphs; this is the Alexander dual Cov∗n,p of Covn,p.

Second, we would like to know more about connections between the complex Coltn of t-
colorable graphs and Cov∗n,n−(t+1); recall that the latter complex contains the former.

As Linusson and Shareshian [14] observed, most homology of Coltn is concentrated in
dimension n(t− 1)−

(
t
2

)
− 1 = dn,t+1 for all known examples, and so far no homology

below this dimension has been found.

Regarding property (b), one may also ask whether the corresponding skeleton is
V D or at least Cohen–Macaulay. Regarding property (c), we know that H̃(p+2

2 )−2

(Covn,p,Z) contains a free subgroup of rank
(
n−1
p+1

)
; use (7.1) and Corollary 7.6.

Since we do not have much data, it may well turn out that several of the properties
in Proposition 11.1 do not generalize to larger values of p. We are particularly skeptical
about properties (b) and (f).

For hypergraphs, the situation is even worse, as we have almost no data. Still,
regarding property (a), one may ask whether it is true that Covn,p,r has no homology
over any field strictly above dimension

(
p+r
r

)
− 2.

In our opinion, however, the most important open problem for r ≥ 3 is to de-
termine the maximum integer k for which Λk,p,r has nonvanishing homology. This
would give an upper bound on the degree of the polynomials fp,r,i. Our hope is that
the answer is pr, but we have no evidence whatsoever for this guess when p, r ≥ 3. In
particular, pr is not an upper bound on γ(p, r); γ(3, 3) ≥ 10, as the hypergraph on
the vertex set {0, 1, . . . , 9} with edges 012, 234, 456, 678, 890 is (3, 3)-solid.

Complexity-theoretic remark. The (VERTEX) COVER problem of inputting a pair
(G, p) is to determine whether G ∈ Covn,p; n is the number of vertices in G. This
is the containment problem for the family {Covn,p : n, p ≥ 1}. COVER is well-known
to be NP-complete [6, 13]. A potentially interesting question is whether there is any
deeper connection between this fact and the fact that the homology of Covn,p seems
difficult to compute for general n and p.
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DECYCLING CARTESIAN PRODUCTS OF TWO CYCLES∗
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Abstract. The decycling number ∇(G) of a graph G is the smallest number of vertices which
can be removed from G so that the resultant graph contains no cycles. In this paper, we study
the decycling number for the family of graphs consisting of the Cartesian product of two cycles.
We completely solve the problem of determining the decycling number of Cm�Cn for all m and n.
Moreover, we find a vertex set T that yields a maximum induced tree in Cm�Cn.
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1. Introduction. In 1986, Erdős, Saks, and Sós published a paper in which they
considered the problem of finding, for a given graph G, the size t(G) of a maximum
subset T of V (G) that would induce a tree [8]. Meanwhile, the more general problem
of finding the size of a maximum subset F of V (G) that would induce a forest was also
beginning to receive attention for various types of graphs, such as cubic graphs [6, 10]
and planar graphs [1, 2].

The problem of finding the size of a maximum subset F of V (G) that induces
a forest can be reformulated as the problem of determining the size of a minimum
subset S of V (G) for which G − S is acyclic. Any set S for which G − S contains
no cycles is a decycling set. The size of a minimum decycling set S in a graph G is
the decycling number of G and will be denoted by ∇(G). Note that decycling sets are
sometimes also called feedback vertex sets, and they have applications in areas such
as circuit design and deadlock prevention (see [9]).

In [5], various introductory results were presented, followed by investigations
into hypercubes as well as 2-dimensional grid graphs. The 2-dimensional grid graph
Pm�Pn is the Cartesian product of a path Pm on m vertices and a path Pn on n ver-
tices (here we follow the notation presented in [11] for Cartesian products). Further
results concerning ∇(Pm�Pn) were subsequently presented in [4] and summarized in
a survey paper on decycling [3].

In [4] and again in [3], determining the decycling number for the Cartesian product
of two cycles, i.e., ∇(Cm�Cn), is presented as an open problem. In this paper we
completely solve this problem, determining ∇(Cm�Cn) for all m � 3 and n � 3.
Further, for each combination of m and n other than m = n = 4, we show how to
construct a minimum decycling set S of size ∇(Cm�Cn), such that T = V (Cm�Cn)−
S is the vertex set of a maximum induced tree in Cm�Cn.

Before moving on to our results, we review some of the introductory results that
appeared first in [5].

Lemma 1.1. If G is a connected graph with p vertices (p > 2), q edges, and
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maximum degree Δ, then

∇(G) � q − p + 1

Δ − 1
.

Theorem 1.2. If G and H are homeomorphic graphs, then ∇(G) = ∇(H).

2. Decycling of Cm���Cn (initial cases). In the next two sections, we inves-
tigate the decycling number of the graph Cm�Cn, the Cartesian product of a cycle
Cm on m vertices and a cycle Cn on n vertices. In this section we establish lower
bounds on ∇(Cm�Cn) and obtain the exact results for several initial cases. In the
next section, we obtain the general result of the decycling set of the graph Cm�Cn,
for all m and n.

�

Fig. 2.1. C4�C7, Cartesian product of C4 and C7.

Following the notation in [5], it will be useful to have a standard labeling for the
vertices of Cm�Cn, and we choose one that corresponds to matrix notation: the ith
vertex in the jth copy of Cm will be denoted vi,j . Figure 2.1 is a simple example of
C4�C7, and the vertex labelled by “•” is denoted by v3,4. Note that Cm�Cn is a
4-regular graph, and hence by Lemma 1.1, we have the following lower bound for the
size of any decycling set of Cm�Cn.

Lemma 2.1. For the graph Cm�Cn,

∇(Cm�Cn) � mn + 1

3
.(2.1)

Carrying the matrix analogy further, we sometimes speak of the copies of Cm and
Cn as the columns and rows, respectively, of Cm�Cn. In order that decycling will be
more readily recognizable in our figures, we frequently emphasize only the vertices of
the decycling set.

Because the result in C4�Cn is different from other Cm�Cn, we dispose of this
case prior to developing more general results.

Theorem 2.2. ∇(C4�Cn) = � 3n
2 � for all n � 3.

Proof. Every column of the graph is a 4-cycle, so we must remove at least one
vertex in each column for decycling. For any two adjacent columns in C4�Cn, we
need to remove at least 3 vertices to decycle these two columns, and so if n is even,
then ∇(C4�Cn) � 3n

2 . When n is even, we can find a decycling set of that size.

Let M =
⋃k−1

i=1 ({v2,4i−3, v4,4i−3, v3,4i−2, v1,4i−1, v3,4i−1, v2,4i}), where k = �n
4 �.

Then S = M ∪ {v2,n−1, v4,n−1, v1,n} is a decycling set for C4�Cn, where n ≡ 2
(mod 4) (see Figure 2.2 for the case n = 6). If n ≡ 0 (mod 4) and n > 4, then
S = M ∪ {v2,n−3, v4,n−3, v1,n−2, v2,n−1, v3,n−1, v1,n} is a minimum decycling set
(see Figure 2.3 for the case n = 8).
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Observe that in each case the vertices of V (Cm�Cn)−S induce a tree. However,
for C4�C4, no minimum decycling set will yield a forest with only one component. In
this case, a maximum induced tree has 9 vertices and is produced by the nonminimum
decycling set {v3,1, v4,1, v2,2, v1,3, v3,3, v1,4, v4,4}. A maximum induced forest
having 10 vertices is obtained with the decycling set {v1,1, v3,1, v2,2, v1,3, v3,3, v4,4}.

� �

� � �

� �

� �

Fig. 2.2. Decycling set of C4�C6.

� � �

� � � �

� � �

� �

Fig. 2.3. Decycling set of C4�C8.

�

�

�

�

�

�

�

�

�

�

�

Fig. 2.4. Decycling set of C4�C7.

If n is odd, in every two adjacent columns, we still must remove at least 3 vertices.
If we attempt to remove exactly 3 vertices from each pair of columns (i, i+1) for 1 �
i < n−1, then we find that removing only 1 vertex from column n leaves a cycle in the
graph (one of the pairs (n− 1, n) or (n, 1) will contain only 2 vertices of the decycling
set). It follows that at least 3(n−1

2 )+2 = � 3n
2 � vertices will have to be removed in order

to decycle C4�Cn where n is odd. A decycling set of this size, and whose complement
induces a tree, exists, namely

⋃k
i=1({v3,2i−1, v4,2i−1, v2,2i}) ∪ {v1,n, v3,n}, where

k = n−1
2 . (See Figure 2.4 for the case n = 7.)

Throughout the remainder of this section, we assume that 4 �∈ {m,n}.
In [5], the outlay of a set S of vertices in a graph G is defined as

θ(S) := σ(S) − |S| − ε(S) − ω(G− S) + 1 ,

where σ(S) is the sum of the degrees of the vertices in S, ε(S) is the number of edges
in the induced subgraph G[S], and ω(G− S) is the number of components in G− S.

By Lemma 1.3 in [5], if G is a connected graph with p vertices and q edges, and S
is any decycling set for G, then θ(S) = q− p+1. For Cm�Cn, we can easily compute
mn + 1 = θ(S) = 3|S| + 1 − (ε + ω), so

3|S| = mn + (ε + ω) .(2.2)

Since ω � 1, therefore |S| � mn+1
3 , which in turn yields (2.1). We will now show that

ε + ω > 1, thereby obtaining a greater lower bound on ∇(Cm�Cn) than is given by
Lemma 2.1.

Lemma 2.3. For G = Cm�Cn, if S is a minimum decycling set, then

ε(S) + ω(G− S) � 2 .

Proof. By the symmetry of the graph Cm�Cn, we can consider the following 6
cases only:
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(1) m ≡ 0 (mod 3), n ≡ 0 (mod 3);
(2) m ≡ 1 (mod 3), n ≡ 0 (mod 3);
(3) m ≡ 1 (mod 3), n ≡ 1 (mod 3);
(4) m ≡ 2 (mod 3), n ≡ 0 (mod 3);
(5) m ≡ 2 (mod 3), n ≡ 1 (mod 3);
(6) m ≡ 2 (mod 3), n ≡ 2 (mod 3).
By considering (2.2), modulo 3, we quickly find that ε + ω � 2 for cases (3) and

(6), and ε+ω � 3 for cases (1), (2), and (4). We therefore now consider only case (5).
For each 4-cycle (a, b, c, d) in Cm�Cn, we now create the block {a, b, c, d}, and

we let B be the set of all such blocks. Let H be the bipartite graph with bipartition
(V,B), where V = V (Cm�Cn) and in which v ∈ V is adjacent to B ∈ B if and only
if v ∈ B.

Given a subset S of V , we also consider the related bipartite graph H−S having
bipartition (V −S,B−S), where B−S = {B−S : B ∈ B} and in which v ∈ V −S is
adjacent to B ∈ B−S if and only if v ∈ B. Whenever S is a decycling set of Cm�Cn,
each vertex v ∈ V −S will have degree 4 in H−S, yet the mn vertices of B−S must
each have degree at most 3 (as blocks, the mn elements of B − S must each have size
at most 3).

Assuming that ε + ω = 1, then ε = 0, ω = 1, and so (2.2) yields

∇(Cm�Cn) =
mn + 1

3
.(2.3)

Since ε = 0, it follows that each of the mn blocks of B − S must have size of 2 or 3.
Let us assume that x of the vertices of B−S have degree 2 in H−S, so the remaining
mn− x vertices of B−S each have degree 3 in H−S. Counting the number of edges
in H− S, we have

4(mn−∇) = 2x + 3(mn− x)

⇒ x =
mn + 4

3
.

At this point, each vertex of (Cm�Cn)−S must have degree 1, 2, 3, or 4 (a vertex
of degree 0 is impossible because ω = 1). Those of degree 2 can be further classified,
depending on whether the 2 neighbors are in orthogonal directions or in the same
lateral direction. Thus we can now identify each vertex of (Cm�Cn) − S as being
of type 1, 2o, 2l, 3, or 4, as illustrated in Figure 2.5. (Since ε = 0, there exist only
these 5 types of vertices in (Cm�Cn) − S.) Throughout this lemma, in order that
the vertices in the decycling set will be more readily differentiable from the vertices
of (Cm�Cn) − S in the figure, we use “•” to denote the vertices in Cm�Cn, and a
vertex surrounded by “�” indicates that the vertex is in the decycling set.

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

1 2o 2l 3 4

Fig. 2.5. The 5 types of vertices in G− S (the vertex in the center is the vertex that we mean
for the type, and the vertices surrounded by “�” denote vertices which are in the decycling set).
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Every type-1 vertex of G − S is in two blocks of size 2 in B − S and two blocks
of size 3, every type-2o vertex is in one block of size 2 and three blocks of size 3,
and each remaining vertex of (Cm�Cn) − S is in four blocks of size 3. Suppose that
we have x1, x2o, x2l, x3, x4 vertices of type-1, 2o, 2l, 3, 4, respectively. Counting the
number of edges in H−S which are incident to the blocks of size 2 in B−S, we have

2x1 + x2o = 2x =
2mn + 8

3
.(2.4)

Similarly, counting the number of edges which are incident to the blocks of size
3, we have

2x1 + 3x2o + 4x2l + 4x3 + 4x4 = 3(mn− x)

= 3mn− 3

(
mn + 4

3

)
= 2mn− 4.

(2.5)

Counting the number of edges of Cm�Cn with one endpoint in S and the other
in V − S, we have

3x1 + 2x2o + 2x2l + 1x3 + 0x4 = 4∇.(2.6)

Solving the system of equations consisting of (2.4)–(2.6), we find that

x4 = 1 + x2l.

Since x2l � 0, then there is at least one type-4 vertex. Note that each type-4 vertex can
only be adjacent in G− S to vertices that are type-1 or type-2l. Since ω(G− S) = 1,
each type-4 vertex must have at least one type-2l neighbor. Moreover, since x4 =
1 + x2l, it follows that the type-2l and type-4 vertices induce a tree in which the
vertices are alternately type-4 and type-2l. The neighbors of this tree in G − S are
all type-1. But ω(G− S) = 1, and hence we now deduce that x2o = x3 = 0, yielding
a solution to (2.4)–(2.6): ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 =
mn + 4

3
,

x2l =
mn− 8

6
,

x4 =
mn− 2

6
.

Consider the vertices of an arbitrary row in G. Since ε = 0, each vertex of S in
the row will be incident with 2 horizontal edges of G that do not appear in G − S.
The horizontal edges that do appear in G − S form a collection of horizontal paths,
each of which has two endpoints that are both type-1 vertices, whereas the interior
vertices are alternately type-4 and type-2l. Each horizontal path thus contains an
even number of edges. Of the n horizontal edges that appeared in this row in G, an
even number do not appear in G − S while an even number do. Hence n must be
even, or else we have a contradiction. By considering an arbitrary column of G, we
similarly find that m must be even.

Now we consider the vertices in the decycling set. At this point, the vertices in
S must have 0, 1, or 2 type-2l neighbors. Those having no type-2l neighbor can be
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A0 A1 A2 B C

Fig. 2.6. The 5 types of vertices in S (the vertex in the center is the vertex that we mean for
the type, and the vertices surrounded by “�” denote vertices which are in the decycling set).

further classified, depending on the number of type-4 diagonal neighbors, where we
define a diagonal neighbor of a vertex u to be any vertex that is at distance 2 from
u in a 4-cycle of G. The resultant 5 possible types of vertices in S are illustrated in
Figure 2.6.

For each type-Ak vertex (k = 0, 1, 2), its 4 neighbors are all type-1 vertices. Each
type-B vertex has one type-2l neighbor and the other three are type-1. For each type-
C vertex, two of its neighbors (in orthogonal directions) are type-2l and the other two
are type-1. Since both m and n are even, then G has an even number of rows and
even number of columns, so we label the rows and columns of G such that all of the
type-4 vertices are in rows and columns with even parity. Consequently, all type-A0

vertices are in rows and columns with even parity while all vertices of type-A1, A2,
B, or C are in rows and columns with odd parity. Type-1 and type-2l vertices have
row and column labels with different parities. Hence all of the vertices of S that are
diagonal neighbors of any vertex of type-A1, A2, B, or C must be of type-A0.

Note that all mn
4 of the vertices in rows and columns, each having odd parity (i.e.,

the vertices of type-A1, A2, B, and C), are in the decycling set. And since ε = 0, all
mn
2 of the vertices in rows and columns having different parities (i.e., the type-1 and

type-2l vertices) are not in S. Thus, if we let T denote the set of all vertices that are
of type-A1, A2, B, or C, then (Cm�Cn) − T is homeomorphic to Cm

2
�Cn

2
, and so

by Theorem 1.2,

∇(Cm�Cn) = ∇
(
(Cm�Cn) − T

)
+ |T |

= ∇(Cm
2
�Cn

2
) +

mn

4
.

(2.7)

More generally, we find that

∇(Cmi�Cni) = ∇(Cmi−1�Cni−1) + mi−1ni−1,

where mi = m
2k−i and ni = n

2k−i for i = 0, 1, . . . , k, and k is the least nonnegative
integer such that at least one of m

2k or n
2k is either odd or equal to 4. Further, observe

that ∇(Cmi�Cni) = mini+1
3 if and only if ∇(Cmi−1�Cni−1) = mi−1ni−1+1

3 . But

∇(Cm0�Cn0) �= m0n0+1
3 , since either one of m0 or n0 is odd or else Theorem 2.2

applies. We therefore have a contradiction to (2.3) and hence ε(S)+ω(G−S) � 2 for
case (5). By again considering (2.2), modulo 3, we now conclude that ε(S)+ω(G−S) �
4.

Theorem 2.4. ∇(Cm�Cn) � �mn+2
3 � .

Proof. By Lemma 2.3 and (2.2), we can easily get the desired result.
The reduction technique described towards the end of the proof of Lemma 2.3

can also be employed as a doubling construction, which we now present.
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Theorem 2.5. Suppose S is any minimum decycling set of Cm�Cn with
∇(Cm�Cn) = �mn+2

3 �. Let S′ = {v2i−1,2j−1 : vi,j ∈ S} be a vertex set in C2m�C2n,
and T = {vi,j : i = 2, 4, . . . , 2m; j = 2, 4, . . . , 2n}. Then S′ ∪ T is a minimum
decycling set of C2m�C2n. Furthermore, if ω

(
(Cm�Cn)−S

)
= 1, then there exists a

minimum decycling set S′′ of C2m�C2n such that ω
(
(C2m�C2n) − S′′) = 1.

Proof. Note that (C2m�C2n) − T is a graph homeomorphic to Cm�Cn. Hence,(
(C2m�C2n) − T

)
− S′ = (C2m�C2n) − (S′ ∪ T ) is acyclic. Therefore, S′ ∪ T is a

decycling set of C2m�C2n.
Since, by Theorem 2.4,

∇(C2m�C2n) �
⌈

4mn + 2

3

⌉

= mn +

⌈
mn + 2

3

⌉
= |T | + |S′|,

S′ ∪ T is a minimum decycling set of C2m�C2n.
Clearly ε(S′ ∪ T ) = 0. In order to obtain a maximum induced tree in C2m�C2n,

we therefore must transform the decycling set S′∪T into a new decycling set S′′ such
that ε(S′′) = ε(S).

Suppose that for some i and j, both of vi,j and vi,j+1 are in S. Then v2i−1,2j is
an isolated vertex in (C2m�C2n) − (S′ ∪ T ). Also, v2i,2j ∈ T and v2i+1,2j �∈ (S′ ∪ T ).
By removing v2i,2j from the decycling set and replacing it with v2i+1,2j , we obtain a
new minimum decycling set. If ε(S) � 1, then by performing a suitable combination
of at most ε(S) similar transformations, we obtain a minimum decycling set S′′ for
which ε(S′′) = ε(S) and ω

(
(C2m�C2n) − S′′) = 1.

We now carry on with several initial cases.
Lemma 2.6. ∇(C3�Cn) = � 3n+2

3 �.
Proof. By Theorem 2.4, we get ∇(C3�Cn) � � 3n+2

3 � = n + 1. Let k = 
n
3 �,

M =
⋃k

i=1{v1,3i−2, v2,3i−1, v3,3i}, S0 = {v2,n}, S1 = {v2,n, v3,n}, and S2 =
{v1,n−1, v2,n−1, v2,n}. Then M ∪ St is a decycling set of size n + 1 for C3�Cn

with the property that ω
(
(C3�Cn) − (M ∪ St)

)
= 1, where n ≡ t (mod 3).

Lemma 2.7. ∇(C8�Cn) = � 8n+2
3 �.

Proof. By Theorem 2.4, we have the lower bound ∇(C8�Cn) � � 8n+2
3 �. We

should divide the number of columns into 6 cases modulo 6. Let k = 
n
3 �, and

let M =
⋃k

i=1{v1,3i−2, v4,3i−2, v7,3i−2, v2,3i−1, v5,3i−1, v3,3i, v6,3i, v8,3i}. For
n ≡ 3 (mod 6), M ∪ {v1,n} is a minimum decycling set. For n ≡ 1 (mod 6),
M ∪ {v2,n, v5,n, v6,n, v8,n} is a minimum decycling set. For n ≡ 4 (mod 6),
M ∪ {v1,n, v3,n, v5,n, v7,n} is a minimum decycling set. For n ≡ 5 (mod 6),
M ∪ {v2,n−1, v5,n−1, v7,n−1, v3,n, v5,n, v8,n} is a minimum decycling set. For n ≡ 0
(mod 6),

(
M − {v2,n−1}

)
∪ {v3,n−1, v2,n} is a minimum decycling set. For n ≡ 2

(mod 6),
⋃k−1

i=1 {v1,3i−2, v4,3i−2, v7,3i−2, v2,3i−1, v5,3i−1, v3,3i, v6,3i, v8,3i} ∪ {v1,n−4,
v4,n−4, v7,n−4, v2,n−3, v5,n−3, v1,n−2, v4,n−2, v7,n−2, v2,n−1, v6,n−1, v8,n−1, v3,n,
v5,n, v8,n} is a minimum decycling set. Note that in each of these six cases, the
corresponding maximum induced forest consists of a single tree.

Lemma 2.8. If m ≡ 0 (mod 3), then ∇(Cm�Cn) = rn + 1, where m = 3r.
Proof. By Theorem 2.4, we have the lower bound, ∇(C3r�Cn) � � 3rn+2

3 � =

rn + 1. Now if n is odd, then let M =
⋃r

i=1({v3i−2,1} ∪
⋃k

j=1{v3i−1,2j , v3i,2j+1}),
where n = 2k + 1. Considering the graph (C3r�Cn) −M , rows 3i− 2, 3i− 1, and 3i
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have a path from v3i−2,2 to v3i,2 for each 1 � i � r. By joining these paths, we have
a cycle C of length r(n + 3) starting and ending at v1,2. Each vertex not on cycle C
and not in M has one neighbor in C and three neighbors in M . So (C3r�Cn) −M
consists of the cycle C with r(n− 3) pendant edges and 6r vertices of degree 2.

(
See

Figure 2.7 for an example of the left-over graph of (C6�C11) −M .
)

If n is even and r is odd, let M =
⋃r

i=1({v3i−2,1, v3i−2,n−2, v3i−1,n, v3i,n−1} ∪⋃k
j=1{v3i−1,2j+1, v3i,2j}), where n = 2k + 4. Using a similar method to the above

case, (C3r�Cn) −M consists of a cycle C of length r(n + 6) with r(n − 6) pendant
edges and 12r vertices of degree 2.

(
See Figure 2.8 for an example of the left-over

graph of (C9�C14) −M .
)

In either of the above cases, |M | = rn and (Cm�Cn) − M is connected and
contains only one cycle. Now by letting S consist of M plus any degree-2 vertex of
the cycle C of (Cm�Cn) −M , we obtain a minimum decycling set, the complement
of which induces a tree.
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Fig. 2.7. The left-over graph (with one cycle)
of (C3r�Cn) −M , where n is odd.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2.8. The left-over graph (with one cycle)
of (C3r�Cn) −M , where n is even and r is odd.

Now suppose that r and n are both even, and let k be the least nonnegative
integer such that at least one of r

2k or n
2k is odd or n

2k equals 8, and let mi = m
2k−i and

ni = n
2k−i for each i = 0, 1, . . . , k. Then we can find a minimum decycling set S0 of

cardinality rn
22k +1 in Cm0

�Cn0
such that ω

(
(Cm0

�Cn0
)−S0

)
= 1. Now, for each i =

0, 1, . . . , k−1, apply Theorem 2.5 to Cmi
�Cni to construct a minimum decycling set

Si+1 of size ∇(Cm0
�Cn0

)+mn
22k

∑i
j=0 4j in Cmi+1

�Cni+1
such that ω

(
(Cmi+1

�Cni+1
)−

Si+1

)
= 1. It follows that ∇(Cm�Cn) = ∇(Cm0

�Cn0
) + mn

22k

∑k−1
j=0 4j = rn+ 1.

By the symmetry of the graph Cm�Cn, in the rest of this paper, we do not need
to consider the case of n ≡ 0 (mod 3) for any choice of m.

Lemma 2.9. ∇(C5�Cn) =
⌈

5n+2
3

⌉
.

Proof. By Theorem 2.4, we have ∇(C5�Cn) � � 5n+2
3 �. Let k = 
n

3 �, M =⋃k
i=1{v1,3i−2, v3,3i−2, v2,3i−1, v4,3i−1, v5,3i}, S1 = {v1,n, v3,n, v4,n}, and S2 =

{v1,n−1, v3,n−1, v4,n, v5,n}. We can easily verify that M ∪St is a decycling set of size
� 5n+2

3 � for C5�Cn such that ω
(
(C5�Cn)−(M ∪St)

)
= 1, where n ≡ t (mod 3).

Lemma 2.10. ∇(C7�Cn) = � 7n+2
3 �.

Proof. By Theorem 2.4, we have ∇(C7�Cn) � � 7n+2
3 �. Let k = 
n

3 �. For

n ≡ 1 (mod 3), let S =
⋃k−1

i=1 {v2,3i−2, v6,3i−2, v3,3i−1, v5,3i−1, v7,3i−1, v1,3i, v4,3i} ∪
{v3,n−3, v5,n−3, v7,n−3, v2,n−2, v5,n−2, v1,n−1, v3,n−1, v6,n−1, v4,n, v7,n}. For

n ≡ 2 (mod 3), let S =
⋃k

i=1{v1,3i−2, v5,3i−2, v2,3i−1, v4,3i−1, v7,3i−1, v3,3i, v6,3i} ∪
{v1,n−1, v4,n−1, v7,n−1, v1,n, v3,n, v6,n}. In both cases, S is a decycling set of size
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� 7n+2
3 � and ω((C7�Cn) − S) = 1.
According to Lemmas 2.6–2.10, we have the following theorem.
Theorem 2.11. Let m and n be integers such that m ∈ {5, 7, 8} ∪ {3, 6, 9, . . . },

n � 3, and n �= 4. Then ∇(Cm�Cn) = �mn+2
3 �, and t(Cm�Cn) = mn−∇(Cm�Cn).

3. Decycling Cm���Cn (the general cases). In the previous section, we dis-
cussed the decycling set of Cm�Cn for small values of m. In this section, we inves-
tigate all of the remaining cases. Since we already solved the problem for m ≡ 0
(mod 3), we only need to consider four cases (modulo 6), i.e., m ≡ 1 (mod 6), m ≡ 2
(mod 6), m ≡ 4 (mod 6), m ≡ 5 (mod 6), and by the symmetry of Cm�Cn, for each
case, we do not need to consider the case of n ≡ 0 (mod 3). Unless stated otherwise,
throughout this section we assume that 4 �∈ {m,n}.

Lemma 3.1. If m = 6r + 1, then ∇(Cm�Cn) = 2rn + �n+2
3 �.

Proof. If r = 1, then the result follows from Lemma 2.10. For r > 1, we employ
an iterative construction in which we add 6 new rows at a time, starting with the
graph C7�Cn. This iterative technique takes advantage of a particular configuration
of three consecutive rows; this configuration is initially present in the decycling set
described in Lemma 2.10 for C7�Cn, and a copy of the configuration is produced
with each iteration. After (r − 1) iterations, we will have constructed a decycling set
of size 2rn+ �n+2

3 � in Cm�Cn. From Theorem 2.4, we have ∇(Cm�Cn) � �mn+2
3 � =

� (6r+1)n+2
3 � = 2rn + �n+2

3 �, which tells us that the decycling set we construct is
optimal.

We now consider two subcases, each of which employs its own configuration of
three consecutive rows from Lemma 2.10.

(i) n ≡ 1 (mod 3).
Beginning with the decycling set of C7�Cn, we say that a row is type-α
if its deleted vertices are in the same columns as those of the fifth row of
C7�Cn which was described in Lemma 2.10 (i.e., row j is type-α if the set
of vertices removed from it is

⋃t
i=1{vj,3i−1} ∪ {vj,n−3}, where n = 3t + 1).

Similarly, type-β (resp., type-γ) rows are those with a configuration identical

to that of the sixth (
⋃t−1

i=1{vj,3i−2}∪{vj,n−1}) (resp., seventh (
⋃t−1

i=1{vj,3i−1}∪
{vj,n−3, vj,n})) row of C7�Cn.
Focusing on the three consecutive rows that are, in order, of type-α, β, γ
in C7+6k�Cn, for some k � 0, we now describe how to insert six new rows
and obtain a minimum decycling set of C7+6(k+1)�Cn. Following the row
of type-α in C7+6k�Cn, insert three new rows, the first two being of type-β
and type-γ, respectively. For the third of these new rows, add the vertices in
columns 3i (where i = 1, 2, . . . , t− 1) and n− 2 to the decycling set.
Now, following the original type-β row, insert another three new rows. For
the first of these three new rows, we select the vertices in columns 3i (where
i = 1, 2, . . . , t− 1), n− 2, and n to add to the decycling set. For the second
row, select the vertices in columns 3i−1 (where i = 1, 2, . . . , t−1) and n−3.
For the third row, delete vertices so that it is a type-β row (see Figure 3.1
for the expansion pattern where n = 13). We now have a minimum decycling
set of C7+6(k+1)�Cn.
Note that the new graph, C7+6(k+1)�Cn, contains three consecutive rows that
are of type-α, β, γ, and hence we can iterate this expansion procedure.

(ii) n ≡ 2 (mod 3).
Similar to the previous case, start from the decycling set of C7�Cn. A row
is type-α if its deleted vertices are in the same columns as those of the fourth
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� � � � � � � � � � � � � � � � � � � � � � � � �
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Fig. 3.1. Expansion of decycling set for m ≡ 1 (mod 6), n ≡ 1 (mod 3).
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Fig. 3.2. Expansion of decycling set for m ≡ 1 (mod 6), n ≡ 2 (mod 3).

row of C7�Cn (i.e., row j is type-α if the set of vertices removed from it
is

⋃t
i=1{vj,3i−1} ∪ {vj,n−1}, where n = 3t + 2). Similarly, type-β (resp.,

type-γ) rows are those with a configuration identical to that of the fifth
(
⋃t

i=1{vj,3i−2}) (resp., sixth (
⋃t

i=1{vj,3i} ∪ {vj,3t+2})) row of C7�Cn.
Focusing on the three consecutive rows that are, in order, of type-α, β, γ in
C7+6k�Cn, for some k � 0, we insert six new rows and obtain a minimum
decycling set of C7+6(k+1)�Cn. Following the row of type-α in C7+6k�Cn,
insert three new rows, being of type-β, type-α, and type-γ in that order, and
now following the original type-β row, insert another three new rows, being of
type-γ, type-α, and type-β in order (see Figure 3.2 for the expansion pattern
where n = 14). We now have the decycling set of C7+6(k+1)�Cn.
Note that the new graph, C7+6(k+1)�Cn, contains three consecutive rows that
are of type-α, β, γ, so we can iterate the expansion procedure.

In each case we obtain a decycling set S of size 2rn+�n+2
3 � in Cm�Cn. Moreover,

the iteration procedure does not contribute to ε(S), and hence we conclude that
ω((Cm�Cn) − S) = 1.

Lemma 3.2. If m = 6r + 5, then ∇(Cm�Cn) = 2rn + � 5n+2
3 �.

Proof. Similar to Lemma 3.1, we have the lower bound of the decycling set,
∇(C6r+5�Cn) = 2rn + � 5n+2

3 �. We can start from the decycling set for C5�Cn

described in Lemma 2.9, and insert 6r rows of vertices to get the decycling set for
C6r+5�Cn. We divide this case into 2 subcases.

(i) n ≡ 1 (mod 3).
Starting from the decycling set of C5�Cn, a row is type-α if its deleted
vertices are in the same columns as those of the third row of C5�C3t+1

(i.e., row j is type-α if the set of vertices removed from it is
⋃t+1

i=1{vj,3i−2}),
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where n = 3t + 1. Similarly, type-β (resp., type-γ) rows are those with a
configuration identical to that of the fourth (

⋃t
i=1{vj,3i−1} ∪ {vj,n}) (resp.,

fifth (
⋃t

i=1{vj,3i})) row of C5�C3t+1.
Focus on three consecutive rows that are, in order, of type-α, β, γ in
C5+6k�C3t+1 for some k � 0. We now insert three new rows following the
type-α row in C5+6k�C3t+1, the first two being of type-β and type-γ, respec-
tively. For the third of these new rows, add the vertices in columns 3i − 2
(i = 1, 2, . . . , t) to the decycling set.
Then following the original type-β row, insert another three new rows. For the
first of these rows, we select the vertices in columns 3i+1 (i = 1, 2, . . . , t−1)
and 3t to add to the decycling set. For the second row, we select the vertices
in columns 1 and 3i (i = 1, 2, . . . , t − 1). For the third row, we delete
vertices so that it is a type-β row (see Figure 3.3 for the expansion pattern
where n = 13). We now have a minimum decycling set of C5+6(k+1)�C3t+1.
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� � � � �

� � � �
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� � � �
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� � � � � � � � � � � � � � � � � � � � � � � � �

γ

β

α

Fig. 3.3. Expansion result for
m ≡ 5 (mod 6), n ≡ 1 (mod 3).
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� � � � � � � � � � � � � � � � � � � � �

γ

β

α

Fig. 3.4. Expansion result for
m ≡ 5 (mod 6), n ≡ 2 (mod 3).

(ii) n ≡ 2 (mod 3).
Beginning with the decycling set of C5�Cn, a row is type-α if its deleted
vertices are in the same columns as those of the second row of C5�C3t+2

which was described in Lemma 2.9 (i.e., row j is type-α if the set of vertices
removed from it is

⋃t
i=1{vj,3i−1} where n = 3t+ 2). Similarly, type-β (resp.,

type-γ) rows are those with a configuration identical to that of the third

(
⋃t+1

i=1{vj,3i−2}) (resp., fourth (
⋃t+1

i=1{vj,3i−1})) row of C5�C3t+2.
Focus on any three consecutive rows that are, in order, of type-α, β, γ in
C5+6k�Cn, for some k � 0. Following the type-α row, insert three new rows,
the first two being type-β and type-γ, respectively. For the third of these new
rows, add the vertices in columns 3i (where i = 1, 2, . . . , t) to the decycling
set.
Then, following the original type-β row, insert another three new rows. For
the first of these rows, we select the vertices in columns 3i (where i =
1, 2, . . . , t) and n to add to the decycling set. For the remaining two rows,
delete vertices so that they are of type-α and type-β in order (see Figure 3.4
for the expansion pattern where n = 11). We now have a minimum decycling
set for C5+6(k+1)�Cn.

Note that in both cases, the new graph, C5+6(k+1)�Cn, contains three consecutive
rows that are of type-α, β, γ, and therefore we can iterate the expansion procedure to
obtain a decycling set S of size 2rn+� 5n+2

3 �in Cm�Cn. Moreover ω((Cm�Cn)−S) =
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1 and so (Cm�Cn) − S is a maximum induced tree in Cm�Cn.
For the remaining cases, we use another method to deal with them.
Lemma 3.3. If m ≡ 2 or 4 (mod 6) and n ≡ 2 or 4 (mod 6), then ∇(Cm�Cn)

= �mn+2
3 �.

Proof. For these cases, both m and n are even, so we use the similar method
described in Lemma 2.8. Let k be the least nonnegative integer such that at least
one of m

2k or n
2k is odd or equals 8, and let mi = m

2k−i and ni = n
2k−i for each

i = 0, 1, . . . , k. Then we can find a minimum decycling set S0 of cardinality �m0n0+2
3 �

in Cm0�Cn0 such that ω
(
(Cm0�Cn0) − S0

)
= 1. Now, for each i = 0, 1, . . . , k − 1,

apply Theorem 2.5 to Cmi�Cni to construct a minimum decycling set Si+1 of size

∇(Cm0�Cn0)+ mn
22k

∑i
j=0 4j in Cmi+1�Cni+i such that ω((Cmi+1�Cni+1)−Si+1) = 1.

It follows that ∇(Cm�Cn) = ∇(Cm0�Cn0) + mn
22k

∑k−1
j=0 4j = �mn+2

3 �.
We have now completely solved not only the problem of finding a minimum de-

cycling set in Cm�Cn, but also the problem of finding a maximum induced tree. We
summarize the cardinalities of each set of vertices.

Theorem 3.4. Let m � 3 and n � 3 be integers. Then

∇(Cm�Cn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌈
3n

2

⌉
if m = 4,⌈

3m

2

⌉
if n = 4,⌈

mn + 2

3

⌉
otherwise

and

t(Cm�Cn) =

{
9 if m = n = 4,
mn−∇(Cm�Cn) otherwise.

4. Remarks. By removing the row and column which have the maximum num-
ber of vertices in the minimum decycling set of Cm+1�Cn+1, we obtain a (not neces-
sarily minimum) decycling set for Pm�Pn. Thus we have the following corollary.

Corollary 4.1. Let m,n > 3 be integers. Then

∇(Pm�Pn) �

⎧⎪⎪⎨
⎪⎪⎩

⌈
(m + 1)(n + 1) + 2

3

⌉
− m + 1

2
− n + 1

2
if both m and n are odd,⌈

(m + 1)(n + 1) + 2

3

⌉
−
⌈
m + 1

3

⌉
−
⌈
n + 1

3

⌉
otherwise.

Proof. If both m and n are odd, we apply the technique described in Theorem 2.5.
Consider a minimum decycling set for Cm+1

2
�Cn+1

2
, then use the double construction

technique to get a decycling set for Cm+1�Cn+1 in which there exist a row and a
column such that half of the vertices in those row and column are in the decycling set
of Cm+1�Cn+1. Hence ∇(Pm�Pn) � ∇(Cm+1�Cn+1) − m+1

2 − n+1
2 .

Otherwise, in the minimum decycling set for Cm+1�Cn+1 which was described in
sections 2 and 3, we can select a row and a column, one third of the vertices of which
are deleted for decycling.

We observe that the upper bound for ∇(Pm�Pn) obtained in Corollary 4.1 is
comparable to the upper bound of Beineke and Vandell [5, Theorem 5.4], and when
m and n are both odd, it is as good as the upper bound obtained by Caragiannis,
Kaklamanis, and Kanellopoulos [7, Theorem 6].
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ISOMORPH-FREE EXHAUSTIVE GENERATION OF DESIGNS
WITH PRESCRIBED GROUPS OF AUTOMORPHISMS∗
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Abstract. We develop an algorithm framework for isomorph-free exhaustive generation of de-
signs admitting a group of automorphisms from a prescribed collection of pairwise nonconjugate
groups, where each prescribed group has a large index relative to its normalizer in the isomorphism-
inducing group. We demonstrate the practicality of the framework by producing a complete classi-
fication of the Steiner triple systems of order 21 admitting a nontrivial automorphism group. The
number of such pairwise nonisomorphic designs is 62336617, where 958 of the designs are anti-Pasch.
We also develop consistency checking methodology for gaining confidence in the correct operation of
the algorithm implementation.

Key words. classification algorithm, combinatorial search, consistency checking, isomorph
rejection, isomorph-free generation, Kramer–Mesner method, Steiner triple system, symmetry re-
duction
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1. Introduction. Among the basic problems in combinatorics is the classifica-
tion of various types of combinatorial designs [2, 12] that admit a prescribed group
of automorphisms. For small to intermediate parameter values, such classification
problems can be studied using computer search in the following framework.

Let Π be a finite set of points and let G be a finite group that acts on Π. Let Ω
be a set of subsets of Π that is closed under the induced action of G; the subsets in
Ω are called blocks. A set system X is a multiset of blocks.

Two set systems X ,Y are isomorphic if they are on the same orbit under the
induced action of G. A group element g ∈ G that satisfies gX = Y is an isomorphism
of X onto Y. The group Aut(X ) = {g ∈ G : gX = X} is the automorphism group of
X . A subgroup of Aut(X ) is a group of automorphisms.

Let P be an isomorphism invariant structural property for set systems (such
as the property of being a design), and let H be a subgroup of G. The associated
classification problem is to generate exactly one set system X from every isomorphism
class that satisfies property P and admits (a group conjugate to) H as a group of
automorphisms. More generally, if H is a set of pairwise nonconjugate subgroups
of G, then the task is to generate up to isomorphism all set systems X that satisfy
P and admit (a group conjugate to) at least one of the groups in H as a group of
automorphisms.

The celebrated Kramer–Mesner method [39] and methods based on tactical de-
compositions [18, 19] are prominent examples of computational methods for attacking
classification problems under prescribed groups of automorphisms; see, for example,
[3, 4, 5, 29, 40, 41, 42, 45, 46, 64, 73] and [13, 17, 30, 38, 50, 59, 60, 67, 71, 72],
respectively, and the survey articles [28, 51]. Other recent classification techniques
include [25, 35, 49].
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In this paper we focus on the classification of set systems with a prescribed group
of automorphisms H such that H has a large index relative to the normalizer NG(H) =
{g ∈ G : gHg−1 = H}, and the kernel of the induced action of NG(H) on the
orbits H\Ω is either H or a small overgroup of H. This situation occurs recurrently
when we are interested in classifying up to isomorphism all systems with a nontrivial
automorphism group; see, for example, [13, 35, 49, 56, 65]. In such applications, the
set H contains—up to conjugacy in G—all eligible prime-order subgroups of G, some
of which can have very large normalizers.

To obtain a practical isomorph-free exhaustive generation algorithm in the large-
index normalizer case, we must address two primary difficulties. First, we must
eliminate the symmetry induced by NG(H) from the search space. (If no symme-
try reduction is performed, we potentially end up generating a very large number of
isomorphic systems, which results in an impractical algorithm. To give an intuitive
justification to this claim, observe that if X is a set system with H ≤ Aut(X ), then
gX is an isomorphic set system with H ≤ Aut(gX ) for all g ∈ NG(H).) Second, we
must reject G-isomorphs among the generated set systems to obtain isomorph-free
generation. An extensive discussion of isomorph rejection in classification algorithms
occurs in [6, 26, 45, 46, 55, 61].

The main contribution of this paper is a classification framework that extends the
“generation via seeds” approach employed in [31, 32, 33] to the setting of prescribed
automorphism groups. Alternatively, the present contribution can be seen as extend-
ing the traditional Kramer–Mesner method [39] by a symmetry reduction front-end
and an isomorph rejection back-end.

First, we develop a general technique for performing symmetry reduction in the
prescribed automorphism group setting. The technique is based on classifying up
to NG(H)-isomorphism a collection of subsystems—called seeds—such that every set
system X satisfying P and H ≤ Aut(X ) must contain at least one seed as a subsystem.
We then achieve exhaustive generation by computing all possible extensions of every
seed to a complete system. Here a number of algorithms can be employed depending
on the type of design being classified.

Second, to achieve isomorph-free generation, we develop an isomorph rejection
technique compatible with the “generation via seeds” approach. The technique is
based on the canonical construction path method [55]. Neither isomorphism testing
between generated objects nor keeping a record of the generated objects is required,
which enables parallelization and classification of families with millions or even billions
of nonisomorphic designs. The applicability of the technique is, however, limited
by the need to perform isomorphism computations (such as computing canonical
labeling and generators for the automorphism group), which can become prohibitively
expensive as the size of the generated systems increases. In this connection we wish
to mention the recent group-theoretic isomorph rejection technique developed in [46],
which altogether avoids isomorphism computations; however, this technique appears
not to be applicable in the large-index normalizer setting, because knowledge of all
the subgroups in the interval [H,NG(H)] in the subgroup lattice of G is required.

As a secondary contribution, to illustrate the applicability of the framework, we
produce a complete classification for Steiner triple systems of order 21 with a nontrivial
automorphism group. For order 21, a complete classification was previously known
only for certain prime-order automorphisms [15, 52, 70] and Kirkman systems with a
nontrivial automorphism group [11].

This paper is organized as follows. Section 2 begins with some definitions and
notation. The classification framework is described in three parts. Section 3 gives
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a top-level description of the framework and proves its correctness under certain
assumptions on the seeds. Section 4 describes the construction procedure for the
seeds and proves its correctness. Section 5 discusses the implementation of nontrivial
subroutines—such as canonical labeling algorithms—required by the framework.

Section 6 contains the results obtained for Steiner triple systems of order 21 ad-
mitting a nontrivial automorphism group. Section 7 implements consistency checking
techniques for guarding against errors in algorithm implementation. The paper is
concluded in section 8 with a discussion of further applications and limitations of the
framework.

2. Definitions and notation.

2.1. Groups and group actions. For the background in groups and group ac-
tions, see [23, 34, 63]. In this paper groups act from the left (“gX”) and permutations
compose from right to left (“(1 2)(2 3) = (1 2 3)”). We write Sn for the symmetric
group of degree n and Sym(Δ) for the symmetric group on a finite set Δ.

Let G, Π, Ω be as defined in the introduction. We write H ≤ G to indicate that
H is a subgroup of G. The action of G on Π and Ω induces by restriction an action
of H ≤ G. We write fix(H) for the set of points fixed by the action of H on Π, and
H\Ω for the set of all H-orbits on Ω. We write X ⊆ Ω to indicate that X is a set
system, and X ⊆H Ω to indicate that X is a set system with H ≤ Aut(X ).

An element g ∈ G acts on a set system X ⊆ Ω by acting on the elements occurring
in the blocks B ∈ X . More precisely, the set system gX is defined by the following rule:
a block B occurs in X with multiplicity m if and only if the block gB = {gx : x ∈ B}
occurs in gX with multiplicity m.

An element g ∈ G acts on H ≤ G by conjugation, that is, the g-conjugate of H is
the subgroup gHg−1 = {ghg−1 : h ∈ H}. Two subgroups H1, H2 ≤ G are conjugate
if they are on the same orbit under the conjugation action on the set of all subgroups
of G.

For a subset S ⊆ G, we write 〈S〉 for the subgroup of G generated by S.
The following notation will be convenient in discussing the seeds associated with

the classification algorithm. Let H ≤ G, T ⊆ Π, and X ⊆H Ω. We write (H,T ) ↓X
for the union of those H-orbits in X that contain at least one block that has nonempty
intersection with T .

2.2. Isomorphism and canonical labeling. An extensive discussion of iso-
morphism and symmetry appears in [1]. Let K ≤ G. Two set systems X1,X2 ⊆ Ω
are K-isomorphic if there exists a g ∈ K such that X2 = gX1. Such an element g is
a K-isomorphism from X1 to X2. We write X1

∼=K X2 to indicate that X1 and X2

are K-isomorphic. If G = K, then we omit the group symbol K from the notation.
The K-automorphism group of X is

AutK(X ) = {g ∈ K : gX = X}.

We use similar notation for indicating isomorphism of tuples of objects under the
induced action of G. For example, if X1,X2 ⊆ Ω and T1, T2 ⊆ Π, then we write
(X1, T1) ∼=K (X2, T2) to indicate that there exists a g ∈ K such that gX1 = X2 and
gT1 = T2. Similarly, we denote by AutK(X1, T1) the automorphism group {g ∈ K :
gX1 = X1 and gT1 = T1}.

A K-canonical labeling map κ associates to each X ⊆ Ω a group element κ(X ) ∈ K
such that κ(gX )gX = κ(X )X holds for all g ∈ K. The set system κ(X )X is the
K-canonical representative of the K-orbit of X .
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2.3. Designs. A Steiner triple system of order v—briefly, an STS(v)—is a set
system consisting of v points and v(v − 1)/6 blocks of size three such that every pair
of distinct points occurs in a unique block.

An STS(v) exists if and only if either v ≡ 1 (mod 6) or v ≡ 3 (mod 6). An
excellent reference to Steiner triple systems is [14].

3. The classification framework. In this section we give a top-level descrip-
tion of the classification framework, which we then proceed to refine in subsequent
sections. Examples illustrate the implementation of the algorithm for our subsequent
application of classifying the Steiner triple systems of order 21 with a nontrivial au-
tomorphism group.

Suppose G, Π, Ω, and P have been fixed, and let H be a nonempty set of pairwise
nonconjugate subgroups of G.

The goal of a classification algorithm based on the framework is to generate up
to isomorphism all set systems X ⊆ Ω that satisfy the structural property P together
with the property that Aut(X ) has at least one subgroup that is conjugate to one of
the groups in H. For brevity, we call such set systems target systems.

Example 1. To generate Steiner triple systems of order v, let G = Sv act on
Π = {1, 2, . . . , v}, and let Ω consist of all the 3-subsets of Π.

To generate all systems admitting a nontrivial automorphism group, we let H
consist of all eligible pairwise nonconjugate prime-order subgroups of Sv. (Clearly,
any nontrivial automorphism group must have at least one prime-order subgroup.)
The prime-order subgroups of S21 that can occur as a group of automorphisms of
an STS(21) can be determined by combinatorial arguments; see section 6. A more
detailed treatment appears in [14, Ch. 7].

As outlined in the introduction, the framework achieves exhaustive generation
by first determining a set of seeds and then extending the seeds to target systems
in all possible ways. Obviously the applicability of the framework depends heav-
ily on whether we can obtain a “suitable” collection of seeds for a given choice of
G,Π,Ω, P,H.

Ideally, we would like the seeds associated with an H ∈ H to satisfy the following
properties:

(a) the seeds should be fast to classify up to NG(H)-isomorphism;
(b) the seeds should have a small NG(H)-automorphism group;
(c) every target system should contain as few seeds as possible; and
(d) given a target system X and H0 ≤ Aut(X ) conjugate to H, it should be

possible to identify the seeds associated with H0 occurring in X .
Property (a) is obviously required. Property (b) is related to symmetry reduction.

To illustrate the role of the automorphism group, consider the following situation.
Suppose S ⊆H Ω, and let X be a target system that extends S; that is, H ≤ Aut(X )
and S ⊆ X . The extension phase generates all such extensions of S. In particular, if X
extends S, then so does gX for all g ∈ AutNG(H)(S). Thus, the smaller the automor-
phism group AutNG(H)(S), the fewer isomorphic extensions of S must be generated.
Property (c) is also related to reducing the number of occurrences of isomorphic target
systems. Namely, by the structure of the framework, an isomorphism class of target
systems is generated at least once as an extension of every isomorphism class of seeds
occurring in it. Property (d) is related to isomorph rejection on target systems. In
particular, we must be able to identify from every target system a “parent seed” from
which the target system must originate. Furthermore, for purposes of consistency
checking it is useful to be able to identify every seed occurring in a target system.
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In many cases we can obtain a good collection of seeds by selecting a set of points
T ⊆ Π and considering a subsystem “induced” by the pair H,T in a target system
X with H ≤ Aut(X ). For example, we can consider as a seed the H-orbits in X
containing a block that intersects T . With an appropriate choice of T , this often
results in a good collection of seeds for designs with pairwise balance constraints. For
t-designs with t > 2, we can consider a derived design induced by T , |T | < t; cf. [35].
In what follows we use the former type of seed.

3.1. The parent seeds. We begin by describing the procedure that we use
to distinguish the parent seed from a target system. This procedure consists of a
sequence of distinguishing operations.

Given a target system X , we first distinguish a subgroup H0 ≤ Aut(X ) that is
conjugate to one of the groups in H. This distinguishing operation is canonical in the
following sense:

If H0 and H ′
0 are the subgroups distinguished from X and X ′, respec-

tively, and X ∼= X ′, then (X , H0) ∼= (X ′, H ′
0).

(3.1)

Here and in what follows G acts on its subgroups by conjugation.
Example 2. In our applications, the distinguishing operation is implemented as

follows. Let κ be a G-canonical labeling map. (Implementation of the canonical
labeling maps is discussed in section 5.) Order the subgroups of G arbitrarily (for
example, order the elements in G and use lexicographic order for subsets of G to
obtain an ordering for the subgroups). Given a target system X , put

X̂ ← κ(X )X ,

Ĥ0 ← min {Ĥ ≤ Aut(X̂ ) : Ĥ is conjugate to a group in H},
H0 ← κ(X )−1Ĥ0κ(X ).

(3.2)

In our applications, the groups in H are prime-order cyclic groups, so to evaluate
(3.2) relative to the lexicographic order for subgroups, it suffices to find—relative to

some ordering of the elements in G—the minimum nonidentity element ĥ0 in Aut(X̂ )
that belongs to a conjugacy class that intersects a group in H. We can then put
Ĥ0 ← 〈{ĥ0}〉. Because Aut(X̂ ) in most cases has a relatively small order, this imple-
mentation suffices for our purposes.

Then, based on X and H0, we distinguish a nonempty set T0 ⊆ Π of points. Also
this distinguishing operation is canonical in the following sense:

If T0 and T ′
0 are distinguished from (X , H0) and (X ′, H ′

0), respectively,
and (X , H0) ∼= (X ′, H ′

0), then (X , H0, T0) ∼= (X ′, H ′
0, T

′
0).

(3.3)

The precise structure of the distinguishing operation for T0 depends on the se-
lected transversal invariants—which will be discussed in section 4.2. Here are two
examples that illustrate the possibilities.

Example 3. Let f ≤ k be nonnegative integers. Order the subsets of Π arbitrarily.
Assuming that Ĥ0 has been computed as in (3.2), put

T̂0 ← min {T̂ ⊆ Π : |T̂ | = k and |T̂ ∩ fix(Ĥ0)| = f},
T0 ← κ(X )−1T̂0.

(3.4)

Here we must be careful that f ≤ |fix(Ĥ0)| and k − f ≤ |Π − fix(Ĥ0)|.
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Example 4. To achieve properties (a)–(d) discussed in the beginning of this
section, it is useful to further constrain the possible sets T̂ in (3.4). For example, we
can require that

T̂ must occur as a (subset of a) block in X̂ , and/or(3.5)

no two points in T̂ occur in the same Ĥ0-orbit.(3.6)

Again we must be careful that a set T̂0 satisfying the additional requirements actually
exists in every target system X̂ with Ĥ0 ≤ Aut(X̂ ).

Finally, based on X , H0, and T0, we let S0 be the union of those H0-orbits on
X that contain at least one block that has nonempty intersection with T0. In other
words, we put S0 ← (H0, T0) ↓ X . The three-tuple (H0, T0,S0) is the parent seed
associated with X .

From (3.1), (3.3), and the definition of “↓” it follows that

if (H0, T0,S0) and (H ′
0, T

′
0,S ′

0) are the parent seeds associated with
X and X ′, respectively, and X ∼= X ′, then (X , H0, T0,S0) ∼=
(X ′, H ′

0, T
′
0,S ′

0).

(3.7)

3.2. The top-level algorithm. The top-level classification algorithm is exe-
cuted for each group H ∈ H in turn. The execution of the algorithm is divided into
three stages.

3.2.1. Seed generation. The first stage in the algorithm is a backtrack search
that takes as input the group H ∈ H, and produces a set of pairwise nonisomorphic
three-tuples of the form (H,T,S), where T ⊆ Π and S ⊆H Ω. Each such three-tuple
output by the algorithm is called an H-seed (or simply a seed if the group H is clear
from the context). The set of H-seeds has the following property:

For every target system X and the associated parent seed (H0, T0,S0),
either (H0, T0,S0) is isomorphic to a unique H-seed (H,T,S) or H0 is
not conjugate to H.

(3.8)

The seed generation algorithm will be described in more detail in section 4.

3.2.2. Seed extension. The second stage takes as input a seed (H,T,S) and
constructs all target systems X such that H ≤ Aut(X ) and (H,T ) ↓ X = S; such
target systems are said to extend (H,T,S). Depending on the property P , a number of
algorithms can be employed in the extension stage. An approach that is often practical
is to transform the extension problem into a well-known combinatorial problem, and
then apply algorithms developed for this problem.

Example 5. The problem of extending a seed (H,T,S) into an STS(v) is equiva-
lent to an instance of the exact cover problem, in which the task is to find all possible
ways to cover the H-orbits of 2-subsets of Π not already covered by S using H-orbits
of 3-subsets. A state-of-the-art algorithm for the exact cover problem appears in [37].

Example 6. Other standard problems that are often applicable include clique prob-
lems [58] and the problem of determining all solutions to a Diophantine linear system
of equations with upper and lower bounds on the variables [73].

3.2.3. Isomorph rejection. The third stage of the algorithm takes as input a
target system X that extends the seed (H,T,S) and performs two isomorph rejection
tests. If X passes both tests, then it is output as the unique representative of its
isomorphism class.
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The first test accepts X if and only if the parent seed (H0, T0,S0) associated with
X is Aut(X )-isomorphic to (H,T,S). The second test accepts X if and only if X is
the minimum object from its Aut(H,T,S)-orbit (for example, relative to lexicographic
order). Alternatively—in the case Aut(H,T,S) is too large for a minimality test to
be practical—the second test can be implemented using a hash table that contains
the canonical representatives for target systems X encountered earlier as extensions
of (H,T,S). The alternative test accepts X if and only if the canonical representative
of X does not occur in the hash table. (The drawback of this alternative test is
that we have to store the canonical representatives encountered, which can be very
memory-intensive despite the need to store only the extensions of a single seed at a
time.)

Example 7. From (H,T ) ↓ X = S and (H0, T0) ↓ X = S0 it follows that we
have (H,T,S) ∼=Aut(X ) (H0, T0,S0) if and only if (H,T ) ∼=Aut(X ) (H0, T0); thus, it
suffices to check only the latter isomorphism relation in performing the first isomorph
rejection test. Because Aut(X ) has a small prime order for the vast majority of the
target systems in our applications, we can use exhaustive search on Aut(X ) to decide
whether (H,T ) ∼=Aut(X ) (H0, T0).

Example 8. In our applications, most seeds (H,T,S) have a small-order auto-
morphism group. Thus, the minimality of X in its Aut(H,T,S)-orbit can be tested
by exhaustive search on Aut(H,T,S).

This completes the description of the top-level classification algorithm.

3.3. Correctness. We prove correctness of the top-level algorithm under the
assumption that the seed generation algorithm is correct; that is, (3.8) holds for all
H ∈ H.

Theorem 3.1. Let X and X ′ be target systems that extend the seeds (H,T,S) and
(H ′, T ′,S ′), respectively. Furthermore, let (H0, T0,S0) and (H ′

0, T
′
0,S ′

0) be the associ-
ated parent seeds. If X ∼= X ′, (H,T,S) ∼=Aut(X ) (H0, T0,S0), and (H ′, T ′,S ′) ∼=Aut(X ′)

(H ′
0, T

′
0,S ′

0), then (X , H, T,S) ∼= (X ′, H ′, T ′,S ′).

Proof. From X ∼= X ′ and (3.7) we obtain (X , H0, T0,S0) ∼= (X ′, H ′
0, T

′
0,S ′

0). Thus,
it follows from (H,T,S) ∼=Aut(X ) (H0, T0,S0) and (H ′, T ′,S ′) ∼=Aut(X ′) (H ′

0, T
′
0,S ′

0)
that (X , H, T,S) ∼= (X ′, H ′, T ′,S ′).

Theorem 3.1 implies that isomorphic X ,X ′ that both pass the first isomorph re-
jection test must be extensions of isomorphic seeds: (H,T,S) ∼= (H ′, T ′,S ′). Because
seeds output by the seed generation algorithm are pairwise nonisomorphic, we must
have (H,T,S) = (H ′, T ′,S ′). Consequently, the conclusion of Theorem 3.1 can be
written in the stronger form X ∼=Aut(H,T,S) X ′. By the structure of the second iso-
morph rejection test, this implies that at most one system X from every isomorphism
class of target systems is output.

Theorem 3.2. For every target system X ′, there exists a target system X and
a seed (H,T,S) such that X ∼= X ′, X extends (H,T,S), and (H,T,S) ∼=Aut(X )

(H0, T0,S0), where (H0, T0,S0) is the parent seed associated with X .

Proof. Let (H ′
0, T

′
0,S ′

0) be the parent seed associated with X ′. By (3.8), there
exists a seed (H,T,S) that satisfies (H,T,S) ∼= (H ′

0, T
′
0,S ′

0). Select any g′ ∈ G that
takes (H ′

0, T
′
0,S ′

0) to (H,T,S). Put X = g′X ′. Because S ′
0 ⊆ X ′ and X ′ ⊆H′

0
Ω,

we have S ⊆ X and X ⊆H Ω. Thus, X extends (H,T,S). Now X ∼= X ′ implies
(X , H0, T0,S0) ∼= (X ′, H ′

0, T
′
0,S ′

0) by (3.7). Select any g ∈ G that takes (X ′, H ′
0, T

′
0,S ′

0)
to (X , H0, T0,S0). Then it follows that g′g−1 ∈ Aut(X ) takes (H0, T0,S0) to
(H,T,S).
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Because g′ can be any group element taking (H ′
0, T

′
0,S ′

0) to (H,T,S) in the proof of
Theorem 3.2, it follows that all X1 ⊆ Ω in the Aut(H,T,S)-orbit of X are constructed
from (H,T,S) and satisfy (H,T,S) ∼=Aut(X1) (H0, T0,S0). Consequently, the isomorph
rejection stage outputs exactly one system from every isomorphism class of target
systems.

4. The seed generation algorithm. Given a group H ∈ H as input, the
seed generation algorithm produces a set of H-seeds such that every parent seed
(H0, T0,S0) is either isomorphic to exactly one H-seed or H0 is not conjugate to H.

The seed generation algorithm uses backtrack search to construct the seeds one
H-orbit at a time. A (partial) seed is a three-tuple (H,T,S), where T ⊆ Π is the set
of points completed so far, and S ⊆H Ω contains the H-orbits in the seed.

We structure the search so that one point at a time is completed. In other words,
we keep track of the current point p ∈ Π being completed and add only H-orbits
of blocks incident with p, until the point p is complete. Intuitively, we construct
a parent seed (H,T0,S0) via a sequence of partial seeds (H,T,S), where T ⊆ T0,
(H,T )↓S0 = S, and the set T is enlarged one point at a time until T = T0.

To implement this structure, we use two alternating layers of backtrack search:
the transversal layer (which selects the next point to be completed and performs
isomorph rejection on partial seeds with � completed points) and the point completion
layer (which completes a distinguished point p by adding orbits to the partial seed;
isomorph rejection is carried out after every added orbit). Isomorph rejection is based
on the canonical construction path method [55].

Often the structural property P can be exploited to further constrain the search.
Let P ↓ be an isomorphism invariant property for three-tuples (H0, T0,S0), where
H0 ≤ G, T0 ⊆ Π, and S ⊆H0 Ω, such that every three-tuple (H0, T0,S0) originating
from some target system X via “↓” has property P ↓. More precisely, a three-tuple
originates from X via “↓” if H0 ≤ Aut(X ) and S0 = (H0, T0)↓X .

Example 9. To generate seeds for Steiner triple systems of order v, we choose P ↓

as follows. A three-tuple (H,T,S) has property P ↓ if and only if every point p ∈ T
occurs in exactly r = (v− 1)/2 blocks in S and every pair of distinct points occurs in
at most one block in S.

We require that P ↓ is hereditary in the following sense:

If (H,T,S) has property P ↓, then (H,T1, (H,T1) ↓ S) has property P ↓

for all T1 ⊆ T .
(4.1)

Before we describe the algorithm in detail, we state some conventions that apply
throughout this section.

Because the input group H ∈ H is fixed, we can simplify notation and treat a
partial seed as a pair (T,S) and omit the fixed group H. Similarly, we omit the group
H and write T ↓S instead of (H,T )↓S.

We perform all isomorphism computations in this section relative to the normal-
izer NG(H) unless we explicitly indicate otherwise. Accordingly, we assume that κ is
an arbitrary NG(H)-canonical labeling map for set systems.

To simplify the description of the algorithms, we assume that the seed generation
algorithm immediately disregards all partial seeds (T,S) that “obviously” cannot be
extended to a seed that satisfies P ↓.

Example 10. To generate seeds for Steiner triple systems of order v, we immedi-
ately disregard a partial seed (T,S) if any pair of distinct points occurs in more than
one block in S; cf. Example 9.
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4.1. The point completion layer. The point completion layer takes as input
a three-tuple (T0,S0, p0), where

T0 ⊆ Π, S0 ⊆H Ω, T0 ↓S0 = S0, and p0 ∈ Π − T0.

Here (T0,S0) is the current partial seed, and p0 is the distinguished point to be
augmented by adding H-orbits of blocks.

The point completion layer algorithm constructs up to NG(H)-isomorphism all
partial seeds that satisfy P ↓ and can be obtained from (T0,S0) by adding orbits
incident with the point p0.

More precisely, a three-tuple (T1,S1, p1) is an extension of (T0,S0, p0) if (T1, T1 ↓
S1, p1) ∼=NG(H) (T0,S0, p0) and {p1}↓ (S1 − (T1 ↓S1)) = S1 − (T1 ↓S1). The H-orbits
in S1 − (T1 ↓S1) are called extending orbits. The level of an extension is the number
of extending orbits in it. An extension is complete if (T1 ∪ {p1},S1) has property P ↓.
Note that an extension can be complete even if it contains no extending orbits.

4.1.1. Algorithm. A partial solution in the point completion layer backtrack
search is an extension (T1,S1, p1) of (T0,S0, p0). Initially, the algorithm is invoked
with (T0,S0, p0).

Given a partial solution (T1,S1, p1) as input, the point completion layer algorithm
proceeds as follows. First, the algorithm initializes an empty hash table Z in prepa-
ration for isomorph rejection. If (T1,S1, p1) is complete, then the algorithm reports
(T1∪{p1},S1) to the transversal layer—also indicating that p1 was the last completed
point. Next, the algorithm loops through all orbits O ∈ H\Ω that satisfy T1 ↓O = ∅
and {p1}↓O = O. For every such orbit O, the algorithm performs isomorph rejection
on the extension (T,S, p) ← (T1,S1 ∪ O, p1). If (T,S, p) is accepted, then the point
completion layer is recursively invoked with input (T,S, p); otherwise (T,S, p) is re-
jected. After all orbits O have been considered, the algorithm releases the hash table
Z and returns.

4.1.2. Isomorph rejection. The isomorph rejection step consists of two tests,
both of which must pass for (T,S, p) to be accepted. The first test distinguishes an
extending H-orbit O0 from (T,S, p) and rejects (T,S, p) unless O0

∼=AutNG(H)(T,S,p) O,
where O is the H-orbit most recently added to S. The distinguishing operation is
canonical in the following sense:

If O0 and O′
0 are the extending orbits distinguished from (T,S, p)

and (T ′,S ′, p′), respectively, and (T,S, p) ∼=NG(H) (T ′,S ′, p′), then

(T,S, p,O0) ∼=NG(H) (T ′,S ′, p′,O′
0).

(4.2)

Example 11. In our applications, the distinguishing operation is implemented as
follows. Put

R ← S ∪ {T} ∪ {{p}} ∪ {{p}},
Ŝ ← κ(R)S,
T̂ ← κ(R)T,

p̂ ← κ(R)p,

B̂ ← min (Ŝ − (T̂ ↓Ŝ)),

O0 ← κ(R)−1{hB̂ : h ∈ H}.

(4.3)
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A few remarks are in order. First, we assume that the NG(H)-canonical labeling
map κ can handle set systems with repeated blocks. Second, we assume that the
three-tuple (T,S, p) can be reconstructed up to NG(H)-isomorphism from R, and
that AutNG(H)(T,S, p) = AutNG(H)(R). This is the case in our applications because
the point p is the only point in R which appears in two singleton blocks, and the
points in T are the only points (with the possible exception of p) that are incident to
r + 1 blocks in R.

The second isomorph rejection test computes an NG(H)-canonical representative
for (T,S, p). The test rejects (T,S, p) if the canonical representative occurs in the
hash table Z; otherwise the test accepts (T,S, p), and the canonical representative is
inserted into Z.

Example 12. With the assumptions of Example 11, we can use (T̂ , Ŝ, p̂) computed
in (4.3) as the NG(H)-canonical representative.

4.1.3. Correctness. We proceed to show that the point completion layer is
correct; that is, it produces exactly one extension from every NG(H)-isomorphism
class of complete extensions of (T0,S0, p0).

Lemma 4.1. Let (T,S, p) be constructed from (T1,S1, p1) by adding the H-orbit
O. Let (T ′,S ′, p′) be constructed from (T ′

1,S ′
1, p

′
1) by adding the H-orbit O′. Let O0

and O′
0 be the extending orbits distinguished from (T,S, p) and (T ′,S ′, p′), respectively.

If (T,S, p) ∼=NG(H) (T ′,S ′, p′), O ∼=AutNG(H)(T,S,p) O0, and O′ ∼=AutNG(H)(T ′,S′,p′) O′
0,

then (T1,S1, p1) ∼=NG(H) (T ′
1,S ′

1, p
′
1).

Proof. By (4.2) and (T,S, p) ∼=NG(H) (T ′,S ′, p′) we obtain (T,S, p,O0) ∼=NG(H)

(T ′,S ′, p′,O′
0). Thus, it follows from O ∼=AutNG(H)(T,S,p) O0 and O′ ∼=AutNG(H)(T ′,S′,p′)

O′
0 that (T,S, p,O) ∼=NG(H) (T ′,S ′, p′,O′). The claim follows because (T,S −O, p) =

(T1,S1, p1) and (T ′,S ′ −O′, p′) = (T ′
1,S ′

1, p
′
1).

Theorem 4.2. Let (T ′,S ′, p′) be an extension of (T0,S0, p0). Then, there exists
a unique extension (T,S, p) of (T0,S0, p0) such that (T,S, p) ∼=NG(H) (T ′,S ′, p′) and
the point completion layer is invoked with input (T,S, p) in the search for extensions
of (T0,S0, p0).

Proof. Let m be the level of (T ′,S ′, p′). We proceed by induction on m. The
base case m = 0 is obvious. Suppose the claim holds for all extensions (T ′,S ′, p′) on
level m. Lemma 4.1 and the structure of the isomorph rejection tests imply that the
point completion layer is invoked at most once for every NG(H)-isomorphism class of
extensions on level m + 1.

Let (T ′,S ′, p′) be an arbitrary extension of (T0,S0, p0) on level m+1. To complete
the inductive step, it suffices to show that the point completion layer is invoked
for an extension NG(H)-isomorphic to (T ′,S ′, p′). Let O′

0 be the extending orbit
distinguished from (T ′,S ′, p′). Clearly, (T ′,S ′ − O′

0, p
′) is an extension on level m.

By the inductive hypothesis, there exists a unique extension (T1,S1, p1) such that
(T ′,S ′ − O′

0, p
′) ∼=NG(H) (T1,S1, p1) and the point completion layer is invoked with

input (T1,S1, p1). Let g′ ∈ NG(H) take (T ′,S ′−O′
0, p

′) to (T1,S1, p1). Put O = g′O′
0

and (T,S, p) = (T1,S1 ∪ O, p1). By the structure of the algorithm, the orbit O is
considered during the point completion layer invocation with input (T1,S1, p1) and
(T,S, p) is constructed.

We proceed to show that (T,S, p) passes the first isomorph rejection test. Let
O0 be the extending orbit distinguished from (T,S, p). Because (T,S, p) ∼=NG(H)

(T ′,S ′, p′), we have (T,S, p,O0) ∼=NG(H) (T ′,S ′, p′,O′
0) by (4.2). Let g ∈ NG(H) take

(T ′,S ′, p′,O′
0) to (T,S, p,O0). Now g′g−1 ∈ AutNG(H)(T,S, p) takes O0 to O. Thus,

O0
∼=AutNG(H)(T,S,p) O, so (T,S, p) passes the first isomorph rejection test. Then
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(T,S, p) either passes the second isomorph rejection test (and the point completion
layer is invoked with input (T,S, p)) or the second test rejects (T,S, p). In the latter
case the canonical representative of (T,S, p) occurs in the hash table Z, which implies
that the point completion layer has already been invoked with an extension NG(H)-
isomorphic to (T ′,S ′, p′).

4.2. The transversal layer. Given a group H ∈ H as input, the transversal
layer generates the H-seeds by completing one point at a time in a backtrack search.

An �-subset T ⊆ Π is an �-transversal for S ⊆H Ω if (T,S) has property P ↓ and
T ↓S = S.

The transversal layer selects points to be completed by means of transversal in-
variants. The same invariants are then used to distinguish the set T0 in constructing
a parent seed, which ensures that every parent seed (H0, T0,S0) with H0 conjugate
to H is isomorphic to an H-seed.

A transversal invariant for H is a function I� that associates to every S ⊆H Ω a
(possibly empty) set I�(S) of �-transversals for S such that

gI�(S) = I�(gS) for all g ∈ NG(H).(4.4)

A transversal invariant for H can be extended to any conjugate H0 of H and S0 ⊆H0 Ω
by defining

I�(H0,S0) = gI�(g
−1S0),(4.5)

where g ∈ G is any group element that satisfies gHg−1 = H0. It follows from (4.4)
that this extension is well defined. Furthermore, the extended transversal invariant
satisfies

gI�(H,S) = I�(gHg−1, gS) for all g ∈ G.(4.6)

Here are some examples of tranversal invariants.

Example 13. For a nonnegative integer f , let I
fix(f)
� (S) consist of all �-transversals

T for S such that |T ∩ fix(H)| = min(�, f).
Example 14. Let Iblk

� (S) consist of all �-transversals T for S such that there
exists a block B ∈ S with T ⊆ B.

Example 15. Let Iorb
� (S) consist of all �-transversals T for S such that no two

points in T are in the same H-orbit.
Lemma 4.3. Let I ′� and I ′′� be transversal invariants. Then, the intersection

I�(S) = I ′�(S) ∩ I ′′� (S) is a transversal invariant.

4.2.1. Partial solutions. We proceed to describe the partial solutions in the
transversal layer backtrack search. Let k be a nonnegative integer and let I0, I1, . . . , Ik
be a sequence of transversal invariants. We denote by S� the set of all pairs (T,S) that
satisfy T ∈ I�(S). A partial solution in the transversal layer is a pair (T,S) ∈ S�. The
level of a partial solution (T,S) ∈ S� is �. A partial solution (T,S) is complete—that
is, (T,S) is an H-seed—if � = k.

Before describing the algorithm, we must still connect the partial solutions on
successive levels so that the search can generate all NG(H)-nonisomorphic partial
solutions on level � + 1 from the NG(H)-nonisomorphic solutions on level �. We
establish this connection between successive levels via “parent points” and “extending
points” as follows. (Note that the existence of these point sets for a given sequence of
invariants I0, I1, . . . , Ik obviously depends on whether the invariants are sufficiently
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“compatible” with each other to admit such sets. Furthermore, note that the existence
also depends on the hereditary property (4.1) for P ↓ because any (T,S) ∈ S� must
have property P ↓.)

For 1 ≤ � ≤ k, we associate with every (T,S) ∈ S� a nonempty parent point set
par�(T,S) ⊆ T such that

g · par�(T,S) = par�(gT, gS) for all g ∈ NG(H), and(4.7)

(T − {p}, (T − {p})↓S) ∈ S�−1 for all p ∈ par�(T,S).(4.8)

For 0 ≤ � ≤ k − 1, we associate with every (T,S) ∈ S� an extending point set
ext�(T,S) ⊆ Π − T such that

g · ext�(T,S) = ext�(gT, gS) for all g ∈ NG(H), and(4.9)

p ∈ ext�(T,S) for all (T ′,S ′) ∈ S�+1 and all(4.10)

p ∈ par�+1(T
′,S ′) such that (T,S) = (T ′ − {p}, (T ′ − {p})↓S ′).

Example 16. Consider the sequence I
fix(f)
0 , I

fix(f)
1 , . . . , I

fix(f)
k of transversal in-

variants. For 1 ≤ � ≤ k and (T,S) ∈ S�, define

par�(T,S) =

{
T ∩ fix(H) if � ≤ f , and

T − fix(H) if � > f.

For 0 ≤ � ≤ k − 1 and (T,S) ∈ S�, define

ext�(T,S) =

{
fix(H) − T if � < f , and

Π − (T ∪ fix(H)) if � ≥ f.

Example 17. Consider the sequence Iblk
0 , Iblk

1 , . . . , Iblk
k of transversal invariants.

For 1 ≤ � ≤ k and (T,S) ∈ S�, define par�(T,S) = T . For 1 ≤ � ≤ k − 1 and
(T,S) ∈ S�, let ext�(T,S) be the set of all points p ∈ Π − T such that there exists a
block B ∈ S with p ∈ B and T ⊆ B. For � = 0, put ext�(T,S) = Π.

Example 18. Consider the sequence Iorb
0 , Iorb

1 , . . . , Iorb
k of transversal invariants.

For 1 ≤ � ≤ k and (T,S) ∈ S�, define par�(T,S) = T . For 0 ≤ � ≤ k − 1 and
(T,S) ∈ S�, let ext�(T,S) be the set of all points p ∈ Π such that, for all q ∈ T , p
and q occur on different H-orbits in Π.

Example 19. Any intersection of the transversal invariants on Examples 13, 14,
and 15 defines a transversal invariant by Lemma 4.3. For such an invariant, the
associated parent point and extending point sets are obtained as the intersection of
the corresponding sets in Examples 16, 17, and 18.

4.2.2. Algorithm. We are now ready to describe the transversal layer algo-
rithm. We assume that a sequence I0, I1, . . . , Ik of transversal invariants has been
selected for H. Initially, the algorithm is invoked with T1 = ∅, S1 = ∅.

Let (T1,S1) ∈ S� be given as input to the algorithm. If � = k, the algorithm
outputs (T1,S1) as an H-seed and returns. Otherwise, the algorithm initializes an
empty hash table Y in preparation for isomorph rejection. Next, the algorithm loops
through all points p ∈ ext�(T1,S1). For each such point p, the algorithm invokes the
point completion layer with input (T1,S1, p). For every pair (T,S) reported by the
point completion layer, the algorithm performs an isomorph rejection step. If (T,S)
passes the isomorph rejection step, then the transversal layer is recursively invoked
with input (T,S); otherwise (T,S) is rejected. After all points p have been considered,
the algorithm releases the hash table Y and returns.
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4.2.3. Isomorph rejection. The isomorph rejection step consists of two tests,
both of which must pass for (T,S) to be accepted. Let p ∈ T be the most recently
completed point in (T,S). The first test starts by distinguishing a parent point
p0 ∈ par�(T,S), where the distinguishing operation is canonical in the following sense:

If p0 and p′0 are the parent points distinguished from (T,S) and
(T ′,S ′), respectively, and (T,S) ∼=NG(H) (T ′,S ′), then (T,S, p0) ∼=NG(H)

(T ′,S ′, p′0).

(4.11)

The first test accepts (T,S) if and only if p0
∼=AutNG(H)(T,S) p.

Example 20. In our applications, the distinguishing operation is implemented as
follows. Put

R ← S ∪ {T},
Ŝ ← κ(R)S,
T̂ ← κ(R)T,

p̂ ← min par|T̂ |(T̂ , Ŝ),

p0 ← κ(R)−1p̂.

(4.12)

Here we assume again that the NG(H)-canonical labeling map κ can handle set
systems with repeated blocks; cf. Example 11. Second, we assume that (T,S) can
be reconstructed up to NG(H)-isomorphism from R and that AutNG(H)(T,S) =
AutNG(H)(R). This is the case in our applications because the points in T are the
only points that are incident to r + 1 blocks in R.

The second isomorph rejection test computes an NG(H)-canonical representative
for (T,S). The test rejects (T,S) if the canonical representative occurs in the hash
table Y ; otherwise the test accepts (T,S) and the canonical representative is inserted
into Y .

Example 21. With the assumptions of Example 20, (T̂ , Ŝ) computed in (4.12)
can be used as the NG(H)-canonical representative of (T,S).

4.2.4. Correctness. We proceed to prove that the transversal layer is invoked
with exactly one pair (T,S) from every NG(H)-isomorphism class in S� for all 0 ≤
� ≤ k. We say that (T,S) ∈ S�+1 extends (T1,S1) ∈ S� by completing p ∈ T if
(T − {p}, (T − {p})↓S) ∼=NG(H) (T1,S1).

Lemma 4.4. Let (T,S) extend (T1,S1) by completing p, and let p0 be the parent
point distinguished from (T,S). Similarly, let (T ′,S ′) extend (T ′

1,S ′
1) by completing

p′, and let p′0 be the parent point distinguished from (T ′,S ′). If (T,S) ∼=NG(H) (T ′,S ′),
p0

∼=AutNG(H)(T,S) p, and p′0
∼=AutNG(H)(T ′,S′) p

′, then (T1,S1) ∼=NG(H) (T ′
1,S ′

1).

Proof. We proceed along the following sequence of isomorphisms:

(T1,S1) ∼=NG(H) (T − {p}, (T − {p})↓S)
∼=NG(H) (T − {p0}, (T − {p0})↓S)
∼=NG(H) (T ′ − {p′0}, (T ′ − {p′0})↓S ′)
∼=NG(H) (T ′ − {p′}, (T ′ − {p′})↓S ′)
∼=NG(H) (T ′

1,S ′
1).

The first and last isomorphism relations hold by definition. The second isomor-
phism relation holds because p0

∼=AutNG(H)(T,S) p. The third relation holds because
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(T,S) ∼=NG(H) (T ′,S ′) implies (T,S, p0) ∼=NG(H) (T ′,S ′, p′0) by (4.11). The fourth
relation holds because p′0

∼=AutNG(H)(T ′,S′) p
′.

Theorem 4.5. Let 0 ≤ � ≤ k and let (T ′,S ′) ∈ S�. Then there exists a unique
(T,S) ∈ S� such that (T,S) ∼=NG(H) (T ′,S ′) and the transversal layer is invoked with
input (T,S).

Proof. By induction on �. The base case � = 0 is obvious. Suppose the claim holds
for all (T ′,S ′) ∈ S�. Lemma 4.4 and the structure of the isomorph rejection tests
imply that the transversal layer is invoked at most once for every NG(H)-isomorphism
class in S�+1.

Let (T ′,S ′) ∈ S�+1. Let p′0 ∈ par�+1(T
′,S ′) be the parent point distinguished

from (T ′,S ′). By (4.8), (T ′−{p′0}, (T ′−{p′0})↓S ′) ∈ S�. By the induction hypothesis,
there exists a unique (T1,S1) ∈ S� such that the transversal layer is invoked with
(T1,S1) and (T1,S1) ∼=NG(H) (T ′ − {p′0}, (T ′ − {p′0}) ↓ S ′). Let g′ ∈ NG(H) take
(T ′−{p′0}, (T ′−{p′0})↓S ′) to (T1,S1). By (4.10) and (4.9), g′p′0 ∈ ext�(T1,S1). Thus,
the point completion layer is invoked with input (T1,S1, g

′p′0) during the transversal
layer invocation with input (T1,S1). Because (T ′−{p′0},S ′, p′0) is a complete extension
of (T ′−{p′0}, (T ′−{p′0})↓S ′, p′0), it follows that (g′T ′−{g′p′0}, g′S ′, g′p′0) is a complete
extension of (T1,S1, g

′p′0).

By Theorem 4.2, the point completion layer reports to the transversal layer exactly
one pair (T,S) such that (T,S, p) ∼=NG(H) (g′T ′, g′S ′, g′p′0), where p is the most re-
cently completed point in (T,S). We show that (T,S) is accepted in the first isomorph
rejection test. Let g ∈ NG(H) take (T,S, p) to (g′T ′, g′S ′, g′p′0). Let p0 ∈ par�+1(T,S)
be the parent point distinguished from (T,S). Because (T,S) ∼=NG(H) (T ′,S ′), we
have (T,S, p0) ∼=NG(H) (T ′,S ′, p′0) by (4.11). Let g0 ∈ NG(H) take (T,S, p0) to

(T ′,S ′, p′0). Now, g−1g′g0 ∈ AutNG(H)(T,S) shows that p0
∼=AutNG(H)(T,S) p. Thus,

(T,S) is accepted in the first isomorph rejection test, which implies—by the structure
of the second test—that the transversal layer is invoked with a pair NG(H)-isomorphic
to (T ′,S ′).

4.2.5. Parent seeds and H-seeds. It remains to specify in detail the distin-
guishing operation for the set T0 that was left unspecified in section 3.1.

Let I0, I1, . . . , Ik be the sequence of transversal invariants used to construct the
H-seeds. Extend the transversal invariant Ik to conjugates of H by (4.5).

Let X be a target system for which the distinguished subgroup H0 ≤ Aut(X ) is
conjugate to H. In distinguishing the set T0 based on X and H0, we now require that
T0 ∈ Ik(H0, (H0, T0) ↓X ). (Whether such a set T0 actually exists obviously depends
on the choice of Ik. We assume that Ik has been selected so that such a T0 exists.)

Example 22. Example 3 illustrates the resulting distinguishing procedure for T0

in the case of the transversal invariant I
fix(f)
k . If we add the requirement (3.5) to (3.4),

then the distinguishing procedure corresponds to the transversal invariant I
fix(f)
k ∩Iblk

k .

Analogously, (3.4), (3.5), and (3.6) together correspond to I
fix(f)
k ∩ Iblk

k ∩ Iorb
k .

From T0 ∈ Ik(H0, (H0, T0) ↓ X ) it immediately follows that the resulting parent
seed (H0, T0,S0), where S0 = (H0, T0) ↓ X , is G-isomorphic to an H-seed. To see
this, let g ∈ G satisfy gH0g

−1 = H, and observe that (gT0, gS0) ∈ Sk. By Theorem
4.5, the seed generation algorithm generates an H-seed isomorphic to (H, gT0, gS0).
Repeating this argument for all H ∈ H, we obtain that the seed generation algorithm
satisfies (3.8) for all H ∈ H, which implies correctness of the classification algorithm
by Theorems 3.1 and 3.2.
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5. Performance and implementation details. To make the classification al-
gorithm practical, we require fast implementations of many of the primitives employed,
such as the canonical labeling maps. This section discusses implementation of the re-
quired nontrivial primitives to enable reproducibility of the classification result for
Steiner triple systems of order 21 and to expose some of the performance bottlenecks
in the framework.

5.1. Canonical labeling for target systems. Excluding the extension phase
from seeds to target systems, the most performance-critical part of the algorithm is the
G-canonical labeling map that must be evaluated for every target system occurring in
the search. For this task we apply the graph canonical labeling package nauty [53, 54],
which is well tested and exhibits good practical performance. Furthermore, nauty also
computes a set of generators for Aut(X ) as a side effect of computing κ(X ), both of
which are required in the isomorph rejection phase.

To apply nauty, we must encode a set system as a graph. (Here we assume that
G is the symmetric group on Π or the stabilizer of a partition of Π in Sym(Π). For
other permutation groups, we must also encode the group into the input graph for
nauty, which may not be straightforward.) Two standard graph transformations of
set systems into graphs are the incidence graph [28, Remark 9.41] and the line graph
[1]; the latter encoding is often more efficient but not always applicable because a set
system is not always (strongly) reconstructible from its line graph.

Example 23. For an STS(v), the line graph transformation is applicable for v ≥ 19
[1, 20, 21].

Invariants can be employed to speed up the operation of nauty on a target
system X .

Example 24. For an STS(v), we take advantage of Pasch configurations or quadri-
laterals, which are sets of four blocks of the form

{u, v, w}, {u, x, y}, {v, x, z}, {w, y, z}.(5.1)

For every block B ∈ X , we compute the number P (B) of Pasch configurations in X
in which B occurs, and use the values P (B) to construct an ordered partition of the
blocks. Two blocks are in the same cell of the partition if and only if they have equal
P (B)-values, and the cells are ordered by their P (B)-values. This ordered partition
is then input to nauty along with the line graph of X to speed up the computation;
cf. [31]. Algorithms for finding the Pasch configurations in an STS(v) are considered
in [68].

To obtain further speedup, it is possible to use invariants more extensively in the
isomorph rejection phase to avoid an expensive full canonical labeling computation
whenever possible; see [7, 31, 32, 55] for examples of the use of invariants. However,
incorporating such techniques to the present framework remains a topic of future
research. (One possibility is to reverse the order in which H0, T0 are distinguished in
constructing the parent seed. In this case we can use invariants in distinguishing T0

from X , which should enable a fast rejection strategy analogous to the ones employed
in [31, 32]. On the downside, it appears that constraining the structure of the seeds
becomes more difficult in this setting.)

5.2. Permutation group algorithms. In our applications all the groups ma-
nipulated by the classification algorithm are permutation groups on Π, which are
represented using a base and a strong generating set; see [9, 66].
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The tasks that are not performance-critical—such as constructing H-orbits on Ω
and generators for the normalizer NG(H)—are solved in a preprocessing stage using
dedicated software [27].

The performance-critical parts in the top-level algorithm involving computation
with permutation groups—that is, distinguishing the subgroup H0 in a parent seed
and testing whether (H,T,S) ∼=Aut(X ) (H0, T0,S0)—are at present implemented by
exhaustive search on Aut(X ); see Examples 2 and 7. This is sufficient in our applica-
tions, where most target systems have a small automorphism group and the groups
in H have small prime order. For larger groups, both the distinguishing operation
and the isomorphism test require nontrivial algorithms (see [47, 48, 66]) and present
a possible performance bottleneck.

The performance-critical isomorph rejection tests in the seed generation algorithm
can be implemented with orbit computations (see [66, sect. 2.1]) once generators for
AutNG(H)(T,S, p) (point completion layer) and AutNG(H)(T,S) (transversal layer)
are available. Both generator sets are obtained as a side effect of evaluating the
NG(H)-canonical labeling map for the set system R derived from (T,S, p) and (T,S),
respectively; see Examples 11 and 20.

5.3. Computing NG(H)-canonical labeling for set systems. The central
primitive in the seed generation algorithm is a canonical labeling map that takes a
set system X ⊆ Ω and a permutation group K ≤ Sym(Π) as input and computes
a K-canonical labeling for X . Furthermore, we also require a set of generators for
AutK(X ).

Such a primitive can be implemented by combining the partition refinement ap-
proach in [53] with backtrack search along a chain of point stabilizer subgroups in
K. This is essentially an application of the partition method developed in [47, 48];
however, the property that we want to compute here is slightly different from the
subgroup-type and coset-type properties treated in [48]. Namely, we want to solve
both a subgroup-type problem—that is, to determine generators for AutK(X )—and
a “canonical coset”-type problem to determine κ(X ). (By “canonical” we mean here
that κ(gX )gX = κ(X )X must hold for all g ∈ K and all X ⊆ Ω.) Consequently, our
implementation of the K-canonical labeling map follows the ideas in [53] to a large
extent. The main differences are that we work along a point stabilizer chain in K
and—to keep the implementation simple—do not implement many of the clever prun-
ing techniques in [53]. A further simplification is obtained by working with a fixed
base for K, although dynamic base change is certainly possible; cf. [8, 10, 16, 66]. To
achieve a better degree of reproducibility for the classification results, we sketch the
structure of the implementation.

We require some standard definitions related to ordered partitions. For simplicity,
let Π = {1, 2, . . . , n}. An ordered partition of Π is a sequence W = (W1,W2, . . . ,Ws)
of subsets of Π—called cells—such that {W1,W2, . . . ,Ws} is a partition of Π. For
p ∈ Π, we write W (p) for the index of the cell in which p occurs; for example, if
p ∈ Wj , then W (p) = j. Let W = (W1,W2, . . . ,Ws) and Z = (Z1, Z2, . . . , Zt) be
ordered partitions of Π. The intersection W ∧ Z is the ordered partition of Π whose
cells are the nonempty sets of the form Wi ∩ Zj . The cells in W ∧ Z are ordered so
that Wi1 ∩ Zj1 precedes Wi2 ∩ Zj2 if and only if either i1 < i2 or both i1 = i2 and
j1 < j2. (Note that the intersection operation is noncommutative.)

The canonical labeling algorithm relies extensively on the following refinement
procedure for ordered partitions, which is analogous to the basic equitable refinement
procedure in [53]. Given a set system X and an ordered partition W of Π as input, we
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iterate the following steps until the partition W no longer changes. First, for every
p ∈ Π, we compute the multiset m(p) = {{W (q) : q ∈ B} : p ∈ B ∈ X} consisting of
multisets of positive integers. We then form an ordered partition Z of Π by placing
two points p1, p2 ∈ Π in the same cell if and only if m(p1) = m(p2); the cells are
ordered based on some (say, lexicographic) order on the multisets m(p). Finally, we
complete the iteration by setting W ← W ∧ Z. We denote the ordered partition
resulting from this procedure by e(X ,W ). By the structure of the procedure,

g · e(X ,W ) = e(gX , gW ) for all g ∈ Sym(Π),(5.2)

where g acts on an ordered partition of Π by permuting the points in the cells; the
ordering of the cells does not change.

We now sketch the canonical labeling algorithm. Let K ≤ Sym(Π) and X ⊆ Ω
be given as input to the algorithm. We work with the stabilizer chain

K = K1 ≥ K2 ≥ K3 ≥ · · · ≥ Kn+1 = {1},

where Ki is the pointwise stabilizer of 1, 2, . . . , i− 1 in K. The algorithm is easiest to
describe using the associated search tree, parts of which will, however, not be traversed
because of pruning. The nodes of the tree are three-tuples of the form (X ,Kik,W ),
where X ⊆ Ω, Kik is a right coset of Ki in K, and W is an ordered partition of Π. A
node is a leaf node if i = n + 1.

The search tree T (X ,K) is inductively defined as follows:

(X ,K1, e(X , (Π))) is a node in T (X ,K), and(5.3)

if (X ,Kik,W ) is a nonleaf node in T (X ,K), and Wj is the first cell
in W such that Kik(Wj) ∩ Ki(i) has the minimum size subject to be-
ing nonempty, then (X ,Ki+1lk, e(X ,W ∧ ({p},Π − {p}))) is a node in
T (X ,K) for all p ∈ Π and all right cosets Ki+1l in Ki satisfying W (p) = j
and i = lk(p).

(5.4)

From (5.2), (5.3), and (5.4), we obtain for any g ∈ K that (X ,Kik,W ) is a node
of T (X ,K) if and only if (gX ,Kikg

−1, gW ) is a node of T (gX ,K). In particular,
T (X ,K) = T (αX ,K) for all α ∈ AutK(X ), which allows us to find generators for
AutK(X ) as we traverse the search tree in depth-first order. Furthermore, symmetric
subtrees in the search tree can be pruned using discovered automorphisms. We omit
the detailed description of how the automorphisms are discovered and applied during
the traversal of the search tree T (X ,K); the techniques used here are analogous to
those applied in [53].

The canonical labeling permutation κ(X ) is the first permutation encountered at
a leaf node of T (X ,K) that takes X to the K-canonical representative of X . We
determine the K-canonical representative according to a procedure analogous to the
use of indicator functions (search tree node invariants) in [53]; see also [57, sect. 7].
The node invariant that we apply is a hash digest obtained as a side effect of executing
the refinement procedure for (X ,W ). This hash digest is isomorphism-invariant in
the sense that an identical digest is obtained for all inputs (X ,W ) and (gX , gW ),
where g ∈ K.

6. The STS(21)s with a nontrivial automorphism group. We first deter-
mine the prime-order automorphisms admitted by an STS(21) and then proceed to
construct an associated set of seeds.
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A prime-order subgroup H of the symmetric group S21 is determined up to conju-
gacy in S21 by the cycle type of its nontrivial elements. We use exponential notation
for the cycle type. For example, the cycle type 1329 indicates that the corresponding
permutation factors into three fixed points and nine disjoint 2-cycles.

Not all prime-order subgroups of S21 can occur as a group of automorphisms of
an STS(21). The following observation is well known.

Lemma 6.1. Let X be an STS(v) and let α ∈ Aut(X ). Then, the set of fixed
points of α induces a subsystem of X .

Proof. Let x, y be fixed points of α. Let {x, y, z} ∈ X be the block that contains
the pair {x, y}. Because α is an automorphism, also {x, y, α(z)} ∈ X . Thus, α(z) = z
because otherwise the pair {x, y} occurs in more than one block in X . It follows that
any block in X intersects the set of fixed points of α in exactly 0, 1, or 3 points.

In particular, if α has f fixed points, then f = 0, or f ≡ 1 (mod 6), or f ≡ 3
(mod 6). The following observation is implied by the results in [24, 62, 69].

Lemma 6.2. A permutation with cycle type 11210 cannot occur as an automor-
phism of an STS(21).

Proof. To reach a contradiction, let X be an STS(21) admitting an automor-
phism of type 11210, let 0 be the fixed point, and let {{−i, i} : 1 ≤ i ≤ 10} be the
pairs of points fixed by such an automorphism. Thus, {x, y, z} ∈ X if and only if
{−x,−y,−z} ∈ X . In particular, {0,−i, i} ∈ X for all 1 ≤ i ≤ 10. The remaining 60
blocks in X must cover the remaining 90 pairs of points with opposite signs. Thus,
each of the 30 remaining orbits of blocks in X covers either 0 or 4 of the remaining
pairs of points with opposite signs. This is a contradiction because 4 does not divide
90.

This leaves us with nine possible prime-order cycle types:

37, 73, 1154, 1329, 1336, 1727, 1772, 1926, 1934.

The next step is to select suitable transversal invariants for constructing the seeds.
Table 1 contains the transversal invariant employed for each cycle type. The col-
umn “Seeds” contains the number of nonisomorphic seeds found for each cycle type
and transversal invariant. The column “Occurrences” is used in the double-counting
consistency check in section 7.2.

Table 1

Seeds for STS(21)s with a nontrivial automorphism group.

Cycle type Transversal invariant Seeds Occurrences

37 I
fix(0)
1 107 21

73 I
fix(0)
1 188 21

1154 I
fix(1)
2 1265 20

1329 I
fix(3)
3 7034 1

1336 I
fix(3)
3 57 1

1727 I
fix(3)
3 ∩ Iblk

3 277 7

1772 I
fix(3)
3 ∩ Iblk

3 2 7

1926 I
fix(3)
3 ∩ Iblk

3 306 12

1934 I
fix(3)
3 ∩ Iblk

3 18 12
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Table 2

The STS(21)s with a nontrivial automorphism group.

|Aut(X )| STS(21)s Anti-Pasch
2 60588267 123
3 1732131 792
4 11467 0
5 1772 24
6 2379 4
7 66 8
8 222 0
9 109 3

12 85 0
14 14 0
16 12 0
18 33 1
21 10 3
24 19 0
27 3 0
36 5 0
42 7 0
48 2 0
54 1 0
72 5 0

108 1 0
126 2 0
144 1 0
294 1 0
504 1 0
882 1 0

1008 1 0
Total 62336617 958

Our algorithm implementation computes the seeds in about 10 minutes on a Linux
PC with a 2-GHz CPU.

By extending the seeds in all possible ways and rejecting isomorphs, we obtain
a complete classification of the STS(21)s with a nontrivial automorphism group in
about 25 hours on a Linux PC with a 2-GHz CPU.

Theorem 6.3. The number of pairwise nonisomorphic STS(21)s with a nontriv-
ial automorphism group is 62336617.

Table 2 partitions the STS(21)s into classes based on the automorphism group
order. Listed in the column “Anti-Pasch” is the number of STS(21)s that do not
contain a Pasch configuration; see (5.1).

Table 3 partitions the STS(21)s into classes based on the order of the automor-
phism group and the types of prime-order automorphisms they admit.

In addition to the prime-order automorphisms, permutations with the following
cycle types occur as automorphisms of STS(21)s:

211, 71141, 31181, 3362, 3192, 3161121, 3163,

11213262, 112443, 1363, 133262, 132362, 132343.

No other cycle types occur as automorphisms.

7. Consistency checking. Due to the relatively complex techniques employed
in the classification algorithm, there is a real possibility that the implementation—
which at present contains approximately 10,000 lines of C code (not including the
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Table 3

Prime-order automorphisms in STS(21)s.

Class 37 73 1154 1329 1336 1727 1772 1926 1934 #

1008 ∗ ∗ ∗ ∗ ∗ ∗ 1

882 ∗ ∗ ∗ ∗ ∗ 1

504 ∗ ∗ ∗ ∗ 1

294 ∗ ∗ ∗ ∗ 1

144 ∗ ∗ ∗ ∗ ∗ 1

126a ∗ ∗ ∗ ∗ 1

b ∗ ∗ ∗ ∗ 1

108 ∗ ∗ ∗ ∗ ∗ 1

72a ∗ ∗ ∗ ∗ ∗ 4

b ∗ ∗ ∗ ∗ 1

54 ∗ ∗ ∗ ∗ 1

48 ∗ ∗ ∗ ∗ 2

42a ∗ ∗ ∗ 1

b ∗ ∗ ∗ 2

c ∗ ∗ ∗ 4

36a ∗ ∗ ∗ 4

b ∗ ∗ ∗ ∗ 1

27 ∗ ∗ 3

24a ∗ ∗ ∗ ∗ 1

b ∗ ∗ ∗ 5

c ∗ ∗ 1

d ∗ ∗ ∗ ∗ 9

e ∗ ∗ ∗ 2

f ∗ ∗ 1

21a ∗ ∗ 4

b ∗ ∗ 4

c ∗ ∗ 2

18a ∗ ∗ ∗ 8

b ∗ ∗ ∗ ∗ 3

c ∗ ∗ ∗ 5

d ∗ ∗ 2

e ∗ ∗ 14

f ∗ ∗ ∗ 1

16 ∗ ∗ ∗ 12

14 ∗ ∗ 14

12a ∗ ∗ ∗ 4

b ∗ ∗ 24

c ∗ ∗ ∗ ∗ 6

d ∗ ∗ ∗ ∗ 11

e ∗ ∗ 40

9a ∗ ∗ ∗ 9

b ∗ ∗ 68

c ∗ 32

8a ∗ ∗ ∗ 143

b ∗ ∗ 56

c ∗ 23

7 ∗ 66

6a ∗ ∗ 723

b ∗ ∗ 5

c ∗ ∗ 13

d ∗ ∗ 264

e ∗ ∗ 11

f ∗ ∗ 1263

g ∗ ∗ 35

h ∗ ∗ 1

i ∗ ∗ 64

5 ∗ 1772

4a ∗ ∗ ∗ 4069

b ∗ ∗ 1940

c ∗ 5458

3a ∗ 553918

b ∗ 1178118

c ∗ 95

2a ∗ 46191977

2b ∗ 11199633

2c ∗ 3196657

Total 554811 97 1772 46199257 1179916 11205208 8 3208591 197 62336617
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source code for nauty)—contains errors. Therefore, it is necessary to incorporate
consistency checking mechanisms into the implementation to catch errors that affect
classification results obtained. For a further discussion on consistency checking in
classification algorithms, we refer the reader to [43].

The present algorithm implementation contains two fundamental components
that should be subjected to consistency checks: generation and isomorph rejection.

Generation—that is, seed generation and seed extension—is achieved using our
own implementation of the exact cover algorithm in [37]. This implementation has
been extensively tested and subjected to the consistency checks in [31, 32, 33]. Thus,
we have a relatively high degree of confidence in the correct operation of the imple-
mentation.

The most complex and hence error-prone parts of the implementation are the
routines that perform isomorph rejection; cf. [44].

We perform consistency checks in the seed generation phase using two indepen-
dent hash-accumulators for every transversal size (transversal layer) and every number
of extending orbits (point completion layer). The first accumulator records the struc-
tures subjected to an isomorph rejection test. Here a structure is recorded regardless
of whether it is accepted or rejected in the test. The second accumulator is updated
only after a structure has been accepted. In this case, every structure from which the
accepted structure “is supposed to originate” is recorded into the second accumula-
tor. When the seed generation algorithm terminates, we check that the corresponding
accumulator values are identical. This gives us confidence that the isomorph rejec-
tion routines in the seed generation phase exhibit proper behavior. A more detailed
description of the seed generation consistency checks is given in section 7.1.

To catch errors in the isomorph rejection phase for target systems, we employ
a double-counting technique analogous to the ones used in [31, 32, 33]. Namely, we
count in two different ways the total number of labelled target systems with one seed
individualized. The first count relies on the classification obtained for target systems;
the second count relies on the automorphism groups of seeds and on the number
of target systems that extend the seeds. This also provides a further consistency
check for the exact cover algorithm implementation. The double-counting technique
is described in section 7.2.

7.1. Consistency checks during seed generation. We begin by describing
the structure of a hash-accumulator used in the consistency checks. We assume that
the structures to be recorded are encoded as finite binary strings (sequences of bytes).
We write {0, 1}∗ for the set of all finite binary strings. A hash-accumulator maintains
an N -bit value z ∈ {0, 1}N , where our implementation uses N = 32. Given a structure
s ∈ {0, 1}∗ to be recorded, the value z is updated by z ← a(z, s), where a : {0, 1}N ×
{0, 1}∗ → {0, 1}N satisfies

a(a(z, s), t) = a(a(z, t), s) for all z ∈ {0, 1}N , s, t ∈ {0, 1}∗.(7.1)

Property (7.1) implies that the order in which the structures are recorded does not
affect the resulting value z.

We implement a using a hash function h : {0, 1}∗ → {0, 1}N and put a(z, s) =
z + h(s), where “+” denotes binary N -bit addition. For an extensive discussion of
hash functions, see [36, sect. 6.4]. To obtain a hash-accumulator with good error-
detecting capabilities, it should be unlikely that the selected hash function h satis-
fies

∑
s∈S h(s) =

∑
s′∈S′ h(s′) for two sets of structures S, S′ unless S = S′. Our
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somewhat ad hoc hash function relies on look-up tables of 256 random 32-bit words
to scatter the hash values to {0, 1}32.

A more powerful alternative to hash-accumulators would be to keep a complete
record of the structures encountered; see [44].

7.1.1. Point completion layer. Before the isomorph rejection for (T,S, p), we
proceed as follows. Let O ∈ H\Ω, O ⊆ S be the most recently added extending orbit.
We compute (T̂ , Ŝ, p̂) as in Example 11 and put

Ô1 ← κ(R)O,

Ô ← min {αÔ1 : α ∈ AutNG(H)(T̂ , Ŝ, p̂)},

where the minimum is taken relative to the lexicographic order induced by the lex-
icographic order on Ω. We then accumulate the first consistency check hash by the
four-tuple (T̂ , Ŝ, p̂, Ô), provided that we have not done so earlier during the current
invocation of the point completion layer. We keep track of this by storing the accu-
mulated four-tuples in the hash table Z.

If the isomorph rejection tests accept (T,S, p), then we accumulate the second
consistency hash by the four-tuple (T̂ , Ŝ, p̂, Ô) for every extending orbit Ô ∈ H\Ω,
Ô ⊆ Ŝ that satisfies

Ô = min {αÔ : α ∈ AutNG(H)(T̂ , Ŝ, p̂)}.

We employ an array of such pairs of hash-accumulators, one pair for each possible
number of extending orbits in (T,S, p). Initially—that is, when the transversal layer
invokes the point completion layer—all accumulators are set to zero. By the structure
of the point completion layer, the hash-accumulators in every pair should have equal
value when the control returns back to the transversal layer. Note that because of
the alternating invocations of the transversal layer and the point completion layer,
we have to keep a separate array of accumulators for each invocation of the point
completion layer made by the transversal layer.

7.1.2. Transversal layer. Before the isomorph rejection for (T,S), we proceed
as follows. Let p ∈ T be the most recently completed point. We compute (T̂ , Ŝ) as in
Example 20 and put

p̂1 ← κ(R)p,

p̂ ← min {αp̂1 : α ∈ AutNG(H)(T̂ , Ŝ)}.

We then accumulate the first consistency check hash by the three-tuple (T̂ , Ŝ, p̂), pro-
vided that we have not done so earlier during the current invocation of the transversal
layer. We keep track of this by storing the accumulated three-tuples in the hash table
Y .

If the isomorph rejection tests accept (T,S), then we accumulate the second
consistency hash by the three-tuple (T̂ , Ŝ, p̂) for every parent point p̂ ∈ par|T̂ |(T̂ , Ŝ)
that satisfies

p̂ = min {αp̂ : α ∈ AutNG(H)(T̂ , Ŝ)}.

Again we employ an array of hash-accumulators, one pair for each possible trans-
versal size. All accumulators are set to zero during the initialization of the seed
generation algorithm for a given H ∈ H. By the structure of the transversal layer,
the values in every accumulator pair should be equal when the seed generation for H
is complete.
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7.2. Double-counting consistency check. To check consistency of the iso-
morph rejection for target systems, we employ the following double-counting technique
for every H ∈ H.

First, for every H-seed (H,T,S), we compute the number #ext(H,T,S) of target
systems that extend (H,T,S). This number is easily obtained for every H-seed as a
side effect of the seed extension phase.

Second, for every target system X that is accepted in the isomorph rejection tests,
we compute the number of H-seeds occurring in X . More precisely, let I0, I1, . . . , Ik
be the sequence of transversal invariants used in computing the H-seeds. Extend Ik to
conjugates of H by (4.6). Let #seeds(H,X ) be the number of three-tuples (H0, T0,S0),
where H0 ≤ Aut(X ), H0 is conjugate to H, T0 ∈ Ik(H0,S0), and S0 = (H0, T0) ↓X .
Each such three-tuple is an H-seed occurring in X .

For prime-order cyclic groups H, we compute #seeds(H,X ) by simple exhaustive
search on Aut(X ). Whenever we encounter a g ∈ Aut(X ) that is in the same conju-
gacy class as the nontrivial elements of H, we count the number of admissible sets T0

for the group H0 = 〈{g}〉. Often this number is a constant that can be determined
by combinatorial arguments based on property P and the group H; the column “Oc-
currences” in Table 1 lists the number of admissible sets T0 for the seeds used in the
STS(21) classification. After the exhaustive search terminates, we divide the total
count by |H| − 1 and obtain #seeds(H,X ).

We now obtain a double-counting argument as follows. Let S (H) be the set of all
H-seeds output by the seed generation algorithm, and let X be the set of all target
systems output by the top-level algorithm. By the orbit-stabilizer theorem, we should
obtain for every H ∈ H∑

(H,T,S)∈S (H)

|G| · #ext(H,T,S)

|Aut(H,T,S)| =
∑
X∈X

|G| · #seeds(H,X )

|Aut(X )| ,(7.2)

where both sides of the equation enumerate the total number of target systems with
one H-seed individualized.

For the STS(21)s admitting a nontrivial group of automorphisms, both sides of
(7.2) evaluate to identical values for every eligible group H. This—together with the
fact that the consistency checks in the seed generation algorithm detect no errors—
gives us confidence that the classification reported in section 6 is correct. The values
of (7.2) obtained for STS(21)s appear in Table 4.

Table 4

Consistency check counts for STS(21)s.

Cycle type Consistency check count

37 198275056744466459197440000
73 11741185091460464640000

1154 362132598113076510720000
1329 1180117747062230388572160000
1336 20079376071873280081920000
1727 2003157311566888776499200000
1772 72987060245299200000
1926 983300360312093618995200000
1934 28610927616157286400000

8. Discussion. We have also tested the algorithm implementation on two other
families of designs that are closely related to Steiner triple systems, namely, one-
factorizations of complete graphs and Latin squares, both of which can be represented
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as certain triple systems. With minor modifications, the present algorithm implemen-
tation produces a correct classification of the one-factorizations of the complete graph
K12 [22] (1.5 hours on a 2-GHz Linux PC) and Latin squares of side 9 [56] (16 hours
on a 2-GHz Linux PC), where both classifications are restricted to systems admitting
a nontrivial automorphism group.

In the case of one-factorizations of K14, a crude estimate indicates that a complete
classification of the systems admitting a nontrivial automorphism group would require
about half a year on a 2-GHz Linux PC. Performing this classification is a topic of
future work.

Despite these successful applications, however, it should be made clear that the
applicability of the present classification approach is restricted by a number of factors.

Perhaps the most fundamental restricting factor is that the approach requires the
existence of a suitable collection of seeds. For triple systems, the present type of seed
appears to perform well, but the performance for larger block sizes and other families
of designs remains to be studied.

Another restricting factor is that explicit isomorphism computations are required,
which makes the approach applicable only to parameter values small enough to admit
practical isomorphism computations for seeds and target systems. For large parameter
values it appears that implicit group-theoretic techniques [46] must be used.

Furthermore, it should be observed that here we have considered only prime-
order prescribed groups. More complex groups can be used, but this requires the
implementation of more complex distinguishing primitives during the final isomorph
rejection phase, which presents a possible performance bottleneck.
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1. Introduction. Recall that a binary n-code is a subspace X of the GF (2)-
vector space V := GF (2)n. Two binary n-codes X,X ′ ⊆ V are equivalent if for some
permutation σ of the symmetric group Sn on {1, 2, . . . , n} we have

X ′ = Xσ := {(x1σ, . . . , xnσ)| (x1, . . . , xn) ∈ X},

where iσ is the image of i under σ. Let b(n) be the number of equivalence classes of
binary n-codes. It is well known that b(n) is also the number of nonisomorphic binary
matroids on an n-set. The asymptotic behavior of b(n) was posed as open problem
14.5.4 in [O].

Here the setting of binary codes suits us better. For a field K let G(n,K) be the
(possibly infinite) number of K-linear subspaces of Kn. Mostly, K will be GF (q),
in which case we write G(n, q) instead of G(n,K). Because each equivalence class of
binary n-codes has cardinality at most n! it follows that b(n) ≥ G(n, 2)/n! for all n.
It will be a corollary of our main theorem that for n → ∞ asymptotically

b(n) ∼ G(n, 2)/n!.(1)

For σ ∈ Sn let Tσ : V → V be the vector space automorphism defined on the canonical
base by Tσ(ei) := eiσ. Let L(Tσ) be the lattice of all Tσ-invariant subspaces in the
sense of linear algebra, meaning the lattice of all subspaces U with Tσ(U) ⊆ U . Since
here Tσ is bijective, Tσ(U) ⊆ U is equivalent to Tσ(U) = U , i.e., to U being a “fixed
point.” This allows us to apply the Cauchy–Frobenius lemma (erroneously called
Burnside’s lemma):

b(n) =
G(n, 2)

n!
+

1

n!

∑
σ∈Sn−{id}

|L(Tσ)|,(2)

hence proving (1) is equivalent to showing∑
σ∈Sn−{id}

|L(Tσ)| = o(G(n, 2)).(3)
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There are (n2 ) permutations τ ∈ Sn with one 2-cycle and n−2 cycles of length 1. Any
such transposition τ yields a Tτ with at least G(n−1, 2) invariant subspaces. Indeed,
say Tτ switches e1 and e2. Then the n− 1 vectors e1 + e2, e3, . . . , en are fixed by Tτ .
Hence (

n

2

)
G(n− 1, 2) is a lower bound for

∑
σ∈Sn−{id}

|L(Tσ)|.(4)

This shows that (3) can only be true if G(n, 2) grows superexponentially with n.
Proving (3) was undertaken in [W1] but, as pointed out by Lax [L], there is an error
in the proof of [W1, Lemma 6]. The error is fixed in the present article, which also
improves upon style and organization. In fact, we shall wind up with a stronger result
but as a golden thread it may be helpful, at least in section 2, to think of (3) as our
target. The stronger result consists of rather sharp lower and upper bounds for b(n)
when n is large enough. These bounds are derived in sections 3 and 4, respectively,
and the pieces are put together in section 5.

2. Four lemmata. The first lemma reduces our preliminary target (3) to the

statement that the left-hand side of (3) is o(2n
2/4).

Lemma 1. For all prime powers q there are positive constants d1(q) and d2(q)
such that

lim
m→∞

G(2m + 1, q)

q(2m+1)2/4
= d1(q) and lim

m→∞

G(2m, q)

q(2m)2/4
= d2(q).

Furthermore, all di(q) are less than 32 and rounded to six decimals, d1(2) is 7.371949,
and d2(2) is 7.371969.

Proof. Let q be fixed and put Gn := G(n, q). Note that G0 = 1, G1 = 2. By [A,
p. 94] one has

Gn+1 = 2Gn + (qn − 1)Gn−1 (n ≥ 1).(5)

Letting un := q−n2/4Gn (n ≥ 0), it follows from (5) that

un = 2q−n/2+1/4un−1 + (1 − q−n+1)un−2 (n ≥ 2).(6)

Letting τn = τn(q) := 2q−n/2+1/4 + 1 − q−n+1, an := 2q−n/2+1/4τ−1
n , and

bn := (1 − q−n+1)τ−1
n , we have an + bn = 1 and

un = τn(anun−1 + bnun−2) (n ≥ 2).(7)

From u0 = 1, u1 = 2q−1/4, τn > 1 (n ≥ 2), and (7) it follows that

un ≥ min{u0, u1} > 0 (n ≥ 0).(8)

As to an upper bound, from u0 = 1 and u1 ≤ 2 ·2−1/4 < 1.7 we get a2u1 + b2u0 ≤ 1.7,
so (7) yields u2 ≤ (1.7)τ2, u3 ≤ (1.7)τ2τ3, and so forth. One checks that τn(q) ≤ τn(2)
for n ≥ 2 and τn(2) ≤ 1 + 2−n/3 for n ≥ 7, whence

un ≤ (1.7)τ2(2) · · · τ6(2) ·
∏
k≥7

(1 + 2−k/3) < (1.7) · (6.8) · e0.97 < 32 (n ≥ 0).(9)
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The convergence of the latter infinite product follows by taking natural logarithms
and noticing that

∑
k≥7 ln(1 + 2−k/3) is bounded by

∑
k≥7 2−k/3 < 0.97. From (6)

and (9) it follows that

|un+2 − un| = | − q−n−1un + 2q−
n
2 − 3

4un+1| ≤ 32q−
n
3 (n ≥ 0).

Iterating and applying the triangle inequality yields

|un+2k−un| ≤ 32(q−
n
3 + q−

(n+2)
3 + · · ·+ q−

(n+2k−2)
3 ) ≤ 32

q−
n
3

1 − q−
2
3

(n ≥ 0).(10)

Cauchy’s criterion therefore guarantees that both d1(q) := limm→∞ u2m+1 and d2(q) :=
limm→∞ u2m exist. They are nonzero by (8). Clearly, (10) implies

|d2(q) − u2m| ≤ 32
q−

2m
3

1 − q−
2
3

(m ≥ 0).(11)

Combining (7) and (11), one can compute d2(q) to any desired accuracy. Ditto for
d1(q).

In order to get a handle on L(Tσ) we need the minimal polynomial

min(Tσ, t) =

s∏
i=1

pi(t)
μi ,

where the pi(t) ∈ GF (2)[t] are irreducible and μi ≥ 1 (1 ≤ i ≤ s). We seek an upper
bound for s = s(σ). Since min(Tσ, t) has degree at most n and since there are only
finitely many irreducible polynomials in GF (2)[t] of any given degree, it is clear that
for any fixed ε > 0 one can force s ≤ εn for all σ ∈ Sn, provided n is large enough.
For us it will suffice that

for all large enough n one has s ≤ (0.06)n for all σ ∈ Sn.(12)

It is well known that if

Vi := ker(pi(Tσ)μi), ni := dim(Vi) (1 ≤ i ≤ s),

then V = V1 ⊕ · · · ⊕ Vs; and if Ti := (Tσ � Vi), then Ti : Vi → Vi has minimal
polynomial min(Ti, t) = pi(t)

μi . Furthermore, by [BF, p. 812]

L(Tσ) 
 L(T1) × L(T2) × · · · × L(Ts).(13)

Assume that our σ is a product of r disjoint cycles C1, . . . , Cr of lengths λj = 2αj ·uj ,
where αj ≥ 0 and uj ≥ 1 is odd. The upcoming (14) and (15) will be the only
facts for which we refer to [W1]. Namely, if we standardize p1(t) := t + 1, then its
corresponding parameters μ1 and n1 satisfy [W1, Lemma 4]

μ1 = max{2αj | 1 ≤ j ≤ r}(14)

and [W1, Lemma 5]

r ≤ n1 = 2α1 + 2α2 + · · · + 2αr ≤ n.(15)
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For instance, σ := (1, 2, . . . , 11, 12)(13, 14, 15)(16, 17) has n1 = 22 + 20 + 21 = 7 and
a base of V1 is

e1 + e5 + e9, e2 + e6 + e10, e3 + e7 + e11, e4 + e8 + e12, e13 + e14 + e15, e16, e17.

Observe that while min(Tσ, t) is just the least common multiple of the polynomials
tλj + 1 (1 ≤ j ≤ r), the prime factors of min(Tσ, t) are unpredictable, and hence
there is no general connection between the number r of disjoint cycles of σ and the
number s of direct factors of L(Tσ). It is well known that the expected value of r(σ)
asymptotically is ln(n) as n → ∞. Question: What is the expected value of s(σ) as
n → ∞?

Lemma 2. For large enough n all σ ∈ Sn have |L(Tσ)| ≤ |L(T1)| ·2
(n−n1)2

8 +(0.3)n.

Proof. Since Ti is bijective we have Tμi

i �= 0, so pi(t) = t is impossible, so each
pi(t) (2 ≤ i ≤ s) has degree di ≥ 2. Fix Ti : Vi → Vi with 2 ≤ i ≤ s. According to [BF,
Thm. 6] one can write Ti = Q+S, where S : Vi → Vi is semisimple and Q : Vi → Vi is
nilpotent. Moreover, putting K := GF (2)[t]/pi(t), the map Q is K-linear in a natural
sense and L(Ti) = LK(Q). Since K 
 GF (2di) and dimK(Vi) = ni/di, it follows from
Lemma 1 that

|L(Ti)| ≤ G

(
ni

di
, 2di

)
≤ 25 · (2di)(ni/di)

2/4 = 25 · 2n2
i /4di .

Using (12) and di ≥ 2 (2 ≤ i ≤ s) we get

|L(Tσ)| ≤ |L(T1)|(25 · 2n2
2/8) · · · (25 · 2n2

s/8)

≤ |L(T1)| · (25)(0.06)n · 2n2
2/8+···+n2

s/8

≤ |L(T1)| · 2(0.3)n+(n2+···+ns)
2/8.

The trick to decompose Ti as S + Q with Q nilpotent and L(Ti) = LK(Q) also
works for Ti = T1. In fact one verifies at once that T1 = I+(T1+I) with (T1+I)μ1 = 0
and L(T1) = L(T1 + I). However, di ≥ 2 is essential in the proof of Lemma 2; for

d1 = 1 one only gets the triviality (in view of Lemma 1) |L(T1)| = O(2n
2
1/4). On the

other hand, information about ker(Q) is only available when i = 1, and that is what
makes the next lemma tick.

Lemma 3. Let σ ∈ Sn have r disjoint cycles. With T1, n1, μ1 derived from Tσ as
above, one has

(a) |L(T1)| ≤ G(r, 2) ·G(n1 − r, 2),
(b) |L(T1)| ≤ G(r, 2)μ1 .

Proof. Let W be any K-vector space with dim(W ) = n and Q : W → W a linear
nilpotent map, say Qm−1 �= Qm = 0. Let Q2 := Q � im (Q). Note that Q2 �= Q2 but
im (Q2) = im (Q2). It is easy to see [BF, Thm. 7] that

L(Q) =
⋃

X∈L(Q2)

[X,Q−1(X)],(16)

where Q−1(X) := {w ∈ W | Q(w) ∈ X} and [X,Q−1(X)] := {Y ∈ L(W )| X ⊆ Y ⊆
Q−1(X)} is an interval of the lattice L(W ) of all subspaces of W . Its length is

dim(Q−1(X)) − dim(X) = dim(kerQ) =: κ1.(17)
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Since Q2 : im(Q) → im(Q) and dim(imQ) = n − κ1 it follows from (16) and (17)
that

|L(Q)| ≤ |L(Q2)| ·G(κ1,K) ≤ G(n− κ1,K) ·G(κ1,K).(18)

Iterating this idea, observe that ker(Q2) = ker(Q)∩ im(Q), hence κ2 := dim(kerQ2) ≤
κ1. Putting Q3 := Q2 � im(Q2) one deduces, as above,

|L(Q2)| ≤ |L(Q3)| ·G(κ2,K),

which, when substituted into (18), yields

|L(Q)| ≤ |L(Q3)| ·G(κ2,K) ·G(κ1,K).

By induction and because of |L(Qm+1)| = 1, one gets

|L(Q)| ≤ G(κm,K) · · ·G(κ2,K) ·G(κ1,K),

where κm ≤ κm−1 ≤ · · · ≤ κ2 ≤ κ1 are defined in the obvious way. Therefore

|L(Q)| ≤ G(dim(kerQ),K)m.(19)

We are interested, for fixed σ ∈ Sn, in the case K = GF (2), Q = T1 +I, W = V1, n =
n1, m = μ1. To fix ideas suppose that (2, 5, 7, 9) is one of the cycles of σ. It gives
rise to exactly one nonzero v ∈ V with Tσ(v) = v; namely v := e2 + e5 + e7 + e9.
Therefore Q(v) = 0. Thus, clearly dim(kerQ) = r. See (15) for the relation between
r and n1. Claim (a) now follows from (18) in view of L(T1) = L(T1 + I). Claim (b)
follows from (19).

Notice that more than n/2�!2n permutations σ ∈ Sn have Tσ = T1 or, what
amounts to the same, n1(σ) = n. This is most easily seen when n = 2α1 happens to
be a power of 2. Then even (n− 1)! permutations σ ∈ Sn have n1(σ) = n, namely by
(15) all the n-cycles.

In what follows r = r(σ), n1 = n1(σ), and log is the logarithm to base 2. Putting
D1 := {σ ∈ Sn |n1 ≤ n− 6 log n},
D2 := {σ ∈ Sn \ D1 |1 ≤ r ≤ 8 log n1},
D3 := {σ ∈ Sn \ D1 |8 log n1 < r < n1 − 8 log n1},
D4 := {σ ∈ Sn \ D1 |n1 − 8 log n1 ≤ r ≤ n− 1},

it is clear that Sn−{id} is the disjoint union of the sets Di (1 ≤ i ≤ 4). The remainder
of the article essentially amounts to giving upper bounds for each of the four sums∑

σ∈Di
|L(Tσ)|. For i = 4 a lower bound will be needed as well.

Lemma 4. ∑
σ∈D1

|L(Tσ)| = O(2(n2/4)−n logn),(20)

∑
σ∈D2

|L(Tσ)| = O(217n log2 n),(21)

∑
σ∈D3

|L(Tσ)| = O(2(n2/4)−n logn).(22)
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Proof. Without always mentioning it, Lemma 1 will be used throughout the proof.
As to (20), fix n and consider the maximum of the function

x2

4
+

(n− x)2

8
+ (0.3)n (0 ≤ x ≤ n− 6 log n).

Since for big enough n this maximum is obtained at x = n − 6 log n, it follows from
Lemma 2 (and Lemma 1) that for all σ ∈ D1

|L(Tσ)| = O(2
n2
1
4 +

(n−n1)2

8 +(0.3)n) = O(2
(n−6 log n)2

4 +
(6 log n)2

8 +(0.3)n) = O(2
n2

4 −2n logn),

which, in view of |D1| ≤ n! ≤ nn = 2n logn, yields

∑
σ∈D1

|L(Tσ)| = 2n logn ·O(2
n2

4 −2n log n) = O(2
n2

4 −n logn).

As to (21), from r ≤ 8 log n1 ≤ 8 log n and μ1 ≤ n and Lemma 3(b) one deduces

|L(T1)| ≤ G(8 log n, 2)n ≤
(
8 · 2(8 log n)2/4

)n

= O(216n log2 n + 3n).

Since σ ∈ D2 implies σ �∈ D1, whence n1 > n− 6 log n, Lemma 2 yields

∑
σ∈D2

|L(Tσ)| = 2n logn ·O(216n log2 n+ 36 log2 n
8 +3.3n) = O(217n log2 n).

As to (22), for all σ ∈ D3 one derives from Lemma 3(a) that

|L(T1)| ≤ G(r, 2) ·G(n1 − r, 2) = O(2
r2

4 +
(n1−r)2

4 )

= O(2
(8 log n1)2

4 +
(n1−8 log n1)2

4 ) = O(2
n2
1
4 −3n1 logn1),

so by Lemma 2

|L(Tσ)| = O(2
n2
1
4 +

(n−n1)2

8 −3n1 logn1+(0.3)n) = O(2
n2

4 −3n1 logn1+(0.3)n) = O(2
n2

4 −2n logn).

Here the last equality holds since n1 > n−6 log n. As previously, one now argues that

∑
σ∈D3

|L(Tσ)| = 2n logn ·O(2
n2

4 −2n logn) = O(2
n2

4 −n logn).

The asymptotic behavior of b(n) will depend on the size of

Z(n) :=
∑
σ∈D4

|L(Tσ)|.

Lemma 4 guarantees that the sum of the other |L(Tσ)| is negligible in comparison.

By Lemmata 1 and 4 it would suffice to show that Z(n) = o(2n
2/4) in order to prove

(1). But we strive for more than (1). This requires a sharper upper bound for Z(n)
(section 4), as well as a lower bound for Z(n) (section 3).
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3. A lower bound for Z(n). Consider a transposition τ ∈ Sn. As seen in the
introduction, L(Tτ ) has size at least G(n− 1, 2). Here is the precise value:

If r(τ) = n− 1, then |L(Tτ )| = 2G(n− 1, 2) −G(n− 2, 2).(23)

To see (23) consider without loss of generality the transposition τ = (1, 2). We claim
that

L(T(1,2)) = {U ∈ L(V )| 〈e1 + e2〉 ⊆ U or U ⊆ 〈e1 + e2〉⊥}.(24)

To see (24), let U ∈ L(T(1,2)) be such that e1 + e2 �∈ U . We have to show that

U ⊆ 〈e1 + e2〉⊥. Assume to the contrary some x =
∑n

i=1 λiei in U has scalar product
(e1+e2) ·x �= 0. Then x = e1+

∑n
i=3 λiei or x = e2+

∑n
i=3 λiei, say the former. From

T(1,2)(x) = e2+
∑n

i=3 λiei being in U we get the contradiction e1+e2 = x+T(1,2)(x) ∈
U . This establishes one inclusion in (24). The reverse inclusion is similar and left to
the reader.

By (24), L(T(1,2)) is the union of the G(n − 1, 2)-element interval sublattices

[〈e1 + e2〉, V ] and [0, 〈e1 + e2〉⊥], whose intersection is the G(n− 2, 2)-element interval
sublattice [〈e1 + e2〉, 〈e1 + e2〉⊥]. This gives (23).

We now double the lower bound in (4). More precisely, because G(n − 2, 2) =
o(G(n− 1, 2)) it follows from (23) and Lemma 1 that

∑
r(σ)=n−1

|L(Tσ)| ≥
(
n

2

)
· 2 · 7.3719 · 2

(n−1)2

4 (n large).(25)

Because r(σ) = n−1 implies σ ∈ D4, the right-hand side of (25) is also a lower bound
for Z(n).

4. An upper bound for Z(n). From Lemma 1 and the proof of (25) it follows
at once that upon transition from 7.3719 to 7.37197 one has

∑
r(σ)=n−1

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.37197 · 2

(n−1)2

4 (n large).(26)

In order to prove that

∑
σ∈D4

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.37198 · 2

(n−1)2

4 (n large),(27)

put

D := {σ ∈ Sn| n1(σ) > n− 6 log n and n− 14 log n ≤ r(σ) ≤ n− 1}.

All σ ∈ D4 satisfy n1(σ) > n− 6 log n, as well as

r ≥ n1 − 8 log n1 > (n− 6 log n) − 8 log n = n− 14 log n,

so D4 ⊆ D. In view of (26) it thus suffices to show

∑
σ∈D,r(σ)≤n−2

|L(Tσ)| = o(2
(n−1)2

4 ) = o(2
n2

4 −n
2 ).(28)
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Fix σ ∈ D with r(σ) ≤ n−2. Consider Tσ and the associated T1. Putting n1 := n1(σ)
and r := r(σ), Lemma 3(a) yields

|L(T1)| ≤ G(r, 2) ·G(n1 − r, 2)

= O(2
r2

4 +
(n1−r)2

4 ) = O(2
(n−2)2

4 + 22

4 ) = O(2
n2

4 −n).

From n1 > n− 6 log n and Lemma 2 one concludes that

|L(Tσ)| ≤ 2
(n−n1)2

8 +(0.3)n ·O(2
n2

4 −n) = O(2
n2

4 −(0.7)n+ 36 log2 n
8 ).

How many elements has D at most? We claim that D is contained in the class D′ of
all σ ∈ Sn, which have at least n−28 log n cycles of length 1. Indeed, if σ ∈ D had less
than n− 28 log n of them, then σ had less than (n− 28 log n) + 14 logn = n− 14 log n
cycles altogether, contradicting the definition of D. Hence

|D| ≤ |D′| ≤
(

n

n− 28 log n

)
[(28 log n)!] ≤ n28 log n,

which implies

∑
σ∈D, r(σ)≤n−2

|L(Tσ)| = 228 log2 n ·O(2
n2

4 −(0.7)n+ 36 log2 n
8 ) = o(2

n2

4 −n
2 ).

This proves (28) and whence (27).

5. The main theorem. We are now in a position to prove the following.
Theorem. For all sufficiently large n one has

(
1 + 2−

n
2 +2 log n+0.2499

) G(n, 2)

n!
≤ b(n) ≤

(
1 + 2−

n
2 +2 log n+0.2501

) G(n, 2)

n!
.

Proof. By Lemma 1 one has G(n, 2) ≤ 7.3720 · 2n
2/4 for all large enough n.

Together with (2) and (25) this implies that for large enough n

b(n) =
G(n, 2)

n!

⎛
⎝1 +

1

G(n, 2)

∑
r(σ)≤n−1

|L(Tσ)|

⎞
⎠

≥ G(n, 2)

n!

(
1 +

(
n

2

)
2−

n
2 +1.25 · 7.3719

7.3720

)

≥ G(n, 2)

n!

(
1 + 2−

n
2 +2 log n+0.2499

)
.

The last inequality holds because(
n

2

)
· 7.3719

7.3720
=

n2

2

(
1 − 1

n

)
· 7.3719

7.3720
≥ n2

2
·2−0.00001 ·2−0.00002 = 22 log n−1.00003

for large n. From Lemma 4 and (27) we see that

∑
r(σ)≤n−1

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.3720 · 2

(n−1)2

4 (n large).(29)
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By Lemma 1 one has G(n, 2) ≥ 7.3719 · 2n2/4 for all large enough n, so (29) yields

b(n) =
G(n, 2)

n!

⎛
⎝1 +

1

G(n, 2)

∑
r(σ)≤n−1

|L(Tσ)|

⎞
⎠

≤ G(n, 2)

n!

(
1 +

(
n

2

)
2−

n
2 +1.25 · 7.3720

7.3719

)

≤ G(n, 2)

n!

(
1 + 2−

n
2 +2 log n+0.2501

)
.

It should be clear from the proof that the exponents 0.2499 and 0.2501 in the
theorem cannot be replaced by 0.25 ± ε. However, equally clear, 0.25 ± ε can be
introduced if one distinguishes between even and odd integers. It is also obvious that
the theorem implies (1). In turn, (1) implies that the fraction β(n) of n-codes X with
nontrivial automorphism group Aut(X) := {σ ∈ Sn| Xσ = X} goes to 0 for n → ∞.
Namely, the total number b(n) of equivalence classes satisfies

b(n) ≥ β(n)G(n, 2)

n!/2
+

(1 − β(n))G(n, 2)

n!
=

(1 + β(n))G(n, 2)

n!
.(30)

By (1) this forces β(n) → 0 as n → ∞. Notice that there is no quick argument why,
conversely, (30) together with β(n) → 0 should imply (1). This relates to results in
[LPR]; see [W2] for details. A year after [W2] the mistake in [W1] was also fixed in
[H]; in fact Hou extends formula (1) to prime powers q > 2.
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Abstract. In this paper we describe several theorems that give lower bounds on the second
eigenvalue of any quotient of a given size of a fixed graph, G. These theorems generalize Alon–
Boppana-type theorems, where G is a regular (infinite) tree.

When G is a hypercube, our theorems give minimum distance upper bounds on linear binary
codes of a given size and information rate. Our bounds at best equal the current best bounds for
codes and apply only to linear codes. However, it is of interest to note that (1) one very simple
Alon–Boppana argument yields nontrivial code bound, and (2) our Alon–Boppana argument that
equals a current best bound for codes has some hope of improvement.

We also improve the bound in sharpest known Alon–Boppana theorem (i.e., when G is a regular
tree).

Key words. eigenvalues, graphs, error-correcting codes, Alon–Boppana, expanders, Faber–
Krahn
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1. Introduction. The goal of this paper is to draw a connection between the
“Alon–Boppana” bound, in the theory of expanders or graph eigenvalues, and asymp-
totic upper bounds for the minimum distance of an error-correcting code of a given
rate.

Recall that the Alon–Boppana bound is a lower bound on the second eigenvalue
of finite d-regular graphs. In its basic form it says that the second largest eigenvalue
of a d-regular graph is greater than 2

√
d− 1 − o(1) as the number of vertices goes to

infinity. In this paper we show that the Alon–Boppana bound can be generalized to
finite quotients of a large class of graphs, H; in the original Alon–Boppana setting,
H is the d-regular infinite tree, which covers any (connected) d-regular graph. See
[Fri03] for such results when H is infinite and fixed.

The connection with upper bounds on the minimum distance of a binary linear
code is that the minimum distance of a binary linear code C can be expressed as a
certain decreasing function of the second largest eigenvalue of a certain regular graph
associated to C (this graph is generally called the coset graph of C⊥; see section 5).
In other words any lower bound on the second eigenvalue of this graph translates into
an upper bound on the minimum distance of the code. If we use the aforementioned
Alon–Boppana bound directly, then we only obtain a very weak upper bound on the
minimum distance of the code.

However, when we know more about the geometry of the graph—for instance,
lower bounds on the number of cycles of a given length—then the Alon–Boppana
lower bound can be strengthened considerably. We derive several lower bounds using
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different techniques. The first one is derived through lower bounds on the number of
cycles of a given length, the second through comparison with Dirichlet eigenvalues.
There is, however, a common underlying idea, namely, the notion of a covering graph
(see section 3). In both cases, the relevant quantities (either the number of cycles
or the Dirichlet eigenvalues) are bounded by the corresponding quantities of a cover
graph. The crux of this approach is that the cover graph may have a simple structure
(for instance, for the coset graph we may choose a Boolean hypercube), which enables
us to estimate these quantities directly.

The second technique, when applied to the graph associated to the coset graph of
a binary linear code, yields the first MRRW bound [MRRW77] in coding theory, which
is the best known upper bound on the minimum distance for low-rate codes. This
bound was originally obtained with the “linear programming” approach. Although
our approach has elements in common with the classical “linear programming” ap-
proach, we believe our approach is easier to use and suggests more geometrically
visualizable questions on the Boolean hypercube. This is because a simple “Alon–
Boppana” argument easily gives an interesting coding bound (see section 5), and
we don’t know of an analogous argument based on the linear programming approach.
Also, in an attempt to improve the “first MRRW bound” (of [MRRW77], as explained
in section 2) there arises a geometric question about what is the correct analogue
for the hypercube of the classical Faber–Krahn inequality for domains in R

n (see,
e.g., [Fab23, Kra25, Cha84, Fri93]); if this analogue is “asymptotically different” (see
section 10), which is presently conceivable, then the first MRRW bound will be im-
proved. We must admit, however, that at present we cannot improve but only dupli-
cate the first MRRW bound with our methods; furthermore, it is quite conceivable
that any theorem obtained with our methods could be translated into a proof based
only on the linear programming approach (it would be interesting to know if this were
really true). But we reiterate that even if our approach is, in a sense, subsumed by
the linear programming approach, the setting and geometric pictures suggested by
our method seems to be easier to work with. Moreover, we also show how to obtain
the linear programming bounds dealing only with the Hamming space through our
approach, by slightly changing one of our Alon–Boppana bounds (see section 10).

The consequences for the classical Alon–Boppana theorem (i.e., for the second
eigenvalue of a d-regular graph) in this paper is that we improve the best Alon–
Boppana bound (of Friedman and Kahale; see [Fri93]) in the second-order term by
essentially a factor of 4 (see section 9). This is done by generalizing the known Alon–
Boppana bound techniques to give coding bounds, and realizing that the first MRRW
bound improves this bound, in a sense, by a factor of 2. It is not hard to see where
this factor of 2 can be recovered—by “projecting out the constants” (see sections 9
and 10). However, Kahale’s method (see [Kah93]) also “projects out the constants,”
and our improvement to classical Alon–Boppana can also be obtained by a minor
modification of Kahale’s proof.

2. A basic fact for obtaining Alon–Boppana bounds. Let us first introduce
some general notation concerning eigenvalues of (adjacency matrices of) graphs. Let
G be a graph with |VG| = n and adjacency matrix AG. Recall that AG is an n × n
symmetric matrix, with entries auv indexed by the vertices of the graph, and auv = 1
iff u and v are adjacent in G, and auv = 0 otherwise. Since AG is symmetric, it can
be diagonalized with an orthonormal basis. Then we can write

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)
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for the eigenvalues of G’s adjacency matrix (written with their multiplicity). We de-
note by e1, e2, . . . , en the corresponding (orthonormal) basis of eigenvectors. We write
ρi = ρi(G) for the ith largest value that occurs among the |λi|; for example, the
Perron–Frobenius theorem implies that ρ1 = λ1 and thus

ρ2 = ρ2(G) = max(λ2,−λn).

Estimating λ2 is of interest in studying expansion; however, some techniques estimate
only ρ2 (and higher ρi).

The Rayleigh principle gives us the following characterization of λ2(G) (it is a
straightforward consequence of the fact that e1, e2, . . . , en is an orthonormal basis):

λ2(G) = max
f⊥e1

(AGf, f)

(f, f)
.(2.1)

If G is a regular graph, then e1 can be chosen to be 1√
n
�1, where �1 is the all-ones

vector, and, therefore, by applying the previous equation we obtain following fact.
Fact 2.1. If G is a regular graph and f ∈ R

n is orthogonal to �1, then

λ2(G) ≥ (AGf, f)

(f, f)
.(2.2)

This inequality is the key to obtaining lower bounds on λ2(G): by choosing f
appropriately we can relate λ2(G) to other quantities of the graph. Notice that we
can also apply the Rayleigh principle to Al

G (or even sometimes to a well-chosen

polynomial applied to AG); this yields for f ⊥ �1 and any positive odd integer l,

λ2(G)l ≥ (Al
Gf, f)

(f, f)
,(2.3)

and in general for any positive integer l,

ρ2(G)l ≥ (Al
Gf, f)

(f, f)
.(2.4)

In what follows we are going to apply these simple facts to several different choices
of f . For all these choices we are going to control the term

(Al
Gf,f)

(f,f) that appears on
the right-hand side through the notion of a cover graph.

3. Graphs and covers. In this section we review the definition of graph covers.
Until section 11 we assume all graphs are simple, i.e., having no multiple edges or self-
loops; this simplifies the discussion and notation. In section 11 we give the definitions
needed for general graphs; all theorems immediately carry over to general graphs.

By a simple graph we mean a graph with no multiple edges or self-loops; so we
may think of a simple graph, G, as a pair (VG, EG), where EG is a subset of the set
of unordered pairs of VG. Until section 11 we understand a graph to mean a simple
graph.

A morphism π : H → G of graphs is a map from VH to VG such that the natural
map from EH onto pairs in VG has its image in EG. π thus gives rise to a map from
EH to EG which we also denote by π, assuming no confusion will arise.

A morphism π : H → G is called a covering map if for every edge e = {u, v} of G
and every u′ ∈ VH with π(u′) = u there is a unique v′ ∈ π−1(v) such that {u′, v′} is
an edge in EH . We also say that in this case H is a cover of G.
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Example 3.1. Let G be any finite graph. Then G has a universal cover, π : T → G,
in that for any covering map ν : K → G there is a covering map1 μ : T → K such that
π = ν ◦ μ. T is a tree. If G is d-regular, i.e., each row and column of AG sums to d,
then T is a d-regular tree (and any two d-regular trees are isomorphic).

Example 3.2. Let G be a connected Cayley graph on (F2)
k of degree n with

generators c1, . . . , cn. This is a graph where we connect any x ∈ (F2)
k to x + ci for

i ∈ {1, 2, . . . , n}. Let B
n be the Boolean n-hypercube, i.e., the Cayley graph on (F2)

n

with generators e1, . . . , en, where ei is the ith standard basis vector, i.e., ei is 0 on
each coordinate except the ith, where it is 1. Consider the map πlin : (F2)

n → (F2)
k

which takes ei (as above) to ci and is extended by linearity. Then πlin induces a
covering map π : B

n → G.

4. Coding theory. A code of length n is a subset C ⊂ (F2)
n, where F2 = {0, 1}

is the field with two elements. C is linear if it is a subspace of the vector space (F2)
n.

We endow (F2)
n with the Hamming distance, i.e., for x, y ∈ (F2)

n, d(x, y) is the
number of coordinates on which x and y differ. The minimum distance of a code, C,
is

dmin(C) = min{d(x, y) | x, y ∈ C, x 	= y},

and its normalized minimum distance is

δ(C) = dmin(C)/n.

The information rate of a code is

R(C) =
log2 |C|

n
.

If C is a linear code, then this is just (dimC)/n.
Let δmax be the function

δmax(R) = lim
n→∞

max{δ(C) | R(C) ≥ R, C ⊂ (F2)
n}

and

Rmax(δ) = lim
n→∞

max{R(C) | δ(C) ≥ δ, C ⊂ (F2)
n}.

We are interested in estimating these functions.
Estimating δmax is essentially the same as estimating Rmax, but a bit of care is

required to make this precise.
Proposition 4.1. Let δmax(α) ≤ f(α) for a continuous, strictly decreasing

function, f , defined on an open interval. Then (f−1 is defined on the image of f and)
Rmax(δ) ≤ f−1(δ).

Proof. This is an easy (but mildly annoying) technicality; see section 14.
We now state some classical bounds.
Theorem 4.2. Rmax(δ) ≥ 1 − h(δ), where

h(θ) = −θ log2 θ − (1 − θ) log2(1 − θ).

1This covering map, μ, is uniquely defined if one works with “base-pointed graphs,” i.e., graphs
with a distinguished vertex.
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Proof. See the asymptotic Gilbert–Varshamov bound in [vL99].
The best upper bound on Rmax is given by the following theorem.
Theorem 4.3.

Rmax(δ) ≤ min
u∈[0,1−2δ]

b(u, δ),(4.1)

where

b(u, δ) = 1 + g(u2) − g(u2 + 2δu + 2δ)

with

g(x) = h

(
1

2
−

√
1 − x

2

)
.

For δ ≥ 0.273 this bound is the same as

Rmax(δ) ≤ b(1 − 2δ, δ) = h
(
1/2 −

√
δ(1 − δ)

)
.(4.2)

Proof. See [MRRW77] (or [MS77v1, MS77v2] for the latter half of the theo-
rem).

The inequality (4.1) is known as the “second MRRW” bound; (4.2) is known as
the “first MRRW” bound.

Corollary 4.4. For small α we have

1

2
− (1 + o(1))

√
α

2 log2 e
≤ δmax(α) ≤ 1

2
− (1 + o(1))

√
α

log2(1/α)
.

5. Codes and eigenvalues. In this section we recall how a graph can be associ-
ated to a linear code in such a way that the eigenvalues of the graph are in relationship
with the codeword weights.

Let C ⊂ (F2)
n be a linear code with basis r1, . . . , rk. We form the generator

matrix, M , over F2, whose rows are the ri’s; so M is a k × n matrix. Its columns,
c1, . . . , cn, can each be viewed as an element of (F2)

k.
Let G be the Cayley graph on (F2)

k with generators c1, . . . , cn.2 Apparently G
may depend on the choice of the basis r1, r2, . . . , rk. It turns out that G depends only
on C. This can be seen by bringing in the dual code C⊥ of C, that is,

C⊥ = {x ∈ (F2)
n | x · c = 0 ∀c ∈ C}.

Consider the graph with vertices the cosets x + C⊥, and two cosets being linked by
an edge iff they are at Hamming distance 1. We claim that the Cayley graph defined
before and this new graph are isomorphic, the isomorphism being given by the map
π : x + C⊥ → Mx. Indeed, let two cosets x + C⊥ and y + C⊥ be linked by an edge.
This means that there exists c ∈ C⊥ and i ∈ {1, . . . , n} such that x = y+c+ei (where
ei is the ith standard basis vector of F2

n, i.e., ei is 0 on each coordinate except the ith,
where it is 1); this implies that Mx = My + ci. On the other hand if Mx = My + ci,
then necessarily x and y + ei differ only by an element of C⊥.

2We shall assume (until section 11) that no ci’s vanish and the ci’s are all distinct; if not, then
G will have self-loops and/or multiple edges, and we technically need section 11 before we can apply
our theory.
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We say that this graph is the coset graph of C⊥ or of the code,3 C. The following
is a well-known folk theorem (see [DS91] and the references therein).

Theorem 5.1. Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of the adjacency matrix
of the coset graph of C⊥ arranged in nonincreasing order. Then λ1 = n and λ2 =
n− 2dmin(C). Moreover, the weights (i.e., distances to the zero code word) appearing
in C are just the (n− λi)/2 as i ranges from 1 to 2k.

6. A simple generalized Alon–Boppana theorem. In this section we give
a very simple but rather weak generalized Alon–Boppana theorem and discuss its
implications. Let G be a d-regular graph. We use the approach outlined in section 2
to obtain a lower bound on λ2(G) and ρ2(G) and we choose f = χu − χv where χ
denotes the characteristic function in (2.4). Notice that(

Al
Gχu, χu

)
= Nl(u),

(
Al

Gχv, χv

)
= Nl(v),

where Nl(v) denotes the number of walks of length l from v to itself. Moreover, if u
and v are at distance greater than l ≥ 0, then(

Al
Gχu, χv

)
=

(
Al

Gχv, χu

)
= 0.

Hence (
Al

Gf, f
)

= Nl(u) + Nl(v).

Let Nl = Nl(G) denote the minimum of Nl(v) ranging over all vertices v of the graph.
Of course, (f, f) = 2, and so (

Al
Gf, f

)
(f, f)

≥ Nl(G).

By using (2.4) we now obtain

ρ(AG) ≥
(
Nl

)1/l
.

The right-hand term can be estimated through a cover H of G for which the calculation
of Nl(H) might be much simpler. Indeed the following is clear.

Fact 6.1. If π : H → G is a cover, then any H cycle about a vertex, v, gives rise
to a unique G cycle about π(v). Hence for any positive integer l we have

Nl(G) ≥ Nl(H).

In other words we have proved the following.
Theorem 6.2. Let G be a d-regular graph that contains two vertices of distance

greater than l and let H be a cover of G. Then

ρ(AG) ≥
(
Nl(H)

)1/l
;

furthermore, if l is odd, then the above equation holds with ρ replaced by λ2.

3This is the graph of cosets of the hypercube modulo C⊥, or of C⊥ cosets, but it is the graph
of cosets one uses when working with C. Since we do not work with a code, C, and its dual, C⊥,
simultaneously (in this paper), no confusion will occur in referring to the graph as the coset graph
of “the code.”
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The last statement follows by using (2.3) instead of (2.4).
The above theorem is quite simple. Unfortunately, for some purposes, such as

coding theory, we are interested in λ2(AG) and the cover graph H (which can be
chosen to be a boolean hypercube) will be bipartite (i.e., Nl(H) = 0 for l odd). So
we prove the following variant of the above theorem.

Theorem 6.3. Let π : H → G be a covering map. Let e1, e2 be two edges of
distance greater than l (i.e., the distance from any of e1’s endpoints to any of e2’s is
greater than l). Then

ρ(AG) ≥
(
Nl(H) + Nl−1(H)

)1/l
;

furthermore, if l is odd, then the above equation holds with ρ replaced by λ2.
Proof. Let ei = {ui, vi} and set

f = χu1 + χv1 − χu2 − χv2 .

We have that (Alχu1 , χv1) is at least Nl−1(H), since any walk of length l−1 beginning
and ending in u1 yields a walk from u1 to v1 with one additional step. Similar
reasoning to that in the previous theorem then yields

(Alf, f) ≥ 4
(
Nl(H) + Nl−1(H)

)
and, of course, (f, f) = 4. Similar reasoning as before now yields this theorem.

We state two corollaries of this simple theorem.
Corollary 6.4. Fix d. Then for any d-regular graph, G, on n vertices, we have

ρ(G) ≥ 2
√
d− 1 − o(1) as n → ∞.

This follows by taking H to be the universal cover of G (namely, the infinite
d-regular tree) and by noticing that any d-regular graph on n vertices has at least two
vertices which are at distance logd−1 n�. The relevant computation can be found in
[LPS88], for instance.

We get stronger bounds with regular graphs which admit a cover which has more
closed walks than the d-regular infinite tree, and this is exactly what happens for the
coset graph of a code of length n which admits the boolean hypercube as a cover (see
Example 3.2).

Corollary 6.5. Let C be a binary linear code of length n of rate ≤ R. The
normalized minimum distance of C, δ, satisfies δ ≤ f(R), where f is a function that
satisfies

f(R) =
1

2
− C

(
1 + o(1)

)√ R

log2 R

when R tends to 0 with C = 1/
√

4e.
The bound of [MRRW77] yields the same corollary but with C = 1. The calcula-

tions which leads to this theorem are in section A.

7. Projecting out constants. In this section we introduce a technique that
will strengthen essentially all of our Alon–Boppana theorems, including the ones in
the previous section and the more refined theorems to come.

In the previous section we created functions, f , for which (Alf, f) could be
bounded; the idea was to concentrate f at a few vertices. Since it is important
that f be orthogonal to �1, the all-ones vector, we took f to have as many positive
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values as negative values, taking the values of different sign to be far apart (a distance
greater than l). However, we may alternatively take f to be all positive, provided that
we then remove f ’s component in the direction of �1. This is the same as taking f
to be concentrated and positive, subtracting the same (small) negative value at every
other vertex.

The idea of choosing an arbitrary f and “projecting out the constant component”
will be used repeatedly in this paper. Here is this technique applied to Theorem 6.2.

Theorem 7.1. Let π : H → G be a covering map. Let G be a d-regular graph,
and let l be a value such that

Nl(H) ≥ dl/|VG|.

Then

ρ(AG) ≥
(
Nl(H) − dl

|VG|

)1/l

;

furthermore, if l is odd, then the above equation holds with ρ replaced by λ2.
Proof. Fix any v ∈ VG and set f = χv. Then f̃ = f − �1/|VG| is orthogonal to �1.

We have (
Alf̃ , f̃

)
=

(
Alf, f

)
−
(
Al�1/|VG|,�1/|VG|

)
≥ Nl(H) − dl/|VG|

and (
f̃ , f̃

)
= (f, f) − (�1/|VG|,�1/|VG|) ≤ 1.

The reasoning used at the end of Theorem 6.2 now applies here, and we conclude the
theorem.

We may also obtain the following variant of Theorem 6.3.
Theorem 7.2. Let π : H → G be a covering map with G a d-regular graph, and

let l be a value such that

Nl(H) + Nl−1(H) ≥ 2dl/|VG|.

Then

ρ(AG) ≥
(
Nl(H) + Nl−1(H) − 2dl

|VG|

)1/l

;

furthermore, if l is odd, then the above equation holds with ρ replaced by λ2.
Proof. Fix any edge, e = {u, v}, and let f = χu + χv and f̃ = f − 2�1/|VG|. As

before, f̃ is orthogonal to �1, and we have

(Alf̃ , f̃) = (Alf, f) − 4(Al�1/|VG|,�1/|VG|) ≥ 2Nl(H) + 2Nl−1(H) − 4dl/|VG|

and

(f̃ , f̃) ≤ 2.

We argue as before.
Using this theorem we improve Corollary 6.5 by a factor of 2, as follows; see the

appendices for the proof.
Corollary 7.3. In Corollary 6.5, we may take C = 1/

√
2e.
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8. Eigenfunction pushing techniques. Let us now apply (2.2) to functions

of the form f̃ = f − c�1 (where c is chosen such that f̃ is orthogonal to �1), where f
is a function supported on a subset U of vertices of the graph (this means that f is
equal to 0 outside of U). We easily obtain the following.

Proposition 8.1. Let f be supported on a set, U . Let G be d-regular. Then

λ2(G) ≥ (AGf, f)

(f, f)
− d|U |

|VG|
.

Proof. Let f̃ = f − c�1, where c = (f,�1)/|VG|; then f̃ is orthogonal to �1, and so

λ2(G) ≥
(
AGf̃ , f̃

)
(f̃ , f̃)

.(8.1)

Since

(f,�1)2 = (f, χU )2 ≤ (f, f)(χU , χU ) = (f, f)|U |,

we have

(AGf̃ , f̃) = (AGf, f) − dc2|VG| ≤ (AGf, f) − d(f, f)|U |/|VG|.

Combining this with the fact that (f̃ , f̃) ≤ (f, f) (since f̃ is a projection of f onto
the subspace orthogonal to �1) and with (8.1) finishes the proposition.

To optimize this inequality we have to find for a given subset of vertices U the

function f which maximizes the ratio (AGf,f)
(f,f) . This maximum is known as a Dirichlet

eigenvalue. We define for a graph G and a subset of vertices W ⊂ VG,

λ1,Dir(W ) = max
f∈C0(W )

(Af, f)

(f, f)
,

where we write C0(W ) for those functions supported in W . It is easy to check that
the maximum is attained for a nonnegative function (this is a simple consequence of
the Perron–Frobenius theorem; see also [Fri93]). The f achieving the above maximum
is called the first Dirichlet eigenfunction of A; this f is known to satisfy Af = λf for
λ = λ1,Dir(W ) (see [Fri93]).

Then it makes sense to find the subset W of a given size which maximizes this
eigenvalue; this leads us to define, for a > 0, FKG(a), the Faber–Krahn maximum of
size a as

FKG(a) = max
|W |≤a

λ1,Dir(W );

the W achieving this maximum is the Faber–Krahn maximizer of size a.
The nice thing about this quantity is that it has a lower bound in terms of the

Faber–Krahn maximum for the same size of a cover graph.
Theorem 8.2. Let H be a cover of G. Then

FKH(a) ≤ FKG(a).

To prove this fact we need a lemma and a definition. For a covering map π : H →
G and f : VH → R, we define the push forward, π∗f , a function on VG,whenever H is
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finite, via

(π∗f)(v) =
∑

π(w)=v

f(w).

Lemma 8.3. Let f ∈ C(VH) and let π : H → G be a covering map. Assume H
is finite. If f ≥ 0 everywhere, then also π∗f ≥ 0. If AHf ≥ λf everywhere, for some
real λ, then also AGπ∗f ≥ λπ∗f . If f is supported in W , then π∗f is supported in
π(W ).

Proof. The first part (the nonnegativity statement) is clear. The second part
follows from the fact that π is a local isomorphism. The third part is also clear.

We are ready now to prove Theorem 8.2.
Proof of Theorem 8.2. Let FKH(a) = λ = λ1,Dir(W ) be the minimizing eigenvalue

with |W | = a, and let f be the corresponding eigenfunction. Then π∗f satisfies
AG(π∗f) ≥ λπ∗f and π∗f is nonnegative and supported on π(W ), so

λ1,Dir

(
π(W )

)
≥ (AGπ∗f, π∗f)

(π∗f, π∗f)
≥ (λπ∗f, π∗f)

(π∗f, π∗f)
≥ λ.

Furthermore, π(W ) is a set of size at most a. Hence

FKG(a) ≥ λ = FKH(a).

Putting Proposition 8.1 and Theorem 8.2 together we obtain the following theo-
rem.

Theorem 8.4. Let G be a d-regular graph, and let H be a cover of G. Then

λ2(AG) ≥ FKH(a) − da

|VG|
.

For an application to coding theory we observe the following proposition.
Proposition 8.5. Let H be the n-dimensional hypercube. Then for α ∈ (0, 1)

fixed we have FKH(2αn) ≥ 2
√
γ(1 − γ)n + o(n), where α = H2(γ).

Proof. We take a ball of size roughly 2αn. For the details see the appendices.
Notice that we could also give a simple bound of FKH(2αn) ≥ αn by taking the

characteristic function of a subcube of dimension αn.
A corollary is the first MRRW bound.
Corollary 8.6. For any δ ∈ (0, 1) we have

Rmax(δ) ≤ h
(
1/2 −

√
δ(1 − δ)

)
.

Proof. Fix an α ∈ (0, 1) and a code C of information rate ≥ α and a corresponding
covering map π : H → G. We apply Theorem 8.4 with a = 2αn/ log n. We conclude

λ2(AG) ≥ 2
√
γ(1 − γ) + on(1),

where α = h(γ). Hence

δ ≤ 1/2 −
√
γ(1 − γ),

and so

γ ≤ 1/2 −
√
δ(1 − δ)
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and the corollary follows.
Remark 8.7. Notice that a (sub)cube of dimension αn has largest adjacency

eigenvalue αn. This implies that FKH(2αn) ≥ αn. This gives the weak corollary
that αmax(δ) ≤ (1− δ)/2, which agrees asymptotically with the Plotkin and Griesmer
bounds of coding theory (see [vL99]).

Remark 8.8. The approach which was used in this section borrows some ideas
from [Nil91, Fri93]. Assume that G has a cover graph H. If fH is a nonnegative
“approximate eigenfunction” on H, we can try to form “versions” of it, fG, on a
quotient, G, with similar properties. In this section we have formed our version on G
by “summing over fibers” (this was the push forward function defined above); this is
a similar technique to that used by Nilli (see [Nil91]), later refined by Friedman and
Kahale (see [Fri93]).4 Our improvement on this technique was obtained by “projecting
out the constants,” meaning that we project out the �1 component from fG rather than
setting up fG (or fH) with a matching nonpositive component to make it orthogonal
to �1 (as done by Nilli, Friedman, and Kahale). We explain how this improves the
classical Alon–Boppana bound in the next section.

9. Classical Alon–Boppana. In this section we comment on how to improve
the classical Alon–Boppana theorem by a constant factor in the second-order term.
The bounds as derived in [Nil91], [Fri93], and [Kah93] all come up with a function, f ,
orthogonal to the constant function, whereupon we estimate R(f) and use λ2 ≥ R(f).
In all cases, and in this paper, the following construction is involved: for a vertex, u,
and distance r, we consider a function g = gu,r that (1) vanishes on vertices of distance
greater than r to u, and (2) is constructed either as a radial function (a function of
the distance) with respect to u, or is the push forward of a radial function of a lift
of u on the universal cover, the infinite, d-regular tree (see also the comments at the
end of section 8); therefore, g is nonnegative. (In a sense, the “optimal” g to take is
the Dirichlet eigenfunction on the tree, as in [Fri93].) There are two approaches to
constructing f from these g’s.

The first approach is to take two vertices, u, v, of large distance apart, to take r
with gu,r, gv,r of disjoint support, and to form f as a difference of appropriate positive
multiples of gu,r and gv,r. Here r is roughly (1/2) logd−1 n. This approach is taken in
[Nil91] and [Fri93].

The second approach is to take one vertex, u, and to form f by taking gu,r′ and
project out the constants. In this case r′ can be taken to be as large as logd−1

(
n/ω(n)

)
,

where ω(n) is any function with ω(n)/ log2 n → 0 as n → ∞. So r′ is roughly twice
as large as r, which gives an improvement by a factor of 4 in the second-order term.
For example, in [Fri93] we have a bound of

λ2 ≥ 2
√
d− 1

(
1 − c log−2

d−1 n + O
(
log log n log−3 n

))
,(9.1)

where c = 2π2. The projecting technique improves this to c = π2/2. This projecting
technique was used by Kahale in [Kah93]; he did not estimate c explicitly, although
his choice of parameters in the proof gives c = 2π2 (as in [Fri93]); however, it is easy to
modify Kahale’s choice of parameters (i.e., choose l to be the floor of logd−1(n/ log3 n)
in his proof of Corollary 1 in section 3) to obtain c = π2/2.

4Actually, the previous technique (of Nilli, Friedman, and Kahale) takes radial functions on G
given by the radial function on H that gives the first Dirichlet eigenfunction of a ball in H of a given
radius. The technique used here “pushed down” the eigenfunction on H to G by summing over the
fibers, i.e., for each vertex, v ∈ VG, we sum the eigenfunction over π−1(v). This may be better suited
in certain situations, e.g., when the graphs are not regular.
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We now state the improved classical Alon–Boppana bound in a theorem.

Theorem 9.1. Let d be fixed. For any d-regular graph on n vertices we have that
(9.1) holds with c = π2/2.

Proof. We give two proofs, omitting some minor calculations. The first is to
modify Kahale’s proof as described above. The second proof is to apply Theorem 8.4
with H the d-regular tree and a being the floor of n/ log3 n. We remark that FKH(a)
is at least that of the first Dirichlet eigenvalue of a ball in H of size at most a.
Proposition 3.2 of [Fri93] computes this eigenvalue exactly. This changes the value of
k in Proposition 3.7 of [Fri93] (which is the radius of the ball to which Proposition 3.2
of [Fri93] is applied) from (1/2) logd−1 n to essentially double that, i.e., the floor of

logd−1(n/ log3 n). Thus the second-order term of 2
√
d− 1π2/(2k2) essentially gets

multiplied by 1/4 (up to higher-order terms). The only additional term here is the
da/|VG| term in Theorem 8.4; this term is O(log−3 n) by our choice of a.

10. A stronger Alon–Boppana bound.

10.1. A simple improvement. In this subsection we give an example of a
more general generalized Alon–Boppana bound. Namely, the following theorem and
corollary strengthen Proposition 8.1.

Theorem 10.1. Let G be a d-regular graph and let p be any real-valued function
defined on the eigenvalues of AG. Then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f,�1)2/|VG|.

The theorem follows immediately from the spectral decomposition on AG as ap-
plied to f .

Corollary 10.2. If in addition to the hypothesis in the above theorem we have
that f is supported in U , then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f, f)|U |/|VG|.

The special case p(x) = x was the bound used in the previous section. When G
has a cover which is distance regular, then there is a very natural choice of polynomials
in the corollary which enables us to have some control on the term

(
p(AG)f, f

)
when

f = χv for any vertex v of G. Indeed, let H be a distance regular cover of G. Let
D denote the diameter of H. Then there are D + 1 polynomials P0, P1, P2, . . . , PD

(see [BCN89]) such that Pi(AH) is the adjacency matrix of the graph with the same
vertices as H and two vertices are joined by an edge iff they are at distance i in H.
In such a setting for any Q =

∑D
i=0 βiPi, where the βi’s are nonnegative we have

that
(
Q(AG)χv, χv

)
≥

(
Q(AH)χv, χv

)
. Notice now that

(
Q(AH)χv, χv

)
= β0 and,

therefore,

(
Q(AG)χv, χv

)
≥ β0.(10.1)

The coset graphs associated to a binary linear code of length n that we consider
in this article have a common cover which is distance regular, namely, the boolean
cube B

n. An application of the aforementioned remark leads to the Delsarte linear
programming bound in coding theory as explained in the following subsection.
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10.2. Connections with the Delsarte approach. Let us first quickly review
the linear programming approach for obtaining upper bounds on the minimum dis-
tance of a code (see [MS77v1, MS77v2, vL99] for more details). For a code C ∈ (F2)

n,
we consider the distance distribution of the code, i.e., the Bi’s for i = 0, . . . , n, where
Bi denotes the average number of codewords of distance i to a fixed codeword, that is,

Bi
def
= 1

|C| |{(x, y);x ∈ C, y ∈ C, d(x, y) = i}|. The linear programming bound is based

on the inequality

n∑
i=0

BiKk(i) ≥ 0

for k ∈ {0, 1, . . . , n}, where Kk is a Krawtchouk polynomial of degree k:

Kk(x)
def
=

k∑
j=0

(−1)j
(
x

j

)(
n− x

k − j

)

with
(
x
j

)def
= x(x−1)...(x−j+1)

j! . This yields linear inequalities which should be satisfied by

the Bi’s. By maximizing the sum of the Bi’s (which is equal to the size of the code)
which satisfy these inequalities we obtain a linear programming problem for which
an upper bound can be found by duality. This duality result can be written as the
following (see Theorem 5.3.5 of [vL99]).

Theorem 10.3. Let β(x) = 1 +
∑n

k=1 βkKk(x) be any polynomial with βk ≥ 0
(1 ≤ k ≤ n) such that β(j) ≤ 0 for j = d, d + 1, . . . , n; then any code of minimum
distance ≥ d and length n has cardinality at most β(0).

Finding interesting choices for β turns out to be a nontrivial task; however, the
first MRRW bound can be obtained by a direct application of this theorem by choosing
β appropriately (see [vL99]).

We now claim that this theorem is a simple consequence of Corollary 10.2, pro-
vided we restrict to linear codes. Indeed, if we let Pk

def
=Kk((n− x)/2), then Pk(ABn) is

nothing but the adjacency matrix of the graph with vertices belonging to F2
n and two

vertices being adjacent iff they are at Hamming distance k. This follows immediately
from classical results about the Hamming association scheme (see, for instance, Chap-
ter 21 in [MS77v1, MS77v2]). Therefore, by using the remark which follows Corollary
10.2 for any polynomial Q(x) = 1 +

∑n
k=1 βkPk(x) = 1 +

∑n
k=1 βkKk((n− x)/2) with

βk ≥ 0 we have that for any vertex of the coset graph G of a binary linear code of
length n, (

Q(AG)χv, χv

)
≥ 1.(10.2)

Notice now that by Theorem 5.1 Pk(λi) = Kk(j) for some integer j ∈ [dmin(C), n]
for any eigenvalue of the adjacency matrix of G different from n. Therefore, Q(λi) =
1 +

∑n
k=1 βkKk(j). This implies that

(χv, χv) max{Q(λi)|2 ≤ i ≤ |VG|} ≤ 0(10.3)

if Q has been chosen such that 1+
∑n

k=1 βkKk(j) ≤ 0 for any integer j ∈ [dmin(C), n]
(since this implies that Q(λi) ≤ 0 for i ∈ {2, . . . , |VG|}). We eventually obtain by using
Corollary 10.2 with f = χv and by putting inequalities (10.3) and (10.2) together that

0 ≥ 1 − 1 +
∑n

k=1 βkPk(0)

|C|
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since Q(n) = 1 +
∑n

k=1 βkPk(0) by Theorem 5.1 and |VG| = |C|. This proves Theo-
rem 10.3.

11. General graph theory. In this section we review some basic terminology
and notions needed to generalize covering theory to graphs with multiple edges and/or
self-loops.

11.1. Directed graphs. By a directed graph we mean a pair of sets, G =
(VG, EG), with an identification of EG as a multiset of VG × VG. In other words,
G comes with an incidence map iG : EG → VG × VG. We write i, E, V for iG, EG, VG

if no confusion can result. If i(e) = (u, v), we say that e is of type (u, v) or that e
originates in u and terminates in v or that e’s tail is u and e’s head is v; in any case
we will write e ∼ (u, v); if no multiple edges occur, i.e., if i is injective, then we may
unambiguously write e = (u, v).

A walk is an alternating sequence of vertices and edges such that when . . . , v, e, . . .
occurs in the sequence, e’s tail is v, and similarly with the order of v, e reversed (with
“head” replacing “tail”). The adjacency matrix, AG, of a graph, G, is the square
matrix indexed on VG whose u, vth entry counts how many edges have type u, v. For
a positive integer, k, the u, vth entry of (AG)k counts how many directed walks there
are from u to v of length k. All this makes sense if VG or EG is infinite, although the
entries of AG or (AG)k may not be finite.

A morphism π : H → G of directed graphs is a collection of maps πV : VH → VG

and πE : EH → EG that commutes with the incidence relations (i.e., iG ◦ πE =
(πV ×πV ) ◦ iH). We often drop the subscripts from πV , πE if no confusion can result.

For a morphism of directed graphs, π : H → G, it is possible to give a number of
equivalent definitions for π to be a covering map; all definitions amount to π being
a local isomorphism in some sense. One definition is that for every vertex, v ∈ VG,
w ∈ π−1(v), and every edge e ∈ EG with tail v, there is exactly one f ∈ π−1(e) whose
tail is w, and similarly with “head” replacing “tail.” Another possibility is to define
the geometric realization of a graph (as in [Fri93]); then a covering map is a covering
map in the topological sense.

11.2. Graphs. By an undirected graph or simply a graph we mean a directed
graph, G, with an involution5 ι on EG that reverses heads and tails; in other words,
G’s edges are paired, e ∼ (u, v) with an edge ι(e) ∼ (v, u), where e may be paired
with itself6 if u = v.

A morphism of graphs is one of the underlying directed graphs that commutes
with the ι’s. Covering maps, adjacency matrices, and walks in graphs are just the
same as that of the underlying directed graphs.

It is now simple to see that all the theorems of this paper could as well have been
stated for graphs that may have self-loops or multiple edges.

12. Concluding remarks. One of the most exciting problems to us is that of
finding the Faber–Krahn maximizer and maximum of the hypercube. One can find
examples7 of very small or large balls that are not the Faber–Krahn minimizers.

5For ι to be an involution means that ι ◦ ι is the identity.
6This gives rise to “half-loops,” which are edges paired with themselves, and “whole-loops” in

the language of [Fri93]. For example, a whole-loop contributes 2 to an entry on the diagonal of the
adjacency matrix, whereas a half-loop contributes 1.

7For example, in the 3-hypercube, the two-dimensional subcube has eigenvalue 2, which is greater
than that of a ball of the same size, namely,

√
3. Similarly for the three-dimensional ball in the 7-

hypercube. Also the n/2−
√
n radius ball has eigenvalue n−4 (since n/2−

√
n is the first zero of the
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Question 12.1. Given γ ∈ (0, 1/2), is

lim
n→∞

FKBn

(
2H2(γ)

)
/n = 2

√
γ(1 − γ),

i.e., are balls asymptotically maximizers for the hypercube? If the answer is no, then
according to the method of Corollary 8.6, we have an improvement to the first MRRW
bound.

Appendix A. Calculations for coding theory. In this section we derive some
simple combinatorial bounds needed in our discussion of coding theory bounds.

Throughout this section we write f(n) ≈ g(n) if
(
log f(n)

)
/
(
log g(n)

)
→ 1 as

n → ∞ (for example, n ≈ 2n but n 	≈ n2).
Lemma A.1. If ρ ∈ (0, 1/2] is fixed, and if any integer n > 0, we set r = r(n) =

ρn�; then

|Br| ≈
(
n

r

)
≈ 2nh(ρ),

where |Br| is the size of the ball of radius r in the n-hypercube, and where

h(θ) = −θ log2 θ − (1 − θ) log2(1 − θ).

Proof. This is a very standard application of Stirling’s formula; see, for example,
[vL99].

Lemma A.2. Let α ∈ (0, 1) be fixed. For any integer n > 0 set k to be the even
integer equal either to αn� or to αn� + 1. Then

Nk(B
n) ≈ 2h(β0)n−nnk(1 − 2β0)

k,

where β0 is the unique solution in (0, 1/2) to the following equation:

(1 − 2β0) log(β−1
0 − 1) = 2α.(A.1)

Proof. Since ABn has eigenvalues n− 2i with multiplicity
(
n
i

)
, we have

Nk(B
n) =

1

2n

n∑
i=0

(
n

i

)
|n− 2i|k.

It follows that setting Bi =
(
n
i

)
(n− 2i)k, we see that

Nk(B
n)

n + 1
≤ max

i=0,...,n/2

Bi

2n
≤ Nk(B

n).

To find the i maximizing Bi, we write

Bi+1

Bi
=

(
n− i

i + 1

)(
n− 2(i + 1)

n− 2i

)k

=

(
n− i

i + 1

)
ek loge(1−2/(n−2i)).

Set β = βn = i0/n, where i0 is the (an) i ≤ n/2 maximizing Bi. Since Bi0+1 < Bi0

we have (
1 − β

β
+ O(n−1)

)
e

−2α
1−2β +O(n−1) < 1.

second Krawtchouk polynomial), and the (n−4)-dimensional subcube is smaller; so by monotonicity
(see [Fri93]) the ball here can also be beaten.
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Hence

1 − β

β
< e

2α
1−2β + O(n−1).

Similarly Bi0−1 < Bi0 , and the reverse inequality holds. Taking logarithms, we con-
clude that

log(β−1 − 1)(1 − 2β) = 2α,

where β is the lim sup and lim inf of βn. But differentiation shows that

f(β) = log(β−1 − 1)(1 − 2β)

has f ′(β) = −2 log(β−1 − 1)− (1− 2β)/(β − β2) which is less than 0 for β ∈ (0, 1/2).
It follows that there is a unique β0 ∈ (0, 1/2) that satisfies (A.1), and this β0 is the
limit of βn.

Corollary A.3. For α, n, k as above we have

Nk(B
n) ≈ nk

(
α + ω(α)

e

)k/2

,

where ω(α) is a function of α with ω(α) = O(α3/2) as α → 0.
Proof. For β = 1/2 − ε with ε small we have

log(β−1 − 1)(1 − 2β) = log

(
1/2 + ε

1/2 − ε

)
2ε = 2ε log

(
1 + 4ε + O(ε2)

)
= 8ε2 + O(ε3).

Hence for α small we have

2α = 8ε2 + O(ε3) or
√
α/4 = ε + O(ε2) = ε + O(α).

Differentiation shows that

h′(x) = log2(x
−1 − 1), h′′(x) =

− log2 e

x− x2
.

So h′(1/2) = 0 and h′′(1/2) = −4 log2 e, and

h(1/2 − ε) = 1 − 2(log2 e)ε
2 + O(ε3).

It follows that

2−n2nh(β)(n− 2β)k ≈ 2−n(2 log2 e)ε2+O(nε3)nk(1 − 2ε)k

≈ e−2n(α/4+O(α3/2))nαn
(
2
√

α/4 + O(α)
)αn

≈ e−αn/2eO(α3/2n
(
n
√
α
)αn(

1 +
(√

α
))αn ≈ nk(α/e)k/2

(
1 + O

(√
α
))k/2

,

and the proposition is finished.
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Proof of Corollary 6.5. Let G be the coset graph of C⊥. Consider the largest odd
integer, k, for which

k+2∑
i=0

(
n

i

)
≥ 2αn.(A.2)

It follows that there are two points in G of distance ≥ k + 3, and hence two edges of
distance ≥ k + 1. By Theorem 6.3, we have

λ2(AG) ≥
(
Nk−1(B

n)
)1/k

.

But by (A.2) and Lemma A.1, we have

2nh(k/n)+O(1) ≈ 2αn,

and thus

k/n = h−1(α) + on(1)

(where on(1) denotes a function that tends to zero as n → ∞). Since h−1(α) =
α/ log2(1/α) + O(α) for α small, Corollary A.3 then implies that

λ2/n ≥
√

α

e log2(1/α)
+ ω(α) + on(1),

where ω(α) = O
(√

α
)
. Now we use the fact that the minimum distance is (n− λ2)/

2.
Proof of Corollary 7.3. Let k be as in the previous proof, except that k is the

largest odd integer such that

Nk+1(B
n) ≥ nk/|VG|.

Then taking kth roots and dividing by n yields that k = nγ + o(n), where√
γ/e + ω(γ) = 2−α/γ ,

where ω(γ) = O(γ) for γ small. Hence

γ =
2α

log2(1/α)
+ O(α)

for α small. Now we follow as in the proceeding proof, except that here γ = k/n is,
to first order, twice what it was in the previous proof; this factor of 2 changes the C
from 1/

√
4e to 1/

√
2e here.

Appendix B. A calculus proposition. In this section we prove Proposi-
tion 4.1.

Let f be defined at α0, and set δ0 = f(α0). It suffices to show that αmax(δ0) ≤ α0.
For any ε > 0 near 0, fix an η > 0. If

αmax

(
f(α0 + ε) + η

)
> α0 + ε,(B.1)
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then there are codes Ci of length ni → ∞ as i → ∞ such that δCi
≥ f(α0 + ε) + η

and

lim
i→∞

αCi > α0 + ε.

By passing to a subsequence we can assume that αCi > α0 + ε for all i. But then δmax

exceeds f (by at least η) at the value α0 + ε, which is impossible. So inequality (B.1)
is impossible, meaning that

αmax

(
f(α0 + ε) + η

)
≤ α0 + ε.

Now let η = η(ε) = δ0 − f(α0 + ε) and let ε → 0. We conclude αmax(δ0) ≤ α0, and
that completes the proof.

Appendix C. The first eigenvalue of a ball and related calculations. In
this appendix we prove Proposition 8.5.

Since the size of the ball of radius nγ in B
n is ≈ 2nh(γ), we need only show that

the ball of radius nγ has first eigenvalue at least

2n
√
γ(1 − γ) + o(n).

Let 0 denote the origin in (F2)
n, which is a vertex of B

n; the weight, |v|, of a vertex,
v, of B

n is its distance from 0, or the number of nonzero coordinates it has. Consider
those functions, f , on B

n that depend only on the weight of the vertex. For such an
f , let fnrm, the normalization of f , be the function on [0, . . . , n] such that

fnrm(i) = f(v)

/ √(
n

i

)
for any v with |v| = i.

Then it is easy (and completely standard) to see that

(AGf)nrm(i) =
√

i(n− i + 1) fnrm(i− 1) +
√

(i + 1)(n− i) fnrm(i + 1)

for all i (the coefficient of the right-hand side vanishes for fnrm at the values −1 and
n + 1). So under normalization the operator AG becomes a symmetric tridiagonal

operator Ã whose i− 1, i entry is
√
i(n− i + 1). It follows that if i ∈ [γn−ω(n), γn],

where ω(n) is any function that is o(n), then the i− 1, i entry is

n
√

γ(1 − γ) + o(n).

Hence, by monotonicity (see, e.g., [Fri93]), the first Dirichlet eigenvalue of the ball of
radius nγ is at least that of the path of length ω(n) + 1 times

n
√

γ(1 − γ) + o(n).

But this path’s eigenvalue is well known to be 2 cos(π/ω(n)), giving us a lower bound
on the ball’s eigenvalue of

2n
√

γ(1 − γ) + o(n),

provided that ω(n) grows faster than
√
n (e.g., we may take ω(n) = n3/4).
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THE STRONG CHROMATIC INDEX OF RANDOM GRAPHS∗

ALAN FRIEZE† , MICHAEL KRIVELEVICH‡ , AND BENNY SUDAKOV§

Abstract. The strong chromatic index of a graph G, denoted by χs(G), is the minimum
number of colors needed to color its edges so that each color class is an induced matching. In this
paper we analyze the asymptotic behavior of this parameter in a random graph G(n, p), for two
regions of the edge probability p = p(n). For the dense case, where p is a constant, 0 < p < 1, we

prove that with high probability χs(G) ≤ (1 + o(1)) 3
4

n2p
logb n

, where b = 1/(1 − p). This improves

upon a result of Czygrinow and Nagle [Discrete Math., 281 (2004), pp. 129–136]. For the sparse

case, where np < 1
100

√
logn/ log logn, we show that with high probability χs(G) = Δ1(G), where

Δ1(G) = max{d(u) + d(v) − 1 : (u, v) ∈ E(G)}. This improves a result of Palka [Australas. J.
Combin., 18 (1998), pp. 219–226].

Key words. strong chromatic index, random graphs
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1. Introduction. Given a graph G = (V,E), the strong chromatic index χs(G)
is the minimum number of colors needed to color the edges of G so that every color
class is an induced matching; i.e., any two edges of the same color are at distance at
least 2 in G. This notion was introduced by Erdős and Nešetřil (see [3]). Equivalently,
it is the chromatic number of the square L(G)2 of the line graph L(G). Thus if Δ
denotes the maximum degree of G, the maximum degree of L(G)2 is at most 2Δ2−2Δ
and so χs(G) ≤ 2Δ2 − 2Δ+1. It was conjectured in [3] that χs(G) ≤ 5Δ2/4 and this
would be tight if true. Using a probabilistic argument, Molloy and Reed [5] showed
that χs(G) ≤ (2 − ε)Δ2 for some small positive constant ε.

In this paper we study the strong chromatic index of the random graph G(n, p).
As usual, G(n, p) stands for the probability space of labeled graphs on n vertices,
where every edge appears independently and with probability p = p(n). Palka [6]
showed that if p = Θ(n−1), then whp1 χs(G) = O(Δ(G)) = O(log n/ log log n). Vu
[7] showed that if n−1(log n)1+δ ≤ p ≤ n−ε for constants 0 < ε, δ < 1, then whp
χs(G) = O(Δ2/ log Δ). Czygrinow and Nagle [2] showed that if p > n−ε, then
χs(G) ≤ (1 + o(1))n2p/ logb n, where b = 1/(1 − p). In this paper we will obtain new
bounds on χs(G(n, p)) that improve the above results of Palka and of Czygrinow and
Nagle.

To formulate our first theorem we need the following definition. For graph G =
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1A sequence of events En occurs with high probability (whp) if limn→∞ Pr(En) = 1.
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(V,E) let d(v) denote the degree of vertex v ∈ V and let

Δ1 = Δ1(G) = max{d(u) + d(v) − 1 : (u, v) ∈ E}.

Set

λ =

(
log n

log log n

)1/2

.

Then, for the sparse random graphs we prove the following tight result.
Theorem 1. Let p be such that np ≤ λ/100. Then whp, with G = G(n, p),

χs(G) = Δ1(G).

Remark 1. A straightforward calculation shows that in this range of edge proba-
bilities, Δ1(G) = (1 + o(1))Δ(G).

Remark 2. The observant reader will notice that our proof shows that the related
choice number is also Δ1 whp; i.e., as long as each edge is given a list of Δ1 colors,
we can strongly edge color it.

We have learned via private communication with Tomasz �Luczak that in unpub-
lished work he has obtained a result similar to Theorem 1.

For the dense case we improve the aforementioned result of Czygrinow and Nagle
by a constant factor.

Theorem 2. Let p > 0 be a constant. Denote b = 1/(1 − p). Then whp, with
G = G(n, p),

χs(G) ≤ (1 + o(1))
3

4

n2p

logb n
.

By the above result, the edges of G(n, p) can be a.s. strongly colored so that the
average size of a color class is at least (1 − o(1)) 2

3 logb n.
Remark 3. The size of the largest induced matching in G(n, p) is whp asymptot-

ically equal to logb n, and so whp χs(G) is asymptotically at least n2p
2 logb n .

1.1. Notation. A sequence of events En is said to occur quite surely (qs) if
Pr(En) = O(n−K) for any constant K > 0.

Unless the base is specifically mentioned, log will refer to natural logarithms.
We often refer to the Chernoff bound for the tails of the binomial distribution.

By this we mean one of the following (see, e.g., [4]):

Pr(B(n, p) ≤ (1 − ε)np) ≤ e−ε2np/2,

Pr(B(n, p) ≥ (1 + ε)np) ≤ e−ε2np/3, ε ≤ 1,

Pr(B(n, p) ≥ μnp) ≤ (e/μ)μnp.

2. Sparse random graphs. Given a graph G with maximum degree Δ, let
β =

√
Δ/2. Denote by Lβ the set of vertices of G which are within distance at most

2 from the set of vertices of degree at least β. Let Gβ be the subgraph of G induced
by Lβ . First we need the following simple statement.

Lemma 3. Let G be a graph for whose subgraph Gβ is acyclic. Then χs(G) =
Δ1(G).
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Proof. Clearly, for every edge (u, v) of G, the edge itself and all edges incident
with u, v must have distinct colors. Therefore χs(G) ≥ Δ1(G) and it remains to show
the reverse inequality.

We start by coloring the edges of Gβ . Since all connected components of this
graph are trees, it is enough to show that edges of every such tree T can be colored
using only Δ1(T ) ≤ Δ1(G) colors. We do this by induction on the number of edges
of T . It is trivial if T has one edge or, more generally, is a star. Now root T at an
arbitrary vertex r and let x be a vertex of degree 1 of T at maximum distance from
r. Let y �= r be its unique neighbor in T and let z be the neighbor of y on the path
from x to r (z = r is possible here). Let T ′ = T − x and let d, d′ refer to vertex
degrees in T, T ′, respectively. By induction we can color the edges of T ′ using only
Δ1(T

′) ≤ Δ1(T ) colors. Then the number of colors forbidden for edge e = (x, y) is at
most

D′ = d′(y) + d′(z) − 1 =
(
d(y) − 1

)
+ d(z) − 1 =

(
d(y) + d(z) − 1

)
− 1 ≤ Δ1(T ) − 1.

Therefore there is a color which is not used at y or z and we can use it to color the
edge (x, y).

Having finished coloring the edges of Gβ , we can color the remaining edges
e1, e2, . . . , eM of G in this (arbitrary) order. Note that, by definition, for every edge
(u, v) outside Gβ , all the neighbors of both u and v should have degree less than β.
Therefore when we come to color ei we find that at most 2β2 ≤ Δ/2 < Δ1 colors
have been forbidden by the coloring of previous edges, and so there will always be an
allowable color.

Lemma 4. Let p be such that np ≤ λ/100. Let T be a fixed set of vertices of size
|T | = t and let A be a fixed set of at most 2t edges. Then conditioning on the event
that all edges in A are present in G(n, p), the probability that all the vertices in T
have degree at least λ/3 is at most 2e−λt/10.

Proof. By definition, it is easy to see that for such a set T , either there are at
least λt/9 edges in the cut (T, V (G) − T ), or the set T spans at least λt/9 edges of
G(n, p). Since we are conditioning on the presence of at most 2t edges, we have that
either there are at least λt/9− 2t ≥ λt/10 random edges in the cut (T, V (G)− T ) or,
similarly, the set T contains at least λt/10 random edges of G(n, p). Using the fact
that np ≤ λ/100, the probability of the first event can be bounded by(

t(n− t)

λt/10

)
pλt/10 ≤ (10e(n− t)pλ−1)λt/10

≤ e−λt/10.

Similarly, the probability of the second event is at most(
t(t− 1)/2

λt/10

)
pλt/10 ≤ (5e(t− 1)pλ−1)λt/10

≤ e−λt/10.

Altogether we obtain that the probability that all the vertices in T have degree at
least λ/3 is at most 2e−λt/10.

Lemma 5. Let p be such that np ≤ λ/100. Then whp, with G = G(n, p), the
subgraph Gβ is acyclic.

Proof. If np ≤ 1/ log log n, then the probability that G(n, p) contains a cycle
is at most

∑
t≥0 n

tpt = o(1); i.e., it is acyclic whp. Therefore we can assume that
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np ≥ 1/ log log n. In this case it is well known (see, e.g., [1]) that the maximum degree
of the random graph is whp at least (1 + o(1)) logn

log log n . Let X be the set of vertices

of G = G(n, p) which are within distance at most 2 from a vertex of degree at least
d0 = λ/3. Then it is enough to show that the subgraph of G(n, p) induced by X is
acyclic whp.

Let C be a shortest cycle in the subgraph G[X] induced by X, and let t be the
length of C. We claim that there are at least t/10 vertex disjoint paths of length at
most 2 connecting vertices of the cycle to vertices of degree at least d0. Since every
vertex of the cycle is within distance at most 2 from some vertex of degree at least
d0, there is always at least one such path. Therefore we can assume that t ≥ 10.

Let v1, . . . , vs be a largest set of vertices of C such that the distance along the
cycle between any two of them is at least 5. Clearly s = �t/5� ≥ t/10. Note that
since C was the shortest cycle in G[X], the distance between every pair vi �= vj in
this graph is also at least 5. By the definition of X, for every vi, 1 ≤ i ≤ s, there is
a path Pi of length at most 2 from vi to a vertex of degree at least d. All vertices of
this path belong to X and the paths Pi and Pj are vertex disjoint, since otherwise
the distance between vi and vj in G[X] would be at most 4. The path Pi may share
edges with C. On the other hand, once the path Pi leaves the C it cannot come back,
since otherwise it will create a shorter cycle. Let ui be the last vertex of Pi which
still belongs to C, P ′

i be the part of Pi which is edge disjoint from C, and wi be the
endpoint of P ′

i which has degree at least d0. Denote by H the union of all paths P ′
i

and C. We now estimate the probability that G(n, p) contains such a subgraph.

The number of ways to choose a cycle C is at most nt and the probability that it
appears in G(n, p) is pt. We can choose the set of vertices ui in at most

(
t
s

)
≤ 2t ways.

The path between ui and wi can have length 0, 1, or 2, and there are at most 3t/5

different ways to choose a length for every path P ′
i . The number of paths of length

0, 1, 2 is at most 1, n, n2, respectively, and their existence probabilities are 1, p, p2.
Note that after we choose the paths P ′

i the vertices wi are fixed and we expose a set
A of at most t+2(t/5) ≤ 2t edges of G(n, p). Therefore, by Lemma 4, the probability
that all the vertices wi have degree at least d0 is bounded by 2e−λs/10 ≤ 2e−λt/100.
As np < λ <

√
log n, we can combine the above facts to conclude that the probability

that a graph H appears in G(n, p) is bounded by

∑
t≥3

nt pt 2t 3t/5
(
1 + np + n2p2

)t/5
e−λt/100

<
∑
t≥3

(6np)t(2λ)t/5e−λt/100

<
∑
t≥3

λ2te−λt/100

= o(1).

This completes the proof of the lemma and the proof of Theorem 1.

3. Dense random graphs. Assume now that 0 < p < 1 is a constant. We
remind the reader that b = 1/(1 − p).

Let

k =

⌈(
2

3
− ε

)
logb n

⌉
,
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where 0 < ε < 2/3 is a constant. We will prove that whp χs(G(n, p)) ≤ (1 +
o(1))|E(G)|/k.

Let s = log2 n, n0 = n/s. Fix a partition of the vertex set V (G) into s parts
V1, . . . , Vs of nearly equal size: |Vi| ≈ n/s. It will be enough to prove the following
statement.

Lemma 6. With high probability G = G(n, p) satisfies the following:
(1) For all pairs 1 ≤ i �= j ≤ s, all but at most O(n2/ log6 n) edges of the bipartite

graph G[Vi, Vj ] can be packed into induced matchings of size k.

(2) For all pairs 1 ≤ i �= j ≤ s, |E(Vi, Vj)| ≤ n2
0p + n

3/4
0 .

Indeed, assume that the conditions stated in the above lemma hold for G. Then
we strongly color E(G) as follows:

1. First, for each pair 1 ≤ i �= j ≤ s, color all but at most n2/ log6 n edges

between Vi and Vj in at most
|E(Vi,Vj)|

k ≤ n2
0p
k +

n
3/4
0

k colors.
2. For each 1 ≤ i �= j ≤ s, color the uncolored edges between Vi and Vj in a new

color each. The total number of additional colors used for all pairs (Vi, Vj)

does not exceed
(
s
2

)
n2

log6 n
≤ n2/ log2 n.

3. Color all of the edges inside each Vi in a new color. This stage consumes at
most s

(
n/s
2

)
≤ n2/ log2 n colors.

Altogether, we will have used (1 + o(1))n2p/(2k) colors as required.
Proof of Lemma 6. Part (2) follows immediately from applying the Chernoff

bounds for the binomial distribution to the number of edges joining Vi, Vj . We can
thus concentrate on the bipartite graphs G[Vi, Vj ]. Obviously, coloring such a bipartite
graph is affected only by the edges between Vi and Vj and also the edges inside Vi

and Vj (we are after the strong chromatic index here).
We first expose the edges of the random graph G(n, p) inside the sets Vi, 1 ≤ i ≤ s.

Let t = n2/3. We will be able to assume that the following two properties hold inside
each Vi.

Lemma 7. With high probability in G = G(n, p), for each set Vi we have the
following:

(1) For every collection of k disjoint sets W1,W2, . . . ,Wk ⊂ Vi of size |Wi| =
ν0 ≥ n1/3/ log6 n there is an independent transversal in G, i.e., an indepen-
dent set of vertices {w1, w2, . . . , wk} such that wi ∈ Wi, i = 1, 2, . . . , k.

(2) Vi contains a collection Ii of O(n5/3/ log n) independent sets of size k in G
such that |Il1 ∩ Il2 | ≤ 1 for each Il1 �= Il2 ∈ Ii, and each vertex v ∈ Vi

participates in t(v) sets from Ii, where t(v) ∈ [t± n5/9].
Proof. For (1), fix W1,W2, . . . ,Wk ⊂ Vi and let X be the number of independent

transversals. Then

E(X) = νk0 (1 − p)(
k
2).

We can now apply Janson’s inequality; see, for example, Janson, �Luczak, and Ruciński
[4]. Thus let

Δ =
k∑

l=2

(
k

l

)
ν2k−l
0 (1 − p)2(

k
2)−(l

2)

≤ k2ν2k−2
0 (1 − p)2(

k
2)−1.

The last inequality follows from the fact that the sum is dominated by the term l = 2.
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Indeed, the ratio of the lth to the second term is(
k
l

)
ν2k−l
0 (1 − p)2(

k
2)−(l

2)(
k
2

)
ν2k−2
0 (1 − p)2(

k
2)−1

≤ kl−2

νl−2
0 (1 − p)(

l
2)−1

=

(
k

ν0(1 − p)(l+1)/2

)l−2

≤ n−ε(l−2)/3 .

Janson’s inequality implies that

Pr(X = 0) ≤ exp

{
−E(X)2

2Δ

}

≤ exp

{
−ν2

0(1 − p)

k2

}
.

The number of choices for i,W1,W2, . . . ,Wk is certainly less than nkν0 , and so the
probability that there exists a collection without an independent transversal is at most

nkν0 exp

{
−ν2

0(1 − p)

k2

}
= o(1).

To get (2), we can argue as follows. Observe that whp every set of 1 ≤ j ≤ k vertices of
Vi has (1+O(n−1/6))n0(1−p)j common nonneighbors in Vi. Indeed, by the Chernoff
bound the probability that there is a set S, |S| = j ≤ k for which the number of
common nonneighbors lies outside [(1 ± θ)n0(1 − p)j ] (θ = n−1/6) is at most

2

k∑
j=1

(
n

j

)
exp{−θ2n0(1 − p)j/3} ≤ 2

k∑
j=1

(
n

j

)
e−nε/(3 log2 n) = o(1).

This enables us to conclude that whp the number of independent sets τ(v) of size k
contained in Vi and containing vertex v ∈ Vi is asymptotically equal to μ =

(
n0−1
k−1

)
(1−

p)(
k
2). Indeed, given the above property, it follows by induction on j ≤ k that for all

v ∈ Vi there are between (1 − jn−1/6)
(
n0−1
j−1

)
(1 − p)(

j
2) and (1 + jn−1/6)

(
n0−1
j−1

)
(1 −

p)(
j
2) independent sets of size j in Vi which contain v, i.e., |τ(v) − μ| ≤ n−1/6+o(1)μ.

Furthermore, we can also deduce that for a fixed pair u, v ∈ Vi the number τ(u, v) of
independent sets of size k containing both u and v will be at most (1 + θ)k

(
n0−2
k−2

)
(1−

p)(
k
2)−1 = O(kμ/n0).
Form a random subfamily I0

i of independent sets of size k in Vi by choosing each
of them independently with probability t/μ. Then, by the Chernoff bound, for every

v ∈ Vi qs the number of elements of I0
i containing v is between τ(v)t

μ − t2/3 and
τ(v)t
μ + t2/3. Also,

|I0
i | =

μn0

k
· t

μ
(1 + o(1)) =

tn0

k
(1 + o(1)) .

For u, v ∈ Vi the probability that I0
i contains at least log n sets containing both u

and v is at most(
τ(u, v)

log n

)(
t

μ

)logn

≤
(
τ(u, v)et

μ log n

)logn

=

(
O

(
kt

n0 log n

))logn

= n(−1/3+o(1)) log n ,

and thus qs for each pair u, v ∈ Vi

I0
i contains at most log n sets containing u and v .(3.1)
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Also, observe that the number of pairs of independent sets of size k in Vi having v and
another vertex in common is at most

∑
u∈Vi

(
τ(u,v)

2

)
= O(μ2k2/n0). Therefore the

probability that I0
i contains at least n1/2 disjoint pairs of independent sets containing

v and having another vertex in common is at most

(
O(μ2k2/n0)

n1/2

)(
t

μ

)2n1/2

=

(
O

(
μ2k2

n
3/2
0

· t2

μ2

))n1/2

= n−(1/6−o(1))n1/2

.

(Pairs (I1, I2), (I3, I4) are disjoint if {I1, I2} ∩ {I3, I4} = ∅.) We conclude that qs for
all v ∈ Vi

I0
i contains at most n1/2 disjoint pairs of sets sharing v and another vertex.(3.2)

Assume now that properties (3.1) and (3.2) hold. Then we claim that for every
v ∈ Vi, I0

i contains at most n1/2 log2 n pairs of independent sets sharing v and another
vertex. Suppose this is not so. Observe that by property (3.1) each independent set
I ∈ I0

i , containing v, has another vertex in common with at most |I| log n < log2 n−1
sets from I0

i containing v. Therefore if we form a maximal by inclusion family of
disjoint pairs in I0

i containing v and sharing another vertex, its size will be more than
n1/2 log2 n/ log2 n = n1/2—a contradiction to property (3.2).

Deleting from I0
i one independent set from each pair of sets sharing more than

one vertex, we obtain a family Ii with O(tn0/k) = O(n5/3/ log n) sets, in which each
pair of sets has at most one vertex in common, and every v ∈ Vi belongs to t(v) sets
from Ii, where t(v) ∈ [t− t/n1/7, t + t/n1/7].

From now on we assume that the conditions stated in Lemma 7 hold. Let us
concentrate on the pair (Vi, Vj), i < j.

Let v ∈ Vi. Assume that (u, v) ∈ E(G), where u ∈ Vj . We define

R(v, u) = {Il ∈ Ii : v ∈ Il, N(u) ∩ Il = {v}};

i.e., Il is in R(v, u) iff v ∈ Il and v is the only neighbor of u in Il. Before diving into
technical details, let us explain the main idea of the proof. Let Il = {v1, . . . , vk}.
Assume that u1, . . . , uk form an independent set of size k in Vj such that (vi, ui) ∈
E(G) and Il ∈ R(vi, ui) for all 1 ≤ i ≤ k. Then the set of edges {(vi, ui) : 1 ≤ i ≤ k}
forms an induced matching of size k in G. Our aim will be to pack most of the edges
between Vi and Vj in such matchings. To this end, we assign each edge (v, u) of G
between Vi and Vj to one of the independent sets Il ∈ R(v, u). Then, for each set
Il ∈ Ii we distribute almost all the edges assigned to Il between induced matchings
of size k as indicated above.

Assume e = (v, u) ∈ E(G) for v ∈ Vi, u ∈ Vj . We assign edge e to one of the
independent sets containing v as follows: If R(v, u) = ∅, then e stays unassigned;
otherwise e is assigned to a random member of R(v, u). Denote

ρ = (1 − p)k−1 = n−2/3+ε+o(1) .

Recall that we denoted by t(v) the number of independent sets in Ii containing v. The

probability that e stays unassigned, conditioned on e ∈ E(G), is (1−ρ)t(v) ≤ e−nε+o(1)

.
Therefore applying the union bound we can conclude that qs every edge e = (u, v) of
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every pair (Vi, Vj) gets assigned. Also,

Pr
[
e gets assigned to Il

]
=

t(v)∑
r=1

1

r

(
t(v) − 1

r − 1

)
ρr(1 − ρ)t(v)−r

=
1

t(v)

(
1 − (1 − ρ)t(v)

)
.

(The parameter r above counts the number of independent sets in R(v, u).)
Now let Il ∈ Ii, v ∈ Il. Denote by T (v, l) the set of neighbors u of v in Vj such

that (v, u) is assigned to Il. Note that for any two edges e = (v, u) and e′ = (v, u′)
the events e and e′ gets assigned to Il depend on disjoint sets of pairs of vertices in
G(n, p) and are mutually independent. Hence, conditioned on the degree d(v, Vj),
the random variable |T (v, l)| is distributed binomially with parameters d(v, Vj) and

1
t(v) (1 − (1 − ρ)t(v)). The degree d(v, Vj) in turn is also distributed binomially with

parameters n0 = |Vj | and p. So, applying the Chernoff bound twice, we can argue
that whp ∣∣|T (v, l)| − n0p/t

∣∣ ≤ n3/10(3.3)

for all (Vi, Vj), Il ∈ Ii, v ∈ Il.
Now consider Il ∈ Ii. Assume Il = {v1, . . . , vk}. The sets T (vi, l) are pairwise

disjoint by construction. As long as |T (vi, l)| ≥ n1/3/ log6 n, we repeat the following
procedure:

1. Find an independent transversal for the family {T (vi, l)}ki=1. Let it be
(u1, . . . , uk), where ui ∈ T (vi, l). This is possible due to the first condition
of Lemma 7.

2. The set of edges M = {(v1, u1), . . . , (vk, uk)} forms an induced matching. We
color M by a fresh color.

3. Update T (vi, l) := T (vi, l) − ui for 1 ≤ i ≤ k.
When this process stops, |T (vi, l)| ≤ n1/3/ log6 n + 2n3/10, due to (3.3), and hence∣∣∣∣∣

k⋃
i=1

T (vi, l)

∣∣∣∣∣ ≤
(

n1/3

log6 n
+ 2n3/10

)
k = O

(
n1/3

log5 n

)
.

Since whp every edge is assigned to some T (v, l), altogether the number of edges
between Vi and Vj that are left uncolored is at most

|Ii| · O
(

n1/3

log5 n

)
= O

(
n2

log6 n

)
.

This completes the proof of Lemma 6 and thus of Theorem 2.

4. Concluding remarks.
• We strongly believe that the bound we obtain here for the dense case can

be further improved, and that in fact the following holds true (it was first
conjectured in [2]).
Conjecture 8. Let p = p(n) satisfy n−1+ε ≤ p(n) ≤ 0.99, where 0 < ε < 1
is a constant. Then whp in the random graph G = G(n, p),

χs(G) = (1 + o(1))
n2p

2 logb n
,

where b = 1/(1 − p).
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Proving this conjecture, even for a single value of p(n), seems to be quite a
challenging task. It appears that the proof method employed in the current
paper has exhausted its potential, and new ideas are needed to establish the
above conjecture.

• We prove that for random graph G = G(n, p), where np 
√

log n/ log log n,
whp χs(G) = Δ1(G). A simple first moment calculation shows that this is
no longer true when np �

√
log n. Hence the range of p in the assertion of

Theorem 1 is not very far from being best possible. Nevertheless, it would be
interesting to determine or at least to estimate the edge probability threshold
at which the equality χs(G) = Δ1(G) ceases to be valid.
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1. A simple graph inequality. Consider the diagram in Figure 1.

X
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1G (X)

v

v

v

Fig. 1. A graph inequality G1(X) ⊆ G2(X).

Is there a solution to this inequality? More precisely, is there an undirected graph
X with a vertex v such that if we construct a graph G2(X) by taking two copies of
X and connecting their v vertices by an edge, and a graph G1(X) by adding two
new vertices to X and connecting them with v, then G1(X) occurs as a subgraph of
G2(X)?

A moment’s reflection will show that the answer is yes: Take X to be a path of
length two together with an isolated vertex v. What happens if we restrict ourselves
to connected graphs? Again the answer is yes: Take a rooted infinite ternary tree
and connect its root by an edge to a new vertex v. What about finite and connected
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graphs? the patient reader will ask. The answer in this case is no, there is no finite,
connected graph X fulfilling the inequality in Figure 1, and this is the main result of
this section.

Theorem 1.1. There is no connected, finite solution of the Figure 1 inequality.
A simpler version of this theorem (for finite trees) was used in the first author’s

thesis [Sch99, Sch01] to determine the computational complexity of the arrowing rela-
tion in graph Ramsey theory: deciding F → (T,Kn) is complete for the second level
of the polynomial-time hierarchy (where F is a finite graph, T is a finite tree of size
at least two, and Kn is the complete graph on n vertices).

Graph equations (more so than graph inequalities) have been studied for a while,
and there are two survey papers dating back to the late 1970s [CS77, CS79, Cap79].
The equalities and inequalities considered in these papers are more general in that
they allow arbitrary operations on graphs such as complementation, tensor products,
and squaring. Capobianco, Losi, and Riley, for example, showed that there are no
(nontrivial) trees whose square is the same as their complement [CLR89]. The more
general question of which graphs fulfill G2 = G is still open [BST94], but it is known
that the equation has infinitely many solutions [CK95].

We conclude this section with a proof of Theorem 1.1. Section 2 contains a gen-
eralization of this result: The solvability of graph inequalities with only one variable
having one specified vertex can be decided. In section 3 we show that a natural gener-
alization of graph inequalities leads to an undecidable solvability problem. Section 4
contains stronger results for graph inequalities over directed graphs: While the solv-
ability of directed graph inequalities with only one variable and one specified vertex
remains decidable, we can show that the solvability of directed graph inequalities is
undecidable (even with at most three variables and two specified vertices for each
variable).

Before we begin the proof we introduce some standard notation [Die97]. We write
G = (V,E) for a graph G with vertex set V = V (G) and an edge set E = E(G). The
edge between vertices u, v ∈ V is written as (u, v). The order of a graph is defined as
|V (G)|, and the size |G| is defined as |E(G)|. A graph is finite if it has finite order
and connected if there is a path between any two of its vertices.

Proof of Theorem 1.1. Let X be a minimal solution of the inequality. Denote the
copies of X in G2(X) by Xi, i = 1, 2. An element of X is either its edge or vertex.
Given an element x of X, we denote the corresponding element of Xi by xi.

Let φ be the embedding of G1(X) into G2(X). Clearly (v1, v2) ∈ Im φ, since
otherwise G1(X) would map into X1 or X2. Assume that there is an edge e ∈ X
such that neither e1 nor e2 is in Im φ. Let Y be the connected component of X −{e}
containing v. From the connectedness of G1(X) it follows that Im φ ⊆ G2(Y ). Now
the restriction of φ to G1(Y ) is an embedding of G1(Y ) into G2(Y ), contradicting the
minimality of X.

Thus for every e ∈ X either e1 or e2 is in Im φ. Note that this implies that
for every vertex u ∈ X either u1 or u2 is in Im φ. Let Yi be the subgraph of X
corresponding to Im φ∩Xi (as a subgraph of Xi). Then for each e ∈ X either e ∈ Y1

or e ∈ Y2. We know that

Y1 ∪ Y2 = X,(1)

|V (Y1)| + |V (Y2)| = |V (Im φ)| = |V (G1(X))| = |V (X)| + 2,(2)

|E(Y1)| + |E(Y2)| = |E(Im φ)| − 1 = |E(G1(X))| − 1 = |E(X)| + 1.(3)

The first equality in (3) follows from the fact that (v1, v2) ∈ Im φ, but (v1, v2) �∈ Im φ∩
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v

v

u

u

1

2 2

v u

=1

=2

φ

Y

Y

1

2

X

X

Y

Y

1

1

2
1

Im

Im G (X)φ

Im o

Fig. 2. Im φ and G1(X).

(X1 ∪X2). From (1), (2), (3) we conclude that |V (Y1 ∩Y2)| = 2 and |E(Y1 ∩Y2)| = 1,
which implies that the intersection of Y1 and Y2 is a single edge f . We know that
v ∈ V (Y1) ∩ V (Y2), and hence f = (v, u) for some u ∈ V (X). Figure 2 illustrates the
situation.

Let ai be the number of vertices from V (Yi) \ {u, v} which have degree 1 in X.
Let b be 1 if u has degree 1 in X and 0 otherwise. The number of vertices of degree
1 in G1(X) is a1 + a2 + b + 2. The number of vertices of degree 1 in Im φ is at most
a1 + a2 + b + 1. Hence Im φ and G1(X) are not isomorphic, a contradiction.

2. Decidability of graph inequalities. We could now start considering all
kinds of diagrams involving graphs, vertices, edges, and the subgraph relationship.
How hard is it to settle these questions? In this section we will show that the solvability
of graph inequalities of the type presented in the previous section, i.e., having only
one graph variable with one specified vertex, is decidable. This will follow from an
(exponential) upper bound on the size of a minimal solution (if there is one). This
result will be complemented by the undecidability result of the next section.

Let us formalize the question. A graph variable X with a set of specified vertices
v1, . . . , vm represents an unknown finite, connected graph whose vertex set includes
vertices v1, . . . , vm. Given several graph variables X1, . . . , Xn and a graph G, we can
construct a graph term G(X1, . . . , Xn) (called gterm) by taking several copies of each
Xi and identifying some specified vertices of the copies with some vertices of G. Since
we are working with connected graphs we require G(X1, . . . , Xn) to be connected
(for any assignment of connected graphs to X1, . . . , Xn). Note that G itself does not
have to be connected and that if G(X1, . . . , Xn) is connected for some assignment of
connected graphs to X1, . . . , Xn, then it is connected for all assignments.

Given two such gterms G1(X1, . . . , Xn), G2(X1, . . . , Xn), we can ask whether
there exists an assignment of connected finite graphs to the variables X1, . . . , Xn such
that G1(X1, . . . , Xn) is a subgraph of G2(X1, . . . , Xn). We call a question of this type
a graph inequality.

For the rest of this section we will consider the simplest possible case of a graph
inequality: only one variable, X, with one specified vertex v. Let G1(X) be a gterm
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1G (X)
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(1)
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i
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[2]

G (X)2
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Fig. 3. Inequality G1(X) ⊆ G2(X).

consisting of a connected graph H and a copy of X attached with v to each vertex
of a multisubset I = {i1, . . . , i�} of vertices of H. Similarly construct G2(X) from a
connected graph F and a multisubset J = {j1, . . . , jk} of vertices of F . The copy of
X in G2(X) attached to jr (1 ≤ r ≤ k) is called X(r), and the copy of X in G1(X)
attached to ir (1 ≤ r ≤ �) is called X[r]. If there is only one copy of X in G1(X), we
call it X.

Theorem 2.1. If the inequality in Figure 3 has a solution X, then it has a
solution of size at most |F |(1 + k)|H|.

The upper bound on the size of a minimal solution is exponential in the size of
the equality; hence to decide solvability we just have to test all graphs up to that size,
something which can be done in nondeterministic exponential time (NEXP).

Corollary 2.2. The solvability of graph inequalities of the type in Figure 3 can
be decided in NEXP.

We do not know the precise computational complexity of the decision problem.
It is at least NP-hard, since we can ask whether a graph contains a clique.

At the core of the proof are Lemmas 2.5 and 2.7, which show that for a minimal
solution to the graph inequality (if it exists) we can assume that all of the vertices of I
are mapped to vertices of F . This reduces the problem to a simpler variant (namely,
the images of vertices from I are prescribed) dealt with by Lemma 2.4 (based on the
representation result of Lemma 2.3).

First we characterize solutions of inequalities (with prescribed mapping) where
on the left-hand side there is only one copy of X and v has to map to a vertex w of
F on the right-hand side.

If w ∈ J , then any connected graph is a solution. Now assume w �∈ J . Let Σ
be the alphabet consisting of the numbers 1, . . . , k. For each word α from Σ∗ take a

copy F (α) of F . For every α ∈ Σ∗ and a ∈ Σ identify w(αa) and j
(α)
a . The resulting

infinite graph is called F∞ (see Figure 5).
Lemma 2.3. Assume that w �∈ J = {j1, . . . , jk}. Then the solutions of the

inequality in Figure 4 are precisely the subgraphs X of F∞ with v = w() such that

for any edge e in F , any α ∈ Σ∗, a ∈ Σ,
if the edge e(aα) is in X, then e(α) is in X.

(4)

Proof. If X is a subgraph of F∞ satisfying condition (4), then X is a solution of
the inequality via mapping φ:

φ(x()) = x,
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Fig. 4. Inequality X ⊆ G2(X), v → w.
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Fig. 5. F∞.

φ(x(aα)) = x
(α)
(a) .

If X is a solution of the inequality via mapping φ : X → G2(X), then define

Y () = φ−1(F ),

Y (aα) = φ−1(Y
(α)
(a) ),

where Y
(α)
(a) is the copy of Y (α) in X(a) in G2(X). If e is an edge of X with distance

d from v, then it must map either to F or to some edge f in some X(r) which has
strictly smaller distance from v(r) than d. Edges adjacent to v must be mapped to F ,

and hence they are in Y (). By induction it follows that

X =
⋃

α∈Σ∗

Y (α).

Clearly Y (α) is a subgraph of F via φ|α|+1 for any α ∈ Σ∗. The element of Y (α)

corresponding to x ∈ F is called x(α). By induction it follows that w(αa) = j
(α)
a for

any α ∈ Σ∗, a ∈ Σ. From the definition of Y ’s, if e(aα) is in X, then the edge e(α) is
also in X for any α ∈ Σ∗, a ∈ Σ. Hence X is a subgraph of F∞ satisfying (4).
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Solving systems of simple graph inequalities is useful in solving more complicated
inequalities.

Lemma 2.4. If a system of inequalities with prescribed mappings

H1 ⊆ X, h1 → v; . . . ;Hm ⊆ X, hm → v,(5)

X ⊆ F1(X), v → w1; . . . ;X ⊆ Fn(X), v → wn(6)

has a solution, then it has a solution of size at most |F1|(1 + k1)
M , where k1 is the

number of copies of X in F1 and M := max{|H1|, . . . , |Hm|}, assuming that the graphs
H1, . . . , Hm are connected.

Proof. Let X be a minimal solution of the system. Let e be an edge of X whose
distance d from v is maximal. Assume that d > M . If we remove the edge e, then
X ′ = X − {e} still satisfies inequalities (5), because no edge of any Hi (1 ≤ i ≤ m)
can map to e. If X satisfies the inequality in Figure 4 for F = Fi (1 ≤ i ≤ n), then
by Lemma 2.3 it is a subgraph of F∞ with v = w() and it satisfies condition (4). Let
e = f (α). Clearly X ′ is also a subgraph of F∞ and the condition is still satisfied,
because dist(v, f (aα)) > dist(v, f (α)) and hence f (aα) �∈ X ′ for any a ∈ Σ. Therefore
X ′ satisfies inequalities (6), a contradiction to the minimality of X.

Thus dist(v, e) ≤ M . The size of the subgraph of F∞
1 consisting of edges within

distance M from v is bounded by |F1|(1 + k1)
M .

Now we return to the inequality in Figure 3.
Lemma 2.5. If there is more than one copy of X on the left side of the inequality

in Figure 3, then every ir = v[r] (1 ≤ r ≤ �) must map to a vertex of F .
Proof. Suppose, for example, that i1 maps into some X(r) − {jr}. Let P be a

path from i1 to i2. Graphs X[1] and X[2] ∪P share only vertex i1. Hence the image of
at least one of them does not contain jr and since jr is a cutvertex of G2, that image
must be contained in X(r) − {jr}, which is impossible, since there are more vertices
in X1 or in X2 ∪ P than in X(r) − {jr}.

Lemma 2.6. If X is a solution of the inequality in Figure 3 via mapping ψ :
G1(X) → G2(X), then there exists a mapping φ : G1(X) → G2(X) such that φ(i) =
ψ(i) and as many copies of X in i as possible are mapped to copies of X in φ(i) for
every i ∈ I.

Proof. Consider a bipartite graph B with partitions I and J , where ir is connected
to js if and only if ψ(ir) = js. Without loss of generality assume that {(ir, jr); 1 ≤
r ≤ t} is a maximal matching of B.

We need to show that there exists φ such that X[r] maps to X(r) for 1 ≤ r ≤ t.
Let Y 1, . . . , Y q be the connected components of X − {v}. Let φ be a mapping such
that

t∑
r=1

q∑
j=1

∣∣∣φ(Y j
[r]) ∩ Y j

(r)

∣∣∣(7)

is maximal. If for some r, j,

φ
(
Y j

[r]

)
�= Y j

(r),

then clearly φ(Y j
[r]) ∩ Y j

(r) = ∅; otherwise φ(Y j
[r]) would have to contain jr. Now we

can change φ in such a way that Y j
[r] will be mapped to Y j

(r) and φ−1(Y j
(r)) will be

mapped to φ(Y j
[r]). This increases the value of (7), a contradiction. Hence φ maps

X[r] to X(r) (1 ≤ r ≤ t).
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X
X

X

j

X

j2
(1)

(2)

F
v

jk

(k)

H

1

Fig. 6.

We prove an analogue of Lemma 2.5 for inequalities where X occurs only once
on the left-hand side of the inequality in Figure 3.

Lemma 2.7. If the inequality in Figure 6 has a solution, then it has a solution
X via a mapping φ which maps v = i1 to a vertex of F .

Proof. Suppose that there is no solution of the inequality in Figure 6 such that
v maps to a vertex of F , but there is a solution in which v maps into a vertex of
X(1) − {j1}. Then clearly the inequality in Figure 7 with the additional condition
that v must map to some u ∈ X(1) has a solution (see Figure 7).

X(1) K 8

K 8

X
j

F
v

jk

H

u 2

j
1
=v(1)

Fig. 7.

If u = j1, then by Lemma 2.6 there is φ such that X is mapped to X(1). Therefore
we can replace K∞’s in the inequality in Figure 7 by K|H|’s, since only H is mapped
to G2(X)−X(1). This, however, implies that X = K|H| is a solution of the inequality
in Figure 6 in which v maps to a vertex of F , a contradiction.

Thus u �= j1 for every solution of the inequality in Figure 7. Let X be a minimal
solution of this inequality. Graphs H and X share only v; moreover j1 is a cutvertex
of G2 and hence either H or X must be mapped inside X(1) − {j1}. Since the latter
is not possible, H must be mapped inside X(1) − {j1}.
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K 8
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(1)

Y

v

Z

(1)
q

Y

v

Z

q

j
1

F

jk
2

j
(1)

Fig. 8.

Now let Y = φ−1
(
X(1)

)
∩X and Z = φ−1

(
G2(X) − (X(1) − {j1})

)
. The common

vertex of Y and Z is called q = φ−1(j1). The inequality in Figure 7 implies the
inequalities in Figure 8.

The second inequality follows directly from the definition. To see the first inequal-
ity, note that the graph on the left-hand side is a subgraph of X(1) with q mapping
to j(1), and that by definition of Y and Z the right-hand side contains X(1) with j(1)
of X(1) mapping to v of Y .

If in the first inequality v was mapped outside of Y(1), then the shortest path
from q to v would have to map to a longer path, which is not possible. Hence v maps
inside Y (1). Combining the two inequalities in Figure 8, we get that Y satisfies the
inequality in Figure 7. This contradicts the minimality of X.

We can now complete the proof of Theorem 2.1 by showing a bound on the size
of a minimal solution (if there is one) of graph inequalities with one variable and one
specified vertex.

Proof of Theorem 2.1. From Lemmas 2.5 and 2.7 it follows that we need to
consider only solutions in which every ir (1 ≤ r ≤ �) maps to a vertex of F . For
each such mapping φ, using Lemma 2.6, we can assume that if i ∈ I maps to a vertex
j ∈ J , then as many copies of X in i as possible map to copies of X in j.

Let

G′
1(X) ⊆ G′

2(X), v = i1 → φ (i1) , . . . , i� → φ (i�)(8)

be the inequality with prescribed mappings obtained by removing those X[r]’s and

X(r)’s which are already taken care of by Lemma 2.6. Notice that now no i′r, (1 ≤
r ≤ �′) maps to a j′s (1 ≤ s ≤ k′).

Let X ′ be a solution of (8) with mapping ψ. If ψ
(
X ′

[r]

)
∩ X ′

(s) �= ∅, then some

vertex from X ′
[r] − {i′r} must map to j′s. Since j′s is a cutvertex, no other part of

G′
1(X

′) can map to X ′
(s). If for each X ′

[r], 1 ≤ r ≤ �′, and H we take the set of

objects (edges and X ′
(s)’s) to which it is mapped, then these sets are disjoint.

There are only finitely many partitions of the objects of G′
2(X) into �+1 disjoint

sets. For each such partition we get a system of inequalities with prescribed map-
pings as in Lemma 2.4, which has a solution of size at most |F |(1 + k)|H| (if it has
one).

Note that by using previous lemmas we can easily prove Theorem 1.1. If there
was a solution of the inequality in Figure 1, then by Lemma 2.7 there is a solution
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such that v from G1(X) maps to one of the v’s in G2(X). By looking at the degrees
of v’s we see that this is not possible.

We conclude this section with a technical result that allows us to combine several
inequalities with prescribed mappings. This lemma will be needed in the next section.

Lemma 2.8. For any system of inequalities with prescribed mappings

H1 ⊆ X, h1 → v; . . . ;Hm ⊆ X, hm → v,

X ⊆ F1(X), v → w1; . . . ;X ⊆ Fn(X), v → wn,

there is a single inequality which has the same set of solution as the system.
Proof. Consider the inequality in Figure 9.

X

b0

X

a0

X X

XX

H1

F (X) F (X)1

Hm

n

X

at-1

X

at

X

bt-1

X

btb

at/2

t/2

Fig. 9.

By Lemma 2.5, a0 and at have to map to F . Clearly the a0, at path of H in G1(X)
has to map to a path in F in G2(X). If t > 2(m + n + max{F1, . . . , Fn}), then the
only path of length t in F is the b0, bt path. It follows that ai maps to bi (0 ≤ i ≤ t)
because at−1 cannot map to a1. Hence X is a solution of the inequality in Figure 9 if
and only if it is a solution of the system.

3. Undecidability of graph inequalities. The result of the last section might
suggest that there is a general method to decide the solvability of graph inequalities.
While we have to leave this question open for the time being, we do want to sketch
a proof that a natural generalization of the problem turns out to be undecidable.
We consider a logical language whose atoms are graph inequalities as above, i.e.,
diagrams involving graphs with labeled vertices, additional edges and vertices, and
one occurrence of the subgraph relationship. We then build more complex formulas
by allowing logical operators ∧ (and) and ¬ (not) and quantifiers over graphs (and
labeled vertices). We will not formally describe the semantics of this language since
it is straightforward; the only point worth mentioning is that we assume vertices with
different labels in the same graph to be different.

We will next show that formulas of this type are not decidable. More precisely
we will show that this is even the case if we restrict the quantifiers in the formulas
to be only existential or bounded (i.e., of the form (∀F ⊆ G) or (∃F ⊆ G)). Since
formulas involving only bounded quantifiers are decidable (the bounds have to be
explicit graphs; hence we can try all possible combinations), this is a reasonably sharp
result on the complexity of graph inequalities. The main open problem of interest,
of course, is whether the problem is undecidable in case we allow only existential
quantifiers (and no bounded quantifiers at all). We will mention some interesting
related problems in the conclusion.

Theorem 3.1. The solvability of graph diagrams with Boolean operators, exis-
tential quantifiers, and bounded quantifiers is not decidable.
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w
Fig. 10. Representing the word 21130.

Proof. We will show the undecidability of the solvability problem by reducing
the word problem for semi-Thue systems to it (see, for example, [HU79]). Over an
alphabet A, a semi-Thue system is a set of productions x ⇒ y (x, y ∈ A∗), meaning
that x can be transformed into y. The word problem for a semi-Thue system is to
decide whether, given two words x and y, there is a series of productions which, when
applied to substrings of the words, transforms x into y.

We will represent the letters of the alphabet as paths of different lengths. A word
will be coded as a path to which are attached further paths coding the letters of the
word. A sequence of words will be coded in a similar way. We will then have to find a
way to verify that such a sequence results from legal applications of the productions.

Fix a semi-Thue system (xi ⇒ yi)i≤n over some alphabet A, and suppose we are
given two words x and y. The following diagram gives an example of how we represent
words, in this case the word 21130 (Figure 10).

The initial vertex w is used to link the word up in a sequence of words. In the
manner depicted by the diagram we associate graphs Xi, Yi, X, and Y with the words
xi, yi, x, and y.

Assume that for all A ⊆ G the following diagram (Figure 11) is true.

GA

Fig. 11. Forcing a tree.

Then G does not contain any cycles and therefore is a tree. Furthermore, by
excluding K1,4 we can easily assure that G has maximal degree at most 3. We now
set up G to code the initial and final words. We do this by saying that there is an
A ⊆ G which fulfills the diagram in Figure 12.

Note that for the diagram to be true wX has to be mapped to u and wY to v
(G is a tree). Hence G will contain a path from u to v. For each vertex w on that
path let Gw be the graph attached to the path (if none, then Gw is just w). With the
previous diagram we have ensured that GwX

codes x and GwY
codes y. Now we have

to verify only that the transitions between words as coded by G are legal according
to the system of productions given. We do this by saying that for any A,B,C,D ⊆ G
for which the diagram in Figure 13 is true, there are S,E,B′, C ′ ⊆ G for which the
diagram in Figure 14 is true, and such that B′ = Xi and C ′ = Yi for some i ≤ n.

It is straightforward to check that in this manner we have encoded the original
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Fig. 12. Forcing x and y.

G

u

v

2

2

A

B

C

D

u

v

1

1

=

Fig. 13. Transition from B to C.

B

C

S B’ E=

and

S EC’=

Fig. 14. Application of production B′ to C′.

word problem: There is a G fulfilling all these conditions if and only if there is a
solution to the word problem. Hence the word problem can be written as a graph
inequality with one existential quantifier and some bounded quantifiers.

4. Directed graph inequalities. So far we have considered only undirected
graphs. What happens if we change the universe of graph inequalities to directed (or
colored) graphs? Call these variants directed (or colored) graph inequalities, respec-
tively.
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In the case of one variable with one specified vertex we can obtain the same
result as in Theorem 2.1. As a matter of fact, the lemmas and proofs needed for that
theorem can be used without modification.

Theorem 4.1. For directed (or colored) graphs, if the inequality in Figure 3 has
a solution X, then it has a solution of size at most |F |(1 + k)|H|.

As above, this implies that the problem is decidable in NEXP.

The complexity of the undecidability proof in section 3 stemmed from the diffi-
culty of coding the alphabet: We had to use special devices to code letters and then
use bounded quantifiers to verify that the coding was correct. Allowing the edges in
the graph to be directed, however, makes these constructions unnecessary.

Theorem 4.2. The solvability of directed (colored) graph inequalities is undecid-
able.

The problem remains undecidable even if we limit it to three variables with two
specified vertices each. We consider only directed graphs, since the treatment for
graphs with two colors is identical.

Proof. We will translate Post’s correspondence problem (PCP) into a directed
graph inequality. Since the former problem is known to be Turing-complete [HU79],
this shows the undecidability of directed graph inequalities.

PCP asks whether, given a list of pairs of words (pi, qi)1≤i≤n, there is a list of
indices i1, . . . , im such that pi1 · · · pim = qi1 · · · qim . PCP can be translated into a
question about context-free grammars as follows: Consider two grammars

(i) S1 → i S1pi | i pi (1 ≤ i ≤ n),
(ii) S2 → i S2qi | i qi (1 ≤ i ≤ n),

where i is a prefix-encoding of the number i. The original problem has a solution if
and only if the two grammars have a word in common, i.e., there is a word w such
that S1 →∗ w and S2 →∗ w.

Consider a context-free grammar with productions over the alphabet {0, 1} and
one nonterminal symbol S. Every production has S on the left-hand side and a
(nonempty) string of letters and at most one occurrence of S on the right-hand side.

We will code 0’s and 1’s by the direction of edges, an outgoing edge coding a 0
(for a string starting in the vertex) and an incoming edge coding a 1. Let Ga be the
path corresponding to the string a (for an example, see Figure 15).

Fig. 15. G01001.

A production is either of the form S → aSb, where ab ∈ {0, 1}+, or of the form
S → a, where a ∈ {0, 1}+. We assume that there is always a production of the second
kind.

Construct a graph inequality as follows: The left-hand side contains a graph
variable XS with two special vertices uS and vS . The right-hand side has two special
vertices u′

S and v′S . For every production of the form S → aSb, include Ga starting
in u′

S and ending in the uS vertex of a new copy of XS , and Gb starting in the vS
vertex of XS and ending in v′S . For every production of the form S → a, include Ga

starting in u′
S and ending in v′S .

If we require that u and v be mapped to u′ and v′, respectively, then a solution to
the inequality corresponds to a word in the language described by the grammar, and,
vice versa, every word in the language gives rise to a solution of the graph inequality.
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S

SSS

Fig. 16. Graph inequality for semi-Thue system.

For an example, see Figure 16, which shows the graph inequality belonging to the
system S ⇒ 0S100 | 10S11 | 11S00 | 0100 | 1011 | 1100.

We will first prove the claim that for every word in the language there is a cor-
responding solution of the graph inequality in a stronger form: For each n there is a
graph GS such that

(i) GS solves the inequality (with u, v mapping to u′, v′) and
(ii) there is a path Gw between uS and vS in GS for every word w that can be

derived in n steps from S.
We prove this statement by induction on n. For n = 1 let GS consist of all paths

Ga for which S → a is a production, and identify their starting vertices (calling it
uS), and their end vertices (calling it vS). For the induction step, assume we have a
graph G′

S with vertices u′
S and v′S fulfilling the induction hypothesis for n. Build GS

with vertices uS and vS by including for each production S → aSb (new) copies of
Ga, G

′
S , and Gb, and by identifying uS with the starting vertex of Ga, u

′
S with the

ending vertex of Ga, v
′
S with the starting vertex of Gc, and vS with the ending vertex

of Gc. It is easy to show by induction that the graphs so constructed fulfill (i) and
(ii).

For the other direction suppose that there is a solution GS to the graph inequality.
We will show that for any path P from uS to vS in GS there is a word w such that
S →∗ w and P = Gw. Use induction on the length of the path: Let P be a path of
minimal length between uS and vS for which the assertion has not yet been proven.
P has length at least one (since uS and vS are different vertices). Fix w such that
P = Gw. Since GS fulfills the inequality, P must be a subpath of the right-hand side
of the inequality starting in u′

S and ending in v′S . The way the right-hand side was
constructed, P must therefore be a subpath in a graph corresponding to a particular
production S → aSb, or S → a. In the latter case, a = w and we are done. In the
former case, P consists of three parts corresponding to a, S, and b, respectively. Since
a and b together have length at least one, we can apply the induction hypothesis to
the subpath of P corresponding to S.

If we are given two grammars G1,G2, we can construct the inequalities for them
as above and ask whether there exist graphs fulfilling them, as well as a path P from
uP to vP which is a subgraph of both XS1 and XS2 , where uP and vP have to be
mapped to uSi and vSi (i = 1, 2). Such a path corresponds to a word w which can
be derived in both grammars. We are left with the task of combining the inequalities
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G GG G GG

G’ G’G’ G’ G’G’

u vG

G GG G GG

G’ G’G’ G’ G’G’

u’ G’ v’

Fig. 17. G ⊆ G′.

into a single inequality fulfilling the additional requirements on the u and v vertices.

Consider the directed graph inequality of Figure 17.

We claim that if G and G′ are solutions of this inequality, then G is a subgraph of
G′ such that u and v are mapped to u′ and v′, respectively (and, obviously, any such
graphs are solutions to the inequality). To see this, suppose that one of the vertices
at the heart of a sunflower does not map to its corresponding vertex. It then has to
map to a labeled vertex, or into a G′ or G, say G′. This is not possible, since such a
vertex is at the heart of three copies of G′, at most two of which can map outside the
G′, so there would have to be a full copy of G′ within G′, which is impossible. Hence
the hearts of the sunflowers map to each other, and, in consequence, the copies of G
map to the corresponding copies of G′, while u and v map to u′ and v′.

We have four equations altogether: GSi ⊆ Gi (with Gi the right-hand sides
constructed from the grammars) and GP ⊆ GSi (i = 1, 2). We can extend the
diagram above to incorporate all four inequalities: It will contain five sunflowers on
each side of the inequality, between which the terms of the four inequalities are linked
up; each sunflower will have three copies of each graph involved in the construction,
and hence the hearts of the sunflowers map to each other, as above. Thus we get a
single directed graph inequality which has a solution if and only if the two grammars
have a word in common.

5. Conclusion. Several questions remain open, the most nagging one being the
complexity of deciding the solvability of (undirected) graph inequalities (without addi-
tional quantifiers and Boolean operators). It seems hard to translate the correspond-
ing undecidability result for directed graph inequalities back to the undirected case.
Another approach would be to strengthen the proof of the undirected undecidability
result, which required one existential quantifier and several alternations of bounded
quantifiers. It seems likely that by using a different problem for the reduction (for
example, PCP) one might get the language down to existential and bounded universal
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Fig. 18.

quantifiers only. Getting rid of that last layer of bounded quantifiers, thereby settling
the complexity of Boolean combinations of graph inequalities, seems harder. The
language shown to be undecidable in section 3, for example, is powerful enough to
code the edge reconstruction conjecture (in a more or less natural fashion). Hence a
decision procedure would have come as a surprise. In the case of graph inequalities
the situation is different: We do not know of any difficult open problem that can be
phrased as a graph inequality; hence decidability might still be an option.

Question 1. Is the solvability of graph inequalities (as defined in section 2) de-
cidable?

A positive indication for decidability is that it seems difficult to force large so-
lutions. If graph inequalities were undecidable, then the solution size would have to
grow faster than any computable function. The best result we have been able to obtain
so far shows that a quadratic lower bound is possible, a far cry from undecidability.

Theorem 5.1. There is a graph inequality G1(X) ⊆ G2(X) of size O(n) such
that the size of a minimal solution is Ω(n2).

Proof. Consider the system of inequalities (Figure 18) with prescribed mappings,
where H is a path of length n connected to a complete binary tree of depth logn.
Let B be the infinite binary tree with edges naturally labeled by strings from {0, 1}+.
By Lemma 2.3 solutions of the first inequality are subgraphs X of B such that if
edge aα is in X, then edge α is also in X for any a ∈ {0, 1}, α ∈ {0, 1}+. From the
second inequality it follows that for any solution X there is some α ∈ {0, 1}n such
that for every β ∈ {0, 1}logn, edge αβ is in X. Hence for any suffix γ of α for every
β ∈ {0, 1}logn, edge γβ is in X and therefore there are Ω(n2) edges in X. Using
Lemma 2.8 we combine the inequalities in Figure 18 into a single inequality.

Question 2. Are there graph inequalities whose minimal solutions have at least
exponential size?

Our decidability result for graph inequalities with one variable (and one labeled
vertex) shows that the computational complexity of the problem lies in NEXP. As
we pointed out earlier, it is also NP-hard (since we can ask for a clique as subgraph,
without even using the existential quantifier).

Question 3. What is the computational complexity of deciding the solvability of
one-variable, one-vertex graph inequalities? Is the problem NEXP-complete?

First steps towards generalizations of the decidability result would probably try
to increase the number of specified vertices, then the number of variables. Also, can
we decide Boolean combinations of graph inequalities?

One special case of Boolean combinations can be settled with the techniques from
section 2: graph equalities with one variable and one specified vertex.

Theorem 5.2. The solvability of graph equalities with one variable and one
specified vertex is decidable.

Proof. Lemma 2.5 allows us to assume that variable X occurs at most once on each
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side of the equality (otherwise we can use Lemma 2.4 as in the proof of Theorem 2.1).
If X does not occur on one of the sides, we are done. If it occurs precisely once on
each side, it is not too difficult to see that the equality is solvable if the two graphs
to which the variable is attached are isomorphic (where the labeled vertices have to
map to each other). The decision procedure outlined here is, again, in NEXP.

In the case of directed graph inequalities we have a tight separation of decidability
and undecidability: One variable with one specified vertex is decidable, and three
variables with two specified vertices are not. While it might be interesting to find out
what happens in the case of two variables, a more promising object of study should
be the computational complexity of directed graph inequalities. The direction of the
edges might help in encoding a problem complete for EXP or NEXP.

Question 4. What is the computational complexity of deciding the solvability
of one-variable, one-vertex directed (or colored) graph inequalities? Is the problem
NEXP-complete?

Finally we would like to suggest that the question of computational complexity
should also be an interesting one for the more general types of graph equalities and
graph inequalities studied in the literature [CS79].

Acknowledgments. We would like to thank Laci Babai and János Simon for
helpful discussions.
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[CS79] D. M. Cvetković and S. K. Simić, A bibliography of graph equations, J. Graph Theory,
3 (1979), pp. 311–324.

[Die97] R. Diestel, Graph Theory, Grad. Texts in Math. 173, Springer-Verlag, New York, 1997.
[HU79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, Reading, MA, 1979.
[Sch99] M. Schaefer, Completeness and Incompleteness, Ph.D. thesis, University of Chicago,

Chicago, 1999.
[Sch01] M. Schaefer, Graph Ramsey theory and the polynomial hierarchy, J. Comput. System

Sci., 62 (2001), pp. 290–322.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 744–761

THE PMU PLACEMENT PROBLEM∗

DENNIS J. BRUENI† AND LENWOOD S. HEATH‡

Abstract. The PMU placement problem is an optimization problem abstracted from an ap-
proach to supervising an electrical power system. The power system is modeled as a graph, and
adequate supervision of the system requires that the voltage at each node and the current through
each edge be observable. A phasor measurement unit (PMU) is a monitor that can be placed at a
node to directly observe the voltage at that node, as well as the current and its phase through all
incident edges. The PMU placement problem is to place PMUs at a minimum number of nodes so
that the entire electric power system is observed. A new simpler definition of graph observability
and several complexity results for the PMU placement problem are presented. The PMU placement
problem is shown to be NP-complete even for planar bipartite graphs. Several fundamental proper-
ties of PMU placements are proven, including the property that a minimum PMU placement requires
no more than 1/3 of the nodes in a connected graph of at least 3 nodes.

Key words. phasor measurement unit, power system graph observability, domination, electric
power monitoring, NP-completeness

AMS subject classifications. 05C69, 05C70, 05C85, 68R10, 94C15

DOI. 10.1137/S0895480103432556

1. Power systems and PMUs. An electrical power system includes a set of
buses and a set of transmission lines connecting the buses. A bus is a substation
where lines are joined. A power system also includes a set of generators, which supply
power, and a set of loads, into which the power is directed. To securely control a
power system, its state must be monitored [8, 14, 19]. The state of a power system is
expressed in terms of state variables, such as voltage at a load and phase angle at a
generator. Typically, measurement devices are placed at selected points in the power
system to monitor values of the state variables, which are fed back to the central
control. The central control adjusts the power system to compensate for imbalances
and to prevent hazardous (e.g., fault) situations [23]. For proper control, it is essential
that all state variables be communicated to the central control in real time.

A phasor measurement unit (PMU) is a measurement device placed on a bus
to monitor voltage at the bus and current phase along outgoing lines [5, 11, 12,
13, 25]. The ability to measure the current phasors as well as the voltage gives
the PMU an advantage over other measurement units, enabling the deployment of
fewer PMUs than is required in other types of measurement systems, some of which
require one measurement unit per bus. PMUs track transients in the power system
at high sampling rates, allowing automated real-time monitoring and control [21].
It is important to place the PMUs on buses so as to minimize their number while
maintaining system observability, as PMUs are expensive [1, 18].

Stability problems of real-time control using PMUs have been studied before,
including neural network approaches to control [16, 17]. Synchronization of the con-
trol unit and the PMUs may be done by satellite, using the global positioning sys-
tem [3, 4, 20, 24], and communications of measurements can be implemented via the

∗Received by the editors July 31, 2003; accepted for publication (in revised form) March 1, 2005;
published electronically December 7, 2005.

http://www.siam.org/journals/sidma/19-3/43255.html
†SlickEdit Inc., 3000 Aerial Center Parkway, Suite 120, Morrisville, NC 27560 (dennis@slickedit.

com).
‡Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106 (heath@vt.edu).

744



THE PMU PLACEMENT PROBLEM 745

13 15

8 9 10 11 12

765

2 3 41

232221

17 18 19 20

16

14

Fig. 1. Sample power system graph.

Internet [22]. The problem of optimal placement of PMUs has been studied before.
El-Shal and Thorp [6] give an algorithm to optimally place two PMUs to minimize
their notion of measurement error. Palmer and Ledwich [20] propose an optimization
algorithm based on measurement sensitivity. Baldwin, Mili, Boisen, and Adapa [1]
first formulate the PMU placement problem as a problem of minimizing cost and
investigate heuristics for the problem.

Brueni [2] recasts the PMU placement problem in a more formal graph-theoretic
setting. Haynes, Hedetniemi, Hedetniemi, and Henning [9] also study the problem
in a graph-theoretic setting, using the notion of a power dominating set in a graph.
Specifically, a power system is modeled as an undirected graph G = (V,E), where
V is the set of buses, generators, and loads, and where an edge (u, v) ∈ E exists if
there is a transmission line connecting u and v. For convenience of discussion, such
a graph G is called a power system graph (PSG). A PMU placement Π is a subset
of V on which PMUs are placed. System observability is defined as a function of a
PSG G and a PMU placement Π that returns the subgraph of G that is observed
by Π (see section 2 for the precise definition of observability). A PMU cover Π of
G is a placement that observes all of G. A minimum PMU cover is a PMU cover Π
whose size |Π| is minimum. Given a PSG G, the PMU placement problem is to find a
minimum PMU cover for G. A more formal definition of the problem, together with
an example, is given in section 3. Without loss of generality, we assume henceforth
that a PSG is a connected graph with at least two nodes.

We make a few observations about a typical PSG, which are illustrated by the
sample PSG in Figure 1. A PSG is planar or nearly so; it is uncommon for power
lines to intersect, except, of course, at a bus. A PSG has large induced subgraphs
that are trees, due to the fact that power distribution is most economical using only
a tree; cycles in power systems provide redundancy. A PSG has many degree one
nodes—generators and loads. The maximum degree of a PSG is low, because it is
impractical to connect a bus to a large number of lines.
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A node with a PMU

An observed node

An unobserved node

Node status unstated

An observed edge

An unobserved edge

Edge status unstated

Fig. 2. Graphical notation for PMU observability.

In this paper, we address observability and PMU placement as graph-theoretic
and algorithmic problems. In section 2, we first take the definition of observability
from the power system literature [1] and give an equivalent, much simplified, graph-
theoretic definition. Employing the simplified definition of observability, we show how
to compute observability in linear time. In section 3, we formally define the minimum
PMU placement problem and explore its graph-theoretic properties. In particular, we
show that a PSG of at least 3 nodes requires a PMU cover that occupies no more than
1/3 of its nodes. Finally, in section 4, we prove that the PMU placement problem is
NP-complete even for planar bipartite graphs.

2. Observability.

2.1. Definitions of observability. In this section, we provide two definitions of
PSG observability and prove the two definitions equivalent. We require some notation
and terminology. Fix a PSG G = (V,E). Let V ′ ⊆ V . The node induced subgraph
<V ′> of an undirected graph G = (V,E) is

<V ′>= (V ′, {(u, v) | (u, v) ∈ E and u, v ∈ V ′}),

where V ′ ⊆ V . For any node v, its (open) neighborhood is ΓG(v) = Γ(v) = {u ∈
V | (u, v) ∈ E} . Its closed neighborhood is ΓG[v] = Γ[v] = Γ(v) ∪ {v}. A placement
Π ⊆ V is a set of the buses on which PMUs are placed. A bus or a line is observed
if its state variables are monitored. A PMU cover Π is a placement where the entire
graph is observed. Figure 2 summarizes the graphical notation used for observability
in the remainder of the paper.

Baldwin, Mili, Boisen, and Adapa [1] develop the rules in the following definition
of the nodes and edges observed. The rules follow from elementary laws of electrical
networks.

Definition 1 (Observability). Let Π be a placement of PMUs on the nodes
of G = (V,E). These rules determine the set of observed nodes ΠR and the set of
observed edges Π−.

R1. By definition: A bus with a PMU and any line extending from the bus is
observed. Formally, if v ∈ Π and u ∈ Γ(v), then v ∈ ΠR and (v, u) ∈ Π−.

R2. Ohm’s law, P = IR: Any bus that is incident to an observed line connected
to an observed bus is observed (the known current in the line, the known
voltage at the observed bus, and the known resistance of the line determines
the voltage at the bus). Formally, if (u, v) ∈ Π− and u ∈ ΠR, then v ∈ ΠR.

R3. Ohm’s law, I = P/R: Any line joining two observed buses is observed (the
known voltage at both observed buses and the known resistance of the line
determines the current on the line). Formally, if u, v ∈ ΠR and (u, v) ∈ E,
then (u, v) ∈ Π−.
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Fig. 3. Example of definition of observability.

R4. Kirchoff current: If all the lines incident to an observed bus are observed, save
one, then all of the lines incident to that bus are observed (the net current
flowing through a bus is zero). Formally, if v ∈ ΠR and |Γ(v)∩(V −ΠR)| ≤ 1,
then Γ[v] ⊆ ΠR.

R5. Derived: Any bus incident only to observed lines is observed. Formally, if,
for all u ∈ Γ(v), (v, u) ∈ Π−, then v ∈ ΠR.
Proof. An observed line must be connected to at least one observed bus (R1
and R3). If all lines incident to a bus are observed, the bus must either be
observed itself or each bus adjacent to it is observed. Hence, by R2, the bus
is observed.

This definition does not take into account any inductance or capacitance in the
system, which will have effects on the dynamic behavior of the system.

To illustrate the definition, consider the graph of Figure 1 and the placement
Π = {14}. Since 14 ∈ Π, by rule R1, we have

14 ∈ ΠR

(5, 14), (9, 14), (13, 14), (19, 14) ∈ Π−.

By R3, we have (5, 9) ∈ Π−, as 5, 9 ∈ ΠR. By R4, we have (8, 9) ∈ Π−, as 2 of the 3
lines incident to bus 9 are known to be observed. Finally, we have 8 ∈ ΠR by R2; see
Figure 3 for the annotated result.

We now provide a simplified definition of observability (originally in Brueni [2])
that requires only 2 rules. Our definition of observability is restricted to observing
nodes (buses).

Definition 2 (Simplified Observability). Let Π be a placement of PMUs on
the nodes of G = (V,E). The two rules below determine the set of observed nodes
ΠS ⊆ V .

S1. If a node v has a PMU, then all nodes in Γ[v] are observed. Formally, if
v ∈ Π, then Γ[v] ⊆ ΠS.
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S2. If a node v is observed and all nodes in Γ(v) are observed, save one, then all
nodes in Γ[v] are observed. Formally, if v ∈ ΠS and |Γ(v) ∩ (V − ΠS)| ≤ 1,
then Γ[v] ⊆ ΠS.

We now demonstrate that Definitions 1 and 2 are equivalent.
Theorem 1. Let G = (V,E) be a PSG, and let Π ⊆ V be a placement. Then

ΠR = ΠS.
Proof. We first show that ΠS ⊂ ΠR. The set ΠS can be obtained one node at a

time by a sequence of applications of S1 and S2. For purposes of induction, choose
a sequence of steps—applications of S1 and S2—that yields ΠS . The base case of
the induction is zero steps, in which case the set of nodes obtained is ∅ ⊂ ΠR. Now
assume that v ∈ ΠS is obtained in step k > 0 and that all nodes obtained at earlier
steps are in ΠR. If step k is an S1 step, then either v ∈ Π and v ∈ ΠR by R1 or there
is a node u ∈ Γ(v) ∩ Π, in which case (u, v) ∈ Π− by R1 and v ∈ ΠR by R2. If step
k is an S2 step, then there exists an observed node u such that v ∈ Γ(u) and every
node w ∈ (V −ΠS) is obtained in an earlier step and hence is in ΠR. By R4, v ∈ ΠR.
By induction, we conclude that ΠS ⊂ ΠR.

We now show that ΠR ⊂ ΠS . The set ΠR can be obtained one node at a time by
a sequence of applications of R1–R4 (R5 is derived and an application of R5 can be
rewritten using applications of R1–R4). For purposes of induction, choose a sequence
of steps—applications of R1–R4—that yields ΠR. The base case of the induction is
zero steps, in which case the set of nodes obtained is ∅ ⊂ ΠS . Now assume that
v ∈ ΠR is obtained in step k > 0 and that all nodes obtained at earlier steps are in
ΠS . If step k is an R1 step, then v ∈ Π and v ∈ ΠS by S1. If step k is an R2 step,
then there exists an observed node u such that v ∈ Γ(u), (u, v) ∈ Π−, and u ∈ ΠR.
If u ∈ Π, then v ∈ ΠS by S1. Otherwise, (u, v) ∈ Π− because of an R3 step, at which
point u, v ∈ ΠR and hence v ∈ ΠS . Rule R3 only observes edges, so an R3 step does
not place any node in ΠR. If step k is an R4 step, then there exists an observed node
u such that v ∈ Γ(u) and every node w ∈ (V −ΠR) is obtained in an earlier step and
hence is in ΠS . By S2, v ∈ ΠS . By induction, we conclude that ΠR ⊂ ΠS .

The theorem follows.
By eliminating the concern for observing edges, this definition simplifies proofs

and algorithms. All results in this paper are presented using Definition 2.

2.2. Observability computation in linear time. The computation of ΠS

for a PSG G = (V,E) can be accomplished in time linear in |V | + |E|; see Algo-
rithm Observe in Figure 4. (The algorithm of Haynes, Hedetniemi, Hedetniemi, and
Henning [9] that implements Definition 1 is not obviously linear time.) For each node
v ∈ V , the variable observedneighbors[v] maintains the number of nodes in Γ(v) that
are currently known to be observed. The degree of v is degree(v) = |Γ(v)|.

Theorem 2. For G = (V,E) and Π ⊆ V , Algorithm Observe computes ΠS in
O(|V | + |E|) time.

Proof. An examination of Algorithm Observe shows that it implements rules S1
and S2 of Definition 2. The for loop for rule S1 marks all the nodes in Π and all their
neighbors observed. To implement rule S2, every node u that is observed and whose
observed neighbor count reaches the S2 threshhold of degree(u)− 1 is placed in the
queue Q. In the rule S1 for loop, neighbors of nodes in Π that reach the S2 threshhold
are enqueued. (There is no need to enqueue a node whose observed neighbor count
equals its degree.) The while loop implements the propagation of observation of
rule S2. Each dequeued node v was enqueued at a time when it was already marked
observed and had observed neighbor count degree(v)−1. At the time it is dequeued,
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Observe(G,Π)
Q ← ∅
for each v ∈ V

do observed [v] ← false
for each v ∈ V

do observedneighbors[v] ← 0
for each v ∈ Π

do � Rule S1—observe all elements of Π and their neighbors
for each u ∈ Γ[v]

do if not observed [u]
then observed [u] ← true

for each w ∈ Γ(u)
do observedneighbors[w] ← observedneighbors[w] + 1

for each u ∈ Γ(v)
do � Enqueue neighbors of Π that reach the S2 threshold

if observedneighbors[u] = degree(u) − 1
then Enqueue(Q, u)

while Q 
= ∅
do � v is observed and has at most one unobserved neighbor

v ← Dequeue(Q,w)
if observedneighbors[v] = degree(v) − 1

then u ← unobserved neighbor of v
observed [u] ← true
for each w ∈ Γ(u)

do observedneighbors[w] ← observedneighbors[w] + 1
if observed(w)

if observedneighbors[w] = degree(w) − 1
then Enqueue(Q,w)

if observedneighbors[u] = degree(u) − 1
then Enqueue(Q, u)

return {v ∈ V | observed [v]}

Fig. 4. Algorithm Observe to compute the observability function.

the observed neighbor count of v may have increased to degree(v). Otherwise, v has
a unique neighbor u that is not marked observed. It is u that becomes observed as a
consequence of rule S2. In both places in Observe where a node u is marked observed,
the count of observed neighbors of u is incremented, so that the observedneighbors
values are correctly maintained. Moreover, in the while loop, whenever an observed
node reaches the S2 threshhold, it is enqueued. We conclude that Algorithm Observe

correctly computes ΠS .

Every node is marked observed at most once and is enqueued at most once. The
tests for the S2 threshhold are executed at most |E| times and require at most (|E|)
work. The remaining work is done at most once for each node and is hence O(|V |).
We conclude that the time complexity of Observe is O(|V | + |E|).

3. Properties of PMU placement. In this section, we explore graph-theoretic
properties of PMU placement.
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(a) (b)

Fig. 5. Minimum covers for (a) a graph G and (b) an induced subgraph of G.

3.1. The PMU placement problem. The PMU placement problem (PMUP)
of finding a minimum cover is stated formally here.
Problem: PMU Placement (Optimization Version)
Instance: Graph G = (V,E).
Question: Find a cover Π ⊆ V such that for any cover Π′ ⊆ V , |Π| ≤ |Π′|.

Such a placement Π is called a minimum PMU cover. The reader may verify, with
some effort, that Π = {3, 10, 14, 19, 22} is a minimum PMU cover for the PSG of
Figure 1.

Haynes, Hedetniemi, Hedetniemi, and Henning [9] call the same problem the
power domination problem (PDS) and explore the analogy between PDS and the
traditional domination set problem. Though both problems involve some kind of
observation of part of a graph, there is the significant difference that observation in
dominating sets has bounded locality, while observation in PMUP can propagate more
globally. For example, a single PMU suffices to observe a path or cycle PSG. Given
an undirected graph G, a dominating set for G is also a PMU cover for G, although
it is a poor one in many cases. The converse is, of course, seldom true.

3.2. Induced subgraphs. One might expect that an induced subgraph of a
PSG G would always have a minimum PMU cover no larger than the size of a minimum
PMU cover of G. However, this expectation is incorrect, as illustrated by the graph
G in Figure 5. The single PMU in Figure 5(a) directly observes three nodes, two of
which are of degree two. These degree two nodes then allow the node at the top to
be observed, after which the observability of the remaining two nodes follows. While
the graph in Figure 5(b) is induced by all but one of the nodes of G, it is clearly
impossible to observe all of this subgraph of G without two PMUs.

3.3. Placement substitution. The following theorem shows that certain place-
ment sets may replace others.

Theorem 3 (Substitution). Given a PSG G = (V,E) and two placements

Π1,Π2 ⊆ V , if Π1
S ⊆ Π2

S, then for any placement Π, (Π ∪ Π1)
S ⊆ (Π ∪ Π2)

S
.

Proof. For purposes of induction, choose a sequence of steps—applications of S1
and S2—that yields (Π ∪ Π1)

S
. The base case of the induction is zero steps, in which

case the set of nodes obtained is ∅ ⊂ (Π ∪ Π2)
S
. Now assume that v ∈ (Π ∪ Π1)

S
is

obtained in step k > 0 and that all nodes obtained at earlier steps are in (Π ∪ Π2)
S
.

If step k is an S1 step, then there exists u ∈ Π∪Π1 such that v ∈ Γ[u]. If u ∈ Π, then

v ∈ (Π ∪ Π2)
S

by S1. If u ∈ Π1, then v ∈ (Π ∪ Π2)
S

since Π1
S ⊆ Π2

S . If step k is
an S2 step, then there exists an observed node u such that v ∈ Γ(u) and every node

w ∈ (V − (Π ∪ Π1)
S
) is obtained in an earlier step and hence is in (Π ∪ Π2)

S
. By S2,

v ∈ (Π ∪ Π2)
S
. By induction, we conclude that (Π ∪ Π2)

S ⊂ (Π ∪ Π2)
S
.
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If |Π2| < |Π1| with Π1
S ⊆ Π2

S , then substituting Π2 for Π1 in a PMU cover
results in a smaller cover, without loss of system observability.

The following corollary to Theorem 3 shows that it is counterproductive to place
a PMU on a degree one node (unless, of course, |V | = 2).

Corollary 1. Given a PSG G = (V,E) with a cover Π ⊆ V such that there is
a degree one node v ∈ Π, there exists a cover Π′ such that v 
∈ Π′ and |Π′| ≤ |Π|.

Proof. Let {u} = Γ(v) and Π′ = (Π − {v}) ∪ {u}. Clearly, {v}S ⊆ {u}S . By
Theorem 3, Π′ is a PMU cover for G such that v 
∈ Π′ and |Π′| ≤ |Π|.

A second corollary shows that it is counterproductive to place a PMU on a degree
two node (unless, of course, G is a path or a cycle).

Corollary 2. Given a PSG G = (V,E) with a cover Π ⊆ V such that there is
a degree two node v ∈ Π, there exists a cover Π′ such that v 
∈ Π′ and |Π′| ≤ |Π|.

Proof. Let {u,w} = Γ(v) and Π′ = (Π − {v}) ∪ {u}. Note that w ∈ {u}S by
application of S1 and S2. Since Γ[v] ⊆ {u}S , we have {v}S ⊆ {u}S . By Theorem 3,
Π′ is a PMU cover for G such that v 
∈ Π′ and |Π′| ≤ |Π|.

Corollaries 1 and 2 are implicit in Observation 4 of Haynes, Hedetniemi, Hedet-
niemi, and Henning [9].

3.4. Placing a PMU on a separation node. A separation node in a connected
graph is one whose removal leaves a subgraph with two or more components. Baldwin,
Mili, Boisen, and Adapa [1] claim that if a PMU placed at a separation node v observes
all of the nodes in any one of the subgraphs resulting from the deletion of v, then v is
an element of some minimum cover. This claim may fail if the observed subgraph is
a path, due to the propagation of observability using S2, even when v has no PMU.
The following restatement is correct.

Theorem 4. Let G = (V,E) have separation node x. Let u,w ∈ Γ(x) be distinct
nodes. Let U and W be the components of <V −x> containing u and w, respectively.
If U ∪W ⊆ {x}S, then there exists a minimum cover for G containing x.

Proof. Note that U and W do not have to be distinct. Let Π1 be any minimum
PMU cover of G. If x ∈ Π1, then we are done. Otherwise, by S2, there must be a
node y ∈ (U ∪W )∩Π1. Let Π2 = {x}∪ (Π1 −{y}). Then Π2 is a minimum cover for
G containing x.

3.5. Upper bound on the size of a minimum PMU cover. In this section,
we show that, in a PSG having n ≥ 3 nodes, at most �n/3 PMUs suffice to cover
the PSG and that this upper bound is tight. Haynes, Hedetniemi, Hedetniemi, and
Henning [9] show the same upper bound just for trees (their Theorem 14).

In a PSG, a node u is symmetric to a node v, written u ≡ v, if Γ(u) − {v} =
Γ(v) − {u}.

Theorem 5. Node symmetry is an equivalence relation.

Proof. Let G = (V,E) be a connected graph. Reflexivity. For any x ∈ V ,
Γ(x)−{x} = Γ(x)−{x} and hence x ≡ x. Symmetry. For any x, y ∈ V , x ≡ y implies
Γ(x) − {y} = Γ(y) − {x}, which implies y ≡ x. Transitivity. For any x, y, z ∈ V ,
x ≡ y and y ≡ z implies Γ(x)−{y} = Γ(y)−{x} and Γ(y)−{z} = Γ(z)−{y}. These
imply that (x, z) ∈ E if and only if (y, z) ∈ E and (x, y) ∈ E if and only if (x, z) ∈ E.
Consequently, (x, y) ∈ E if and only if (y, z) ∈ E. Let N = Γ(x)∪Γ(y)∪Γ(z)−{x, y, z}.
Thus Γ(x)− {z} = (Γ(x)∩ {y})∪N = (Γ(z)∩ {y})∪N = Γ(z)− {x}. Hence, x ≡ z.

Thus, node symmetry is an equivalence relation.

For a PSG G = (V,E), let S be the set of equivalence classes of V under ≡.
For every P ∈ S, <P > is either a clique or an independent set. For two distinct
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equivalence classes P,Q ∈ S, P is adjacent to Q if for every u ∈ P , we have Q ⊆ Γ(u).
Note that P adjacent to Q implies Q adjacent to P . Define A(S) = {(P,Q) | P,Q ∈
S and P adjacent to Q}. The graph H(S) = (S,A(S)) is the adjacency graph of S.
For any R ⊆ S, define π(R) = ∪U∈RU .

Lemma 1. Let G = (V,E) be a PSG, and let S be the set of equivalence classes
of V under ≡. Let U1, U2 ∈ V be distinct equivalence classes, and let u1 ∈ U1 and
u2 ∈ U2. Then (u1, u2) ∈ E if and only if (U1, U2) ∈ A(S). Consequently, H(S) is
connected.

An equivalence class of ≡ containing more than one node represents a kind of
node redundancy. The following lemma identifies a small placement that dominates
all but one node of each equivalence class.

Lemma 2. Let G = (V,E) have 3 or more nodes. There exists a placement Π
such that

1. for every distinct u, v ∈ V such that u ≡ v, either u ∈ Γ[Π] or v ∈ Γ[Π]; and
for every U ∈ S, |Γ[Π] ∩ U | ≥ |U | − 1; and

2. |Γ[Π]| ≥ 3|Π|.
Proof. First suppose that G is a clique. Then S = {V } and H(S) = (S, ∅). Let

Π = {v}, where v ∈ V . Clearly, Π satisfies (1) and (2).

Now suppose that G is not a clique. Then |S| ≥ 2. We proceed by induction on
|S| to show that there exists a Π that satisfies (1) and (2), as long as |π(S)| ≥ 3. The
base case is |S| = 2. Let S = {U1, U2}, where |U1| ≥ |U2| ≥ 1. If |U2| = 1 or |U2| = 2,
then let Π = {u} for any u ∈ U2. If |U2| ≥ 3, then let Π = {u1, u2} for any u1 ∈ U1

and any u2 ∈ U2. In both cases, U1 ∪ U2 ⊆ Γ[Π], and |U1 ∪ U2| ≥ 3|Π|. Hence, (1)
and (2) hold for Π.

Now assume that |S| = m ≥ 3 and that the inductive hypothesis holds for any
adjacency graph H(S′) of size less than m, as long as |π(S′)| ≥ 3. Let T = (S, F ) be a
spanning tree of H(S). Choose U ∈ S that is not a leaf but is adjacent to at least one
leaf in T . Root T at U . Let T1, T2, . . . , Tr be the subtrees under U . Note that r ≥ 2,
since |S| ≥ 3. For 1 ≤ j ≤ r, let Rj be the root of Tj . Without loss of generality,
assume that Rj is a leaf of T for j ≤ s and a nonleaf for j > s, where 1 ≤ s ≤ r, and
that the Tj , for 1 ≤ j ≤ s, are arranged in nondecreasing order by cardinality of |Rj |.

First suppose that |R1| = 1. Then R1 places no constraints on Π with respect to
(1) or (2). Let S′ = S − {R1}. If |S′| ≥ 3, then, by induction, a placement Π can
be found for H(S′) that satisfies (1) and (2) for <V − R1> and hence also for G. If
|S′| = 2, then s = r = 2. Select u ∈ U and w ∈ R2. If |R2| ≤ 2, then set Π = {w}. If
|R2| ≥ 3 and |U | ≤ 2, then set Π = {u}. If |R2| ≥ 3 and |U | ≥ 3, then set Π = {u,w}
(in this case, |π(S)| ≥ 6). In all cases, Π satisfies (1) and (2) for G.

Now suppose that |R1| ≥ 2. Select u ∈ U . Consider the case |U | ≤ 2. If r = s,
then set Π = {u}. Otherwise, consider each Tj , where s + 1 ≤ j ≤ r, in turn. If
|π(Tj)| ≥ 3, then apply the inductive hypothesis to Tj to identify Πj that satisfies
(1) and (2) for Tj . If |π(Tj)| ≤ 2, then Tj is a path of one-node equivalence classes;
set Πj = ∅. Set Π = {u} ∪

⋃r
j=s+1 Πj . Then Π satisfies (1) and (2). Now consider

the case |U | ≥ 3. In this case, |U − {u}| ≥ 2 and | <V − R1 − {u}> | ≥ 3. Let
G′ =<V − R1 − {u}>. By induction, there exists a Π′ satisfying (1) and (2) for G′.
Set Π = Π′ ∪ {u}. Then Π satisfies (1) and (2).

By induction, we obtain Π ⊆ V satisfying (1) and (2).

Theorem 6. Let G = (V,E) be a PSG, and let n = |V |. Then there exists a
cover Π satisfying |Π| ≤ �n/3, if n ≥ 3, and |Π| = 1, if 1 ≤ n ≤ 2.

Proof. The result for 1 ≤ n ≤ 2 is immediate. For n ≥ 3, the proof is an inductive
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Πj
S

Bj

V − Πj
S

vkv2v1

u

Fig. 6. Boundary node u ∈ B.

construction of a sequence of placements Π0
S ,Π1

S , . . . ,Π�
S such that, for 0 ≤ j < �,

we have that Πj is a proper subset of Πj+1; Π� is a cover of G; and, for 0 ≤ j ≤ �, we

have Πj 
= ∅ and |Πj
S ≥ 3|Πj

S |.
The base case is j = 0. Let Π′ be the initial placement guaranteed by Lemma 2.

If Π′ 
= ∅, then set Π0 = Π′. Otherwise, set Π0 = {u}, where u is any degree 2 node
of G. Clearly, Π0 
= ∅ and |Πj

S ≥ 3|Πj
S |, as required.

Now suppose that j ≥ 0 and that, for every 0 ≤ i < j, Πi is a proper subset of
Πi+1, and, for 0 ≤ i ≤ j, Πj 
= ∅ and |Πi

S ≥ 3|Πi
S |. Let Bj = {u ∈ Πj

S | Γ(u) ∩
(V − Πj

S)} be the set of boundary nodes—observed nodes adjacent to unobserved
nodes. If Bj = ∅, then Πj is a cover of G and the theorem is proved for G. Otherwise,

V − Πj
S 
= ∅. In that case, we construct Πj+1 as follows.

Clearly Bj ∩ Πj = ∅, since Γ[Πj ] ⊂ ΠS . Let u ∈ Bj , and let Γ(u) ∩ (V − Πj
S) =

{v1, v2, . . . , vk}, as illustrated in Figure 6. Without loss of generality, we may assume
that u is selected so that k is as large as possible. Observe that k ≥ 2, because if v1

were the only unobserved neighbor of u, then v1 would be observed by rule S2.
First consider the case k ≥ 3. Set Πj+1 = Πj ∪ {u}, a proper superset of Πj .

Then |Πj+1
S | ≥ |Πj

S | + 3, as desired.
Now consider the case k = 2, which means that every node in Bj is adjacent to

exactly two nodes of V −Πj
S . Without loss of generality, assume that degree(v1) ≥

degree(v2) ≥ 1. Since v1 
≡ v2, we cannot have degree(v1) = degree(v2) = 1.
Thus, degree(v1) ≥ 2.

Let C1 = (V1, E1) (respectively, C2 = (V2, E2)) be the component of <V − Πj
S>

containing v1 (respectively, v2). First consider the cases where |V1| ≥ 3 or where
|V1| = 2 and C1 
= C2. Select a v3 ∈ V1 ∩ Γ(v1) that is not v2. Set Πj+1 = Πj ∪ {v1},
a proper superset of Πj . We obtain v2, v3 ∈ Πj+1

S ; in particular, v2 ∈ Πj+1
S because

v2 is the last unobserved neighbor of u and hence is observed by rule S2. Therefore,
|Πj+1

S | ≥ |Πj
S | + 3, as desired. Now consider the cases where |V1| = 1 or where

|V1| = 2 and C1 = C2. These cases imply that v1 and v2 are adjacent only to nodes in
Bj and perhaps each other. Since degree(v1) ≥ 2 and v1 
≡ v2, there must be a node

w ∈ Bj −{u} adjacent to v1 and not adjacent to v2. Let Γ(w)∩ (V −Πj
S) = {v1, z};

see Figure 7. We have z 
= v2, since w is not adjacent to v2. Set Πj+1 = Πj ∪ {v1},
a proper superset of Πj . We obtain v2, z ∈ Πj+1

S by application of rule S2 to u and

w. Therefore, |Πj+1
S | ≥ |Πj

S | + 3, as desired.
Since the sequence of placements are increasing, we must eventually reach the
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Πj
S

v1v2 z

u w

Bj

V − Πj
S

Fig. 7. Boundary nodes u,w ∈ Bj .

Fig. 8. Corona B�,2, which requires n/3 PMUs.

case where Bj = ∅. The theorem follows.
We now show that the above bound is existentially tight. To do so, we start with

a construction defined in Haynes, Hedetniemi, Hedetniemi, and Henning [9]. If G and
H are two graphs, then the corona G ◦H of G and H is achieved by making a copy
Hv of H for every node v of G and adding an edge from v to every node of Hv. For
purposes of notation, let C� = (U�, E�), where

U� = {u1, u2, . . . , u�}

E� =

�−1⋃
i=1

{(ui, ui+1)} ∪ {(u�, u1)}),

be a cycle of length �, and let Ik = (Vk, ∅), where Vk = {v1, v2, . . . , vk}, be a graph
of k isolated nodes. For each ui ∈ U�, define a copy Ik,ui of Ik by Iui,k = (Vk,ui , ∅),
where Vui,k = {vi,1, vi,2, . . . , vi,k}. The corona B�,k = C� ◦ Ik is a graph of n = k�
nodes that requires exactly � PMUs to be observed when k ≥ 2. Moreover, the initial
placement phase in the proof of Theorem 6 finds exactly the minimum PMU cover
of B�,k. More specifically, B�,2 requires exactly n/3 PMUs to be observed, which we
show in Theorem 7. For example, a minimum PMU cover for B�,2 has exactly � PMUs
as shown in Figure 8.

Theorem 7. A minimum cover for B�,k requires ��/3� PMUs if k = 1 and
requires � PMUs if k ≥ 2.

Proof. First consider the construction of a minimum PMU cover of B�,1 = C� ◦I1.
Starting with an arbitrary point on C�, place a PMU on every third node of C�. It is
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easy to verify that such a placement is a minimum cover, since every degree one node
is either adjacent to a PMU or adjacent to a node of C� that is adjacent to PMU.

Now assume k ≥ 2 and consider the construction of a minimum PMU cover of
B�,k. Let V = ∪�

i=1Vui,k. Let Π be a minimum cover of G. Among all minimum covers
of G, select Π ∩ V to be as small as possible. Suppose v = vi,j ∈ Π ∩ V . Then v is a
degree one node adjacent only to ui, a degree k+2 node. The set {ui}∪ (Π−{v}) is a
cover of G of the same cardinality as Π, but with one fewer element of V , contradicting
the choice of Π. Hence, Π ∩ V = ∅. We claim that Π = U�. Consider any ui ∈ U�.
We know that none of the k neighbors of ui in V are in Π. If ui 
∈ Π, then the k
neighbors are observed via applications of rule S2. But rule S2 can only be applied
when at most one neighbor of ui is unobserved, while k ≥ 2. We conclude that ui ∈ Π
and, moreover, that Π = U�. The theorem follows.

One referee suggested this generalization of Theorem 7.
Theorem 8. Let G be a connected graph with � nodes, and let k ≥ 2. Then a

minimum cover for the corona G ◦ Ik requires � PMUs.
The proof is similar to that of Theorem 7.

4. NP-completeness. Haynes, Hedetniemi, Hedetniemi, and Henning [9] show
that PMUP is NP-complete for bipartite graphs and for chordal graphs. Here we
show that the following decision problem version of PMUP is NP-complete even for
planar bipartite graphs.
Problem: PMU Placement (Decision Version)
Instance: Graph G = (V,E), integer k ≥ 1.
Question: Is there a set Π ⊆ V such that |Π| ≤ k and ΠS = V ?

Theorem 9. PMUP is NP-complete even when restricted to the class of planar
bipartite graphs.

Proof. The decision problem is easily in NP. Nondeterministically select k nodes
forming a candidate Π and verify observability using the methods described in sec-
tion 2.

The remainder of the proof is a reduction from planar 3-SAT (P3SAT) [15]. An
instance of 3-SAT is a boolean formula φ in conjunctive normal form such that each
clause contains at most 3 literals [7]. φ consists of the variables {v1, v2, . . . , vr} and
the set of clauses {c1, c2, . . . , cs}. Each cj is a set containing at most 3 literals, where
each literal is either a variable vi or its complement vi. A clause containing exactly k
literals is called a k-clause. The graph of φ, G(φ) = (V (φ), E(φ)), is a bipartite graph
constructed as follows:

V (φ) = {vi | 1 ≤ i ≤ r} ∪ {cj | 1 ≤ j ≤ s}
E(φ) = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

The edges in E(φ) represent whether a variable occurs in a clause or not. For example,
the graph of the formula

φ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v2 ∨ v3 ∨ v5) ∧ (v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5)

is shown in Figure 9. φ is satisfied if v2, v4, and v5 are true; hence φ is a satisfiable
formula. Lichtenstein shows that 3-SAT is NP-complete even when G(φ) is planar
(the problem P3SAT) [15].

It suffices to consider only instances of P3SAT such that each clause contains
either 2 or 3 literals. Our planar embedding of G(φ) positions each node vi, 1 ≤ i ≤ r,
along a straight line; this is called the variable axis. From Lemma 1 of [15], we may
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Fig. 9. Example of planar 3-SAT.
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Fig. 10. A gadget for a variable.

assume that our planar embedding of G(φ) satisfies the condition that, for each vi,
all clauses containing the literal vi are on one side of the variable axis and all clauses
containing the literal vi are on the other side. This property of the planar embedding
of G(φ) is called consistency [10]. Figure 9 is an example of a consistent planar
embedding.

Let V = {v1, . . . , vr} and C = {c1, c2, . . . , cs} be an instance of P3SAT such
that G(φ) has a consistent planar embedding. We will construct a corresponding
instance of PMUP that also is a planar bipartite graph. The strategy is to replace
each node in G(φ) with a specially constructed graph, or gadget. Let H(φ) denote the
resulting graph. Each clause node cj , 1 ≤ j ≤ s, is replaced with a 2-clique C[j], C ′[j],
effectively making the clause node adjacent to an additional degree one node. The
gadgets placed on clauses simply force a clause to be adjacent to at least one node
with a PMU. Each variable node vi is replaced by the gadget shown in Figure 10.
Observe that the gadget forces at least one PMU placed on it in order to be covered.
This implies that H(φ) requires a minimum of r PMUs in its cover. We wish to show
that a minimum cover for H(φ) uses exactly r PMUs if and only if φ is satisfiable.
Thus we are allowed only one PMU per gadget.

The gadget is designed to toggle between two states, representing either a true
(T) or false (F) value for the literal it replaces, depending on which node the PMU
is placed on; see Figure 11. For any variable vi, let zi ∈ {vi, vi} denote the variable
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(b)(a)

(c) (d)

(f)(e)

Fig. 11. Gadget states: (a) true; (b) false; (c) left bridge; (d) right bridge; (e) left leaf; and (f)
right leaf.

appearing in all clauses to the left of the variable axis. The following cases ensue:

1. true: In this case, the gadget is indicating that zi is true. The right leaf of
the gadget is observed only if all clauses connected to the rightmost node are
observed.

2. false: In this case, the gadget is indicating that zi is false. The left leaf of
the gadget is observed only if all clauses connected to the leftmost node are
observed.

3. eliminated (left bridge and right bridge): It is impossible to cover the gadget
with one PMU on either bridge.

4. eliminated (left leaf and right leaf): It is impossible to cover the gadget with
one PMU on a leaf.

For illustration, consider the instance of P3SAT depicted in Figure 9, with gadgets
inserted, as shown in Figure 12, and shown with a minimum PMU cover in Figure 13.

We have shown our construction guarantees a graph H(φ) for which a minimum
PMU cover has at least one PMU per gadget. At this time, note that H(φ) is planar
and bipartite, as shown in Figure 14. We have also classified the nodes of the gadget
semantically as either true, false, or illegal. By the substitution lemma, we do not
need to consider illegal nodes when constructing a minimum PMU cover for H(φ). It
remains to show that H(φ) has a cover of size r if and only if φ is satisfiable.
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Fig. 12. Instance of PMUP (planar 3-SAT with gadgets).

Assume that φ is satisfiable. For each variable vi, 1 ≤ i ≤ r, place a PMU on
either the leftmost or the rightmost gadget node according to whether vi is true or
false in a given satisfying instance S for φ. If φ is satisfied, then for each clause cj ,
1 ≤ j ≤ s, there exists a literal vi ∈ cj or vi ∈ cj which is in S. The PMU placed on
the corresponding gadget observes the main node of cj , as well as the main body of
the vi’s gadget. Thus all main clause nodes are observed. Furthermore, all leaf nodes
on clauses become observed by S2. Likewise, the remaining leaf nodes on gadgets
become observed. Hence, there is a cover of size r for H(φ).

Now assume that H(φ) has a cover Π of size r. Each gadget must have at least
one PMU. Thus there can be no nongadget PMUs in Π. Since Π is a cover, all clauses
are observed. By construction, a clause cannot be observed unless it is adjacent to at
least one PMU located on a gadget. Then for each main clause node cj , 1 ≤ j ≤ s,
there exists a node u ∈ Γ(cj) with a PMU. Let vi be variable containing u. Let
zi ∈ {vi, vi} be the variable appearing in cj . The clause cj is satisfied if zi is chosen
as true. Hence, all clauses in φ are satisfied by the truth assignment derived from the
minimum cover Π.

In summary, we have transformed instance φ of P3SAT into a PSG H(φ) with the
property that φ is satisfiable if and only if H(φ) has a PMU cover of size r. Therefore,
P3SAT reduces to PMUP. Since P3SAT is NP-complete [15], we conclude that PMUP
is NP-complete even when restricted to planar bipartite graphs.
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Fig. 13. Minimum PMU cover (P3SAT with gadgets).

(a)

V1 V1 V1 V1V2 V2

c0 c1 c2 c3v0

v1

v2

v4

v5

v6

V2

(b)

c1

v0

v2v1

v6 c3

c2v4 v5
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Fig. 14. Partitions of nodes in H(φ) showing that H(φ) is bipartite.
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AND THE LOCAL RATIO TECHNIQUE∗
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Abstract. We discuss two approximation paradigms that were used to construct many approxi-
mation algorithms during the last two decades, the primal-dual schema and the local ratio technique.
Recently, primal-dual algorithms were devised by first constructing a local ratio algorithm and then
transforming it into a primal-dual algorithm. This was done in the case of the 2-approximation
algorithms for the feedback vertex set problem and in the case of the first primal-dual algorithms for
maximization problems. Subsequently, the nature of the connection between the two paradigms was
posed as an open question by Williamson [Math. Program., 91 (2002), pp. 447–478]. In this paper
we answer this question by showing that the two paradigms are equivalent.
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1. Introduction.

1.1. Primal-dual schema. A key step in designing an approximation algorithm
is establishing a good bound on the value of the optimum. This is where linear
programming helps out. Many combinatorial optimization problems can be expressed
as linear integer programs, and the value of an optimal solution to their LP-relaxation
provides the desired bound. Clearly, the best we can hope for using this approach is to
get an r-approximation algorithm, where r is the integrality gap of the program. One
way to obtain approximate solutions is to solve the LP-relaxation and then to round
the solution while ensuring that the cost does not change by much. Another way to
go about it is to use the dual of the LP-relaxation in the design of approximation
algorithms and their analyses. A primal-dual r-approximation algorithm constructs
a feasible integral primal solution and a feasible dual solution such that the value of
the primal solution is no more than r times (or, in the maximization case, at least
1/r times) the value of the dual solution. This work focuses on classical primal-dual
approximation algorithms, specifically those that fall within the so-called primal-dual
schema.

The primal-dual schema can be seen as a modified version of the primal-dual
method for solving linear programs. The primal-dual method was originally proposed
by Dantzig, Ford, and Fulkerson [19]. Over the years, it became an important tool
for solving combinatorial optimization problems that can be formulated as linear pro-
grams. While the complementary slackness conditions are imposed in the primal-dual
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method, we enforce the primal conditions and relax the dual conditions when working
with the primal-dual schema. A primal-dual approximation algorithm typically con-
structs an approximate primal solution and a feasible dual solution simultaneously.
The approximation ratio is derived from comparing the values of both solutions. The
first approximation algorithm to use the primal-dual schema is Bar-Yehuda and Even’s
approximation algorithm for the weighted set cover problem [6], and since then many
approximations algorithms for NP-hard optimization problems were constructed us-
ing this approach, among which are algorithms for network design problems (see,
e.g., [37, 1, 26]). In fact, this line of research has introduced the idea of looking at
minimal solutions (with respect to set inclusion) to the primal-dual schema.

Several primal-dual approximation frameworks were proposed in the last decade.
Goemans and Williamson [26] presented a generic algorithm for a wide family of net-
work design problems. They based a subsequent survey of the primal-dual schema [27]
on this algorithm. Another, more recent, survey by Williamson [39] describes the
primal-dual schema and several extensions of the primal-dual approach. In [27] the
authors show that the primal-dual schema can be used to explain many classical (ex-
act and approximation) algorithms for special cases of the hitting set problem, such
as shortest path, minimum spanning tree, and vertex cover. Following [26], Bertsimas
and Teo [14] proposed a primal-dual framework to design and analyze approximation
algorithms for integer programming problems of the covering type. As in [26, 27] this
framework enforces the primal complementary slackness conditions while relaxing the
dual conditions. However, in contrast to previous studies, Bertsimas and Teo [14]
express each advancement step as the construction of a single valid inequality and
an increase of the corresponding dual variable (as opposed to an increase of several
dual variables). The approximation ratio of the resulting algorithm depends upon the
quality, or strength in terms of [14], of the inequalities that are used.

1.2. Local ratio technique. The local ratio technique uses weight subtractions.
An advancement step of a local ratio algorithm typically consists of the construction of
a new weight function, which is then subtracted from the current objective function.
Each subtraction changes the optimum, but incurs a cost. The ratio between this
cost and the change in the optimum is called the effectiveness of the weight function.
The approximation ratio of a local ratio algorithm depends on the effectiveness of the
weight functions it constructs.

The local ratio approach was developed by Bar-Yehuda and Even [7] in order
to approximate the set cover and vertex cover problems. In that paper the authors
presented a local ratio analysis to their primal-dual approximation algorithm for set
cover [6] and a (2 − log log n

2 log n )-approximation algorithm for vertex cover. About ten

years later Bafna, Berman, and Fujito [2] extended the local ratio lemma from [7] in
order to construct a 2-approximation algorithm for the feedback vertex set problem.
This algorithm was the first local ratio algorithm that used the notion of minimal solu-
tions. We note that this work and the 2-approximation from [13] were essential in the
design of primal-dual approximation algorithms for feedback vertex set [17]. Following
Bafna, Berman, and Fujito [2], Fujito [23] presented a generic local ratio algorithm
for node deletion problems with nontrivial and hereditary graph properties.1 Later,
Bar-Yehuda [4] presented a unified local ratio approach for developing and analyz-
ing approximation algorithms for covering problems. This framework, which extends

1A graph property π is nontrivial if it is true for infinitely many graphs and false for infinitely
many graphs; it is hereditary if every subgraph of a graph satisfying π also satisfies π.
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the one in [23], can be used to explain most known optimization and approximation
algorithms for covering problems. Bar-Noy et al. [3] use the local ratio technique
to develop a framework for resource allocation and scheduling problems. This study
was the first to present a local ratio (or primal-dual) approximation algorithm for a
natural maximization problem. A primal-dual interpretation was presented in [3] as
well. Recently, Bar-Yehuda and Rawitz [11] presented local ratio interpretations of
known algorithms for minimum s-t cut and the assignment problem. These algorithms
are the first applications of local ratio to use negative weights. The corresponding
primal-dual analyses are based on new integer programming formulations of these
fundamental problems. A detailed survey on the local ratio technique that includes
recent developments (such as fractional local ratio [8]) is given in [5].

1.3. Our results. We present two generic approximation algorithms for cover-
ing problems. The first is a recursive version of the primal-dual algorithm from [14],
and the second is a variant of the local ratio algorithm from [4]. After presenting
both frameworks we discuss the connection between them. We show that a strong
valid inequality (in terms of [14]) and an effective weight function (in terms of [4])
are equivalent notions. Consequently, we prove that both frameworks for covering are
one and the same. We demonstrate the combined approach on a variety of covering
problems, such as network design problems and the feedback vertex set problem. We
also present a linear time approximation algorithm for the generalized hitting set prob-
lem (which can be viewed as a prize-collecting version of hitting set). This algorithm
extends the approximation algorithm for hitting set from [6] and achieves a ratio of
2 in the special case of generalized vertex cover. Its time complexity is significantly

better than Hochbaum’s [31] O(nm log n2

m ) 2-approximation algorithm for this special
case.

Next, we extend both our frameworks to include algorithms for minimization
problems that are not covered by the generic algorithms from [14] and [4]. We show
that the equivalence between the paradigms continues to hold. We demonstrate the
use of the extended frameworks on several algorithms: a 2.5-approximation algorithm
for feedback vertex set in tournaments [16]; a 2-approximation algorithm for a noncov-
ering problem called minimum 2-satisfiability [29, 9]; and a 3-approximation algorithm
for a bandwidth trading problem [15]. We show that the equivalence continues to hold
in the maximization case. We do that by developing two equivalent frameworks for
maximization problems, one in each approach. Algorithms for interval scheduling [3]
and longest path in a directed acyclic graph (DAG) are used to demonstrate our
maximization frameworks.

It is important to note that the equivalence between the paradigms is constructive.
That is, a primal-dual algorithm that follows our framework can be easily transformed
into a local ratio algorithm, and vice versa. A corollary to this equivalence is that the
integrality gap of a certain integer program serves as a lower bound to the approxima-
tion ratio of a local ratio algorithm. We also note that the nature of the connection
between the two paradigms was mentioned as an open question by Williamson [39].

We believe that this study contributes to the understanding of both approaches
and, especially, that it may help in the design of approximation algorithms for non-
covering problems and nonstandard algorithms for covering problems. For example,
we show that the primal-dual schema can be applied as a clean-up phase whose out-
put is an instance of a certain type that we know how to solve by other means.
This approach is quite natural in the local ratio setting and has been used in the
(2− log log n

2 log n )-approximation algorithm for vertex cover [7] and the 2.5-approximation

algorithm for feedback vertex set in tournaments [16].
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1.4. Related work. Jain and Vazirani [34] presented a 3-approximation algo-
rithm for the metric uncapacitated facility location (MUFL) problem that deviates
from the standard primal-dual paradigm. Their algorithm does not employ the usual
mechanism of relaxing the dual complementary slackness conditions, but rather it
relaxes the primal conditions. Jain et al. [33] developed dual fitting algorithms for
MUFL. A dual fitting algorithm produces a feasible primal solution and an infeasible
dual solution such that (1) the cost of the dual solution dominates the cost of the
primal solution, and (2) dividing the dual solution by an appropriately chosen r re-
sults in a feasible dual solution. These two properties imply that the primal solution
is r-approximate. This contrasts with the standard primal-dual approach, in which a
feasible dual solution is found and used to direct the construction of a primal solution.
Freund and Rawitz [22] presented two combinatorial approximation frameworks that
are not based on LP-duality. Instead, they are based on weight manipulation in the
spirit of the local ratio technique. They showed that the first framework is equivalent
to dual fitting and that the second framework is equivalent to a linear programming–
based method which they defined and called primal fitting. The second framework
can be used to analyze the algorithm of Jain and Vazirani [34].

1.5. Overview. The remainder of the paper is organized as follows. In section 2
we define the family of problems which we consider in this paper and state some
basic facts regarding primal-dual and local ratio. In section 3 we demonstrate the
two approaches on the Steiner tree problem. The objective of this example is to
identify the differences and similarities between the paradigms. Section 4 discusses
covering problems. We present a generic primal-dual algorithm and a generic local
ratio algorithm, both for covering problems, and we show that they are equivalent. We
also show how the two generic algorithms can be applied to several covering problems.
More general minimization frameworks are given in section 5, and our maximization
frameworks are given in section 6.

2. Preliminaries. We consider the following optimization problem: given a non-
negative weight vector w ∈ R

n
+, find a solution x ∈ N

n that minimizes (or maximizes)
the inner product w · x subject to some set F of feasibility constraints on x. This
formulation contains, among others, all linear and integer programming problems.
Usually, we require x ∈ {0, 1}n, and in this case we abuse notation by treating a
vector x ∈ {0, 1}n as the set of its 1 entries, i.e., as {j : xj = 1}. The correct inter-
pretation should be clear from the context.

We define the following for a minimization (maximization) problem (F , w). A
vector x is called a feasible solution if x satisfies the constraints in F . A feasible
solution x∗ is optimal if every feasible solution x satisfies w ·x∗ ≤ w ·x (w ·x∗ ≥ w ·x).
We denote by Opt the value of an optimal solution, i.e., the optimum value. A
feasible solution x is called an r-approximation or r-approximate if w · x ≤ r · w ·
x∗ (w · x ≥ 1

r · w · x∗), where x∗ is an optimal solution. An algorithm is called
an r-approximation algorithm if it returns r-approximate solutions. Namely, an r-
approximation algorithm returns a feasible solution whose weight is no more than r
(at least 1/r) times the optimum weight.

2.1. Primal-dual. This section is written in terms of minimization problems.
Similar arguments can be given in the maximization case. Also, in what follows we
assume basic knowledge of linear programming. (See, e.g., [36, 35] for more details
about linear programming.)
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Consider the linear program

min

n∑
j=1

wjxj

s.t.

n∑
j=1

aijxj ≥ bi ∀i ∈ {1, . . . ,m} ,

xj ≥ 0 ∀j ∈ {1, . . . , n}

and its dual

max

n∑
i=1

biyi

s.t.

n∑
i=1

aijyi ≤ wj ∀j ∈ {1, . . . , n} ,

yi ≥ 0 ∀i ∈ {1, . . . ,m} .

A primal-dual r-approximation algorithm for a minimization problem produces an
integral primal solution x and a dual solution y such that the weight of the primal
solution is no more than r times the value of dual solution. Namely, it produces an
integral solution x and a solution y such that

wx ≤ r · by.(2.1)

The weak duality theorem implies that x is r-approximate.
One way to design an algorithm that finds a pair of primal and dual solutions that

satisfies (2.1) is to restrict our attention to a specific kind of pairs of primal and dual
solutions. Consider a primal solution x and a dual solution y. The duality theorem
provides us with a way to characterize a pair of optimal solutions. Specifically, x
and y are optimal if and only if the following conditions, called the complementary
slackness conditions, are satisfied:

Primal conditions: ∀j, xj > 0 ⇒
m∑
i=1

aijyi = wj .

Dual conditions: ∀i, yi > 0 ⇒
n∑

j=1

aijxj = bi.

However, we are interested in approximate solutions, and thus it seems natural to relax
the complementary slackness conditions. Consider an integral primal solution x and a
dual solution y that satisfy the following conditions, called the relaxed complementary
slackness conditions [38]:

Relaxed primal conditions: ∀j, xj > 0 ⇒ wj/r1 ≤
m∑
i=1

aijyi ≤ wj .

Relaxed dual conditions: ∀i, yi > 0 ⇒ bi ≤
n∑

j=1

aijxj ≤ r2 · bi.

Then

n∑
j=1

wjxj ≤
n∑

j=1

r1 ·
(

m∑
i=1

aijyi

)
xj = r1 ·

m∑
i=1

⎛
⎝ n∑

j=1

aijxj

⎞
⎠ yi ≤ r1 · r2 ·

m∑
i=1

biyi,
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which means that x is r1 · r2-approximate.

In this study we consider algorithms in which r1 = 1, that is, algorithms that
relax only the dual complementary slackness conditions. (Algorithms that relax the
primal conditions are studied in [22].) Typically, such an algorithm constructs an
integral primal solution x and a feasible dual solution y simultaneously. It starts
with an infeasible primal solution and a feasible dual solution (usually, x = 0 and
y = 0). It iteratively raises the dual solution and improves the feasibility of the
primal solution. In each iteration the dual solution is increased while ensuring that
the relaxed dual conditions are satisfied. Also, a primal variable can be increased only
if its corresponding primal condition is obeyed.

2.2. Local ratio. Say we want to construct an r-approximation algorithm for a
minimization problem. A key step in the design of such an algorithm is to establish
a good lower bound b on the weight of the optimal solution. This bound can later be
used in the analysis to prove that the solution found by the algorithm is r-approximate
by showing that its weight is no more than r·b. The local ratio technique uses a “local”
variation of this idea. In essence, the idea is to break down the weight w of the solution
found by the algorithm into a sum of “partial weights” w = w1 + w2 + · · · + wk, and
similarly break down the lower bound b into b = b1 + b2 + · · · + bk, and to show that
wi ≤ r · bi for all i. The breakdown of w and b is determined by the manner in which
the solution is constructed by the algorithm. In fact, the algorithm constructs the
solution in such a way as to ensure that such a breakdown exists. Put differently, at
the ith step, the algorithm “pays” r · bi and manipulates the problem instance so that
the optimum drops by at least bi.

The local ratio technique is based on the following theorem. (The proof is given
for completeness.)

Theorem 2.1 (local ratio theorem [3]). Let (F , w) be a minimization (maxi-
mization) problem, and let w,w1, and w2 be weight functions such that w = w1 +w2.
Then if x is r-approximate with respect to (F , w1) and with respect to (F , w2), then
x is r-approximate with respect to (F , w).

Proof. Let x∗, x∗
1, x

∗
2 be optimal solutions with respect to (F , w), (F , w1), and

(F , w2), respectively. Then in the minimization case we have

wx = w1x + w2x ≤ r · w1x
∗
1 + r · w2x

∗
2 ≤ r · (w1x

∗ + w2x
∗) = r · wx∗ .

For the maximization case simply replace ≤ by ≥ and r by 1
r .

Note that F can include arbitrary feasibility constraints, and not just linear, or
linear integer, constraints. Nevertheless, all successful applications of the local ratio
technique to date involve problems in which the constraints are linear.

Usually, the local ratio theorem is used in the following manner. Given a problem
instance with a weight function w, we find a nonnegative weight function δ ≤ w such
that every minimal solution (with respect to set inclusion) is r-approximate with
respect to δ. Then we recursively find a minimal solution that is r-approximate with
respect to w−δ. By the local ratio theorem this solution is r-approximate with respect
to the original weights w. The recursion terminates when a minimal r-approximate
solution can be found directly, which usually occurs when the problem instance is
an empty instance, or when the weights have evolved to the point that the set of all
zero-weight elements constitutes a feasible (and hence optimal) solution. Note that
the scheme just described is tail recursive and can thus be implemented iteratively
rather than recursively.
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3. An introductory example: The Steiner tree problem. In this section
we compare two approximation algorithms for the Steiner tree problem, one based on
the primal-dual schema and the other on the local ratio technique. The algorithms
are not new, but they demonstrate how one usually uses both paradigms and thus
help us to identify differences and similarities between the two approaches. Also, this
example will be useful in the next section. We start with the definition of the problem.

Given a graph G = (V,E) and a nonempty set of terminals T ⊆ V , a Steiner
tree is a subtree of G that connects all the vertices in T . Given a nonnegative weight
function w on the edges, the Steiner tree problem is to find a minimum weight Steiner
tree, where the weight of a tree is the total weight of its edges. (We consider trees to
be sets of edges.)

We are interested in Steiner trees that are minimal with respect to set inclusion.
Namely, a Steiner tree F is minimal if F \ {e} is not a Steiner tree for every edge
e ∈ F . Observe that a Steiner tree is minimal if and only if every leaf in the tree is a
terminal. For an edge e ∈ E we denote the number of terminals incident to e, or the
terminal degree of e, by τ(e), i.e., τ(e) = |e ∩ T |.

Lemma 3.1. Let F be a minimal Steiner tree. Then |T | ≤
∑

e∈F τ(e) ≤ 2 |T |−2.
Proof. The first inequality follows from the fact that every terminal must be

incident to some edge in F . The second inequality can be proven as follows. We pick
an arbitrary terminal r to be the root of the Steiner tree. Next, we place a total of
2 |T |−2 coins on the terminals—two coins on each terminal in T \{r}—and show that
we can reassign the coins such that there are at least τ(e) coins on each edge e ∈ F .
Consider a terminal t ∈ T \ {r}, and let u be the parent of t. Let s be the terminal
which is closest to u on the path from u to r, and let v be s’s child on that path. t
places one coin on the edge (t, u) and another coin on the edge (v, s). (If u = s and
v = t, then two coins are placed on (t, u).) It is not hard to verify that, because the
leaves of F are terminals, at least τ(e) coins are placed on every edge e ∈ F .

A slightly different proof of a more general claim is given in [27].

3.1. Primal-dual. A typical first step in the design of a primal-dual approxi-
mation algorithm is to find a suitable formulation of the problem at hand as a linear
integer program. Indeed, we start with such a formulation of the Steiner tree problem.
We say that a subset S ⊆ V splits T if ∅ � S ∩ T � T . Let Split(T ) be the set of
all subsets of V that split T , i.e., Split(T ) = {S : ∅ � S ∩ T � T}. The Steiner tree
problem can be formulated by the following linear integer program:

min
∑
e∈E

w(e)xe

s.t.
∑

e∈(S,S̄)

xe ≥ 1 ∀S ∈ Split(T ),

xe ∈ {0, 1} ∀e ∈ E,

(ST)

where (S, S̄) denotes the set of edges having exactly one endpoint in S. We get an
LP-relaxation by replacing the last set of constraints by xe ≥ 0 for all e ∈ E. The
corresponding dual program is

max
∑

S∈Split(T )

yS

s.t.
∑

S:e∈(S,S̄)

yS ≤ w(e) ∀e ∈ E,

yS ≥ 0 ∀S ∈ Split(T ).
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Algorithm PD-ST(G,w).

1. F ← ∅
2. y ← 0
3. C0 ← {{v} : v ∈ V }
4. � ← 0

5. While ∃C ∈ C� such that C splits T
6. � ← � + 1
7. Increase yC uniformly for every C ∈ C that splits T

until some dual constraint becomes tight
8. Let e� = (u, v), such that u ∈ Ci and v ∈ Cj ,

be an edge that corresponds to a tight dual constraint
9. F ← F ∪ {e�}

10. C� ← C�−1 ∪ {Ci ∪ Cj} \ {Ci, Cj}
11. For j ← � down-to 1
12. If F \ {ej} is feasible then F ← F \ {ej}
13. Output F

Fig. 3.1.

Algorithm PD-ST is a primal-dual approximation algorithm for the Steiner tree
problem (see Figure 3.1). It is a specific implementation of the generic algorithm
from [26]. The algorithm starts with |V | components—each containing a single ver-
tex. The components are induced by the solution F . In the �th iteration it raises the
dual variables that correspond to components that split T until some dual constraint
becomes tight. Then an edge that corresponds to some tight dual constraint is added
to F , and the components are updated accordingly. This process terminates when all
terminals are in the same component. Then F is turned into a minimal Steiner tree
using reverse deletion.

First, we show that Algorithm PD-ST produces feasible solutions. Consider
a solution F returned by the algorithm. Observe that all the terminals are in the
same component; otherwise the algorithm would not have terminated. Also, due to
lines 11–12 F is a minimal Steiner tree.

We need only prove that Algorithm PD-ST produces 2-approximate solutions.
Let y be the dual solution corresponding to a solution F that was output by the algo-
rithm. By the weak duality theorem

∑
S∈Split(T ) yS ≤ Opt. Thus, in order to show

that F is 2-approximate, it is enough to prove that
∑

e∈F w(e) ≤ 2 ·
∑

S∈Split(T ) yS .
In the �th iteration the algorithm raises yC for every component C that splits T ,

and therefore ∑
S∈Split(T )

yS =

t∑
�=1

ε� |C′
�| ,

where ε� is the dual increase at the �th iteration, and C′
� ⊆ C� is the set of components

that split T (active components in the terminology of [26]). On the other hand, only
edges that correspond to tight dual constraints are taken into the solution F , and
hence∑

e∈F

w(e) =
∑
e∈F

∑
S:e∈(S,S̄)

yS =
∑
e∈F

∑
S:e∈(S,S̄)

∑
�:S∈C′

�

ε� =

t∑
�=1

ε�
∑
C∈C′

�

∣∣(C, C̄) ∩ F
∣∣ .
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Thus, it is enough to prove that for every � ∈ {1, . . . , t},∑
C∈C′

�

∣∣(C, C̄) ∩ F
∣∣ ≤ 2 · |C′

�| .

Observe that for a component C ∈ C′
�,
∣∣(C, C̄) ∩ F

∣∣ is the number of edges in F with

one endpoint in C. If we could prove that
∣∣(C, C̄) ∩ F

∣∣ ≤ 2 for every C ∈ C′
�, then

we are done. However, this is not necessarily true. Instead, we prove an “amortized”
version of this claim. That is, we prove that the average number of edges in F with
one endpoint in a component C ∈ C′

� is no more that two. We remark that by doing
that we actually prove that the relaxed dual complementary slackness conditions are
satisfied (as shown in the next section).

Consider the �th iteration, and define a multigraph (a graph that may contain
multiple edges between pairs of vertices) G� = (V �, E�) as follows. Each vertex in
V � corresponds to a component C ∈ C�. We refer to a vertex u as a terminal in
G� if the corresponding component in G contains at least one terminal (i.e., if the
corresponding component is in C′

�). We denote the set of terminals in G� by T �. Let
u and v be vertices in G� and let Cu and Cv be the corresponding components. E�

contains a copy of the edge (u, v) for every edge (x, y) ∈ E such that x ∈ Cu, y ∈ Cv,
and the weight of this copy is w(x, y). Consider the set of edges F � that is induced
by F in G�. Clearly,∑

C∈C′
�

∣∣(C, C̄) ∩ F
∣∣ =

∑
v∈T �

∣∣E�(v) ∩ F �
∣∣ =

∑
e∈F �

τG�(e),

where E�(v) is the set of edges incident on v (in G�). We claim that F � is a minimal
Steiner tree in G�. To see this observe that in the �th iteration the terminals in each
component C are connected in G (by edges within each component). Moreover, due
to the reverse deletion phase (lines 11–12) the edges in F � form a minimal Steiner
tree in G�. Thus, by Lemma 3.1, we know that∑

e∈F �

τG�(e) ≤ 2 · |T �| − 2 = 2 · |C ′
�| − 2

and we are done.

3.2. Local ratio. The following local ratio approximation algorithm (see Fig-
ure 3.2) appeared in [4] (though in less detail). In the course of its execution, the
algorithm modifies the graph by performing edge contractions. Contracting an edge
(u, v) consists of “fusing” its two endpoints u and v into a single (new) vertex z. The
edge connecting u and v is deleted and every other edge incident on u or v becomes
incident on z instead. In addition, if either u or v are terminals, then z is a terminal
too.

Note the slight abuse of notation in line 7. The weight function in the recursive
call is not w − δ itself, but rather the restriction on G′. We will continue to silently
abuse notation in this manner.

We prove by induction on the number of terminals that Algorithm LR-ST returns
a minimal Steiner tree. At the recursion basis the solution returned is the empty
set, which is both feasible and minimal. For the inductive step, by the inductive
hypothesis, F ′ is a minimal Steiner tree with respect to G′ and T ′. Since we add e to
F only if we have to, F is a minimal Steiner tree with respect to G and T .
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Algorithm LR-ST(G,T,w).

1. If G contains only one terminal then return ∅
2. Else:
3. Let ε = mine {w(e)/τ(e)}
4. Define the weight function δ(e) = ε · τ(e)
5. Let e be an edge such that w(e) = δ(e)
6. Let (G′, T ′) be the instance obtained by contracting e
7. F ′ ← LR-ST(G′, T ′, w − δ)
8. If F ′ is not feasible then return F = F ′ ∪ {e}
9. Else, return F = F ′

Fig. 3.2.

It remains to prove that Algorithm LR-ST produces 2-approximate solutions.
The proof is also by induction on the number of terminals. In the base case the
solution returned is the empty set, which is optimal. For the inductive step, by the
inductive hypothesis, F ′ is 2-approximate with respect to G′, T ′, and w − δ. Since
(w − δ)(e) = 0, the weight of F with respect to w − δ equals that of F ′, and the
optimum value for G,T with respect to w − δ cannot be smaller than the optimum
value for G′, T ′, because if F ∗ is an optimal solution for G,T , then F ∗ \ {e} is a
feasible solution of the same weight for G′, T ′. Thus, F is 2-approximate with respect
to G,T , and w − δ. By Lemma 3.1, any minimal Steiner tree in G is 2-approximate
with respect to δ. Thus, by the local ratio theorem, F is 2-approximate with respect
to G,T , and w as well.

3.3. Primal-dual vs. local ratio. Algorithms PD-ST and LR-ST represent
many algorithms in the literature in the sense that each of them can be viewed as a
standard use of the corresponding paradigm. Algorithm PD-ST relies heavily on LP-
duality. It is based on a predetermined linear program and its dual program, and its
analysis is based on the comparison between the values of an integral primal solution
and a dual solution. Algorithm PD-ST is iterative, and in each iteration the dual
solution is changed. In a sense, the dual solution can be viewed as the bookkeeper
of the algorithm. On the other hand, Algorithm LR-ST does not use linear pro-
gramming. Instead, it relies upon weight decompositions and a local ratio theorem.
As in this case, local ratio algorithms are typically recursive, and in each recursive
call the weights are decomposed and the instance is modified. The decomposition is
determined by a weight function defined in the current recursive call. Thus, at least
at first glance, the two algorithms and their analyses seem very different.

Having said all that, we turn to the similarities between the algorithms. Both al-
gorithms use the same combinatorial property (Lemma 3.1) to achieve an approximate
solution. The performance ratio of both algorithms was proven locally. That is, it
was shown, using the above-mentioned property, that in each iteration/decomposition
a certain ratio holds. Also, both solutions use a reverse deletion phase. In the next
section we show that this is no coincidence. The equivalence between the paradigms
is based on the fact that “good” valid inequalities are equivalent to “good” weight
functions. We shall also see that the changes in the dual during a primal-dual algo-
rithm are strongly connected to the values of ε that are chosen in the recursive calls
of a local ratio algorithm.
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4. Covering problems. Perhaps the most famous covering problem is the set
cover problem. In this problem we are given a collection of sets C = {S1, . . . , Sm} and
a weight function w on the sets. The objective is to find a minimum-weight collection
of sets that covers all elements. In other words, a collection C′ ⊆ C is a set cover
if each element in

⋃m
i=1 Si is contained in some set from C′, and we aim to find a

set cover of minimum weight. Consider a set cover C′. Clearly, if we add sets from
C \ C′ to C′, the resulting collection is also a set cover. This property is shared by
all covering problems. A minimization problem (F , w) is called a covering problem if
(1) x ∈ {0, 1}n, and (2) any extension of a feasible solution to any possible instance
is always feasible. In this case, we call the set of constraints F monotone. Note that
a monotone set of linear constraints typically contains inequalities with nonnegative
coefficients.

The family of covering problems contains a broad range of optimization problems.
Many of them, such as vertex cover, feedback vertex set, and Steiner tree, were studied
extensively. In fact, both the primal-dual schema and the local ratio technique were
developed for the purpose of finding good approximate solutions for the set cover
problem and its special case, the vertex cover problem.

Primal-dual approximation algorithms for covering problems traditionally reduce
the size of the instance at hand in each iteration by adding an element j ∈ {1, . . . , n}
whose corresponding dual constraint is tight to the primal solution (see, e.g., [27, 14]).
Local ratio algorithms for covering problems implicitly add all zero-weight elements
to the solution and, therefore, reduce the size of the instance in each step as well
(see, e.g., [4]). In order to implement this we alter the problem definition by adding
a set (or vector), denoted by z, which includes elements that are considered (at least,
temporarily) to be taken into the solution. This makes it easier to present primal-dual
algorithms recursively and to present local ratio algorithms in which the addition of
zero-weight elements to the partial solution is explicit.

More formally, given a monotone set of constraints F , a weight function w, and
a vector z ∈ {0, 1}n, we are interested in the following problem. Find a vector
x ∈ {0, 1}n such that (1) z∩x = ∅, (2) x∪z satisfies F , and (3) x minimizes the inner
product w ·x. (When z = ∅ we get the original problem (F , w).) z can be viewed as an
additional monotone constraint, and therefore this problem is a covering problem. The
definitions of a feasible solution, an optimal solution, and an r-approximate solution
can be understood in a straightforward manner. We denote the set of feasible solutions
with respect to F and z by Sol(F , z). Also, a feasible solution x is called minimal
(with respect to set inclusion) if for all j ∈ x the vector z ∪ x \ {j} is not feasible.

We remark that the use of this terminology is very useful in the context of this
paper, i.e., for presenting generic algorithms, and for showing the equivalence between
the two paradigms. However, it may be inept at constructing an approximation
algorithm for a specific problem.

4.1. A primal-dual framework for covering problems. In this section we
present a recursive primal-dual framework for approximating covering problems that is
based on the one by Bertsimas and Teo [14]. However, before doing so we show that the
framework from [14] extends the generic algorithm of Goemans and Williamson [27].
The proof of this claim is based on the observation that every advancement step of
an approximation algorithm that uses the primal-dual schema can be represented by
a change in a single dual variable. Note that this was not shown explicitly in [14] and
was also mentioned by Williamson [39]. The reason we show this explicitly is twofold.
First, we would like to draw attention to the fact that most primal-dual algorithms
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Algorithm GW.

1. y ← 0
2. x ← ∅
3. j ← 0

4. While x is not feasible
5. j ← j + 1
6. Vj ← Violation(x)
7. Increase yk uniformly for all Tk ∈ Vj

until ∃ej ∈ x :
∑

i:e�∈Ti
yi = wej

8. x ← x ∪ {ej}
9. � ← j

10. For j ← � down-to 1
11. If x \ {ej} is feasible then x ← x \ {ej}
12. Output x

Fig. 4.1.

in the literature do not follow the framework from [14], and therefore their analyses
are unnecessarily complicated and do not offer much insight into the design process
of the algorithm. (This is in contrast to local ratio analyses.) Second, we want to
make the role of the complementary slackness conditions in primal-dual analyses more
apparent.

We start by presenting the algorithm of Goemans and Williamson [27, p. 158]; see
Figure 4.1. The algorithm and its analysis are included for completeness. Goemans
and Williamson base their generic algorithm on the hitting set problem. In this
problem we are given a collection of subsets T1, . . . , Tq of a ground set E and a weight
function w : E → R+. Our goal is to find a minimum weight subset x ⊆ E such that
x∩ Ti = ∅ for every i ∈ {1, . . . , q}. In turns out that many known problems (shortest
path, vertex cover, etc. ) are special cases of the hitting set problem. The hitting set
problem can be formulated as follows:

min
∑
e∈E

wexe

s.t.
∑
e∈Ti

xe ≥ 1 ∀i ∈ {1, . . . , q} ,

xe ∈ {0, 1} ∀e ∈ E,

where xe = 1 if and only if e ∈ x. The LP-relaxation and the corresponding dual
program are

min
∑
e∈E

wexe

s.t.
∑
e∈Ti

xe ≥ 1 ∀i ∈ {1, . . . , q} ,

xe ≥ 0 ∀e ∈ E,

max

q∑
i=1

yi

s.t.
∑

i:e∈Ti

yi ≤ we ∀e ∈ E,

yi ≥ 0 ∀i ∈ {1, . . . , q} .

The algorithm starts with the feasible dual solution y = 0 and the nonfeasible
primal solution x = ∅. It iteratively increases the primal and dual solutions until the



774 REUVEN BAR-YEHUDA AND DROR RAWITZ

primal solution becomes feasible. In each iteration, if x is not feasible, then there
exists a set Tk such that x ∩ Tk = ∅. Such a subset is called violated. Indeed, the
increase of the dual solution involves some dual variables corresponding to violated
sets. Specifically, the increase of the dual variables depends on a violation oracle
(called Violation). In each iteration the violation oracle supplies a collection of
violated subsets Vj ⊆ {T1, . . . , Tq}, and the dual variables that correspond to subsets
in Vj are increased simultaneously and at the same speed.2 When x becomes feasible
a reverse delete step is performed. This step removes as many elements as possible
from the primal solution x as long as x remains feasible.

Let xf denote the set output by the algorithm, and let εj denote the increase of the

dual variables corresponding to Vj . Thus, yi =
∑

j:Ti∈Vj
εj ,

∑q
i=1 yi =

∑�
j=1 |Vj | εj ,

and

w(xf ) =
∑
e∈xf

we

=
∑
e∈xf

∑
i:e∈Ti

yi

=

q∑
i=1

∣∣xf ∩ Ti

∣∣ yi
=

q∑
i=1

∣∣xf ∩ Ti

∣∣ ∑
j:Ti∈Vj

εj

=

�∑
j=1

⎛
⎝ ∑

Ti∈Vj

∣∣xf ∩ Ti

∣∣
⎞
⎠ εj .

Therefore, the weight of xf is at most r times the value of the dual solution y (and,
therefore, xf is r-approximate) if for all j ∈ {1, . . . , �}∑

Ti∈Vj

∣∣xf ∩ Ti

∣∣ ≤ r · |Vj | .(4.1)

Examine iteration j of the reverse deletion step. We know that when ej was
considered for removal, no element ej′ with j′ < j had already been removed. Thus,
after ej is considered for removal, the temporary solution is xj = xf ∪ {e1, . . . , ej−1}.
Observe that xj is feasible and xj \ {e} is not feasible for all e ∈ xj \ {e1, . . . , ej−1}.
xj is called a minimal augmentation of {e1, . . . , ej−1} in [27]. Moreover,∑

Ti∈Vj

∣∣xf ∩ Ti

∣∣ ≤ ∑
Ti∈Vj

∣∣xj ∩ Ti

∣∣ .

Thus, to obtain bound (4.1) Goemans and Williamson [27] set the following require-
ment on every collection of subsets Vj :

∑
Ti∈Vj

|x ∩ Ti| ≤ r · |Vj | for any minimal

augmentation x of {e1, . . . , ej−1}.
To summarize, in order to construct an r-approximate solution, in each iteration

of the algorithm, we seek a collection V such that
∑

Ti∈V |x ∩ Ti| ≤ r · |V| for any
minimal augmentation x of the current (nonfeasible) primal solution denoted by z.

2Some subsets in Vj may not be violated. See [27] for more details.
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In essence we seek a collection V that satisfies a sort of amortized relaxed version of
the dual complementary slackness conditions. We now formalize this demand from a
collection of violated subsets in our terminology.

Definition 4.1. A collection V ⊆ {T1, . . . , Tq} is called r-effective with respect
to (F , w, z) if

∑
Ti∈V |x ∩ Ti| ≤ r · |V| for any minimal feasible solution x with respect

to (F , z).
As did Bertsimas and Teo [14] we prefer to speak in terms of inequalities. An

inequality is referred to as valid if any feasible solution to the problem at hand satisfies
this inequality. For example, given an integer programming formulation of a problem,
any inequality that appears in this formulation is valid. The following definition uses
terms of inequalities and extends the previous definition.

Definition 4.2. A set of valid inequalities {α1x ≥ β1, . . . , αkx ≥ βk} is called
r-effective with respect to (F , w, z) if αk

j = 0 for every k and j ∈ z, and any integral

minimal feasible solution x with respect to (F , z) satisfies
∑k

i=1 α
ix ≤ r ·

∑k
i=1 β

i.
If this is true for any integral feasible solution, the set is called fully r-effective.
If an r-effective set contains a single inequality, we refer to this inequality as

r-effective.
We remark that we require αk

j = 0 for every k and every j ∈ z since in general
we discuss inequalities with respect to (F , z) and not with respect to F . If z = ∅, we
sometimes say that the set (or the inequality) is r-effective with respect to F .

An r-effective collection V can be understood as the r-effective set of valid in-
equalities {

∑
e∈Ti

xe ≥ 1 : Ti ∈ V}. However, Definition 4.1 allows the use of other
kinds of inequalities, and therefore extends Definition 4.2. Thus, it would seem that
our goal is to find an r-effective set of valid inequalities in each iteration. However, we
show that it is enough to construct a single r-effective valid inequality for that pur-
pose. Consider an r-effective set S = {α1x ≥ β1, . . . , αkx ≥ βk} and the inequality
that we get by summing up the inequalities in S:

k∑
i=1

αix =

n∑
j=1

(
k∑

i=1

αi

)
j

xj ≥
k∑

i=1

βi.

Since S is r-effective we know that
∑k

i=1 α
ix ≤ r ·

∑k
i=1 β

i, and we have found our
r-effective inequality. Thus, our goal, in each iteration of the algorithm, is to find an
inequality αx ≥ β such that any minimal solution satisfies the following relaxed dual
condition:

yi > 0 =⇒ α · x ≤ rβ .

For example, examine the 2-approximation algorithm for the Steiner tree problem
(Algorithm PD-ST of section 3). The r-effective collection of sets that is chosen by
the algorithm in the �th iteration is V = {(C, C̄) : C ∈ C′

�}. The corresponding r-
effective collection of valid inequalities is S = {

∑
e∈(C,C̄) xe ≥ 1 : C ∈ C′

�}. Consider
the inequality that we get by summing up the inequalities in S:∑

C∈C′
�

∑
e∈(C,C̄)

xe =
∑
e∈E�

τG�(e)xe ≥ |C′
�| ,(4.2)

where E� is the edge set of G�. Clearly, (4.2) is valid and, by Lemma 3.1, is also
2-effective. Notice that the coefficients of (4.2) and the weights that are used in
Algorithm LR-ST are identical. As we shall see in what follows, this is no coincidence.
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Algorithm PDcov(z, w, k).

1. If ∅ ∈ Sol(F , z) return ∅
2. Construct a valid inequality αkx ≥ βk

which is r-effective w.r.t. (F , z)
3. yk ← max

{
ε : w − εαk ≥ 0

}
4. Let j ∈ z be an index for which wj = ykα

k
j

5. x ← PDcov(z ∪ {j} , w − ykα
k, k + 1)

6. If x ∈ Sol(F , z) then x ← x ∪ {j}
7. Return x

Fig. 4.2.

Bertsimas and Teo [14] proposed a generic algorithm to design and analyze primal-
dual approximation algorithms for problems of the following type:

min wx
s.t. Ax ≥ b,

x ∈ {0, 1}n ,

where A, b, and w are nonnegative. This algorithm constructs a single valid inequality
in each iteration and uses it to modify the current instance. The size of the problem
instance is reduced in each iteration, and therefore the algorithm terminates after no
more than n iterations. The approximation ratio of this algorithm depends on the
choice of the inequalities. In fact, it corresponds to what Bertsimas and Teo call the
strength of the inequalities. In our terminology, the strength of an inequality is the
minimal value of r for which it is r-effective. It is important to note that, unlike
other primal-dual algorithms, this algorithm constructs new valid inequalities during
its execution. Another difference is that it uses the weight vector in order to measure
the tightness of the dual constraints. Thus, in each iteration it decreases the weights
according to the inequality that was used. In fact, this study was inspired by the
similarity between this weight decrease and its local ratio counterpart.

Algorithm PDcov is a recursive version of the algorithm from [14]; see Figure
4.2. The initial call is PDcov(∅, w, 1). (The third parameter is used for purposes of
analysis.) Informally, it can be viewed as follows: construct an r-effective inequality;
update the corresponding dual variable and w such that w remains nonnegative;
find an element j whose weight is zero; add j to the temporary partial solution z;
then recursively solve the problem with respect to F , z and the new weights (the
termination condition of the recursion is met when the empty set becomes feasible);
finally, j is added to the solution x only if it is necessary.

The following analysis is based on the corresponding analysis from [14].
We start by proving by induction on the recursion that Algorithm PDcov returns

minimal feasible solutions with respect to (F, z). At the recursion basis the solution
returned is the empty set, which is both feasible and minimal. For the inductive
step, let x′ be the solution returned by the recursive call in line 5. x′ is feasible with
respect to (F , z∪{j}) by the inductive hypothesis; therefore x is feasible with respect
to (F, z). We show that x \ {i} is not feasible for every i ∈ x. For the case where
i = j, if x\{i} is feasible with respect to (F , z), then x′ \{i} is feasible with respect to
(F , z ∪ {j}) in contradiction with the minimality of x′. The case where i = j, which
is relevant only when x = x′ ∪ {j}, is trivial.
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Next we show that the algorithm returns r-approximate solutions. Consider the
following linear program

min wx
s.t. αkx ≥ βk k ∈ {1, . . . , t} ,

x ≥ 0,
(P)

where αkx ≥ βk is the inequality used in the kth recursive call, and t + 1 is the
recursion depth. The dual is

max βy

s.t.

t∑
k=1

αk
j yk ≤ wj j ∈ {1, . . . , n} ,

y ≥ 0.

(D)

Examine the kth recursive call. Let zk be the temporary partial solution at depth
k. αkx ≥ βk is a valid inequality with respect to (F , zk), and, therefore, it is valid
with respect to F . Thus, Sol(F) ⊆ Sol(P), and Opt(P) ≤ Opt(F , w). As we have
seen before, x is a feasible solution for F and, therefore, for (P). Also, y is a feasible
solution for the dual of (P).

Let xk be the solution returned by the kth recursive call. Also, let wk be the
weight vector, and let j be the chosen element at the kth call. We prove by induction
that wkxk ≤ r

∑
l≥k ylβ

l. First, for k = t + 1, we have wt+1xt+1 = 0 =
∑

l≥t+1 ylβ
l.

For k ≤ t we have

wkxk = (wk+1 + ykα
k)xk

= wk+1xk+1 + ykα
kxk(4.3)

≤ r
∑

l≥k+1

ylβ
l + ykrβ

k(4.4)

= r
∑
l≥k

ylβ
l,

where (4.3) is due to the fact that wk+1
j = 0, and (4.4) is implied by the induc-

tion hypothesis and the r-effectiveness of the inequality αkx ≥ βk. Finally, x is
r-approximate since

wx = w1x1 ≤ r
∑
l≥1

ylβ
l ≤ r · Opt(P) ≤ r · Opt(F , w) .

We remark that the value of yk depends on the coefficients of the valid inequality
αkx ≥ β. That is, we can use the valid inequality ρ ·αkx ≥ ρ ·β for any ρ > 0 instead
of using αkx ≥ β, provided that the value of yk is divided by ρ. In fact, by choosing
the appropriate value of ρ, we can always ensure that yk = 1. This fact is used in
what follows.

4.2. A local ratio framework for covering problems. As was demonstrated
in section 3 the typical step of a local ratio algorithm involves the construction of a
“good” weight function. Algorithm LR-ST used a weight function such that any
minimal Steiner tree is 2-approximate with respect to it. In [4] Bar-Yehuda defined
this notion of goodness in the context of covering. The definition is given in our
terminology.
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Algorithm LRcov(z, w).

1. If ∅ ∈ Sol(F , z) return ∅
2. Construct a w-tight weight function δ

which is r-effective w.r.t. (F , z)
3. Let j ∈ z be an index for which δj = wj

4. x ← LRcov(z ∪ {j} , w − δ)
5. If x ∈ Sol(F , z) then x ← x ∪ {j}
6. Return x

Fig. 4.3.

Definition 4.3 (see [4]). Given a covering problem (F , w, z), a weight function
δ is called r-effective with respect to (F , z) if for all j ∈ z, δj = 0, and if every minimal
feasible solution x with respect to (F , z) satisfies δx ≤ r · Opt(F , δ, z).

We prefer the following equivalent (yet more practical) definition.

Definition 4.4. Given a covering problem (F , w, z), a weight function δ is called
r-effective with respect to (F , z) if for all j ∈ z, δj = 0, and if there exists β such that
every minimal feasible solution x with respect to (F , z) satisfies β ≤ δ · x ≤ rβ. In
this case we say that β is a witness to δ’s r-effectiveness.

If this is true for any integral feasible solution δ is called fully r-effective.

We remark that we require δj = 0 for every j ∈ z since in general we deal with
inequalities with respect to (F , z) and not with respect to F . If z = ∅, we say that δ
is r-effective with respect to F .

Obviously, by assigning β = δx∗, where x∗ is an optimal solution, we get that the
first definition implies the latter. For the other direction, notice that β ≤ δx∗.

A local ratio algorithm for a covering problem works as follows. First, construct
an r-effective weight function δ such that δ ≤ w and there exists some j for which
wj = δj . Such a weight function is called w-tight. Subtract δ from the weight function
w. Add all zero-weight elements to the partial solution z. Then recursively solve the
problem with respect to (F , w − δ, z). When the empty set becomes feasible (or
when z becomes feasible with respect to F) the recursion terminates. Finally, remove
unnecessary elements from the temporary solution by performing a reverse deletion
phase.

Algorithm LRcov is a generic approximation algorithm for covering problems;
see Figure 4.3. (The initial call is LRcov(∅, w).) The main difference between the
algorithm from [4] and the one given here is that in the latter the augmentation of the
temporary solution is done one element at a time. By doing this we have the option
not to include zero-weight elements which do not contribute to the feasibility of the
partial solution z. When using the algorithm from [4] such elements are removed
during the reverse deletion phase (called removal loop in [4]). In order to simulate the
algorithm from [4], when using Algorithm LRcov we can add zero weight elements
one by one. This is due to the fact that δ = 0 is r-effective for all r ≥ 1.

Proving that Algorithm LRcov returns minimal feasible solutions with respect
to (F , z) is essentially identical to proving that Algorithm PDcov returns minimal
feasible solutions (see section 4.1). Thus, we need only to prove that Algorithm LRcov
outputs an r-approximate solution.

We prove by induction on the recursion that Algorithm LRcov returns an r-
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approximation with respect to (F , w, z). At the recursion basis, ∅ is an optimal
solution. Otherwise, for the inductive step, examine x at the end of the recursive
call. By the induction hypothesis x \ {j} is an r-approximation with respect to
(F , w − δ, z ∪ {j}). Moreover, due to the fact that wj − δj = 0, x is r-approximate
with respect to (F , w − δ, z). Finally, by the r-effectiveness of δ and the local ratio
theorem we get that x is an r-approximate solution with respect to (F , w, z) as well.

4.3. Equivalence. It is not hard to see that Algorithm PDcov and Algo-
rithm LRcov share the same structure. Both algorithms, in each recursive call,
modify the weights, add a zero-weight element to z, and solve the problem recur-
sively. The only difference between the two is that Algorithm PDcov uses r-effective
inequalities, while Algorithm LRcov constructs r-effective weight functions. The
following lemma shows that an r-effective valid inequality and an r-effective weight
function are one and the same.

Lemma 4.5. αx ≥ β is an r-effective inequality if and only if α is an r-effective
weight function with β as a witness.

Proof. Let αx ≥ β be an r-effective inequality. By definition every minimal
feasible solution x satisfies β ≤ αx ≤ rβ. Thus, α is an r-effective weight function.
On the other hand, let α be an r-effective weight function with a witness β. Due
to the r-effectiveness of α every minimal feasible solution x satisfies β ≤ αx ≤ rβ.
Therefore, αx ≥ β is an r-effective inequality.

We remark that when using an r-effective weight function δ, Algorithm LRcov
does not need to know the value of the witness to δ’s r-effectiveness. In fact, it can
be NP-hard to calculate this value. The same goes for Algorithm PDcov. We do
not have to know the value of the right-hand side of an r-effective inequality αx ≥ β.
This is demonstrated in section 4.4.4.

By Lemma 4.5 the use of an inequality can be simulated by utilizing the corre-
sponding weight function, and vice versa. Thus, the primal-dual schema and the local
ratio technique converge on standard applications.

Corollary 4.6. Algorithms PDcov and LRcov are identical. Moreover, the
equivalence is constructive; i.e., any implementation of one can be transformed into
an implementation of the other.

Although both algorithms are equivalent, the analysis of Algorithm PDcov seems
more complicated than the analysis of Algorithm LRcov. The difference is artificial.
The local ratio technique uses a local approach. A typical local ratio advancement
step is local in the sense that it can be analyzed independently of the rest of the
algorithm (see also [4]). Therefore, local ratio algorithms tend to be recursive and
their analyses inductive. On the other hand, primal-dual analyses use a more global
approach. Instead of comparing intermediate weights, the total weight of the integral
primal solution is compared to the cost of the dual solution. This approach is also
used outside the primal-dual schema (e.g., [34, 33]). The equivalence implies that
there is no need to use the global approach in the context of the primal-dual schema.
Indeed, the analysis of Algorithm PDcov uses exactly the same local arguments as
the analysis of Algorithm LRcov.

In the analysis of Algorithm PDcov we compared the integral primal solution x
to a dual solution y in order to prove that the former is r-approximate. Recall that
y was not a dual solution to the original program. We have defined a new program,
called (P), that contains the valid inequalities that were used by the algorithm, and
the primal solution was compared to the dual of (P). Clearly, the best approxima-
tion ratio we can hope for using this approach is the integrality gap of (P). Thus,
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one can check whether an analysis for an algorithm is tight by comparing the per-
formance ratio given by the analysis to the integrality gap of (P). Now, consider the
set of weight functions that were used by an implementation of Algorithm LRcov.
The corresponding inequalities would be the constraints of (P). Thus, one can check
whether an analysis of a local ratio algorithm is tight by calculating the integrality
gap of (P) as well.

4.4. Applications. When trying to approximate a minimization problem we
need to address several issues that depend on the combinatorial structure of the prob-
lem at hand. First and foremost, we need to construct valid r-effective inequalities,
or r-effective weight functions. Also, we need to use them such that the algorithm
terminates in polynomial time. The algorithms for covering problems make use of
the fact that you can add a zero-weight element to the temporary partial solution
and, by doing so, reduce the size of the problem. This ensures that the running time
is polynomial. Also, this allows us to use inequalities or weight functions which are
r-effective with respect to the current instance, but are not necessarily so with respect
to the original instance. Many covering problems were approximated by making use
of this mechanism (e.g., feedback vertex set [2] and network design problems [27]).
This is demonstrated in what follows. Namely, we illustrate how Algorithms PD-
cov and LRcov can be used to construct and analyze approximation algorithms for
covering problem. Note that when an algorithm is presented it is not given in full
detail. We only describe the valid inequalities or weight functions needed in order to
implement it using one of the generic algorithms.

Many approximation algorithms for covering problems use only one type of in-
equality or weight function. Such algorithms rely on the fact that when an instance is
modified (or when an element is added to z, in our terminology) the resulting instance
is still an instance of the same covering problem. For example, when Algorithm LR-
ST contracts an edge the resulting instance is still an instance of the Steiner tree
problem. Bertsimas and Teo [14] call an integer programming formulation that satis-
fies this property reducible. Thus, in such cases, it is enough to describe and analyze
an inequality or a weight function with respect to the original set of constraints F .

4.4.1. Steiner tree and other network design problems. Let F be a set
of constraints for the Steiner tree problem (e.g., the inequalities in (ST)). Consider
the instance (F , z) for some vector z. Recall that the elements (i.e., edges) in z are
assumed to be taken into the solution. Thus, an instance (F , z) contains components
on which there are connectivity demands. Bearing this in mind it is not hard to see
that Algorithm LR-ST (see Figure 3.2) is an implementation of Algorithm LRcov.
In each recursive call the algorithm uses the weight function δ(e) = ε · τ(e), where
ε = mine {w(e)/τ(e)}, and then contracts a zero-weight edge. (Recall that τ(e) is the
number of terminals incident to e.) This contraction can be represented by adding
the edge e to z.

While Algorithm LR-ST can be viewed as an implementation of Algorithm LR-
cov, Algorithm PD-ST is not an implementation of Algorithm PDcov. For starters
Algorithm PD-ST is iterative and not recursive. Also, it raises several dual variables
in each iteration, and not one. However, as demonstrated in section 4.1, when sum-
ming up the inequalities that correspond to the dual variables that are raised in an
iteration, we get (4.2), which is 2-effective. Therefore, it is enough to raise a single
dual variable corresponding to (4.2) in each recursive call of Algorithm PDcov.

Algorithm PD-ST is a special case of an algorithm for constrained forest problems
given by Goemans and Williamson [26]. Given a graph G = (V,E), a function f :
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2V → {0, 1}, and a nonnegative weight function w on the edges, they have considered
the integer program

min
∑
e∈E

wexe

s.t.
∑

e∈δ(S)

xe ≥ f(S) ∀S, ∅ � S � V,

xe ∈ {0, 1} ∀e ∈ E,

where δ(S) denotes the set of edges having exactly one endpoint in S. They presented
a (2−2/ |A|)-approximation algorithm, where A = {v : f(v) = 1}, for the case where f
is proper.3 In [27] Goemans and Williamson showed that the same algorithm outputs
a 2-approximate solution in the case of downwards monotone functions.4 Williamson
et al. [40] generalized this algorithm for the class of uncrossable functions.5 They
used this generalization to present a multiphase primal-dual 2fmax-approximation al-
gorithm for general proper functions, where fmax = maxS f(S). They reduced the
problem to a sequence of hitting set problems and applied the primal-dual approxi-
mation algorithm for uncrossable functions to each subproblem. Thus, the solution to
the original problem is the union of the solutions of the subproblems. Consequently,
Goemans et al. [25] improved the approximation ratio to 2H(fmax), where H is the
harmonic function. (For more details see [27].)

Bertsimas and Teo [14] showed that (4.2) is 2-effective even when f is uncrossable.
Thus, all the above algorithms can be implemented using Algorithm PDcov. More-
over, because τ is a 2-effective weight function, all of them can be explained by local
ratio means using Algorithm LRcov. In fact, the multiphase primal-dual algorithms
from [40, 25] can be analyzed as multiphase local ratio algorithms. In [5] Bar-Yehuda
et al. presented the algorithm from [26] in local ratio terms and, in particular, showed
that τ is 2-effective for proper and downwards monotone functions.

4.4.2. Generalized hitting set. The generalized hitting set problem is defined
as follows. Given a collection of subsets S of a ground set E, a nonnegative weight
w(s) for every set s ∈ S, and a nonnegative weight w(u) for every element u ∈ E,
find a minimum-weight collection of objects C ⊆ E ∪S, such that for all s ∈ S, either
there exists u ∈ C such that u ∈ s or s ∈ C. As in the hitting set problem our
objective is to hit all the sets in S by using elements from E. However, in this case,
we are allowed not to cover a set s, provided that we pay a tax w(s). The hitting
set problem is the special case where the tax is infinite for all sets. The generalized
hitting set problem can be formalized as follows:

min
∑
u∈E

w(u)xu +
∑
s∈S

w(s)xs

s.t.
∑
u∈s

xu + xs ≥ 1 ∀s ∈ S,

xt ∈ {0, 1} ∀t ∈ E ∪ S,

where xu = 1 if and only if u is in the cover, and xs = 1 if and only if s is not hit.

3A function f is proper if (1) for all S � V, f(S) = f(V \ S); and (2) for all S, T, S ∩ T =
∅, f(S ∪ T ) ≤ max {f(S), f(T )}.

4A function f is downwards monotone if f(S) = 1 implies f(S′) = 1 for all nonempty S′ ⊆ S.
5A function f is uncrossable if (1) for all S � V, f(S) = f(V \S), and (2) if S, T are intersecting

sets such that f(S) = f(T ) = 1, then either f(S \ T ) = f(T \ S) = 1 or f(S ∩ T ) = f(S ∪ T ) = 1.
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Observe that paying the tax w(s) is required only when s is not hit. Thus, the
inequality

∑
u∈s xu + xs ≥ 1 is a Δ-effective inequality for any set s ∈ S, where

Δ = max {|s| : s ∈ S}. The corresponding Δ-effective weight function is

δ(t) =

{
ε, t ∈ {s} ∪ s,

0 otherwise.

Thus, a Δ-approximation algorithm can be constructed using one of the frameworks.
We remark that the above inequalities remain Δ-effective if we use any value between
1 and Δ as xs’s coefficient. Analogously, any value between ε and Δ · ε is acceptable
for δ(s).

A linear time Δ-approximation algorithm can be obtained by extending the Δ-
approximation algorithm for hitting set [6]. Use the above inequalities (weight func-
tions) in an arbitrary order; then construct a zero-weight minimal feasible solution as
follows: pick all zero-weight elements and all the sets which are not hit by some zero-
weight element. When Δ = 2 we get a special case called generalized vertex cover, for
which Hochbaum [31] presented an O(nm log n2/m) 2-approximation algorithm.

4.4.3. Feedback vertex set in tournaments. A tournament is an orientation
of a complete (undirected) graph; i.e., it is a directed graph with the property that
for every unordered pair of distinct vertices {u, v} it either contains the arc (u, v)
or the arc (v, u), but not both. The feedback vertex set in tournaments problem is
the following. Given a tournament and a weight function w on its vertices, find a
minimum-weight set of vertices whose removal leaves a graph containing no directed
cycles.

It is not hard to verify that a tournament contains a directed cycle if and only if
it contains a triangle, where a triangle is a directed cycle of length 3. Thus, we may
restrict our attention to triangles and formulate the problem as follows:

min
∑
v∈V

wvxv

s.t.
∑
v∈T

xv ≥ 1 ∀ triangle T,

xv ∈ {0, 1} ∀v ∈ V.

(FVST)

We say that a triangle is positive if all of its vertices have strictly positive weights.
Clearly, the set of all zero-weight vertices is an optimal solution (of zero-weight)
if and only if the tournament contains no positive triangles. Thus we obtain a 3-
approximation algorithm by means of the following 3-effective weight function. Let
{v1, v2, v3} be a positive triangle and let ε = min{w(v1), w(v2), w(v3)}. Define

δ(v) =

{
ε, v ∈ {v1, v2, v3},
0 otherwise.

The maximum cost, with respect to δ, of a feasible solution is clearly at most 3ε, while
the minimum cost is at least ε, since every feasible solution must contain at least one
of v1, v2, v3. The corresponding 3-effective inequality is xv1

+ xv2
+ xv3

≥ 1.
Note that any feasible solution is 3-approximate with respect to δ (not only min-

imal solutions). Equivalently, the inequality xv1 +xv2 +xv3 ≤ 3 holds for any feasible
solution. Thus, the weight function and inequality are fully r-effective.
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4.4.4. Feedback vertex set. A set of vertices in an undirected graph is called
a feedback vertex set if its removal leaves an acyclic graph (i.e., a forest). In other
words, the set must cover all cycles in the graph. The feedback vertex set problem
is as follows: given a vertex-weighted graph, find a minimum weight feedback vertex
set.

Bafna, Berman, and Fujito [2] presented a local ratio 2-approximation algorithm
for the feedback vertex set problem. Their algorithm can be implemented using Algo-
rithm LRcov. A cycle C is semidisjoint if there exists x ∈ C such that deg(u) = 2 for
every vertex u ∈ C \ {x}. If G contains a semidisjoint cycle C, let ε = minv∈C w(v),
and use the 1-effective weight function

δ1(v) =

{
ε, v ∈ C,

0 otherwise;

otherwise use the weight function δ2(v) = ε · (deg(v) − 1), where ε = minv∈V {w(v)/
(deg(v) − 1)}. Bafna, Berman, and Fujito [2] showed that δ2 is 2-effective in graphs
that (1) do not contain semidisjoint cycles, and (2) deg(v) ≥ 2 for every v ∈ V .
In order to implement this algorithm using Algorithm PDcov one should use the
following valid inequalities:

∑
v∈C xv ≥ 1 in case G contains a semidisjoint cycle C,

and
∑

v∈V (deg(v) − 1) · xv ≥ |E| − |V | + 1 otherwise.
Another 2-approximation algorithm is due to Becker and Geiger [13]. In [4] Bar-

Yehuda indicated that their algorithm can be restated in local ratio terms with the
weight function δ(v) = deg(v), which is 2-effective. It can be shown that the corre-
sponding 2-effective inequality is

∑
v∈V deg(v)xv ≥ |E| − |V | + 1 + τ , where τ is the

cardinality of the smallest feedback vertex set in G. Therefore, a primal-dual analysis
to this algorithm can be given by using Algorithm PDcov. It is important to note
that we do not need to know the value τ in order to execute the algorithm. In fact,
this value is NP-hard to compute.

Chudak et al. [17] explained both algorithms using primal-dual and added a third
2-approximation algorithm which is similar to the one from [2]. We present it as an
implementation of Algorithm PDcov. That is, we show which inequality to use in
each recursive call. An end-block is a biconnected component containing at most one
articulation point. Choose an end-block B and use the inequality

∑
v∈V (deg(v) −

1)xv ≥ |E| − |V | + 1. The corresponding weight function is

δ(v) =

{
ε · (deg(v) − 1), v ∈ B,

0 otherwise.

Local ratio implementations of the three algorithms and a detailed analysis of the
one from [13] can be found in [5].

5. Minimization frameworks. The recursive algorithms for covering problems
can be divided into three primitives: the recursion base, the way that an instance is
modified before a recursive call, and the way in which the solution returned by a
recursive call is fixed. In this section we present a more general framework that can
explain many algorithms that do not fall within the scope of our generic algorithms for
covering. This is done by means of extending each of the three primitives mentioned
above.

Modifying the instance. The frameworks for covering problems rely heavily on
the fact that the set of constraints F is monotone. In each recursive call the current
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instance is modified by assuming that a zero-weight element is taken into the solution
(i.e., by adding a zero-weight element to z). This can be done because in covering
problems adding a zero-weight element to the solution is never a bad move. However,
in the noncovering case, a solution containing this element may not even exist. Also, in
nonboolean problems, there are several possible assignments for a zero-weight variable.
Thus, we need to extend the algorithms by considering more ways in which to modify
the instance.

Fixing solutions. After each recursive call the covering algorithms fix, if necessary,
the solution returned in order to turn it into a “good” solution, i.e., into a minimal
solution. This is done because the algorithms use weight functions or inequalities
that are r-effective. The solution returned by the recursive call is fixed in a very
straightforward manner—add the element that was removed from the instance to the
solution if it is not feasible. It turns out that an algorithm may use weight functions
or inequalities for which good solutions are solutions that satisfy a certain property
different from minimality. In fact, this property can be simply the solutions returned
by the algorithm. We refer to such weight functions and inequalities as r-effective with
respect to a property P. Clearly, in such cases, the algorithm may be forced to fix
the solution returned by a recursive call in a way that is very different from simply
adding a single element in case the current solution is not feasible.

Recursion base. By adding a new element to z in each recursive call of Algo-
rithm LRcov (or PDcov), we are bound to arrive at the recursion base, which is the
empty instance, and for which the empty set is always a minimal optimal solution.
However, other recursion bases are possible. In [7] Bar-Yehuda and Even developed
a (2 − log log n

2 log n )-approximation algorithm for a vertex cover which is partly based on
local ratio. Their algorithm starts with a local ratio phase that removes short odd
cycles from the graph, and then continues to the next phase that finds approximate
solutions for graphs that do not have short odd cycles. This can be explained by a
variant of Algorithm LRcov in which the recursion base is replaced by the invoca-
tion of an approximation algorithm that works only for inputs of a certain kind and
returns r-approximate minimal solutions. (The solution need not be minimal if the
weight functions used are fully r-effective.)

5.1. The algorithms. Our framework can be described as follows. In each
recursive call the algorithm constructs and uses a weight function or an inequality
and modifies the instance. Then it recursively solves the problem on the new instance
and the new objective function. Afterwards, it fixes the solution returned. The
recursion base is performed if an instance satisfies some property Q.

We use the following three subroutines:

• Modify(F , w): Modifies the current instance by assigning values to zero-
weight variables and then removing them. This subroutine modifies an in-
stance such that any valid inequality with respect to the modified instance
is also valid with respect to the current instance (and hence to the original
instance as well).

• Fix(F , w, x′,P): Given an r-approximate solution x′ for the instance Mod-
ify(F , w), returns an r-approximate solution x for the instance (F , w) satis-
fying some property P. The solution x is constructed from x′ by changing
only zero-weight variables. Note that each recursive call may use a different
property.

• Base(F , w): Given a problem instance that satisfies Q returns an r-approx-
imate solution.
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Algorithm LRmin(F , w).

1. If F satisfies Q return Base(F , w)

2. Construct a weight function δ which is r-effective with respect to
a property P such that w − δ ≥ 0

3. F ′ ← Modify(F , w − δ)
4. x′ ← LRmin(F ′, w − δ)
5. x ← Fix(F , w − δ, x′,P)

6. Return x

Fig. 5.1.

Algorithm PDmin(F , w).

1. If F satisfies Q return Base(F , w)

2. Construct an inequality αx ≥ β which is r-effective with respect to
a property P such that w − α ≥ 0

3. F ′ ← Modify(F , w − α)
4. x′ ← PDmin(F ′, w − α)
5. x ← Fix(F , w − δ, x′,P)

6. Return x

Fig. 5.2.

This time we start with the local ratio algorithm.
The analysis of Algorithm LRmin (see Figure 5.1) is similar to the analysis of

Algorithm LRcov. We prove that the algorithm returns an r-approximate solution
by induction on the recursion. The recursion base is trivial since subroutine Base
returns r-approximate solutions by definition. For the inductive step, consider the
solution x′ that was returned by the recursive call. By the inductive hypothesis x′ is
r-approximate with respect to (F ′, w − δ). Due to subroutines Modify and Fix x is
r-approximate with respect to (F , w − δ) and satisfies property P. Furthermore, δ is
r-effective with respect to P. Thus, by the local ratio theorem x is also r-approximate
with respect to (F , w).

Algorithm PDmin (see Figure 5.2) is our primal-dual approximation algorithm.
It uses the same three primitives that are used by Algorithm LRmin.

We show that Algorithm PDmin returns r-approximate solutions. We do that
by generalizing the analysis of Algorithm PDcov. Let t + 1 be the recursion depth.
Let (Fk, w

k) denote the instance given to the kth recursive call, and let xk denote the
solution returned by the kth recursive call. Consider the linear program

min wx
s.t. αkx ≥ βk k ∈ {1, . . . , t + 1} ,

x ≥ 0,
(P)

where αkx ≥ βk for k ∈ {1, . . . , t} is the inequality used in the kth recursive call,
αt+1 = wt+1, and βt+1 = wt+1 · xt+1/r. Due to subroutine Modify, and since
αt+1x ≥ βt+1 for every solution x, (P) is a relaxation of F , and therefore Opt(P) ≤
Opt(F , w).
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Let us build a solution y to the dual of (P), that is denoted by (D). Let (Pk)
be the linear program that we get from (P) by discarding the first k − 1 inequalities
and changing the objective function to wkx, and let (Dk) be the dual of (Pk). Con-
sider the base instance (Ft+1, w

t+1). Subroutine Base returns a solution xt+1 whose
weight is no more than r times the optimal solution of (Ft+1, w

t+1). x is also r-
approximate with respect to (Pt+1). (Note that (Pt+1) contains only one constraint.)
Thus, wt+1xt+1 is bounded by r times the value of y∗ = 1 which is an optimal solution
to (Dt+1). Let y be a vector of size t+ 1 whose entries are all 1. Let yk be the vector
that consists of t − k + 1 1’s. That is, yk is a vector that contains the last t − k + 1
entries of y. We prove by induction that yk is a solution to (Dk) for all k, which im-
plies that y is a feasible solution of (D) (since y = y1, and (D) = (D1)). At the base
of the recursion, yt+1 = y∗ is an optimal solution to (Dt+1). For the inductive step,
we assume that yk+1 is a solution to (Dk+1) and prove that yk is a solution to (Dk).
First, we claim that (0, yk+1) (a vector consisting of a zero followed by the entries of
yk+1) is a feasible solution to (Dk). To see this, notice that a packing of constraints
from (Pk+1) is also a packing of constraints from (Pk). Thus, yk = (1, yk+1) is also a
packing of constraints from (Pk), since wk = wk+1 + αk.

We can now analyze the approximation ratio. We prove by induction that wkxk ≤
r
∑

l≥k ylβ
l for all k. For k = t + 1, this is true since βt+1 = αt+1xt+1/r. For k ≤ t

we have

wkxk = (wk+1 + αk)xk

= wk+1xk+1 + ykα
kxk(5.1)

≤ r
∑

l≥k+1

ylβ
l + ykrβ

k(5.2)

= r
∑
l≥k

ylβ
l,

where (5.1) stems from the fact that subroutine Fix changes only zero-weight vari-
ables, and (5.2) is due to the induction hypothesis, the fact that subroutine Fix
returns solutions with property P, and the r-effectiveness of the inequality αkx ≥ βk

with respect to P. x is r-approximate since

wx = w1x1 ≤ r
∑
l≥1

ylβ
l ≤ r · Opt(P) ≤ r · Opt(F , w) .

5.2. Discussion. The only varying elements in the framework for covering are
the r-effective inequalities (weight functions). That is, in order to construct an al-
gorithm for a covering problem one has to find the appropriate inequalities (weight
functions), and the rest is determined by the framework. The task of designing an
algorithm may be much more complicated when one chooses to use the framework
given in this section. For starters one has to come up with a suitable and polynomial
implementation of subroutines Base, Modify, and Fix. Also, the resulting algo-
rithm must reach the recursion base in polynomial time. Intuitively, after finding an
r-effective inequality (weight function), we must ask ourselves the following question:
How should we remove zero-weight elements? We must be able to remove zero-weight
elements in a way that enables us to later fix the solution returned by the recursive
call. A good answer to this question is an implementation of subroutines Modify
and Fix. Note that, as in the covering setting, our generic algorithms may use a
different type of inequality (weight function) in each recursive call. Moreover, they
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may use a different property in each recursive call. However, this may require us
to implement several versions of subroutines Modify and Fix. Also, when using a
nontrivial recursion base, we can look at the primal-dual (local ratio) phase of the
algorithm as a clean-up phase whose output is an instance of a certain type that we
know how to solve by subroutine Base.

The minimization frameworks can be applied to a large family of algorithms.
They can be used in cases of noncovering problems as demonstrated in section 5.3.2
on minimum 2-satisfiability. They can be used to analyze algorithms that have a non-
standard recursion base, such as the (2− log log n

2 log n )-approximation algorithm for vertex

cover from [7], or the 2.5-approximation algorithm for feedback vertex set in tourna-
ments given in section 5.3.1. The frameworks can be used to explain algorithms that
do not use r-effectiveness with respect to minimality, and use a nonstandard instance
modification. They can also be used on problems whose solutions are nonboolean. An
algorithm using a nonstandard instance modification that approximates a nonboolean
bandwidth trading problem is given in section 5.3.3. Another example of an algorithm
approximating a nonboolean problem is a primal-dual algorithm by Guha et al. [28]
for capacitated vertex cover. A local ratio interpretation can be found in [5].

Another important point is that an r-effective weight function with respect to
a property P and an r-effective inequality with respect to P are one and the same.
This can be shown in a way similar to the proof of Lemma 4.5. Thus, the equivalence
between the two paradigms that was shown with respect to algorithms for covering
problems continues to hold even in a more general setting. Namely, Algorithms LR-
min and PDmin are equivalent. We note that the equivalence extends to algorithms
outside the scope of our frameworks. For example, in [12] we show that the fractional
local ratio technique can be explained using primal-dual arguments.

5.3. Applications.

5.3.1. Feedback vertex set in tournaments. Cai, Deng, and Zang [16] pre-
sented a 2.5-approximation algorithm for feedback vertex set in tournaments (see sec-
tion 4.4.3). The algorithm is divided into two parts: a local ratio phase that disposes
of certain forbidden subtournaments, and an algorithm that finds an optimal solution
in any tournament that does not contain these forbidden subtournaments. The for-
bidden subtournaments are shown in Figure 5.3 below (where the two arcs not shown
in T1 may take any direction).

Fig. 5.3.

The local ratio phase employs the following fully 2.5-effective weight function.
Let F be a set of five positive-weight vertices inducing a forbidden subtournament
and define

δ(v) =

{
ε, v ∈ F,

0 otherwise,
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where ε = minv∈F {w(v)}. δ is fully 2.5-effective since the cost of every feasible solu-
tion is at most 5ε, whereas the minimum weight is at least 2ε since every set of four
vertices in F contains a triangle. After removing at least one vertex from every for-
bidden subtournament using local ratio, the problem can be solved optimally on the
remaining graph. This algorithm can be seen as an implementation of Algorithm LR-
min in which subroutines Modify and Fix are standard, and subroutine Base is the
algorithm that solves the problem on tournaments that do not contain the forbidden
subtournaments.

Using our primal-dual framework, this algorithm can be also analyzed using
primal-dual arguments. This can be done by using 2.5-effective inequalities of the
form

∑
u∈F xu ≥ 2, where F is a set of five positive-weight vertices inducing a forbid-

den subtournament. Clearly, these inequalities are valid with respect to the original
instance. Cai, Deng, and Zang [16] show that the integrality gap of the (FVST) (see
section 4.4.3) is 1 in the case of tournaments that do not contain the forbidden sub-
tournaments. They actually prove the stronger claim that in tournaments that do not
contain the forbidden subtournaments, the primal and dual programs have identical
cost integral solutions.

5.3.2. Minimum weight 2-satisfiability. Given a 2CNF formula ϕ with m
clauses on the variables x1, . . . , xn and a weight function w on the variables, the
weight of a truth assignment x ∈ {0, 1}n is

∑n
i=1 wixi. The minimum weight 2-

satisfiability problem (or min-2SAT for short) is to find a minimum weight truth
assignment x ∈ {0, 1}n which satisfies ϕ, or to determine that no such assignment
exists. We formulate min-2SAT as follows:

min

n∑
i=1

wixi

s.t. xi + xj ≥ 1 ∀(xi ∨ xj) ∈ ϕ,
xi − xj ≥ 0 ∀(xi ∨ xj) ∈ ϕ,
−xi − xj ≥ −1 ∀(xi ∨ xj) ∈ ϕ,
xi ∈ {0, 1} ∀i ∈ {1, . . . , n} .

(2SAT)

Gusfield and Pitt [29] presented an O(mn) time 2-approximation algorithm for
min-2SAT. Though they did not use local ratio arguments explicitly, their algorithm
can be easily analyzed using local. Hochbaum et al. [32] presented a 2-approximation
algorithm for the two variables per constraint integer programming problem (2VIP)
that generalizes min-2SAT. Later, Bar-Yehuda and Rawitz [9] presented a local ratio 2-
approximation algorithm for 2VIP that is more efficient than the algorithm from [32].
On the special case of min-2SAT this algorithm is a variant of the Gusfield–Pitt
algorithm. Note that min-2SAT can be approximated using a reduction to vertex
cover [30, pp. 131–132].

First, we can check whether ϕ is satisfiable by using the algorithm from [21].
Thus, we may assume that ϕ is satisfiable. In order to design a 2-approximation
algorithm we need to construct 2-effective inequalities. Given a literal �, let T (�)
denote the set of variables which must be assigned true whenever � is assigned
true. (Constructing T (�) for some literal � can be done efficiently by using constraint
propagation.) Let xi, xj , and xk be variables such that xj ∈ T (xi) and xk ∈ T (xi). For
such variables the inequality xj + xk ≥ 1 is valid. Note that one can get inequalities
of this form by summing up the appropriate inequalities from the program 2SAT.
Moreover, it is not hard to see that this inequality is fully 2-effective. However,
instead of using these inequalities one at a time, we can use an inequality of the form
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∑
xj∈T (xi)

ajxj +
∑

xk∈T (xi)
bkxk ≥ β where all the aj ’s and bk’s are nonnegative and

β =
∑

j aj =
∑

k bk. This inequality is 2-effective since it is a linear combination of
inequalities of the form xj + xk ≥ 1.

Let αx ≥ β be such an inequality in which β = min{
∑

xj∈T (xi)
wj ,

∑
xk∈T (xi)

wk}.
Assume without loss of generality that

∑
xi∈T (x1)

wi ≤
∑

xj∈T (x1)
wj . Observe that

if we subtract α from the objective function, assigning true to all literals in T (xi)
is free of charge. It can be shown that this partial assignment does not change the
satisfiability of the formula. That is, if ϕ′ is the formula we get by performing this zero-
weight partial assignment to the variables of a formula ϕ, ϕ′ is satisfiable if and only if
ϕ is satisfiable. After performing this instance modification the rest of the assignment
can be found recursively. The primal-dual implementation of the algorithm is as
follows. At the recursion base we return an empty assignment on the empty formula.
If the formula ϕ is not empty, we pick a variable xi and construct an inequality αx ≥ β
as shown above. Note that such inequalities are valid with respect to the original
instance. We call subroutine Modify that in this case constructs a zero-weight partial
assignment for ϕ and creates a new formula ϕ′. Then we recursively solve the problem
on ϕ′. Afterwards, subroutine Fix combines the assignment for ϕ′ that was returned
and the partial assignment that was constructed by subroutine Modify. For the
local ratio implementation, it is enough to notice that α is a fully 2-effective weight
function. (For more details see [9].)

5.3.3. A bandwidth trading problem. Bhatia et al. [15] studied the following
bandwidth trading problem. We are given a set of machine types T = {T1, . . . , Tm}
and a set of jobs J = {1, . . . , n}. Each machine type Ti is defined by two parameters:
a time interval I(Ti) during which it is available, and a weight w(Ti), which represents
the weight of allocating a machine of this type. Each job j is defined by a single time
interval I(j) during which it must be processed. We say that job j contains time t if
t ∈ I(j). A given job j may be scheduled feasibly on a machine of type T if type T
is available throughout the job’s interval, i.e., if I(j) ⊆ I(T ). A schedule is a set of
machines together with an assignment of each job to one of them. It is feasible if every
job is assigned feasibly and no two jobs with intersecting intervals are assigned to the
same machine. The weight of a feasible schedule is the total cost of the machines it
uses, where the weight of a machine is defined as the weight associated with its type.
The goal is to find a minimum-weight feasible schedule. We assume that a feasible
schedule exists. (This can be checked easily.) Bhatia et al. [15] presented a primal-
dual 3-approximation algorithm for this problem. A detailed local ratio analysis of
their algorithm can be found in [5]. This algorithm constructs weight functions or
inequalities that are r-effective weight functions with respect to a property P different
from minimality and modifies the solution returned by a recursive call in a rather
elaborate manner.

We present the algorithm in local ratio terms in Figure 5.4.
To complete the description of the algorithm we need to describe the transforma-

tion of S′ to S referred to in line 9. Instead, we just point out two facts relating to
this transformation. (The details of the transformation appear in [15] and also in [5].)

1. For all machine types T , S does not use more machines of type T than S′.
2. Let k be the number of jobs containing time t (Line 2). The number of

machines used by S whose types are in Tt is at most 3k.
Based on these facts, we show that Algorithm BT is a specific implementation of
Algorithm LRmin that returns 3-approximate solutions. By fact 1, w′(S) ≤ w′(S′),
where w′ = w − δ, and therefore S is 3-approximate with respect to w′. Thus,
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Algorithm BT(T , J, w).

1. If J = ∅, return ∅
2. Let t be a point in time contained in a maximum number of jobs,

and let Tt be the set of machine types available at time t
3. Let ε = min {w(T ) : T ∈ Tt}

4. Define the weight function δ(T ) =

{
ε, T ∈ Tt,
0 otherwise,

/∗ Subroutine Modify ∗/
5. Let T ′

t = {T : T ∈ Tt, w(T ) = δ(T )}
6. Let J ′ = {j ∈ J : ∃T ∈ T ′

t , I(j) ⊆ I(T )}
7. S′ ← BT(T \ T ′

t , J \ J ′, w − δ)

/∗ Subroutine Fix ∗/
8. Extend S′ to J by allocating |J ′| machines and scheduling one

job from J ′ on each.
Job j ∈ J ′ is assigned to a machine of type T ∈ T ′

t

such that I(j) ⊆ I(T ).
9. Transform S′ into a new schedule S as described below

10. Return S

Fig. 5.4.

subroutines Modify and Fix work as required. (Subroutine Base is standard in this
case.) By fact 2, δ(S) ≤ 3kε, and because there are k jobs containing time t—each of
which can be scheduled only on machines whose types are in Tt, and no two of which
may be scheduled on the same machine—the optimum cost is at least kε. Thus, S is
3-approximate with respect to δ.

Bhatia et al. [15] formulated the bandwidth trading problem by the following
program:

min
n∑

i=1

w(Ti)xi

s.t.
∑
i

yij ≥ 1 ∀j ∈ J,

xi −
∑

j∈J(t)

yij ≥ 0 ∀Ti ∈ T , ∀t ∈ E ∩ I(Ti),

xi ∈ N ∀Ti ∈ T ,
yij ∈ {0, 1} ∀Ti ∈ T , j ∈ J,

where
• xi represents the number of machines allocated of type Ti;
• yij = 1 if and only if job j is assigned to machine type Ti; note that yij is

defined only if I(j) ⊆ I(Ti), where i is of type T ;
• E is the set of endpoints of job intervals;
• J(t) = {j : t ∈ I(j)}.

In order to transform Algorithm BT into a primal-dual algorithm, we use the
inequality δ · x ≥ kε. It is not hard to verify that this version of Algorithm BT is an
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implementation of Algorithm PDmin. The above inequality is valid with respect to
the original instance, since if there are k jobs whose interval contains time t, then at
least k machines whose types belong to Tt must be allocated.

We remark that our primal-dual analysis is slightly different from the analysis
in [15]. Specifically, their algorithm uses similar but not identical inequalities that
can be described as linear combinations of inequalities from the above formulation.

6. Maximization problems. Bar-Noy et al. [3] developed constant factor ap-
proximation algorithms for various resource allocation and scheduling problems using
local ratio. They also presented primal-dual algorithms for these problems. This was
the first time a local ratio or primal-dual approximation algorithm for a natural max-
imization problem was presented. In this section we present two equivalent generic
approximation algorithms for maximization problems that can be used to analyze the
algorithms from [3]. We demonstrate this on one of the problems that was discussed
in [3] called interval scheduling. Also, we show that our generic algorithms can explain
the exact optimization (or 1-approximation) algorithm for the longest path in a DAG
problem.

6.1. The frameworks. Before describing the generic algorithms, we address the
issue of r-effectiveness in the context of maximization. We discuss the issue in terms
of weight functions, but a similar discussion can be made in terms of inequalities.
Recall that δ is r-effective with respect to a property P if there exists β such that
β ≤ δx ≤ rβ for every solution x that satisfies P. In the maximization setting it is
more convenient to consider the following equivalent definition. δ is r-effective with
respect to a property P if there exists β such that β

r ≤ δx ≤ β for every solution x
that satisfies P. Clearly any feasible solution that satisfies P is r-approximate with
respect to δ.

Our frameworks are recursive and work as follows. If the instance is empty, then
return the empty set. Otherwise, construct a weight function (inequality) that is r-
effective with respect to some property P. Subtract the weight function (coefficients
of inequality) from the objective function. Remove some of the nonpositive-weight
elements from the instance. (The decision of which element to remove depends on the
problem at hand. Algorithms for packing problems usually remove all nonpositive-
weight elements.) Then recursively solve the problem with respect to the new instance
and weights. Upon returning from the recursive call, the solution returned is fixed
such that it satisfies P. We remark that in order to simplify the presentation our max-
imization algorithms are not as general as our minimization algorithms. Namely, they
use a limited version of subroutine Modify that simply removes some nonpositive-
weight elements from the instance and do not use a version of subroutine Base at
all. We also limit our discussion in this section to sets of feasibility constraints F for
which x ∈ {0, 1}n.

We start with our local ratio approximation algorithm for maximization problems
—Algorithm LRmax (see Figure 6.1). The initial call is LRmax({1, . . . , n} , w). A
recursive call of Algorithm LRmax considers the instance that is induced by the set
of elements N that corresponds to the set of positive-weight elements. It starts with
the construction of a weight function δ. Then a recursive call is made on the instance
that is induced by the objective function w − δ and the set N \N−, where N− is a
set that contains nonpositive-weight elements with respect to w − δ. Subroutine Fix
is used to fix the solution returned by adding only zero-weight elements with respect
to w − δ. The resulting solution satisfies property P.
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Algorithm LRmax(N,w).

1. If N = ∅, return ∅
2. Construct a weight function δ which is r-effective

with respect to (F , N) and P
3. Let N− ⊆ {j : wj − δj ≤ 0}
4. x′ ← LRmax(N \N−, w − δ)
5. x ← Fix(F , w − δ, x,P)
6. Return x

Fig. 6.1.

Algorithm PDmax(N,w).

1. If N = ∅, return ∅
2. Construct a valid inequality αkx ≤ βk which is r-effective

with respect to (F , N) and P
3. Let N− ⊆ {j : wj − αj ≤ 0}
4. x′ ← PDmax(N \N−, w − α)
5. x ← Fix(F , w − α, x,P)
6. Return x

Fig. 6.2.

We prove by induction that Algorithm LRmax returns an r-approximate solu-
tions with respect to (N,w). In the base case, ∅ is an optimal solution. For the
inductive step, examine x at the end of the recursive call. By the induction hypothe-
sis x′ is r-approximate with respect to (N \N−, w − δ). Moreover, since wj − δj ≤ 0
for every j ∈ N−, x is r-approximate with respect to (N,w− δ). (Recall that subrou-
tine Fix adds only zero-weight elements with respect to w − δ.) Finally, x satisfies
P due to subroutine Fix; therefore by the r-effectiveness of δ with respect to P and
by the local ratio theorem, we get that x is r-approximate with respect to (N,w) as
well.

Algorithm PDmax (see Figure 6.2) is very similar to Algorithm LRmax. Ob-
viously, Algorithm PDmax uses inequalities instead of weight functions. Also, as in
the minimization case, we assume that the inequalities that are used by the algorithm
are valid with respect to the original set of constraints F . This condition is imperative
to the construction of a feasible dual solution.

We show that Algorithm PDmax returns r-approximate solutions. Let notation
with subscript k denote the appropriate object in the kth iteration, and let t + 1 be
the recursion depth. Consider the linear program

min wx
s.t. αkx ≤ βk k ∈ {1, . . . , t} ,

x ≥ 0,
(P)

where αkx ≤ βk is the inequality used in the kth recursive call. Every feasible solution
satisfies the constraints in (P), namely, Sol(F) ⊆ Sol(P). Thus, x ∈ Sol(P) and
Opt(P) ≥ Opt(F , w).
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Consider the dual of (P):

min

t∑
k=1

βkyk

s.t.

t∑
k=1

αk
j yk ≥ wj j ∈ {1, . . . , n} ,

y ≥ 0.

(D)

We claim that y = (1, . . . , 1) is a feasible solution to (D). To do that we conceptually
add the following between line 2 and line 3: yk ← 1. Clearly, the resulting dual
solution is y = (1, . . . , 1). In terms of the dual solution, elements leave the set N only
when their corresponding dual constraint is satisfied. Algorithm PDmax terminates
when the current instance is empty, namely, when N = ∅. Therefore, at termination
all dual constraints are satisfied.

We prove by induction that wkxk ≥ 1
r

∑
l≥k ylβ

l. At the induction basis, 0 =

wt+1xt+1 ≥ 1
r

∑
l≥t+1 ylβ

l = 0. For k ≤ t we have

wkxk = (wk+1 + αk)xk = wk+1xk+1 + ykα
kxk ≥ 1

r
·
∑

l≥k+1

ylβ
l +

βk

r
=

1

r
·
∑
l≥k

ylβ
l,

where the second equality is due to the fact that subroutine Fix uses only zero-
weight elements, and the inequality is implied by the induction hypothesis and the
r-effectiveness of the kth inequality. Therefore, wx = w1x1 ≥ 1

r

∑
l≥1 ylβ

l ≥ 1
r ·

Opt(P) ≥ 1
r · Opt(F , w).

Notice that the maximization case is different from the minimization case. In the
latter we keep the weights nonnegative, while in the former, weights are allowed to
be negative. Moreover, the objective function in the maximization case is expected
to be nonpositive when the algorithm terminates. This means, in primal-dual terms,
that the dual solution is initially not feasible, and its feasibility is improved during
the execution of the algorithm. Also, at termination, the negative entries of the
weight function correspond to the nontight dual constraints. This difference makes
life more complicated in the maximization setting. Speaking in local ratio terms,
in the minimization case, the weight function δ is constructed such that it satisfies
two conditions: (1) δ ≤ w, and (2) there exists an element j for which wj = δj . In
the maximization case, the second condition is satisfied but the first is not. In fact,
given an r-effective weight function δ, it is not always clear by which factor ε > 0 we
should multiply it before subtracting it from the objective function. We are allowed
to increase ε as long as the solution returned by the recursive call can be fixed using
only zero-weight elements.

6.2. Applications.

6.2.1. Interval scheduling. As mentioned before, in [3] Bar-Noy et al. pre-
sented local ratio approximation algorithms for several resource allocation and schedul-
ing problems that can be explained by our frameworks. We demonstrate this by an-
alyzing one of the algorithms from [3] that approximates a problem called interval
scheduling. Bar-Noy et al. also presented primal-dual algorithms for the same prob-
lems. However, in order to do so they modified the original algorithms. We show that
there is no need to change the algorithms in order to supply a primal-dual analysis.
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In the interval scheduling problem we are given a set of activities, each requiring
the utilization of a given resource. The activities are specified as a collection of sets
A1, . . . ,Am. Each set represents a single activity: it consists of all possible instances
of that activity. An instance I ∈ Ai is defined by the following parameters:

1. A half-open time interval [s(I), e(I)) during which the activity will be exe-
cuted. s(I) and e(I) are called the start-time and end-time of the instance.

2. The weight w(I) ≥ 0 gained by scheduling this instance of the activity.
A schedule is a collection of instances. It is feasible if it contains at most one instance
of every activity and at most one instance for all time instants t. In the interval
scheduling problem our goal is to find a schedule that maximizes the total weight
accrued by instances in the schedule.

The interval scheduling problem can be formulated by means of an integer pro-
gram on the boolean variables {xI : I ∈ Ai, 1 ≤ i ≤ m}.

max
∑
I

w(I)xI

s.t.
∑

I:s(I)≤t<e(I)

xI ≤ 1 ∀t,
∑

I:I∈Ai

xI ≤ 1 ∀i ∈ {1, . . . ,m} ,

xI ∈ {0, 1} ∀i ∀I ∈ Ai.

The 2-approximation algorithm for interval scheduling from [3] can be viewed as
an application of Algorithm LRmax. In order to describe it as such, we need to
show (1) how to construct a weight function δ that is 2-effective with respect to some
property P; (2) which elements are removed from the instance (i.e., which elements
are taken into N−); and (3) how to fix the solution returned by the recursive call
(i.e., describe subroutine Fix). Let J be an instance with minimum end-time, and let
A(J) and I(J) be the activity to which instance J belongs and the set of instances
intersecting J (including J), respectively. (See Figure 6.3.) Define

δ(I) =

{
w(J), I ∈ A(J) ∪ I(J),

0 otherwise.

We show that δ is 2-effective with respect to some property P. We say that a feasible
schedule S is J-maximal if either it contains J or J cannot be added to S without
rendering it infeasible. It is not hard to verify that the weight of every J-maximal
schedule with respect to δ is at least w(J) and no more than 2 ·w(J). (Notice that a
feasible schedule contains no more than two instances from A(J) ∪ I(J).) Now, the
elements that are taken into N− are all nonpositive elements with respect to w − δ.
Finally, we describe subroutine Fix. Let S′ be the schedule returned by the recursive
call. If S′ ∪{J} is a feasible solution, return S = S′ ∪{J}. Otherwise, return S = S′.
Clearly, S is J-maximal.

As mentioned before, Bar-Noy et al. [3] also presented primal-dual algorithms
that are slightly different from their local ratio algorithms. In terms of the interval
scheduling problem they modified the original algorithm by using a different 2-effective
weight function:

δ′(I) =

⎧⎪⎨
⎪⎩
w(J), I = J,
1
2w(J), I ∈ A(J) ∪ I(J) \ {J},
0 otherwise.
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J

Fig. 6.3. J,A(J), I(J): heavy lines represent A(J), dashed lines represent I(J).

The corresponding inequality is 1
2

∑
I∈I(J) xI + 1

2

∑
I∈A(J) xI ≤ 2. Note that this

inequality is a linear combination of two inequalities from the above integer program.
The original algorithm can be explained by the 2-effective inequality

∑
I∈I(J)∪A(J) xI

≤ 2. The difference between δ and δ′ (or between their corresponding inequalities) is
the ratio between the weight of J and the weights of the other instances in A(J)∪I(J).
In fact, any value between 1 and 2 is acceptable.

6.2.2. Longest path in a DAG. The longest path problem is as follows: given
an arc-weighted directed graph G = (V,A) and two distinguished vertices s and t, find
a simple path from s to t of maximum length, where the length of a path is defined as
the sum of weights of its arcs. For general graphs (either directed or undirected) the
problem is NP-hard [24], but for directed acyclic graphs (DAGs) it is solvable in linear
time by a Dijkstra-like algorithm that processes the nodes in topological order. The
problem of finding the longest path in a DAG (also called the critical path) arises in
the context of PERT (Program Evaluation and Review Technique) charts. For more
details see [18, p. 538] or [20, pp. 138–142].

We show that the above-mentioned linear time algorithm can be seen as an im-
plementation of Algorithms LRmax and PDmax. We allow negative arc weights,
and we assume that every vertex is reachable from s. (Otherwise, simply delete all
vertices that are unreachable from s.) We also assume that the vertices of G were
topologically sorted, and that t is the last vertex in this topological sort. Instead of
solving the original problem we solve the following more general problem. Namely,
instead of searching for a longest path from s to t we would like to find the longest
path from some vertex in a set S to t without using arcs within S. In the original
problem S = {s}. Also, if s ∈ S and for all u ∈ S the longest path from s to u is of
length zero, then the problem is equivalent to the original problem.

Consider a cut (S, S̄) such that s ∈ S, t ∈ S̄, and there is no arc leaving S̄ and
entering S. Note that if we take the first k vertices in the topological sort, we get
such a cut. We define the following function:

δ(e) =

{
ε, e ∈ S × S̄,

0 otherwise.

Clearly, any path from s to t must cross the cut (S, S̄) exactly once, and thus δ is fully
1-effective. Equivalently, the equality

∑
e∈S×S̄ xe = 1 is valid. Having defined a suit-

able weight function or equality, we continue with a description of the algorithm. We
describe a recursive call of the algorithm using local ratio terms. Let v be the vertex
which is the first in S̄ according to the topological sort. Let ε = maxu∈S {w(u, v)} (ε
may be negative), and let e = (u, v) be an arc such that u ∈ S and w(u, v) = ε. If
v = t, then return a path containing u and t. Otherwise, solve the problem recursively
on (G,S ∪ {v} , w − ε · δ). Now, let v1, . . . , v� be the path returned. If v1 = v, then
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return the path u, v1, . . . , v�; otherwise return v1, . . . , v�.
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1. Introduction. The main motivation for this paper is a very nice combina-
torial problem from the field of telecommunications. This problem was posed by
Amaldi, Capone, and Malucelli in [1, 2] and concerns scheduling packets for smart
antennas. In brief, the problem comes down to the following. Given a finite set V of
points on the unit circle and an angle α, find a coloring of V using a minimal number
of colors. The coloring restriction is that no segment of length α may contain more
than two points of the same color.

We show that this problem as well as some other coloring problems in the liter-
ature (see [7, 9, 10, 12]) can be formulated as an integer decomposition problem for
polyhedra defined by matrices that are very close to being totally unimodular. This
motivates the following definitions. In what follows, all vectors will be column-vectors.
We call a matrix A nearly totally unimodular if there exists a totally unimodular ma-

trix
(
Ã
aT

)
and an integer vector c such that A = Ã + caT. If A is an m × n nearly

totally unimodular matrix and b ∈ Z
m is a vector, we define the integer polyhedron

PA,b by

PA,b := conv.hull({x ∈ Z
n | Ax ≤ b}).(1)

In section 2 we show that the polyhedron PA,b has the integer decomposition property.
That is, every integer vector in kPA,b is the sum of k integer vectors in PA,b. The proof
reduces the problem of decomposing an integer vector x ∈ kPA,b to a number of integer
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linear programs with totally unimodular constraint matrix
(
Ã
aT

)
. These can be solved

in polynomial time by using the ellipsoid method (see [8]). However, in particular
instances there may be a more efficient combinatorial algorithm to solve these linear
programs. In section 3 we consider the case where A is a circular-ones matrix. We
show that in this case a decomposition of x can be found in time O(n(n+m)+size(x))
when A is an m × n matrix. In section 4 we treat the packet scheduling problem in
more detail and apply the results from sections 2 and 3 to obtain an efficient algorithm
that solves the packet scheduling problem. We also give some applications to edge
coloring nearly bipartite graphs and to coloring proper circular arc graphs.

2. Integer decomposition. Let A be an m× n nearly totally unimodular ma-
trix. We assume that A is given as A = Ã + caT for an integer vector c ∈ Z

m and a

totally unimodular matrix
(
Ã
aT

)
. Let b ∈ Z

m be an integer vector. A basic observation
is the following.

Proposition 1. For any integer s, the polyhedron PA,b ∩ {x ∈ R
n | aTx = s}

has the integer decomposition property.

Proof. First observe that since the matrix
(
Ã
aT

)
is totally unimodular, the polyhe-

dron

P := {x ∈ R
n | Ãx ≤ b− sc, aTx = s}(2)

is integer. Furthermore, by the well-known theorem of Baum and Trotter character-
izing totally unimodularity (see [3]), P has the integer decomposition property. Since
P is integer, we have

P ⊆ int.hull(P ) ⊆ PA,b ∩ {x ∈ R
n | aTx = s} ⊆ P,(3)

showing that P = PA,b ∩ {x ∈ R
n | aTx = s}, which concludes the proof.

We can now prove that also PA,b has the integer decomposition property.

Theorem 1. Let k be a nonnegative integer and let x ∈ Z
n. Write aTx = qk + r

for integers q and r with 0 ≤ r ≤ k − 1. Then the following are equivalent:

(i) x ∈ kPA,b,
(ii) the system

Ay ≤ rb,(4)

A(x− y) ≤ (k − r)b,

aTy = r(q + 1)

is feasible,
(iii) x = x1 + x2 + · · · + xk for integer vectors x1, . . . , xk ∈ PA,b.

In particular, PA,b has the integer decomposition property.

Proof. It is clear that (iii) implies (i). To show that (i) implies (ii), suppose that
1
kx ∈ PA,b. Since the polyhedron PA,b is integer, we can write 1

kx = r
kx

′ + k−r
k x′′,

where x′, x′′ ∈ PA,b and aTx′ = q + 1, aTx′′ = q. Indeed, for a suitably large integer
M we can write

M · x =

kM∑
i=1

xi,(5)
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where xi ∈ PA,b and aTxi ∈ Z for i = 1, . . . , kM (since we can take the xi to be
integer). Now take such a representation of M · x that minimizes

kM∑
i=1

(aTxi)
2.(6)

Then |aTxi − aTxj | ≤ 1 for any i and j, since otherwise we can replace xi and xj by
λxi + (1 − λ)xj and λxj + (1 − λ)xi, where λ = 1/|aTxi − aTxj | thus reducing (6).
Hence aTxi ∈ {q, q + 1} for each i = 1, . . . , n, and setting

x′ :=
1

M

∑
i|aTxi=q+1

xi and x′′ :=
1

M

∑
i|aTxi=q

xi(7)

gives the required decomposition. It follows that x′ satisfies (4).
To show that (ii) implies (iii), suppose that the system (4) is feasible. Observe

that (4) is equivalent to

Ãy ≤ r(b− (q + 1)c),(8)

Ãy ≥ Ãx + (k − r)(qc− b),

aTy = r(q + 1).

Hence (4) has an integer solution y because the matrix
(
Ã
aT

)
is totally unimodular.

Since y is an integer vector in r(PA,b ∩ {x ∈ R
n | aTx = q + 1}), we obtain by

Proposition 1 a decomposition y = y1 + · · · + yr of y into r integer vectors in PA,b.
Similarly, Proposition 1 gives a decomposition x − y = x1 + · · · + xk−r of x − y into
k − r integer vectors x1, . . . , xk−r in PA,b. Hence x = y1 + · · · + yk + x1 + · · · + xk−r

is the required decomposition of x.
From Theorem 1 it follows that testing membership of PA,b can be done in poly-

nomial time, since checking feasibility of (4) can be done in polynomial time. Finding
the required decompositions of y and x− y can be done in polynomial time. Indeed,
denote

P := {z | Ãz ≤ b, aTz = s}.(9)

Decomposing an integer vector y ∈ rP can be done by solving r − 1 linear programs,
since a decomposition y = y1 + y2 into integer vectors y1 ∈ P and y2 ∈ (r − 1)P can
be found by solving {Ãy1 ≤ b, Ã(y − y1) ≤ (r − 1)b, aTy1 = s}.

With a little more care (as was pointed out by an anonymous referee), a decompo-
sition can be found in polynomial time as follows (see [6, 8]). First, t ≤ n+ 1 affinely
independent integer vectors y1, . . . , yt ∈ P and nonnegative numbers λ1, . . . , λt with
λ1 + · · ·+λt = 1 can be found such that 1

ry = λ1y1 + · · ·+λtyt (algorithmic version of
Carathéodory’s theorem). Then y′ := y−�rλ1� y1 − · · ·− �rλt� yt is an integer vector
in r′P , where r′ = r − �rλ1� − · · · − �rλt� < t. Hence y′ can be decomposed into r′

integer vectors in P by solving less than t linear programs as above.
However, often A and b come from a combinatorial problem that allows more

efficient ways of computing a decomposition of x. In the next section we discuss such
a case, namely when A is a circular-ones matrix.

3. Circular-ones matrices. Call a zero-one matrix A a circular-ones matrix if
in each row of A the ones occur in circular consecutive order. That is, in each row
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the ones or the zeros form a contiguous block. Closely related is the circular-ones
property (see [15]) for matrices. A matrix has the circular-ones property if it can be
transformed into a circular-ones matrix by permuting the columns. If it exits, such
a permutation can be found in linear time (see [5]). If A is an m × n circular-ones
matrix, then replacing each row aT of A in which the ones do not form a contiguous
block by (1 − a)T, we obtain an interval matrix, which is totally unimodular. Hence
every circular-ones matrix is nearly totally unimodular. In this section we give an
efficient algorithm for finding decompositions as in Theorem 1 in the special case of
circular-ones matrices.

It will be convenient to use the following notation. For integers i ≤ j, we denote
the set {i, i + 1, . . . , j} by [i, j]. For finite sets U ⊆ V and x ∈ R

V , we denote the
characteristic vector of U by χU and define x(U) := xTχU .

If P = {x | Ax ≤ b, 1Tx = s}, where A is an interval matrix, and b and s are
integer, decomposing an integer vector x ∈ rP into r integer vectors in P can be done
in polynomial time. In fact, such a decomposition can be found that does not depend
on the matrix A or the vector b. In the case that x is the characteristic vector of a
subset X ⊆ {1, . . . , n}, the decomposition simply amounts to coloring the ith element
of X with color i modulo r. The proposed decomposition algorithm in Proposition 2
is not strongly polynomial, as it performs integer division on the coefficients of x. We
will denote by size(x) the encoding length of a given vector x ∈ Z

n.

Proposition 2. Let integers r, s (r > 0), and a vector x ∈ Z
n satisfying 1Tx =

rs be given. Then we can find in time O(n2 + size(x)) a decomposition

x =

l∑
t=1

ntxt(10)

of x into integer vectors xt with 1Txt = s and such that for any interval I ⊆ {1, . . . , n}
and any integer d we have x(I) ≤ rd ⇒ xt(I) ≤ d and x(I) ≥ rd ⇒ xt(I) ≥ d, for
each t = 1, . . . , l. The numbers xt are positive integers with n1 + · · · + nl = r and
l ≤ n + 1.

Proof. Define for i = 1, 2, . . . , n the integers zi, qi, and ri by

zi := x([1, i]),(11)

zi = qir + ri, where 0 ≤ ri ≤ r − 1.

Sort the elements of the set {0, r} ∪ {r1, r2, . . . , rn} in increasing order to obtain
0 = r′0 < r′1 < · · · < r′l = r. Now we define for t = 1, 2, . . . , l the numbers nt ∈ Z+

and vectors xt ∈ Z
n by

nt := r′t − r′t−1,(12)

xt([1, i]) := qi + δri≥r′t
for i = 1, . . . , n.

Here δ denotes the Kronecker delta attaining the value 1 if the subscript is true and
the value 0 if it is false. It is an easy verification that the numbers qi and ri can be
found in time O(n + size(x1) + · · · + size(xn)). Hence the xt and nt can be found in
time O(n2 + size(x)).
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Clearly l ≤ n+1, n1 + · · ·+nl = r, and 1Txt = s for each t. Since for i = 1, . . . , n

l∑
t=1

ntxt([1, i]) =

l∑
t=1

(r′t − r′t−1)(qi + δri≥r′t
),(13)

= rqi +

l∑
t=1

(r′t − r′t−1)δri≥r′t
,

= rqi + ri,

= x([1, i]),

we have that x = n1x1+· · ·+nlxl. For any t, t′ and any interval [i, j] we have (defining
q0 := r0 := 0)

|xt([i, j]) − xt′([i, j])|(14)

= |qj − qi−1 + δrj≥r′t
− δri−1≥r′t

− qj + qi−1 − δrj≥r′
t′

+ δri−1≥r′
t′
|

= |δrj≥r′t
− δri−1≥r′t

− δrj≥r′
t′

+ δri−1≥r′
t′
| ≤ 1.

This implies the proposition.
Theorem 2. Given an m×n matrix A which is (up to multiplying some rows by

−1) a circular-ones matrix, vectors b ∈ Z
m, x ∈ Z

n, and a nonnegative integer k, we
can test in time O(n(n+m)) whether x ∈ kPA,b, and find in time O(n(n+m)+size(x))
a decomposition

x =

l∑
i=1

nixi,(15)

where xi is an integer vector in PA,b and ni is a positive integer for i = 1, . . . , l; the
positive numbers ni satisfy n1 + · · · + nl = k and l ≤ 2n + 2.

Proof. Let a = 1 be the all-one vector of length n and let c ∈ {−1, 0, 1}m be
defined by ci = Ai,n. Let Ã := A− caT. Then in each row of Ã the nonzero elements
form a contiguous block of either ones or minus ones. Write aTx = qk + r as in
Proposition 1. Now each of the inequalities in system (8) is of the form y([i, j]) ≤ d
or y([i, j]) ≥ d for some integers i, j ∈ {1, . . . , n} and d. This implies that (8) can be
solved by a shortest path algorithm as follows (see [10]). Construct a directed graph
D with vertex set {0, 1, 2, . . . , n} and an arc (i− 1, j) of length d for each inequality
y([i, j]) ≤ d, and an arc (j, i − 1) of length −d for each inequality y([i, j]) ≥ d. Now
the system is feasible if and only if D has no negative-length cycles. If there are no
negative-length cycles, let di be the length of a shortest-length path starting in vertex
i for i = 0, 1, 2, . . . , n. Then the vector y ∈ Z

n defined by yi := di− di−1 is an integer
solution to (8). Detecting a negative-length cycle and finding the numbers di can
be done in time O(n(n + m)) by the Bellman–Ford method (see [4]). If an integer
solution y is found, we can by Proposition 2 find decompositions of y and x− y into
integer vectors in PA,b in time O(n(n + m) + size(x)).

4. Applications. In this section we discuss some applications of Theorems 1
and 2.

4.1. Proper circular arc graphs. For two points a, b on the unit circle, the
closed segment running clockwise from a to b is called an arc and is denoted by [a, b].
A proper circular arc system is a finite set of arcs Ai := [ai, bi], i = 1, . . . , n, with the
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property that Ai �⊆ Aj for any two distinct i, j ∈ {1, . . . , n}. The proper circular arc
graph G associated with this system is the graph with vertex set {1, . . . , n}, and two
vertices i and j are joined by an edge if Ai ∩ Aj �= ∅. We will assume that the arcs
are numbered in such a way that the points a1, a2, . . . , an occur in clockwise order
around the circle. For each i = 1, . . . , n, let Ci := {j ∈ {1, . . . , n} | ai ∈ Aj}. Note
that because no arc contains another arc, the ones in the characteristic vector of Ci

occur in circular consecutive order. Let A be the n×n matrix with the characteristic
vectors of the sets Ci as rows. Then A is a circular-ones matrix, and P( A

−I),(
1
0)

is

the stable set polytope of G. A k-coloring of G corresponds to a decomposition of
the all-one vector into k integer vectors in the stable set polytope. As a corollary to
Theorem 1, we find that the stable set polytope of a proper circular arc graph has
the integer decomposition property. This result was proved by Niessen and Kind in
[9]. By Theorem 2 we can find a coloring of G using a minimum number of colors in
time O(n2 log n) by binary search on the number of colors k. This is a result of Orlin,
Bonucelli, and Bovet (see [10]).

4.2. A packet scheduling problem for smart antennas. In recent years,
there has been a growing interest in adaptive antenna arrays known as “smart an-
tennas,” for example, for use in third generation mobile telecommunication systems
(see [11, 14]). A smart antenna may be viewed as a collection of colocated directive
antennas in the plane that each transmit to (or receive from) a narrow beam (approx-
imately 12 degrees). Each of these directive antennas can be independently oriented
and can serve one user at a time. In order to avoid unwanted interference, there is
a combinatorial restriction on the sets of users that can be served simultaneously: a
user that is being served cannot be in the beam of a directive antenna that serves
another user. This restricts the number of users that can be served during the same
time slot. As an example, suppose that the angle of the beams from the directive an-
tennas is 12 degrees and that three users are in a common sector of 12 degrees. If the
middle of the three users is served, then the beam corresponding to the antenna that
serves it must either contain the clockwise or the counterclockwise neighbor, which
therefore cannot be served at the same time. This implies that for a set of users
that are served simultaneously, the angle between any of these users and its second
clockwise neighbor is more than 12 degrees. Hence the number of users that can be
served in a single time slot is less than 60. In fact, we may assume that the number of
available directive antennas is unlimited and that the sets of users that can be served
simultaneously are determined exactly by this interference constraint.

In [1, 2] Amaldi, Capone, and Malucelli considered the following two scheduling
problems. Associate with each user a number representing its priority. The first
scheduling problem is to find a set of users that can be served in a single time slot,
maximizing the sum of their priority numbers. In [2] they gave a polynomial-time
algorithm for this scheduling problem by reducing it to the problem of finding a
maximum weight directed path in a weighted acyclic digraph. Here we will focus on
the second scheduling problem.

Given a set of users, find a schedule for serving all the users that
needs a minimum number of time slots. That is, give a partition of
the users into a minimal number of classes, where the users in each
class can be served simultaneously.

Amaldi, Capone, and Malucelli devised heuristics for this problem and asked whether
the problem is NP-hard. As an application of Proposition 2 we will give an efficient
algorithm for solving this packet scheduling problem.
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In the scheduling problem, the exact positions of the users are not needed, only
their direction as seen from the smart antenna. Hence we can model the users by
points on the unit circle and let the beams from the directive antennas correspond to
arcs of a fixed length α of the unit circle. Following [2], the scheduling problem can
be formalized as follows.

Let α ∈ (0, 2π) be given. A finite set S of points on the unit circle will be called
independent1 if there exist |S| arcs on the unit circle of length α > 0 such that each
point in S is in exactly one of these arcs and each of these arcs contains exactly one
element of S. Note that any two of the |S| arcs may intersect as long as the intersection
does not contain a point in S. The independent sets correspond to the sets of users
that can be served simultaneously. Given α and a finite subset V of the unit circle
(the users), the packet scheduling problem can now be restated as follows.

Partition problem. Given a finite subset V of the unit circle and an α > 0,
find a partition of V into a minimal number of independent sets.

We will now show the connection between the partition problem and the circular-
ones matrices. We make the following observation.

Observation. A finite set S of points on the unit circle is independent if and only
if |S ∩ [s, s′]| ≤ 2 for each arc [s, s′] of length α starting at a point s ∈ S.

Proof. To see necessity, suppose that some arc of length α contains u, v, w ∈ S
in this order; then any arc of length α containing v also contains u or w, and hence
S is not independent. For sufficiency, suppose that |S ∩ [s, s′]| ≤ 2 for each arc [s, s′]
of length α with s ∈ S. Let v ∈ S and let u and w be the counterclockwise and
clockwise neighbor in S of v, respectively. The length of [u,w] must be larger than
α since |[u,w] ∩ S| > 2, and hence there exists an arc of length α intersecting S only
in v.

Note that the last argument also shows that, given an independent set S, |S|
arcs of length α as in the definition of independent set are easily constructed from S.
Now given a finite subset V of the unit circle, define for each v ∈ V the row vector
av ∈ {0, 1}V as the incidence vector of the intersection of V with the arc [v, v′] of
length α. Let Ax ≤ b be the system consisting of the inequalities avx ≤ 2 for v ∈ V ,
and the inequalities 0 ≤ x ≤ 1. Then the matrix A is (up to signs of the rows) a
circular-ones matrix, and the incidence vectors of the independent sets are precisely
the integer vectors in PA,b. Hence, the partition problem is to find a decomposition
of the all-one vector into a minimal number of integer vectors in PA,b. By Theorem
2 we can test whether V can be partitioned into k independent sets in time O(n2).
Hence using binary search on k, we obtain an O(n2 log n) algorithm for solving the
packet scheduling problem.

4.3. Edge coloring nearly bipartite graphs. A graph G is called nearly
bipartite if we can obtain a bipartite graph by deleting a vertex from G. Let G = (V,E)
be a nearly bipartite graph and let u ∈ V be a vertex of G such that G−u is bipartite
with bipartition V \ {u} = V1 ∪ V2. Let A be the V ×E incidence matrix of G. Then
A is nearly totally unimodular. Indeed, let a := χF , where F ⊂ E is the set of edges

between u and V2, and define Ã := A− χ{u}aT. Then
(
Ã
aT

)
is the incidence matrix of

a bipartite graph G′ obtained from G by splitting u into two points. As the incidence
matrix of a bipartite graph is totally unimodular, this implies that A is nearly totally
unimodular. It now follows from Theorem 1 that the matching polytope P( A

−I),(
1
0)

of

1In [2] arcs are half-open segments, but for the definition, this is equivalent to using closed
segments of the same length.
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G has the integer decomposition property. Equivalently, the chromatic index of G is
the roundup of the fractional chromatic index. This result was proved in [7] and [12].

If G is viewed as a multigraph by taking each edge e with multiplicity xe ∈ N,
then finding a k-edge coloring G with k minimal can be done as follows. First observe
that we may assume that k ≥ Δ, where Δ is the maximum degree of a vertex in
G (counting multiplicities). Hence we have q = 0 in Theorem 1, and r = x(F ) is
the number of edges from u to V2. Solving system (4) amounts to finding an integer
vector y satisfying 0 ≤ y ≤ x and

y(e) = 0 for e ∈ δ(u) \ F ,(16)

y(e) = x(e) for e ∈ F ,

y(δ(v)) ≤ x(F ) for v ∈ V \ {u},
y(δ(v)) ≥ x(F ) + x(δ(v)) − k for v ∈ V \ {u}.

This can be done by reducing it to a flow problem with capacities and demands on
the arcs. Hence we can find an integer solution y (if it exists) in time O(mn log n)
(see [13]). Since for k ≥ Δ+x(F ) we may take y = χF , to find the minimal k we need
to check at most O(log x(F )) values of k using binary search. If an integer solution y
is found, decomposing y and x− y as in Theorem 1 comes down to capacitated edge
coloring of the bipartite graphs (V,E \ (δ(u) \ F )) and (V,E \ F ), respectively. This
can be done in time O(m2) (see [13]).

When x is a zero-one vector, the above algorithm comes down to the edge coloring
algorithm as presented in [12].

Acknowledgments. The author would like to thank the anonymous referees
for their many valuable suggestions, in particular for shortening the proof of the
implication (i) ⇒ (ii) in Theorem 1.

REFERENCES

[1] E. Amaldi, A. Capone, and F. Malucelli, Circular arc models and algorithms for packet
scheduling in smart antennas, in Fourth ALIO/EURO Workshop on Applied Combinatorial
Optimization, Pucón, Chile, 2002.

[2] E. Amaldi, A. Capone, and F. Malucelli, Discrete models and algorithms for packet schedul-
ing in smart antennas, Proceedings of the Second Cologne-Twente Workshop on Graphs
and Combinatorial Optimization, Electron. Notes Discrete Math. 13, Elsevier, Amsterdam,
2003, pp. 1–4.

[3] S. Baum and L. E. Trotter, Jr., Integer rounding and polyhedral decomposition for totally
unimodular systems, in Optimization and Operations Research (Proc. Workshop, Univ.
Bonn, Bonn 1977; R. Henn, B. Korte and W. Oettli, eds.), Lecture Notes in Econom.
Math. Systems 157, Springer, Berlin, 1978, pp. 15–23.

[4] R. E. Bellman, On a routing problem, Quart. Appl. Math., 16 (1958), pp. 87–90.
[5] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.
[6] W. Cook, J. Fonlupt, and A. Schrijver, An integer analogue of Carathéodory’s theorem, J.

Combin. Theory Ser. B, 40 (1986), pp. 63–70.
[7] L. Eggan and M. Plantholt, The chromatic index of nearly bipartite multigraphs, J. Combin.

Theory Ser. B, 40 (1986), pp. 71–80.
[8] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, 2nd ed., Springer-Verlag, Berlin, 1988.
[9] T. Niessen and J. Kind, The round-up property of the fractional chromatic number for proper

circular arc graphs, J. Graph Theory, 33 (2000), pp. 256–267.
[10] J. B. Orlin, M. A. Bonuccelli, and D. P. Bovet, An O(n2) algorithm for coloring proper

circular arc graphs, SIAM J. Algebraic Discrete Methods, 2 (1981), pp. 88–93.



806 DION GIJSWIJT

[11] A. Perez-Neira, X. Mestre, and J. R. Fonollosa, Smart antennas in software radio base
stations, IEEE Communications Magazine, 39 (2001), pp. 166–173.

[12] B. Reed, Edge coloring nearly bipartite graphs, Oper. Res. Lett., 24 (1999), pp. 11–14.
[13] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. Vol. A, Springer-Verlag,

Berlin, 2003.
[14] K. Sheikh, D. Gesbert, D. Gore, and A. Paulraj, Smart antennas for broadband wireless

access networks, IEEE Communications Magazine, 37 (1999), pp. 100–105.
[15] A. Tucker, Matrix characterizations of circular-arc graphs, Pacific J. Math., 39 (1971),

pp. 535–545.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 807–813

A GENUS BOUND FOR DIGITAL IMAGE BOUNDARIES∗

LOWELL ABRAMS† AND DONNIELL E. FISHKIND‡

Abstract. Shattuck and Leahy [IEEE Trans. Med. Imag., 20 (2001), pp. 1167–1177] conjectured—
and Abrams, Fishkind, and Priebe [IEEE Trans. Med. Imag., 21 (2002), pp. 1564–1566], [IEEE
Trans. Med. Imag., 23 (2004), pp. 655–657] proved—that the boundary of a digital image is topo-
logically equivalent to a sphere if and only if certain related foreground and background graphs are
both trees. In this article we extend this result by proving upper and lower bounds on digital image
boundary genus in terms of the foreground and background graphs, and we show that these bounds
are best possible. Our results have current application to topology correction in medical imaging.
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1. Overview. Digital topology is an area of great theoretical interest, having
the additional bonus of significant application in imaging science and related areas.
Our results are mathematical—the notation and setting are detailed in section 2—but
we begin with a brief description of a current application.

The human cerebral cortex, when viewed as closed at the brain stem, is topo-
logically like a sphere. Magnetic resonance imaging (MRI) can differentiate between
tissue that is interior to the cerebral cortex and tissue that is exterior to the cere-
bral cortex. Because of the finiteness of resolution, what is generated by MRI is a
three-dimensional array of cubes, each cube classified by MRI as “foreground” (tissue
interior to the cerebral cortex) or “background” (tissue exterior to the cerebral cor-
tex), and the boundary between the foreground and background is an approximation
of the cerebral cortex itself.

Although topologically spherical, the cerebral cortex is densely folded, and the
finite resolution, as well as noise, may lead to topological “handles” that do not
actually exist. The physiological and neurological function of regions of the cerebral
cortex, as well as the relationship between the regions, is dictated by the spherical
topology rather than just spatial proximity. It is therefore important to “correct” the
topology, and a number of different strategies are currently used [3], [4].

The strategy of Shattuck and Leahy [4] is fundamentally based on the construction
of certain foreground and background graphs related to the MRI data; they conjec-
tured that the image boundary is topologically spherical if and only if both foreground
and background graphs are trees. In situations where one or both of the graphs are
not trees, the edges are weighted to reflect corresponding junctional thickness, and a
maximum weight spanning tree is found. Edges not on the spanning tree are removed
by adjusting the image at corresponding locations, and the resulting image is then,
by their conjecture, topologically spherical.

∗Received by the editors August 17, 2004; accepted for publication (in revised form) March 18,
2005; published electronically December 7, 2005.
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Fig. 1. Voxel configurations which are forbidden if ∂I is a surface.

The Shattuck and Leahy conjecture was proven and generalized by Abrams,
Fishkind, and Priebe in [1] and [2], and the main result in this paper, Theorem 2,
represents a further generalization. Theorem 2—articulated in section 2 and proven
in section 3—gives bounds for the genus of the boundary of a digital image in terms
of the foreground and background graphs, and these bounds are shown to be best
possible. The truth of Shattuck and Leahy’s conjecture is, in fact, a special case of
our Theorem 2, and the bounds in Theorem 2 also provide the possibility of adapting
Shattuck and Leahy’s topology correction approach to imaged objects of higher genus.

2. Digital images, associated graphs, and the main result. A subset of
R

3 is a surface if it is compact, connected, and locally homeomorphic to an open
disk in R

2. Let N be a fixed positive integer. For any triplet of integers (i, j, k) ∈
{1, 2, . . . , N}3, define the voxel vi,j,k to be the closed Euclidean unit-cube [i − 1

2 , i +
1
2 ] × [j − 1

2 , j + 1
2 ] × [k − 1

2 , k + 1
2 ]. For any A ⊆ {1, 2, . . . , N}3, define the digital

image IA := ∪(i,j,k)∈Avi,j,k. The digital image IA is called surrounded if none of i, j,
or k equals 1 or N , and IA is called standard if IA is surrounded and its boundary
∂IA is a surface. The complementary digital image Ic

A is defined as IAc , where
Ac := {1, 2, . . . , N}3\A. When there is no confusion we write I in place of IA.

For surrounded digital image I, when is ∂I a surface? Of course, ∂I is always
compact. It is shown in [2] that ∂I is locally homeomorphic to a disk if and only if it
does not have any of the three “forbidden” voxel configurations1 illustrated in Figure
1. When ∂I is locally homeomorphic to a disk it is not difficult to show that ∂I is
connected, hence a surface, if and only if both I and Ic are connected.

For each k ∈ {1, 2, . . . , N}, the kth level is Lk := ∪i,j∈{1,2,...,N}vi,j,k, and the
(k, k + 1)th sheet is Sk,k+1 := Lk ∩ Lk+1. Associated with a digital image I is the
(multi)graph GI with vertex set VI and edge set EI defined as follows: for each
k ∈ {1, 2, . . . , N}, we declare each connected component of I

⋂
Lk to be a vertex in

VI . For any two vertices u and v on adjacent levels, say Lk and Lk+1, we declare each
connected component of u ∩ v ⊆ Sk,k+1 to be an edge in EI whose graph-theoretic
endpoints are u and v. When referring to a vertex u ∈ VI or an edge ε ∈ EI , context
will dictate whether we are viewing u or ε as Euclidean subsets, i.e., subsets of R

3, or
as discrete graph-theoretic objects. In Figures 2 and 4 we show examples of I, GI ,
and GIc .

The following result was conjectured by Shattuck and Leahy [4] and proved by
Abrams, Fishkind, and Priebe [1].

1In [2] we discuss a corrective strategy—involving slightly altering the digital image—for medical
imaging applications in which ∂I is not locally homeomorphic to a disk.
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GI GIc

Fig. 2. The drawing in the middle shows the intersection of the two levels on the left; the gray
areas denote background edges and the black areas denote foreground edges.

Theorem 1 (spherical homeomorphism theorem). For any standard digital im-
age I, ∂I is a topological sphere if and only if both GI and GIc are graph-theoretic
trees.

For digital image I, define rI := |EI | − |VI | + 1. This value is called the corank
or cycle rank of GI when GI is connected. If I is connected, then GI is connected
as well, so rI ≥ 0. In particular, rI = 0 if and only if GI is a tree. The cycle ranks
rI and rIc are the first Betti numbers of GI and GIc , respectively. The following is
our main result; g(∂I) denotes the genus of the surface ∂I, which is the first Betti
number of I.

Theorem 2. For any standard digital image I,

max{rI , rIc} ≤ g(∂I) ≤ rI + rIc .

Moreover, this is best possible in the sense that, for any nonnegative integers a, b, and
c such that max{a, b} ≤ c ≤ a + b, there exists a standard digital image I such that
rI = a, rIc = b, and g(∂I) = c.

It is not hard to see that Theorem 2 implies Theorem 1: for standard digital
image I, if ∂I is topologically spherical, then max{rI , rIc} ≤ 0 implies that both GI
and GIc are trees, and conversely, if both GI and GIc are trees, then g(∂I) ≤ 0 + 0
implies that ∂I is topologically spherical. We may therefore think of Theorem 2 as a
generalization of the spherical homeomorphism theorem.

3. Proof of the main result, Theorem 2. We begin the proof of Theorem 2
with the following slightly weakened version.

Lemma 3. For any standard digital image I, rI ≤ g(∂I) ≤ rI + rIc .
The proof of Lemma 3 extends and refines the development and strategies in [1].
If a surface S has a 2-cell embedding of some graph H with n vertices, e edges,

and f faces, then Euler’s classical result states that n− e+ f = 2− 2g(S). The value

χ(S)
def
= n − e + f is called the Euler characteristic of S. Our assumption that ∂I is

a surface implies that, for every v ∈ VI , ∂v is a surface; it is useful to view the voxel
vertices, voxel edges, and voxel faces on ∂I or ∂v, respectively, as a 2-cell embedding
of a graph on ∂I or ∂v.

Suppose ε ∈ EI is a subset of sheet S; the assumption that ∂I is a surface implies
that the boundary of ε in S, denoted ∂Sε, consists of a disjoint union of simple, closed
curves. Let he denote the number of “punctures” in ε; i.e., hε is one less than the
number of connected components of ∂Sε. Even though ε and ∂Sε are not surfaces
(they have boundaries, and ∂Sε may not be connected) the Euler characteristics χ(ε)
and χ(∂Sε) are well defined; in fact, χ(∂Sε) = 0 (since it has equal numbers of voxel
edges and voxel vertices, and no faces), and

χ(ε) = 2 − (hε + 1) = 1 − hε.(1)
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Proof of Lemma 3. Since the relative interior of each ε ∈ EI is a subset of two
vertex boundaries not contained in ∂I, and the relative boundary of each ε has Euler
characteristic 0, a simple inclusion-exclusion argument gives

χ(∂I) =
∑
v∈VI

χ(∂v) − 2
∑
ε∈EI

χ(ε).(2)

Next, note that there is a natural one-to-one correspondence between the genus
holes2 of the vertices of VI and the vertices of VIc other than the N “outermost”
vertices of VIc , one per level. Thus∑

v∈VI

χ(∂v) =
∑
v∈VI

[2 − 2g(∂v)] = 2|VI | − 2(|VIc | −N).(3)

Combining (1), (2), and (3), we obtain

2 − 2g(∂I) = χ(∂I) =
∑
v∈VI

χ(∂v) − 2
∑
ε∈EI

χ(ε)

= 2|VI | − 2(|VIc | −N) − 2
∑
ε∈EI

(1 − hε)

= 2 − 2 (|EI | − |VI | + 1) − 2

(
|VIc | −N −

∑
ε∈EI

hε

)
,

and it follows that

g(∂I) = rI +

(
|VIc | −N −

∑
ε∈EI

hε

)
.(4)

For k = 1, 2, . . . , N−1, let bk,k+1 denote the number of connected components in
the subgraph of GIc induced by the vertices of VIc in the kth and (k + 1)th levels,
and denote by Bk,k+1 the Euclidean set Sk,k+1\

⋃
ε∈EI :ε⊆Sk,k+1

ε. Observe that the
Euclidean set Bk,k+1 has bk,k+1 components.

It now follows that

1 +
∑

ε∈EI :ε⊆Sk,k+1

hε = bk,k+1.

Summing this equation over k yields

N − 1 +
∑
ε∈EI

hε =

N−1∑
k=1

bk,k+1.(5)

Substituting (5) into (4) and simplifying, we find that Lemma 3 is now equivalent to
the assertion that, for any standard digital image I,

2 (|VIc | − 1) − |EIc | ≤
N−1∑
k=1

bk,k+1 ≤ |VIc | − 1.(6)

2Suppose v ∈ VI is in level L. We use the term “genus hole” of v to refer to each component of
the complement of v in L which is bounded horizontally in R

3 by v. For each genus hole of v, there
is a unique w ∈ VIc such that this genus hole of v is precisely the union of w and w’s genus holes.
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To show the right-hand side of (6), suppose first that we remove all edges of GIc .

Without any edges,
∑N−1

k=1 bk,k+1 = 2|VIc | − 2, since each vertex in VIc , with the
exception of the single vertices in L1 and LN , respectively, is counted as a distinct
component in the tabulation of bk−1,k as well as bk,k+1 for some k (the single vertices
in L1 and LN are tabulated only once, in b1,2 and bN−1,N , respectively). Now consider
a spanning tree T of the original graph GIc . Each of the |VIc | − 1 edges of T , when

returned to GIc , reduces the total number of components by 1, so
∑N−1

k=1 bk,k+1 =
|VIc | − 1 after all the edges of T have been restored to GIc . Returning the remaining
edges to the original graph GIc can only further reduce the sum, and thus the right-
hand side of (6) holds. Since reduction of the sum occurs only through this returning
of edges, the largest possible reduction equals |EIc |, confirming the left-hand side of
(6) and completing the proof of Lemma 3.

Lemma 4. For any standard digital image I, rIc ≤ g(∂I).
The proof of Lemma 4, together with Lemma 3, will complete the proof of the

bound max{rI , rIc} ≤ g(∂I) ≤ rI +rIc in Theorem 2. However, using the approach
of the proof of Lemma 3 to show rIc ≤ g(∂I) requires more than simply reversing
the roles of I and Ic since Ic, unlike I, is not standard.

Proof of Lemma 4. Enlarge the ambient space for digital images to allow voxels
with one or more coordinates equal to 0 or N + 1. Accordingly, use the adjective
surrounded to indicate that a digital image contains no voxel with any coordinate
equal to 0 or N + 1; note that any digital image which is standard in the previous
sense remains standard when “surrounded” is redefined in this way.

For the sake of simplifying notation, we let I denote a standard digital image
which is surrounded in the original, smaller, ambient space, and let Ic denote its
complement in that smaller space. Let vi′j′k′ denote a voxel in I with minimum k′.
Let J denote the digital image consisting of the union of the following Euclidean sets:
I, the voxels vijk such that at least one of i, j, k is 0 or N+1, and the voxels vi′j′k such
that 0 ≤ k < k′. Note that J and J c are connected, and J c is standard. Moreover,
we have topological equivalence of ∂I and ∂J c, since the change in ∂I amounts to
cutting out an open disk, attaching one end of a tube to ∂I along the boundary of
the removed disk, and then capping off the tube. (We consider ∂J c rather than ∂J
because ∂J contains the additional component ∂(J ∪ J c).) Figure 3 illustrates this
process.

For each k in 1, . . . , k′ − 1 there is exactly one vertex of GIc in level k, and
no vertices of GI . Since the removal of the voxels {vi′j′k | 0 ≤ k < k′} does not
disconnect any of the vertices of GIc , and no other changes are made to Ic in the
process of constructing J c, we see that GJ c = GIc , and thus rJ c = rIc .

Applying Lemma 3 to the standard digital image J c yields

rIc = rJ c ≤ g(∂J c) = g(∂I),

and Lemma 4 is shown.
It is interesting to note that there is also a close relationship between GI and GJ .

The voxels {vijk | at least one of i, j, k is 0 or N + 1} ∪ {vi′j′k | 0 ≤ k < k′} give rise
to a path P in graph GJ . In fact, GJ can be obtained from GI by attaching P at a
single endpoint. Since the edges of P lie in no cycles, we have rJ = rI .

We now establish that the bounds in Theorem 2 are “best possible.”
Lemma 5. For any nonnegative integers a, b, and c such that max{a, b} ≤ c ≤

a + b, there is a standard digital image I such that rI = a, rIc = b, and g(∂I) = c.
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Fig. 3. An illustration of the topological effect of modifying I to obtain J : (a) ∂I with a disk
cut out, (b) with a tube attached, and (c) with the tube capped off.

Fig. 4. Three key examples—vertical n-torus, horizontal n-torus, and n-ladder—used in the
proof of Theorem 2. Note that vertices of degree 1 corresponding to levels which contain no voxel in
I have been omitted from the graphs GIc .
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Proof of Lemma 5. Suppose a, b, and c are nonnegative integers such that
max{a, b} ≤ c ≤ a+b. Construct a digital image I by connecting, in any topologically
trivial way, a vertical (c − b)-torus, a horizontal (c − a)-torus, and an (a + b − c)-
ladder (see Figure 4). Note that g(∂I) = (c − b) + (c − a) + (a + b − c) = c,
rI = (c− b) + (a + b− c) = a, and rIc = (c− a) + (a + b− c) = b.

Theorem 2 now follows directly from Lemmas 3, 4, and 5.

Acknowledgment. We thank the anonymous referees for their thoughtful sug-
gestions.

REFERENCES

[1] L. Abrams, D. E. Fishkind, and C. E. Priebe, A proof of the spherical homeomorphism
conjecture for surfaces, IEEE Trans. Med. Imag., 21 (2002), pp. 1564–1566.

[2] L. Abrams, D. E. Fishkind, and C. E. Priebe, The generalized spherical homeomorphism
theorem for digital images, IEEE Trans. Med. Imag., 23 (2004), pp. 655–657.

[3] X. Han, C. Xu, U. Braga-Neto, and J. Prince, Topology correction in brain cortex seg-
mentation using a multiscale, graph-based algorithm, IEEE Trans. Med. Imag., 21 (2002),
pp. 109–121.

[4] D. W. Shattuck and R. M. Leahy, Automated graph-based analysis and correction of cortical
volume topology, IEEE Trans. Med. Imag., 20 (2001), pp. 1167–1177.



SIAM J. DISCRETE MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 815–847

GRAPH MINORS AND RELIABLE SINGLE MESSAGE
TRANSMISSION∗
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Abstract. End-to-end communication considers the problem of sending messages from a sender
s to a receiver r through an asynchronous, unreliable network, such as the Internet. We consider the
problem of transmitting a single message from s to r through a network in which edges may fail and
cannot recover. We assume that some sr-path survives, but we do not know which path it is. We
are concerned with protocols that do not store information at intermediate nodes and that ensure
that a message sent by s will be recieved by r (no matter which edges fail) without generating an
infinite number of messages.

We explicitly characterize the family of networks for which there is such a protocol using head-
erless packets. This characterization is given in terms of forbidden rooted minors, which leads to a
linear time recognition algorithm for this family of networks. We obtain a similar characterization
for the family of networks in which a message can be broadcast from a single vertex s to all other
vertices. Finally, we show that there is a forbidden rooted minor characterization for the more general
case when a header (containing routing information) of constant length is attached to the message,
and we discuss the algorithmic consequences of this characterization.
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decomposition
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1. Introduction. End-to-end communication considers the problem of sending
messages from a sender s to a receiver r through an asynchronous, unreliable net-
work. The network can be modeled by a bi-rooted graph where the vertices represent
processors, the edges represent links between the processors, and the vertices s and r
are the roots. Packets are sent along the links of the network. A packet contains a
message and may contain a header with routing information. We generally seek a pro-
tocol which allows algorithms designed for reliable networks to be run on unreliable
networks, such as the Internet.

We consider the simplified problem of transmitting a single message from s to
r through a network in which edges may fail and cannot recover. We assume that
packets traveling along an edge are received in the same order in which they are sent,
but we make no other assumptions concerning the speed at which packets travel.
In particular, an edge that has failed is indistinguishable from an edge along which
packets are traveling very slowly. Therefore, a solution cannot use information about
which edges have failed. In addition, we assume that there is no edge-cut of failed
edges separating s and r; otherwise transmitting information from s to r is clearly
impossible.
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We seek a protocol that ensures that a message sent by s will be received by r.
For this it would suffice to have each vertex simply forward a copy of any arriving
packet to all of its neighbors. However, a protocol is undesirable if too much packet
traffic is generated. Therefore we restrict attention to always finite protocols, which
terminate without generating an infinite number of packets, no matter what links of
the network are operational. We say that a protocol ensures correct delivery of a
message from s to r in a network, if the protocol is always finite and if a message sent
by s will be received by r, provided there is a surviving path of links between s and
r (see [1]).

In public networks, intermediate processors may store fixed information about
the network (such as the number of vertices) but do not store information about the
state of the communication between s and r. Instead, packets have headers which
contain routing information, and the headers are used to control the communication.
We will restrict our attention to memoryless protocols: when a processor receives a
packet, it must decide to which of its neighbors to send packets and what their new
headers will be, basing its decision only on fixed information about the network stored
at the node. Since the message contained in the packet does not affect the behavior
of the protocol, there is a clear separation between the protocol and the application
programs that use the protocol.

It is desirable to use small packet headers. We say that a network with roots s
and r allows reliable single message transmission with headers of size d if there exists
a memoryless protocol using d-bit packet headers that ensures correct delivery of a
single message from s to r. In the special case when d = 0 we also refer to this as
reliable headerless single message transmission.

In section 4 we show that for every constant d, there is a forbidden rooted minor
characterization for networks that allow reliable single message transmission with
headers of size d. This implies the existence of a linear-time algorithm for recognizing
such networks (see section 6). Theorem 8.1 gives the family of forbidden rooted minors
that characterize networks that allow reliable headerless single message transmission.
This yields a feasible linear time algorithm for recognizing such networks. In section 8
we give analogous results for broadcast networks, in which one processor is the sender
and all others are receivers. The remainder of the paper is devoted to the proof
of Theorem 8.1. The proof uses properties of 2- and 3-connected graphs as well as
tree-decompositions.

2. Related work. The hop count protocol (see [13]) is a simple memoryless
protocol that ensures correct delivery of a message. To do so, the sender s sends a
packet with header 1 and the message to each of its neighbors. On receipt of a packet,
each intermediate vertex forwards a copy of the message to each of its other neighbors
with the header incremented by one, provided that the new header does not exceed
the length of the longest path from s to r. Headers of �log2 n� bits suffice for any
n-vertex graph.

Adler and Fich [1] proved that the hop count algorithm is optimal. That is,
for the complete n-vertex graph Kn, headers of size log2 n − O(1) are necessary to
ensure correct delivery of a message using a memoryless protocol. However, for certain
families of graphs, it is possible to do substantially better. For example, graphs with a
feedback vertex sets of size f allow memoryless protocols that ensure correct delivery
of a message using headers of length �log2(f + 1)� (see [1]).

Adler et al. [2] studied memoryless protocols for m×n meshes (grids), where m is
any constant greater than 2. Although the feedback vertex sets of these graphs have
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size Ω(n), they prove that, for these graphs, packet headers of length Θ(log logn) are
necessary and sufficient. In contrast, the 2 × n mesh, which also has only linear size
feedback vertex set, supports a memoryless protocol without headers that ensures
correct delivery of a message. Fraigniaud and Gavoille [10] recently proved an Ω(n)
lower bound on the packer header length for an n × n mesh and from this obtained
a lower bound on the packet header length for any graph in terms of its tree-width.
Adler and Fich [1] also give an algorithm to construct memoryless protocols for graphs
that can be decomposed in a certain way, by combining protocols for the various
components. It had remained an open problem to characterize the family of graphs
for which packet headers of a particular size suffice.

Further elaboration of the model described here and descriptions of related models
and results can be found in [1, 9]. These papers also describe related models, problems,
and protocols more fully, including sending a sequence of messages from s to r and
allowing information to be stored at intermediate nodes.

3. Basics for graphs. In this section we review basic terminology and stan-
dard results used throughout this paper. We encourage readers unfamiliar with the
basic graph-theoretic concepts to consult the introductory text of West [19], whose
notation we usually follow. For convenience we collect the most relevant definitions
here. In this paper, we consider simple nonempty graphs with a finite number of
vertices.

The set of neighbors of a vertex v in a graph G, also called its neighborhood, is
denoted by NG(v) or N(v). The closed neighborhood of v is N(v)∪{v} and is denoted
by NG[v] or N [v]. The number of edges incident to v is its degree, denoted by dG(v)
or d(v). Given a set U ⊆ V (G), the subgraph induced by the vertex set U is the graph
with vertex set U whose edge set consists of all the edges in G whose endpoints are
contained in U . We denote this subgraph by G[U ] and the subgraph G[V (G)−U ] by
G− U .

A walk of length k in a simple graph is a list of vertices 〈v0, v1, . . . , vk〉 such that
vi−1vi is an edge for 1 ≤ i ≤ k. The endpoints of a walk are its first and last vertices.
A walk is closed if its first vertex is the same as its last. A path on n vertices, denoted
by Pn, is a simple graph G whose vertices can be ordered as v1, v2, . . . , vn so that
E(G) = {vivi+1 : 1 ≤ i < n}. The vertices v1 and vn are the endpoints of the path.
A subpath of P is a path contained in P ; its vertices form a consecutive sublist of
v1, v2, . . . , vn. A path with endpoints u and v that has m edges is a u, v-path of length
m. A cycle on n vertices, denoted by Cn, is a simple graph G whose vertices can
be ordered v1, v2, . . . , vn so that E(G) = {vivi+1 : 1 ≤ i < n} ∪ {vnv1}. The m × n
grid is the simple graph with vertex set {1, . . . ,m} × {1, . . . , n} where two vertices
are adjacent if they agree in one coordinate and differ by exactly one in the other
coordinate. An m × n mesh is an m × n grid plus the vertices s and r, where s
is adjacent to all grid vertices whose second entry is 1 and r is adjacent to all grid
vertices whose second entry is n.

A graph is connected if, for every two vertices u and v, it contains a u, v-path.
A maximal connected subgraph of a graph is a component. A cut-set of G is a set
of vertices whose deletion increases the number of components of G. A cut-vertex or
cut-edge of G is a vertex or edge whose deletion increases the number of components
of G. A block of a graph is a maximal connected subgraph which has no cut-vertices.
A connected graph G is k-connected if it has more than k vertices and every cut-set is
of size at least k. The blocks with at least three vertices are the maximal 2-connected
subgraphs.



818 FICH, KÜNDGEN, PELSMAJER, AND RAMAMURTHI

When X,Y ⊆ V (G), an X,Y -path is an x, y-path for some x ∈ X and y ∈ Y ;
such a path is strict if it intersects X and Y only at its endpoint. We state a version of
Menger’s theorem, which we use frequently: if G is k-connected, then for any disjoint
sets X,Y ⊆ V (G) there are k internally disjoint strict X,Y -paths in G; moreover, if
X (and Y ) is of size k, then we may assume that every vertex in X (and Y ) is the
endpoint of exactly one path. We often apply this variation in a 3-connected graph
to obtain three paths with a common endpoint.

4. Graph minors and sr-graphs. In this section we collect a few definitions
and results from the theory of graph minors and define the graph model that we study
in this paper. For more detail on graph minors, we recommend Diestel’s [7] text on
graph theory.

Subdividing an edge uv is the process of replacing uv with a path u,w, v of length
2, where w is a new vertex. An H-subdivision is a graph G obtained from a graph
H by a succession of subdivisions. In this case the vertices of H in G are the branch
vertices. The edges of H are represented in G by internally disjoint paths joining the
corresponding branch vertices.

Contracting an edge uv ∈ E(G) (to a new vertex w) produces the simple graph
G · uv by replacing u and v with a single vertex w adjacent to the neighbors of u
and v in G − uv. We also extend the notation so that we may contract a connected
subgraph (to w), meaning that we contract all edges within it, leaving only one vertex
(called w). A minor of G is a graph that can be obtained from a subgraph of G by
edge contractions. If H is a minor of G, then let a model of H be a subgraph of G
that represents H as follows: each vertex v ∈ V (H) is represented by a set of vertices
that induces a connected graph in G called the branch set for v, and each edge in H is
represented in the model by an edge in G joining the corresponding branch sets. The
vertex set of the model is partitioned into the branch sets. Each edge in the model
either represents an edge in H or has both of its endpoints in a single branch set. The
model can be contracted to H by contracting every edge that doesn’t represent an
edge in H. If H is a minor of G and G is connected, then G has a spanning model of H.

A rooted graph is a graph with a list of distinguished vertices called its roots. Let
G be a rooted graph with roots x1, . . . , xk, and let H be a rooted graph with roots
y1, . . . , yk. H is a rooted minor of G if G contains a model of H such that for all i, xi

is contained in the branch set for yi; such a model is a rooted model of H. The graph
model that we study in this paper is the special case when we have exactly two roots
s and r.

Definition 4.1. An sr-rooting of a graph G is a designation of one vertex of
G to be the sender s and another vertex to be the receiver r. An sr-rooted connected
graph will be called simply an sr-graph. An sr-graph H is an sr-minor of another sr-
graph G if H is a rooted minor of G, that is, G contains a model of H and the branch
set in G for the vertex s (respectively, r) of H contains the vertex s (respectively, r)
of G.

The following basic result of Adler and Fich [1] establishes a close relation between
reliable single message transmission and rooted minors.

Proposition 4.2. If an sr-graph G allows reliable single message transmission
with headers of size d, and H is an sr-minor of G, then there is a modification of the
protocol used for G that allows reliable single message transmission with headers of
size d in H.

This proposition will allow us to prove that there is a forbidden minor charac-
terization for sr-graphs in which reliable single message transmission with headers of
size at most d is possible.
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Definition 4.3. A family of sr-graphs F is an antichain (in the sr-minor-order)
if no graph in F is an sr-minor of another graph in F . A forbidden minor character-
ization of a family of sr-graphs G is an antichain F such that an sr-graph is in G if
and only if it does not have an sr-minor in F .

It is a simple observation that if a family of sr-graphs has a forbidden minor
characterization, then this characterization is unique. The next result follows directly
from the seminal work of Robertson and Seymour on graph minors. If Ω is chosen to be
an appropriate well-quasi-order on the k roots in the proof of Proposition 10.5. of [15],
then this result follows along the same lines [18].

Theorem 4.4. If F is a family of rooted graphs with k roots, none of which is a
rooted minor of another, then F is finite.

We now easily obtain the following result, which is a crucial ingredient in the
recognition algorithm for sr-graphs allowing reliable single message transmission with
headers of size d.

Theorem 4.5. For every d, the set of sr-graphs allowing reliable single message
transmission with headers of size d has a unique finite forbidden minor characteriza-
tion, Fd.

Proof. By the preceding remarks it suffices to exhibit a forbidden minor char-
acterization Fd. Let Fd be the family of sr-graphs F such that F does not permit
reliable single message transmission with headers of size d, but every proper sr-minor
of F does. It is immediate that Fd is an antichain. If G is an sr-graph that does
not allow reliable single message transmission with headers of size d, then it follows
from the definition of Fd that G contains a member of Fd as an sr-minor. The con-
verse of this statement follows by Proposition 4.2, so that Fd is a forbidden minor
characterization.

Our main result is that F0 is the set of sr-graphs in Figure 3 in section 8.

5. Cut-vertices, and sr-splits. Next we start developing tools to study the
structure of sr-graphs in Fd (for any fixed d). By definition, s and r must be in the
same component of any graph in Fd; otherwise there is no possible path from s to r.
We show next that such a graph is in fact 2-connected. In a given sr-graph, let Buv

be the block containing u and v. Let Buv be sr-rooted such that u plays the role of
s and v plays the role of r.

Lemma 5.1. Let v1, v2, . . . , vk be the unique sequence of cut-vertices encountered
on every sr-path of an sr-graph G. Reliable single message transmission (with headers
of size d) from s to r is possible in G if and only if it is possible in Bvivi+1 for 0 ≤ i ≤ k,
where v0 = s and vk+1 = r.

Proof. The graph Bvivi+1 is an sr-minor of G with s in the branch set correspond-
ing to vi and r in the branch set corresponding to vi+1. By Proposition 4.2, it follows
that if there is a protocol (using headers of size d) that ensures correct delivery of a
message from s to r in the graph G, then there is a protocol using headers of size d
that ensures correct delivery of a message from vi to vi+1 in the graph Bvivi+1 .

Conversely, suppose there exists a protocol Ai using headers of size d that ensures
correct delivery of a message from vi to vi+1 in the graph Bvivi+1 using headers of size
d. We may assume that, in Ai, vi+1 never sends packets to its neighbors in Bvivi+1 ,
and vi never receives packets from its neighbors in Bvivi+1 . A protocol for correct
delivery of a message from s to r in G can be obtained by combining A0, . . . , Ak as
follows. In the combined protocol, a cut-vertex vi takes each incoming message from
Bvi−1vi and forwards it into Bvivi+1 just as Ai would forward a message originating
at vi. All other vertices will use the protocol from the unique block to which they
belong.
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There is a constant ci for each Bvivi+1 that bounds the number of copies of a
message originating at vi that Ai will generate, no matter which edges of Bvivi+1 are
operational. Therefore the new protocol will generate at most c0 · · · ck copies of a
message originating at s. In this protocol, a message sent by s will be received by r,
no matter what links are operational, as long as there is always a path of operational
links between s and r.

Lemma 5.1 shows that every graph in Fd is 2-connected for any d. If G is a
2-connected sr-graph, then for every minor of G, the 2-connectedness will allow us to
modify its model to obtain an sr-minor. We make this more precise now. As remarked
before, if G contains H as an sr-minor, then G must contain H as a minor. In hunting
for minors, we either delete or contract edges. The next definition introduces an
inverse operation to contracting an edge sr.

Definition 5.2. An sr-split of an unrooted connected graph G is the sr-graph
obtained by replacing some vertex v of degree at least 4 by two new adjacent vertices
s and r with the property that N(s) ∩ N(r) = ∅, N(s) ∪ N(r) = N(v) ∪ {s, r}, and
|N(s) − r|, |N(r) − s| ≥ 2.

Clearly, if G is an sr-split of H, then G has H as a minor. The following lemma
establishes a partial converse.

Lemma 5.3. Let G be a 2-connected graph. The following are equivalent for a
graph H:

(i) G has H as a minor;
(ii) every sr-rooting of G has an sr-rooting or an sr-split of H as an sr-minor.

Proof. Given (ii), fix an sr-rooting of G. If an sr-split of H is an sr-minor of
G, then G contains a rooted model of an sr-split of H. We contract the edge sr of
the split to obtain H and merge the branch sets for s and r together with the path
corresponding to the edge sr to obtain a model of H in G. If an sr-rooting of H is
an sr-minor of G, then by definition H is a minor of G.

To see that (i) implies (ii), let G be sr-rooted. For every v ∈ V (H), let Sv be the
branch set that corresponds to v in a spanning model of H of G. We wish to modify
the branch sets so that they are branch sets of a rooted model of an sr-rooting or an
sr-split of H in G. Now, if s ∈ Su and r ∈ Sv, for u = v, then we label u with s and v
with r to obtain the desired sr-rooting of H with a rooted model of G. Hence we may
assume that s, r ∈ Sv for some v. By 2-connectedness, there are two disjoint paths
Ps, Pr from {s, r} to V (G) − Sv. Let T be a spanning tree of G[Sv] that contains
the portion of these paths within G[Sv]. Let e be an edge on the shortest path in
T from Ps to Pr, and let Ts and Tr be the components of T − e containing s and r,
respectively. Thus V (Ts) and V (Tr) each have a neighbor in a branch set other than
Sv. Let ms be the number of vertices in NH(v) whose branch sets in G contain a
neighbor of V (Ts) but not a neighbor of V (Tr). Define mr similarly by interchanging
s and r.

First suppose that ms ≥ 2 and mr ≥ 2. We obtain a rooted model in G of an
sr-split of H by replacing Sv with branch sets V (Ts) for s and V (Tr) for r. Therefore,
by symmetry we may assume that ms ≤ 1. If ms = 1, then let u be the vertex that
is counted by ms. If ms = 0, then let u be any vertex, other than v, whose branch
set contains a neighbor of V (Ts). By the construction, Sv − V (Ts) and Su ∪ V (Ts)
induce connected graphs, and e is an edge joining these sets. Move V (Ts) from Sv

to Su (see Figure 1). The resulting branch set for v is adjacent to all branch sets for
vertices in NH(v). These new branch sets define a spanning model of H such that s
and r are in different branch sets, which reduces this case to the first case.
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Fig. 1. Branch sets for vertices in N [v] before and after the move, where ms = 1.

The conclusion of Lemma 5.3 need not hold when G is not 2-connected. For
example, let G be a triangle plus s and r adjacent to the same vertex of the triangle,
and let H be a triangle. Although H is a minor of G, an sr-rooting of a triangle is
not an sr-minor of G. Also, H has no sr-split, so H has no sr-split that yields G.

6. Algorithms for reliable single message transmission. In this section we
discuss algorithms for reliable single message transmission in sr-graphs. It is easy to
quickly decompose a graph into its blocks [19, p. 157]. We proved in Lemma 5.1 that
to determine if transmission from s to r is possible with headers of size d, it is sufficient
to study each block that is encountered on an sr-path. This enables us to restrict our
attention to 2-connected graphs. We will prove that there is a linear-time algorithm
to test for the feasibility of reliable single message transmission with headers of size d
in 2-connected graphs. The proof uses the notion of tree-width, which is a measure of
how “tree-like” a graph is. For a formal definition of tree-width, see Definition 14.1.

Many hard problems can be solved efficiently for graphs of bounded tree-width.
Connected graphs of tree-width 1 are trees. In a tree, every pair of nodes is joined by
a unique path, so no headers are needed for reliable transmission. In section 8, we will
see that headers also are not needed for graphs of tree-width 2. The result of Adler
et al. [2] mentioned in section 2 shows that already for graphs of tree-width 3 there is
no constant upper bound on the length of the headers needed since a 3× n mesh has
treewidth at most 3. On the other hand, reliable single message transmission with
bounded header-size requires small tree-width.

Theorem 6.1. For every d there is a constant cd such that if G is a 2-connected
sr-graph with tree-width greater than cd, then reliable single message transmission
from s to r with headers of length d is not possible in G.

Proof. Let G3,n denote the 3 × n mesh. By [2] we can find n ≥ 9 such that in
G3,n−2 we do not have reliable single message transmission with headers of size d.

Let cd = 400n
5

. By a result of Robertson, Seymour, and Thomas [17] (improving
on results from [14]), graphs with tree-width greater than cd have an n × n grid as
a minor. Since G is a 2-connected graph with an n × n grid as a minor, Lemma 5.3
implies that G has an sr-rooting or an sr-split of the n×n grid as an sr-minor. Since
every sr-rooting and sr-split of an n × n grid for n ≥ 9 contains G3,n−2 as an sr-
minor, we cannot have reliable single message transmission with headers of length d
in G.

We will now use this to show that there is a linear time algorithm for recognizing
graphs that allow reliable single message transmission with headers of fixed size.

Theorem 6.2. For fixed d, there is an O(n) algorithm that determines whether
reliable single message transmission with headers of size d is possible in 2-connected
sr-graphs on n vertices.
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Proof. For a given sr-graph G, it suffices to check whether G contains one of
the sr-graphs from Fd as an sr-minor. We apply an O(n)-time algorithm due to
Bodlaender [6] that either determines that G has tree-width at least cd+1 or produces
a tree-decomposition of width at most cd. In the former case, reliable single message
transmission with headers of size d is not possible, by Theorem 6.1. If G has a
tree-decomposition of width at most cd, then there is an O(cdn)-time algorithm by
Arnborg, Lagergren, and Seese [4] that checks if G has a specified sr-graph as an
sr-minor. We apply this algorithm at most |Fd| times to check whether any sr-graph
in Fd is an sr-minor of G. Since cd and |Fd| are constant for fixed d, altogether this
takes time that is linear in n.

Since the algorithm in Theorem 6.2 uses the forbidden minor characterization Fd

which we do not know for all values of d, it is unfortunately not implementable in
general. However, in Theorem 8.1 we determine F0. Furthermore, in Corollary 9.6
we prove that any graph that allows reliable headerless single message transmission
has tree-width at most 3. Using Bodlaender’s algorithm [6] (or an algorithm due
to Matoušek and Thomas [11]) we can obtain a tree-decomposition of tree-width at
most 3, which can be quickly checked (using [4]) to determine whether the network
has any sr-minors from F0. Thus in the headerless case we can find the guaranteed
algorithm.

7. Headerless transmission and fragments. In the remaining sections, we
will focus on the question of when reliable single message transmission is possible in
an sr-graph G using no headers. By Theorem 4.5, there is a unique antichain F0 such
that headerless reliable single message transmission in G is possible if and only if G
does not have any sr-graph from F0 as an sr-minor.

Definition 7.1. An sr-graph in F0 is an obstruction, and F0 is called the
obstruction set. An obstruction is minor-minimal in the sense that every proper sr-
minor of it allows headerless reliable single message transmission.

Our next theorem characterizes sr-graphs that allow reliable headerless single
message transmission in terms of a structural property.

Definition 7.2. A closed walk in a graph is a list of vertices 〈y0, y1, y2, . . . , yk〉
(not necessarily distinct) such that consecutive vertices are adjacent and y0 = yk. The
indices here and later are always taken modulo k. A fragment circuit π of an sr-graph
G is a closed walk 〈y0, y1, y2, . . . , yk〉 such that for all 1 ≤ i ≤ k, yi−1yiyi+1 is a path
in G and is a subpath of some sr-path Pi in which the three vertices appear in the
given order when Pi is traversed from s to r.

Theorem 7.3. There is a protocol for without using headers reliable headerless
single message transmission in an sr-graph G if and only if G has no fragment circuit.

Proof. Suppose that G contains a fragment circuit 〈y0, . . . , yk〉. For 1 ≤ i ≤ k,
let Pi be an sr-path containing the subpath yi−1yiyi+1 in that order. Since each Pi

might be the only operational sr-path, any message that travels along yi−1yi for some
i must be forwarded along yiyi+1. Furthermore, in the case that no edge of G fails, a
message must be sent along P1 and thus travels along y0y1. This message must then
be forwarded along y1y2, y2y3, . . . . Since the walk is closed, this forces an infinite
amount of packet traffic when no edge of G fails.

Conversely, suppose there are no fragment circuits. Consider the following generic
protocol. When node v receives a message from its neighbor u, it sends a copy of the
message to its neighbor w if and only if uvw appears in that order along an sr-path.
If P is an operational sr-path, then this will transmit the message from s to r along
P .
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Fig. 2. Three obstructions.

To prove that there is only a finite amount of packet traffic generated from one
message, we suppose otherwise. Since G is finite, there are finitely many sr-paths in
G. Hence there is a bound on the number of packets that are forwarded each time
a message is received at a node. Hence there must be packets that follow walks of
arbitrary length starting from s. However, a sufficiently long walk must repeat some
edge in the same direction. Say such a walk begins with an initial segment α from s,
followed by the vertices v0, v1, . . . , vk−1, vk, vk+1, where v0 = vk and v1 = vk+1. By
definition of the protocol, vi−1, vi, vi+1 is a subpath of an sr-path for i = 1, . . . , k.
This contradicts the assumption that G contains no fragment circuit.

We note that obtaining the protocol given in the proof may be computationally
expensive since there may be exponentially many sr-paths. Since we wish to determine
the obstruction set, we will investigate graphs with fragment circuits. We use the
following terminology in studying these graphs.

Definition 7.4. Let 〈y0, y1, . . . , yk〉 be a fragment circuit in an sr-graph G. We
call the path yi−1yiyi+1 a fragment and designate it πi. Let P1, P2, . . . , Pk be fixed
sr-paths associated with the fragment circuit (where πi is a subpath of Pi). We call
this collection 〈P1, P2, . . . , Pk〉 a fragment structure and refer to each of its members
as a fragment path. With π designating a fragment circuit, the graph Gπ with vertex
set {yi : 0 ≤ i ≤ k − 1} and edge set {yi−1yi : 1 ≤ i ≤ k} is the fragment subgraph
of G for π. Note that G may have more than one fragment subgraph.

If in a fragment circuit the vertices yi−1, . . . , yj+1 (for i < j) form a subpath of
a single sr-path P in which the vertices appear in the given order as P is traversed
from s to r, then we will sometimes specify all of the fragments πi, . . . , πj at once by
referring to yi−1 . . . yj+1 as an extended fragment with fragment path P .

The following examples illustrate Definition 7.4.
Example 7.5. Figure 2 shows three sr-graphs T0, F0, and B0 with fragment

circuits highlighted by drawing double edges. Note that T0 is the graph K5 minus the
edge sr and F0 is the graph K3,3 minus the edge sr.

In T0, the fragment circuit 1231 consists of the fragments 123, 231, 312. Here P1

is s123r, P2 is s231r, and P3 is s312r. We name this graph T0 because the fragment
subgraph is a triangle.

In F0, the fragment circuit 12341 consists of the extended fragments 1234 and
3412, with the fragment subgraph forming a 4-cycle. In B0, the fragment circuit
1234531 consists of the extended fragments 12345 and 45312, with the fragment sub-
graph forming a bowtie. The notations F0 and B0 reflect the initials of “4-cycle” and
“bowtie.”

By Theorem 7.3, the presence of these fragment circuits implies that reliable
headerless single message transmission is not possible from s to r in these graphs. In
fact, these graphs are obstructions: contracting or deleting any edge results in a graph
admitting reliable single message transmission from the resulting s to r. For example,
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in T0, since a fragment must use three vertices in G− {s, r}, contracting any edge or
deleting an edge from the triangle results in an sr-graph that cannot have a fragment
cycle. Also, if we delete the edge from s to 1, then 1 cannot be the initial point on
a fragment, so 1 cannot be on a fragment circuit. The same argument applies for
removing any of the edges incident with s or r. Similar case analysis for F0 and B0

shows that these are also obstructions.
The next remarks collect a few simple but useful observations about fragment

subgraphs.
Remark 7.6. Every vertex in a fragment subgraph is the midpoint of at least one

fragment and is an endpoint of at least two fragments. Neither s nor r can be the
midpoint of a fragment, and so a fragment subgraph of an sr-graph G is a subgraph
of G − {s, r}. Furthermore, a fragment subgraph is connected and has minimum
degree at least 2. Clearly, the edge sr cannot be in a fragment path; hence if G is an
obstruction, then sr is not an edge in G.

Remark 7.7. Definition 7.4 is symmetric if the labels s and r are switched. Let G′

be the sr-graph obtained from G by switching s and r. Then 〈y0, . . . , yk〉 is a fragment
circuit in G if and only if 〈yk, . . . , y0〉 is a fragment circuit in G′. Thus a fragment
subgraph of G is also a fragment subgraph of G′. It follows that G allows reliable
headerless single message transmission if and only if G′ allows reliable headerless single
message transmission.

8. The main result and its consequences. Figure 3 contains 10 sr-graphs
in which reliable headerless single message transmission is not possible due to the
fragment circuits indicated. (These fragment circuits are not unique; for example, F1

has a fragment circuit of length 3.) Let F ′
0 denote the set of these sr-graphs. Our

goal in the remaining sections is to show that the obstruction set F0 is exactly F ′
0.

Theorem 8.1. F ′
0 is the unique antichain with the property that an sr-graph

permits reliable headerless transmission of a single message if and only if it contains
no sr-minor from F ′

0.
We begin the proof of Theorem 8.1 by noting that it is straightforward but some-

what tedious to show that no element of F ′
0 is an sr-minor of any other, i.e., that F ′

0

is an antichain. (For full details, see [12].) It follows from Proposition 4.2 that no
sr-graph with an sr-minor from F ′

0 allows headerless single message transmission. To
show that F ′

0 is the desired forbidden minor characterization (and therefore unique)
it remains to prove that every sr-graph which does not allow headerless single mes-
sage transmission contains a minor in F ′

0. However, every such sr-graph contains an
obstruction as an sr-minor, so that in fact it suffices to prove the following.

Theorem 8.2. Every obstruction G ∈ F0 has some H ∈ F ′
0 as an sr-minor.

We devote the remaining sections to the proof of this theorem. In the rest of this
section, we present some corollaries that follow from Theorem 8.1.

Corollary 8.3. If G is a graph of tree-width at most 2, then reliable headerless
single message transmission is possible in every sr-rooting of G.

Proof. It is well known that a graph has with tree-width at most 2 if and only if
it does not have K4 as a minor (see [7, p. 263]). However, each of the graphs in F ′

0

contains a subdivision of K4, so no obstruction can be an sr-minor of an sr-graph of
tree-width at most 2.

We now apply Theorem 8.1 to a related problem that we call the broadcasting
problem. In this model, we have only one distinguished vertex s, the source, from
which we wish to broadcast to all other vertices in the graph. We assume that this
single-root graph is connected and we call it an s-graph. The main assumptions of
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the model remain the same as described in section 1 for the reliable single message
transmission problem. Edges can fail, and this may lead to the graph being discon-
nected, but we require only that every vertex that is reachable from s through some
path receives the message. A successful protocol to broadcast in G ensures that every
vertex of G that is in the same component as s receives the message, and none of
them gets flooded by infinitely many copies.

The following proposition relates the broadcasting model to the reliable single
message transmission model. Let G ∨ r be the sr-graph obtained from an s-graph G
by adding to it a new vertex r and making it adjacent to every vertex in G except s.

Proposition 8.4. Any protocol that can transmit reliably from s to r in G∨r can
be modified to obtain a protocol that can broadcast successfully in G, and conversely.

Proof. For any vertex v = s in G, it may be that the only operational path from
s to r in G∨ r uses the edge vr. Thus a protocol that can transmit reliably from s to
r in G∨ r must be able to transmit to each neighbor of r that can be reached from s.
That is, it is a protocol to broadcast in G.

Conversely, consider the following protocol to transmit from s to r in G ∨ r that
makes use of a successful broadcast protocol in G. A vertex in G always passes the
message to r when it receives it, along with whatever else the protocol tells it to do.
Thus the message will reach r if any sr-path remains. Since the broadcast protocol
ensures that each vertex receives only a finite number of copies of the message, r also
receives only finitely many copies of the message in the transmission protocol.

We say that an s-graph H is an s-minor of another s-graph G if H is a rooted
minor of G (that is, G contains a model of H and the branch set of G for the ver-
tex s of H contains the vertex s of G). We can now use Theorem 8.1 to obtain a
characterization of graphs that do not permit headerless broadcasting.

Corollary 8.5. There is a protocol to broadcast without headers in an s-graph
G if and only if G has no s-minor from {F0 − r, T0 − r,B0 − r}.

Proof. By Proposition 8.4 it suffices to characterize s-graphs G such that head-
erless reliable single message transmission is possible in G ∨ r. If G contains one
of the three given s-minors, then by Theorem 8.1 headerless reliable single message
transmission is not possible in G ∨ r. Conversely, if G ∨ r does not allow headerless
reliable single message transmission, it must contain an sr-minor H ∈ F ′

0. Thus G
contains H − r as an s-minor and it is easy to check that contain T0 − r, F0 − r, and
B0 − r as s-minors, respectively.

Remark 8.6. Observe that T0 − r is the graph K4 with a vertex labeled s. As
mentioned in the proof of Corollary 8.3, a graph has tree-width at most 2 precisely
when it does not have K4 as a minor. Thus headerless broadcast in an s-graph G is
only possible if G is in a restricted class of s-graphs of tree-width at most 2.

9. Tree-width of G + sr. Often we will consider the graphs G − {s, r} and
G+sr for an obstruction G. By Remark 7.6 we know something about their structure.
For convenience, we introduce the following notation.

Definition 9.1. Suppose that G is an sr-graph such that sr ∈ E(G). We let G+

denote the sr-graph G+ sr obtained by adding the edge sr, and we let G− denote the
graph G− {s, r} obtained by deleting the vertices s and r.

In this section, we establish that if G is an obstruction other than T0, then G+

has tree-width at most 3. This restricts the structure of G and will be used in the
last three sections. We start with two simple observations.

Lemma 9.2. An sr-rooting of the 3-cube Q3 in which s and r are in opposite
partite sets has F0 or B+

0 as a proper sr-minor.
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Proof. If s and r are at distance 3 in the cube (that is, they are antipodal), then
the remaining vertices form a 6-cycle. Contracting three consecutive vertices on the
6-cycle to a single vertex (and then deleting two appropriate edges) yields F0.

If s and r are adjacent vertices in Q3, then we obtain B+
0 as a proper sr-minor

by contracting the edge antipodal to sr.
Corollary 9.3. If G is an obstruction, then G+ does not have as an sr-minor

any sr-rooting of the 3-cube Q3 in which s and r are in opposite partite sets.
Proof. If there were such a Q3, then Lemma 9.2 would contradict the minor-

minimality of G.
We will now apply a theorem of Arnborg, Corneil, and Proskurowski [3], which

makes an important connection between minors and tree-width.
Theorem 9.4. A graph has tree-width at least 4 if and only if it has as a minor at

least one of the complete graph K5, the Möbius ladder M8 of order 8, the pentagonal
prism C5�K2, or the octahedron K2,2,2. (See Figure 4.)

Theorem 9.5. If G is a 2-connected sr-graph that has tree-width at least 4, then
G has T0, F0, B

+
0 , or T+

r as a proper sr-minor.
Proof. By Lemma 5.3 it suffices to check that every sr-rooting and sr-split

of the graphs in Theorem 9.4 has at least one of {T0, F0, B
+
0 , T+

r } as a proper
sr-minor.

Corollary 9.6. If G is 2-connected and has tree-width at least 4, then reliable
headerless single message transmission is impossible for any sr-rooting of G.

Proof. The proof is immediate from Theorem 9.5 and the fact that the graphs in
F ′

0 do not allow reliable headerless single message transmission.
Theorem 9.7. If G is an obstruction such that G+ has tree-width at least 4, then

G = T0.
Proof. By the remark after Lemma 5.1, G+ is 2-connected. By Theorem 9.5

it must have T0, F0, B
+
0 , or T+

r as a proper sr-minor. Hence we may assume that
G+ ∈ {T+

0 , F+
0 }, since otherwise we contradict the minor-minimality of G. Since F+

0

is an sr-rooting of K3,3 and it is well known that the tree-width of K3,3 is 3, the only
remaining case is G = T0.

10. 2-cuts in obstructions. We have seen in previous sections that if G is an
obstruction other than T0, then G+ is 2-connected and has tree-width 3. Graphs that
are 3-connected and have tree-width 3 have many nice properties, as we will see in
section 14. For example, certain NP-hard problems become tractable when restricted
to graphs with bounded tree-width [4]. In this section, we study 2-cuts in obstructions
with the aim of proving that obstructions are almost 3-connected.

Throughout this section, G is an obstruction, X = {x1, x2} is a cut-set in G,
and π = 〈y0, y1, . . . , yk〉 is a fixed fragment circuit in G. Furthermore, let Cs and Cr
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s r

XC

Fig. 5. The path P in Lemma 10.3 if P − V (C) is not a path.

denote the components of G−X that contain s and r, respectively (possibly Cs = Cr,
or these could be empty if s, r ∈ X).

Lemma 10.1. Let G be an obstruction, and let X be a 2-cut in G. If yi ∈ X,
then yi−1 ∈ V (Cs) or yi+1 ∈ V (Cr).

Proof. Let Pi be an sr-path containing yi−1yiyi+1 in this order. Suppose that
yi = x1, so we can write Pi as sPx1P

′r. If sP is contained in one component
of G − X, then yi−1 ∈ V (Cs). If sP is not contained in one component of G − X,
then x2 appears on sP . Thus P ′r is contained in one component of G − X, so
that yi+1 ∈ V (Cr).

Lemma 10.2. Let G be an obstruction. If X is a 2-cut in G and Cs = Cr, then
Gπ is completely contained in one of Cs ∪X,Cr ∪X, or some other component C of
G−X.

Proof. If V (Gπ) does not intersect X, then Gπ is entirely contained in one compo-
nent of G−X. So consider yi ∈ X. By Lemma 10.1 and symmetry (Remark 7.7), we
may assume that yi+1 ∈ Cr. To obtain a contradiction, suppose that V (Gπ) ⊆ Cr∪X.
Consider the first j cyclically after i such that yj+1 ∈ Cr ∪ X. Now yj ∈ X and
yj−1 ∈ Cr ∪X, but this contradicts Lemma 10.1.

Lemma 10.3. Let G be an obstruction with fragment subgraph Gπ, and let X be a
2-cut in G. If C is a component of G−X that does not intersect Gπ, then V (C) = {s}
or V (C) = {r} or {s, r} ⊆ V (C).

Proof. If V (C) contains neither s nor r, then we could contract all of C into x1 or
x2 without affecting Gπ (the sr-paths Pi would merely be shortened), contradicting
the minor-minimality of G. Suppose that V (C) contains s but not r. Let P be an
sr-path. A component of P − V (C) must intersect X, so if P − V (C) is not a path
(see Figure 5), then it must consist of an isolated vertex in X plus a path from X
to r. If Pi is a fragment path, then, since C does not intersect Gπ, yi−1yiyi+1 must
be contained in Pi − V (C). So yi−1yiyi+1 is contained in a subpath P ′

i from X to r.
Thus we can contract all of C to s, replacing each fragment path Pi with sP ′

i . Since
this preserves a fragment circuit, minor-minimality of G implies that V (C) = {s}. By
Remark 7.7, if V (C) contains r but not s, then V (C) = {r}.

Lemma 10.4. Let G be an obstruction. If X is a 2-cut in G, then s, r ∈ X.

Proof. Suppose that s = x1 ∈ X. If x2 = r, then G− would be disconnected
and only one of its components could intersect Gπ, a contradiction to Lemma 10.3.
So we may assume that Cr = ∅. Now G − X contains another component C, that
must intersect Gπ by Lemma 10.3. By Lemma 10.2, C completely contains Gπ, so
Cr = {r} by Lemma 10.3. Since G is 2-connected, N(r) ⊂ X forces s and r to be
adjacent in G, contradicting Remark 7.6. Hence s ∈ X. Similarly, r ∈ X.

Lemma 10.5. Let G be an obstruction. If X is a 2-cut and Cs = Cr, then
Cs = {s} or Cr = {r}.

Proof. By Lemma 10.4, both Cs and Cr are nonempty. By Lemma 10.2, one of
them does does not meet Gπ, say Cs. By Lemma 10.3, Cs = {s}.
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Fig. 6. An sr-diamond-cut and a diamond-cut.

Lemma 10.6. If G is an obstruction, and {x1, x2} is a 2-cut, then x1x2 ∈ E(G).
Proof. To obtain a contradiction, suppose that x1x2 ∈ E(G). First we consider

the case where Cs = Cr. By Lemma 10.5, either Cs = {s} or Cr = {r}. By symmetry,
we may assume that Cs = {s}. Now N(s) = {x1, x2}, since G is 2-connected. If
x1x2 ∈ E(Gπ), then {x1, x2} = {yi, yi+1} for some i, but this contradicts Lemma 10.1.
So x1x2 is not in any fragment. If x1x2 is in a fragment path Pi, then Pi must begin
sx1x2 or sx2x1. We can omit the second vertex of Pi and obtain a fragment path for
the same fragment. Thus x1x2 can be deleted while maintaining a fragment circuit,
contradicting minor-minimality.

Now suppose that Cs = Cr. Since G is 2-connected we may let P be an x1, x2-path
through a component of G −X other than Cs. Suppose that Pi is a fragment path
that uses the edge x1x2 (in either direction). The only component of G − {x1, x2}
that Pi can intersect is Cs. Hence we can replace the edge between x1 and x2 by
the path P (in the direction needed) to obtain a path P ′

i in G − x1x2. We define a
fragment or extended fragment π′

i in each path P ′
i as follows: if a fragment yi−1yiyi+1

contains the edge x1x2, then let π′
i be the subpath of P ′

i created from the fragment
by replacing x1x2 with P ; otherwise let π′

i be yi−1yiyi+1. Similarly, on the fragment
circuit replace each occurance of x1x2 and x2x1 by P (in the direction needed); in the
resulting sequence, any three consecutive vertices appear in order on some π′

i. This
creates a new fragment structure and fragment circuit. Thus x1x2 can be deleted in
this case as well, contradicting the minor-minimality of G.

11. Diamond-cuts. We will now consider 2-cuts in G+, where G is an obstruc-
tion. Our aim will be to show that each 2-cut looks like one of the pictures in Figure 6.

Let X be a 2-cut in G+. Since G = G+ − sr, X is also a 2-cut in G. By
Lemma 10.4, X contains neither s nor r. Also, s and r are together in some component
Csr of G+ −X, where Csr = Cs ∪Cr + sr. The lemmas of the previous section apply
to X as a cut-set of G, but some also apply directly to G+. In particular, let π be a
fragment circuit 〈y0, . . . , yk〉 in G. In G+, if yi ∈ X, then yi−1 or yi+1 is in Csr , by
Lemma 10.1. By Lemma 10.3, every component of G+ −X except Csr must intersect
Gπ. Lemma 10.5 implies that x1x2 is not an edge in G+, where X = {x1, x2}.

Definition 11.1. Let X = {x1, x2} be a 2-cut in G+ such that G+ − X has
exactly two components Cd and Cnd, where X ∪V (Cd) induces a diamond K4 −x1x2.
If Cd = Csr , then X is an sr-diamond-cut, whereas if Cnd = Csr , then X is a
diamond-cut (see Figure 6).

We will prove that every 2-cut in G+ is either a diamond-cut or an sr-diamond-cut,
but not both. We begin by studying sr-diamond-cuts. The following lemma, which
allows us to find a rooted K2,2 given certain paths, is our main tool in the proof of
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Fig. 7. Pi and Pj are sr-paths in G+.

Theorem 11.3, which will allow us to characterize obstructions with sr-diamond-cuts.
This lemma is essentially statement (2.1) of [16].

Lemma 11.2. Let G be a graph with distinguished vertices s, r, u, v. If G contains
an s, u-path and an r, v-path that are disjoint, and G contains an s, v-path and an
r, u-path that are disjoint, then G has as a rooted minor a K2,2 in which the partite
sets are {s, r} and {u, v}.

We use Lemma 11.2 to characterize sr-diamond-cuts in obstructions.

Theorem 11.3. Let G be an obstruction with fragment subgraph Gπ. If X is a
cut-set of size 2 in G+, then X is an sr-diamond-cut if and only if V (Csr )∩V (Gπ) =
∅.

Proof. Let X = {x1, x2} be the 2-cut in G+. If X is an sr-diamond-cut, then
V (Csr ) = {s, r} by Definition 11.1. Since no fragment subgraph includes s or r, we
obtain V (Csr ) ∩ V (Gπ) = ∅.

Conversely, suppose that V (Csr ) ∩ V (Gπ) = ∅. By Lemma 10.1, Gπ cannot
intersect X and must thus be entirely contained in some other component C of G+−X.
By Lemma 10.3, Csr and C are the only components of G+ −X.

Fix a fragment structure 〈P1, . . . , Pk〉 in G. Observe that every fragment path
enters V (C) from Csr and returns to Csr , so it must contain x1 and x2. If x1 occurs
before x2 in every fragment path Pi, then contract the s, x1-subpath of P1 to s,
contract the x2, r-subpath of P1 to r, and delete all remaining vertices and edges
from Csr . This is a proper sr-minor of G that contains the same fragment circuit, a
contradiction. We argue similarly if x2 precedes x1 in every fragment path.

Now suppose that x1 precedes x2 in Pi and x2 precedes x1 in Pj . (See Figure 7.)
Apply Lemma 11.2 to G − V (C) with u = x1, v = x2, Psu ∪ Pvr = Pi − V (C), and
Psv ∪Pur = Pj − V (C). By Lemma 11.2, we can contract or delete all but four edges
of G−V (C) to obtain (as a subgraph) K2,2 with roots {s, r, u, v} arranged into partite
sets {s, r} and {u, v}. The new graph has a fragment structure for the same fragment
circuit, obtained by replacing each fragment path P with the path s, (P −V (Csr )), r.
By minor-minimality the rooted graph K2,2 is a spanning subgraph of G − V (C).
Then G − V (C) is K2,2 by Lemma 10.6. Therefore G+ − V (C) induces a diamond
K4 − x1x2.

Next we give a similar structural characterization of diamond-cuts. The following
result of Duffin [8] on series-parallel graphs will be crucial as it plays a role in the
proof of Theorem 11.5 similar to that of Lemma 11.2 in the proof of Theorem 11.3.

A graph H is a series-parallel graph if it can be obtained from any edge e ∈ E(H)
by a sequence of subdivisions and doublings of edges. Such operations cannot create
a K4-subdivision. In fact, a 2-connected graph is a series-parallel graph if and only if
it contains no subdivision of K4, as is implied by the following result of Duffin [8].

Theorem 11.4. If H is a 2-connected graph that contains no K4-subdivision,
and uv is an edge of H, then H can be obtained from uv by a sequence of subdivisions
and doublings of edges.
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Fig. 8. H, where C′ contains a K4-subdivision.

Let H be a series-parallel graph that is built from the edge uv. As H is built we
can label its vertices such that all u, v-paths are strictly increasing: start by labeling
u with 0 and v with 1; when an edge is subdivided, give the new vertex a label that
is the average of the labels of its 2 neighbors. We call this a uv-numbering of H.

Theorem 11.5. Let G be an obstruction with fragment subgraph Gπ, If X is a
cut-set of size 2 in G+, then X is a diamond-cut if and only if V (Csr )∩V (Gπ) = ∅.

Proof. First assume that X is a diamond-cut. If π = 〈y0, y1, y2, . . . , yk〉 is the
fragment circuit, then since |Cd| = 2, but |V (Gπ)| ≥ 3 we see that yi ∈ X for some i
if V (Csr ) ∩ V (Gπ) = ∅. Lemma 10.1 now yields V (Csr ) ∩ V (Gπ) = ∅.

For the converse, suppose that V (Csr ) ∩ V (Gπ) = ∅. Lemma 10.6 implies that
x1x2 ∈ E(G). Let C be some component other than Csr in G+ −X, and let C ′ be
the graph induced by V (C) ∪X with the additional edge x1x2.

We observe that C ′ must be 2-connected, since any cut-vertex in C ′ would be a
cut-vertex in G as well. We will first show that C ′ must contain a K4-subdivision.

Suppose that C ′ contains no K4-subdivision. Since V (Csr )∩V (Gπ) = ∅, whenever
the fragment circuit enters C (via X) it will eventually leave again (via X). We
claim that it must enter and leave through different vertices of X. Consider an
x1x2-numbering of C ′. Any fragment path restricted to V (C) ∪ X is an x1, x2- or
x2, x1-path, so within V (C) ∪ X its vertex labels are strictly increasing or strictly
decreasing. Hence every fragment with vertices in V (C) ∪X is strictly increasing or
strictly decreasing. Therefore, if the fragment circuit enters C through x1, then it
must leave through x2, and vice versa.

Let H = G−V (C)+x1x2. Since there is an x1, x2-path in G[V (C)∪X], H is an
sr-minor of G. Let π′ be the list of vertices that results from deleting the vertices of π
that are in C. Since x1x2 ∈ E(H) and π′ has x1 followed by x2, π

′ is a closed walk in
H. For each fragment path Pi that intersects V (C), Pi − V (C) + x1x2 is an sr-path
in H. If yi+1, . . . , yj−1 is a maximal sublist of π in C, then {yi, yj} = {x1, x2} and
yi−1yiyj and yiyjyj+1 are fragments in H with fragment paths Pi −V (C) +x1x2 and
Pj −V (C)+x1x2, respectively. Thus π′ is a fragment circuit in H, which contradicts
the minor-minimality of the obstruction G.

From the contradiction we deduce that C ′ is 2-connected and contains a K4-
subdivision. Thus by Lemma 5.3 C ′ contains a rooted model of K4 with roots {x1, x2},
and therefore C contains a rooted model of K4 − x1x2. Contract the branch sets
containing x1 and x2 to x1 and x2, respectively, and contract the other branch sets
to (new vertices) z1 and z2. Let H ′ be the sr-graph that results from applying these
contractions to G+[V (Csr ) ∪ X ∪ V (C)]. (See Figure 8.) We wish to modify π to
obtain a fragment circuit in H ′. By minor-minimality, G+ then equals H ′. Since X
is a diamond-cut in H ′, this suffices.

Removing vertices of V (Csr ) ∪ X from π breaks the closed walk into a set S of
proper subwalks of π because V (Csr ) ∩ Gπ = ∅. Since π starts and ends in V (Csr ),
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Fig. 9. Replacements for walks that leave and reenter X ∪ V (Csr ).
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Fig. 10. Two views of G+, while showing that Ĝ is well defined.

each walk in S has the form 〈yi+1, . . . , yj−1〉 such that yi, yj ∈ X. Also, each walk in
S is contained in a component of G+ −X other than Csr . By Lemma 10.1, yi−1 and
yi+1 are in Csr . Let π′ be the closed walk on H that we obtain by replacing each walk
in S by 〈z1, z2〉. (See dotted or dashed lines in Figure 9.) Note that π′ is a fragment
circuit in H.

12. Removing diamond-cuts. Theorems 11.3 and 11.5 show that every 2-cut
in G+ is either an sr-diamond-cut or a diamond-cut, but not both. We will now make
use of this to form a new graph that does not have any 2-cuts.

Definition 12.1. Let G be an obstruction. For each cut-set {x1, x2} of size 2
in G+, replace V (Cd) and its incident edges by the edge x1x2. Call x1x2 a diamond

edge. If {x1, x2} is an sr-diamond-cut, then also relabel x1 = s and x2 = r. Let Ĝ

denote the resulting sr-graph. Let Ĝ− denote the graph Ĝ− {s, r}.
Note that replacing a diamond with a diamond edge produces an sr-minor of G+.

Lemma 12.2. Ĝ is well defined (up to exchanging s and r if G+ has an sr-
diamond-cut).

Proof. Let X be a 2-cut in G+ with X = {x1, x2}. Let X ∪ Y be the vertex
set of the resulting diamond, with Y = {y1, y2}. Similarly define X ′ = {x′

1, x
′
2} and

Y ′ = {y′1, y′2} for another 2-cut X ′. (See Figure 10.) Assume that X = X ′ or Y = Y ′.
Since X = X ′ implies that Y = Y ′, we may assume X = X ′. It suffices to check that
(X ∪ Y ) ∩ Y ′ = ∅; then we can delete Y ′ and add x′

1x
′
2 without affecting G[X ∪ Y ].

This allows us to replace X ′∪Y ′ with x′
1x

′
2 before we replace X ∪Y with x1x2. Since

X and X ′ are arbitrary 2-cuts, all the 2-cuts in G+ can be dealt with in any order.

Suppose that x1 = y′1. Since {y1, y2} ⊆ N(x1) = N(y′1), we have {y1, y2} ⊆
{x′

1, x
′
2, y

′
2}. By symmetry, let x′

1 = y1. Now N(x1)∩N(y1) = N(y′1)∩N(x′
1) requires

y2 = y′2. This yields N(y1) ∩N(y2) = N(x′
1) ∩N(y′2) = {x′

2}, but N(y1) ∩N(y2) =
{x1, x2}, which is a contradiction. Hence, Y ′∩X = ∅. Thus, if (X∪Y )∩Y ′ = ∅, then
Y ∩Y ′ = ∅. Since y′1y

′
2 is an edge and X is a cut-set that doesn’t intersect Y ′, we have

Y = Y ′. This requires X = X ′, which we already excluded. Thus (X ∪ Y ) ∩ Y ′ = ∅,
and Ĝ is well defined.

The following example illustrates Definition 12.1.
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Fig. 11. Examples of G+ with 2-cuts.

•

••

s r

•

B̂1

s r

••

•

T̂2

s r

•

B̂2

s r

•

•

B̂e

Fig. 12. Examples of Ĝ with diamond edges.

Example 12.3. Consider all the graphs G from F ′
0 so that G+ has a 2-cut.

Figure 11 shows G+ for these graphs, and Figure 12 shows the corresponding Ĝ with
the diamond edges drawn as wavy lines. Note that for the other sr-graphs G ∈ F ′

0,

G+ does not have a 2-cut, so that Ĝ = G+ for these.

B+
1 has one diamond-cut, and B̂1 is a triangular prism with s and r in one triangle.

The diamond edge connects the third vertex on the triangle with the other triangle.

T+
2 has an sr-diamond-cut, and T̂2 is an sr-rooted wheel on five vertices, obtained

by joining one vertex to every vertex on a 4-cycle in which s and r are consecutive
vertices. Here sr is the lone diamond edge.

B̂2 is the sr-rooted triangle in which every edge is a diamond edge, and B̂e is the
sr-rooted complete graph on four vertices in which the diamond edges are the edges
incident with s (or r, depending on how we contract the sr-diamond-cut).

The next remark collects some observations on the structure of Ĝ.

Remark 12.4. It is easy to see that Ĝ is an sr-minor of G+. Every vertex of Ĝ is
also a vertex of G+, except that it may have a new name s or r when sr is a diamond
edge.

Suppose that uv is a diamond edge in a graph H. To reverse the operation
of creating uv from a diamond, identify {u, v} with two vertices of a copy of K4

then deleting the edge uv; let H ′ be the resulting graph. If X is a cut-set of H
and C1, . . . , Ck are the components of H − X, then {u, v} intersects at most one
component of H − X, so X is a cut-set of H ′ and C1, . . . , Ck are contained in k
distinct components of H ′ −X. Since G+ can be obtained from Ĝ by a series of such
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Fig. 13. A model of T̂2 in Ĝ.

operations, if X is a cut-set in Ĝ and C1, . . . , Ck are the components of Ĝ−X, then
X is a cut-set in G+ and C1, . . . , Ck are contained in distinct components of G+−X.

Since every cut-set in Ĝ is also a cut-set in G+ and the 2-cuts in G+ are not
2-cuts in Ĝ, it follows that Ĝ has no cut-sets of size at most 2. Thus Ĝ is 3-connected,
unless it is a triangle. This implies that the graph Ĝ− obtained from Ĝ by removing
s and r is connected.

If G+ has no sr-diamond-cut, then G may be similarly obtained from Ĝ− sr by
series of these reverse operations; hence every cut-set of Ĝ− sr is also a cut-set of G
that breaks G−X up into components as in Ĝ−sr . If G+ has no sr-diamond-cut and
X is a 2-cut in G, then Cs = Cr in G −X if and only if sr is a cut-edge in Ĝ −X,
because each statement is true if and only if sr is a cut-edge in G+ −X.

We will now reduce to the case when G+ has no sr-diamond-cut.
Theorem 12.5. Let G be an obstruction. If G+ has an sr-diamond-cut, then

G ∈ {T2, B2, Be}.
Proof. Let X = {x1, x2} be the sr-diamond-cut. Since X is also a cut-set in G

(and in G−X we have Cs = {s} and Cr = {r}) it follows from Lemma 10.2 that Gπ

is entirely contained in Cnd.
Case 1. Ĝ− contains a cycle C. We show that G = T2.
Since sr is a diamond edge, by Remark 12.4 it suffices to show that T̂2 (see

Figures 12 and 13) is an sr-minor of Ĝ. This implies that T2 is an sr-minor of G, and
thus by minor-minimality G = T2.

Let a ∈ V (Ĝ−) be a neighbor of either s or r in Ĝ; by symmetry we may assume

that a ∈ NĜ(s). Since Ĝ− has more than one vertex, Ĝ is not a triangle, so Ĝ is

3-connected. Hence there are pairwise disjoint paths Pa, Ps, Pr in Ĝ from a, s, r to
some vertices za, zs, zr ∈ V (C), respectively. By choosing paths of minimal length,
each path intersects V (C) only at its endpoint. (The path Pa could be trivial.)

Since Ĝ has no 2-cut, there is a shortest path P ′ from V (Pr) − zr to V (C) ∪
V (Pa)∪V (Ps)−{zr, s} in Ĝ−{zr, s}. Let r′ be the endpoint of P ′ in V (Pr)−zr, and
let z′ be the other endpoint of P ′. We perform the following contractions to obtain
the desired T̂2. Contract the r, r′-subpath of Pr into r. Contract z′ into either za
or zs, depending on whether z′ is in V (Pa), V (Ps) − s, or C − zr. Thus we obtain

a subdivision of T̂2 with center z′ and 4-cycle s, r, zr, zs (if z′ = za) or s, r, zr, za (if
z′ = zs).

Case 2. Ĝ− is acyclic and hence is a tree. We show that G is either B2 or Be.
Since Ĝ has no cut-sets of size at most 2, every leaf of Ĝ− is adjacent to both s
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Fig. 14. The case that sz, sz′ ∈ E(Ĝ).

and r. We first show that Ĝ has at least two diamond edges other than sr. Observe
that in G−X we have Cs = {s} and Cr = {r}, so by Lemma 10.1 the fragment circuit
π cannot intersect X and is contained in G− −X. Since the minimum degree of Gπ

is at least 2, G− − X is not a tree, so Ĝ contains at least one diamond edge other
than sr. Moreover, by Theorem 11.5, Gπ is not entirely contained in the diamond of
this cut. Since Gπ has minimum degree 2 and Ĝ− is a tree, there must be at least
two diamond edges other than sr.

If two such diamond edges lie on a path from s to r in Ĝ, then we obtain B2 as an
sr-minor of G (see Figure 12). Then minor-minimality implies G = B2. If e and e′ are

diamond edges in Ĝ not incident to r and s, respectively, then Ĝ− contains a unique
path between e and e′, and this path extends via two leaves in Ĝ− to an sr-path in Ĝ
that contains e and e′. Therefore we may assume that all diamond edges are incident
to s or all diamond edges are incident to r. By symmetry, we will assume that all
diamond edges are incident to s. If two such diamond edges are sz and sz′, where
z and z′ are vertices of the tree Ĝ−, then there is a path from z to z′ in Ĝ− that
extends to leaves in each direction. These leaves are adjacent to r, since every leaf is
adjacent to both s and r. (See Figure 14.) Contract the paths from the two leaves

to z and z′. This yields a K4-subdivision in Ĝ, with branch vertices s, r, z, z′ such
that the edges incident to s are all diamond edges. Thus G has Be as an sr-minor as
described in Example 12.3. By minor-minimality, we conclude that G = Be.

Thus from now on we can assume that if G is an obstruction, then every 2-cut
in G+ is a diamond-cut. In Figure 12 we can see that B1 is the only sr-graph in F ′

0

such that B+
1 has a diamond-cut but no sr-diamond-cut.

13. Tools for 3-cuts in Ĝ. From Remark 12.4, we may assume that Ĝ is 3-
connected or a triangle. In this section, we first study those 3-cuts in Ĝ that have the
form {s, r, x}. A cut-set in Ĝ is also a cut-set in G+, so if {s, r, x} is a cut-set in Ĝ,
then x is a cut-vertex in G−. The next lemma studies cut-vertices in G−.

Lemma 13.1. Let G be an obstruction.

(i) If x is a cut-vertex of G−, then for each component C of G−{s, r, x}, there
are s, x- and r, x-paths with more than two vertices that have all their internal vertices
in C.

(ii) If x is a cut-vertex of G−, then sx ∈ E(G) and rx ∈ E(G).
(iii) G− has no cut-edge.

Proof. (i) Let C be a component of G − {s, r, x}. By Lemma 10.4, none of the
2-subsets of {s, r, x} is a cut-set of G, so each member of {s, r, x} has a neighbor in
C. Since C is connected, we get the desired paths.
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For the proof of (ii) and (iii), let 〈y0, . . . , yk〉 be a fragment circuit with fragment
structure 〈P1, . . . , Pk〉 in G.

(ii) Suppose that Pi is a fragment path that contains sx. Since sx must be the
first edge of Pi, it follows that Pi − {s, r, x} is contained in a single component of
G − {s, r, x} and sx is not in yi−1yiyi+1 (in either direction). By (i) every other
component of G−{s, r, x} contains an s, x-path. Modify Pi by replacing sx with one
such s, x-path; this is an sr-path in G− sx that contains yi−1yiyi+1. Since we can do
this for every fragment path, sx ∈ E(G) by minor-minimality. Similarly, rx ∈ E(G).

(iii) Suppose that e is a cut-edge of G− with endpoints {u, v}. Contract e in G.
We modify the fragment circuit and fragment structure in G to obtain a fragment
circuit and structure in G · e.

First we convert sr-paths in G to sr-paths in G · e. Consider an sr-path P . The
edges of P continue to form an sr-path in G · e unless P contains the edge e, in which
case P · e is an sr-path in G · e.

For all 1 ≤ i ≤ k such that Pi contains e and e ∈ {yi−1yi, yiyi+1}, replace Pi in
the fragment structure by Pi · e.

If e = yiyi+1 for some 1 ≤ i ≤ k, replace yi, yi+1 in the fragment circuit by the
new vertex e, and replace Pi, Pi+1 in the fragment structure by P ′

i · e, where P ′
i is the

sr-path in G formed by concatenating the s, yi-portion of Pi and the yi+1, r-portion
of Pi+1. This P ′

i will be a fragment path in G · e, and the subpath yi−1, e, yi+2 will
be its fragment. Since Pi contains yi−1, yi, yi+1 and Pi+1 contains yi, yi+1, yi+2, we
have e ∈ {yi−1yi, yi+1yi+2}. Thus we can replace yi, yi+1 and Pi, Pi+1 independently
for all 1 ≤ i ≤ k such that e = yiyi+1.

We have produced a fragment circuit with a fragment structure in G · e, contra-
dicting the minor-minimality of the obstruction G.

Using Lemma 13.1, we now show that if Ĝ has a 3-cut of the form {s, r, x}, then
it is one of the graphs from F ′

0. Thus in our search for obstructions that are not in
F ′

0, we will be able to assume that G− is 2-connected.

Theorem 13.2. If G is an obstruction and G− has a cut-vertex, then G ∈
{B0, B1, B2}.

Proof. Let x be a cut-vertex of G−, and let X = {s, r, x}. If G+ has an sr-
diamond-cut, then by Theorem 12.5 it follows that G = B2, since T2 − {s, r} and
Be−{s, r} are 2-connected. Thus we may assume that every 2-cut in G+ is a diamond-
cut.

Let B be a block of G− that contains x, let C be the component of G−X that
contains B − x, and let L be G[V (C) ∪X]. By Lemma 13.1, B is not an edge, so B
is 2-connected and B has at least 3 vertices.

Case 1. There are two disjoint paths in L− x from B − x to {s, r}.
Consider minimal such paths and let zs, zr be their endpoints in B − x. Since B

is 2-connected, it contains internally disjoint paths Ps, Pr that connect zs and zr to
x, and these paths are connected by some path in B − x. Contracting Ps − x into zs
and Pr − x into zr, it can be seen that L has the rooted minor with roots {s, r, x} in
Figure 15, Case 1.

Case 2. There are no two disjoint paths in L− x from B − x to {s, r}.
By Lemma 13.1(i), s and r each have a neighbor in L − X. Hence the absence

of disjoint paths from B − x to {s, r} in L − x requires a cut-vertex x′ of L − x
that separates {s, r} from B − x. Since L − X is connected, x′ is not s or r. By
Lemma 13.1(iii), B − {x, x′} is nonempty, so {x, x′} is a cut-set in G that separates
B − {x, x′} from {s, r}. Therefore {x, x′} is a diamond-cut. Again L contains paths
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from B to s and to r. By Lemma 13.1(ii), these paths must contain x′. Therefore L
has the rooted minor with roots {s, r, x} in Figure 15, Case 2.

Now consider two blocks of G− that each contain x, and also consider the two
components of G − X that contain these blocks. If for both components we have
Case 1, then G has the sr-minor B0. If we have two Case 2s, then G has the sr-minor
B2. If we have one Case 1 and one Case 2, then G has the sr-minor B1. Finally, by
minor-minimality of the obstruction, G is isomorphic to one of these sr-minors.

If V (Ĝ) = {s, r, x} and sr is not a diamond edge, then Ĝ−sr is a path with three
vertices and x is a cut-vertex. By Remark 12.4, x is a cut-vertex in G, contradicting
the fact that obstructions are 2-connected. Therefore we may assume that Ĝ is not a
triangle, and hence Ĝ is 3-connected.

Theorem 13.2 takes care of any 3-cuts in Ĝ of the form {s, r, x}. The next theorem

shows that any other 3-cut in Ĝ cannot break the graph up into too many components.

Theorem 13.3. If G is an obstruction and Ĝ has a cut-set X of size 3 with
{s, r} ⊆ X such that Ĝ−X has at least 3 components, then G = F0.

Proof. Let X be a 3-cut in Ĝ with {s, r} ⊆ X. Without loss of generality, we
may assume that r ∈ X.

Let C1, C2, and C3 be three components of Ĝ − X, with r ∈ V (C1). Choose

v2 ∈ V (C2) and v3 ∈ V (C3). Since Ĝ is 3-connected, for every vertex v ∈ V (Ci) we
can find a set P(v) of three internally disjoint paths that start at v and are entirely
contained in Ci except for their endpoints, which are the three vertices of X. If
s ∈ X, then P(r),P(v2),P(v3) yield the desired F+

0 -minor in Ĝ, so G = F0. (See
Figure 16.) If on the other hand s ∈ X, then s ∈ V (C1) since s and r are adjacent

in Ĝ. Consider a path Ps from s to X in Ĝ − r; it first meets a path Pr ∈ P(r) at
a vertex v. Contracting the s, v-portion of Ps and the v,X-portion of Pr identifies s
with a vertex of X, and then we can argue as in the previous case.

We will now specify the properties that any remaining obstructions must possess.
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Definition 13.4. If G is an obstruction such that G+ has no sr-diamond-cut,
G− (and thus Ĝ−) is 2-connected, Ĝ is 3-connected, Ĝ has tree-width at most 3, and

there is no cut-set of size 3 that breaks Ĝ into more than two components, then we
say that G is relevant.

We have shown so far that if an obstruction is not relevant, then it must be
T2, B2, Be (Theorem 12.5) or B0, B1, B2 (Theorem 13.2 and Remark 7.6) or T0 (The-

orem 9.7 and Ĝ is a minor of G+) or F0 (Theorem 13.3). Therefore, to finish the
proof of Theorem 8.2, it suffices to show that a relevant obstruction must also be
in F ′

0. To hunt down the remaining minors Ts, Tr and F1, we now need to study
tree-decompositions of relevant obstructions.

14. Tree-decompositions. In this section, we give some of the standard ter-
minology and basic results on tree-decompositions that we will use in the rest of the
paper. For a more thorough introduction to tree-decompositions, see Diestel [7] and
the survey of Bodlaender [5] .

Definition 14.1. Let G be a graph, let T be a tree, and let V = {Vt : t ∈ V (T )}
be a family of subsets of the vertices of G indexed by the vertices of T . The pair (T,V)
is a tree-decomposition of G if it satisfies the following conditions:

1. Every vertex of G is in some Vt.
2. Every edge in G belongs to G[Vt] for some t ∈ T .
3. For every u ∈ V (G), the set T (u) induces a subtree of T , where T (u) = {t ∈

V (T ) : u ∈ Vt}.
The width of a tree-decomposition is the maximum of |Vt| − 1 over t ∈ V (T ), and the
tree-width of G is the minimum width among all tree-decompositions of G. We refer
to the sets Vt in a tree-decomposition as node-sets.

Every nontrivial tree has tree-width 1. In general, the smaller the size of the
node-sets, the more closely G resembles a tree. The tree-width is thus a measure of
how tree-like the graph is. An important feature of a tree-decomposition is that it
transfers the separation properties of its tree to the graph decomposed. We summarize
some of these basic properties.

Remark 14.2. Let (T,V) be a tree-decomposition of a graph G.
1. Property 14.1.3 is equivalent to the following statement: if t2 is on the path

from t1 to t3 in T , then Vt1 ∩ Vt3 ⊆ Vt2 .
2. If t1 and t2 are adjacent vertices in T , then G − (Vt1 ∩ Vt2) is the disjoint

union of two subgraphs; one subgraph is induced by
⋃

t∈V (T1)
Vt−Vt2 and the

other is induced by
⋃

t∈V (T2)
Vt − Vt1 , where T1 and T2 are the components

of T − t1t2 that contain t1 and t2, respectively.
3. If t is a vertex of T , and T1, . . . , Tk are the components of T − t, then G− Vt

is the disjoint union of the k subgraphs G[Ui], where Ui =
⋃

t′∈V (Ti)
Vt′ − Vt.

The observations above give us information about the graph when we know that
there is a path in the tree. The next lemma tells us about the structure of the tree,
given a path in the graph. We first define a special type of path that we are interested
in.

Definition 14.3. Let G be a graph, and let S be a set of vertices in G. If P is a
path in G with at least three vertices whose endpoints are both in S but none of whose
internal vertices are in S, then we say that P is S-external.

If the graph has an S-external path where S corresponds to a node-set in a tree-
decomposition, then we can prove the following about the structure of the host tree.

Lemma 14.4. Let (T,V) be a tree-decomposition of a graph G. If a, b ∈ Vt for
some t ∈ V (T ) and Pab is a Vt-external a, b-path, then there is a neighbor t′ of t
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in T such that Vt′ contains a and b and for every internal vertex u of Pab, T (u) is
contained in the component of T − t containing t′.

Proof. Let P ′
ab be the path Pab−{a, b}, and let Ti and Ui be as in Remark 14.2.3.

Since G− Vt is the disjoint union of the G[Ui]’s, P
′
ab is contained in G[Ui] for some i.

Hence for every vertex u ∈ V (P ′
ab), the subtree T (u) is contained in Ti. If ax is the

first edge of Pab, then {a, x} is contained in some node-set Vtx ∈ V. Since x ∈ V (P ′
ab),

we have tx ∈ V (Ti). Let t′ be the neighbor of t in Ti; t
′ is on the t, tx-path in T , so

by Remark 14.1.1, a ∈ Vt′ . Similarly, b ∈ Vt′ .

For our investigations we require a particular structure of our tree-decomposition
that is described below.

Definition 14.5. A tree-decomposition (T,V) of a graph G is called k-alternating
if it satisfies the following properties:

1. The node-sets are distinct sets of sizes k and k + 1 only.
2. Every edge of T joins node-sets of unequal sizes.
3. If t1t2 ∈ E(T ) and |Vt1 | = k, then Vt1 ⊂ Vt2 .
4. the node-set corresponding to a leaf of T has size k + 1.

Theorem 14.6. If G has tree-width k, then G has a k-alternating tree-
decomposition.

Proof. Start from an arbitrary tree-decomposition (T,V) of width k. First obtain
a tree-decomposition in which all node-sets are of size k + 1 and the intersection of
two node-sets whose vertices are adjacent in T has size k, by repeating the following
operations until no such operation is possible (see [5, 6]):

• If tt′ ∈ E(T ) and Vt ⊆ Vt′ , then contract the edge tt′ to t′, deleting Vt from
V.

• If tt′ ∈ E(T ), |Vt| < k + 1, and Vt′ ⊆ Vt, then add a vertex v ∈ Vt′ − Vt to Vt.
• If tt′ ∈ E(T ), |Vt| = |Vt′ | = k + 1, and |Vt ∩ Vt′ | < k, then choose vertices

v ∈ Vt − Vt′ and v′ ∈ Vt′ − Vt, and subdivide the edge tt′ with a vertex t′′

such that Vt′′ = Vt − v + v′.

Once we have found this tree-decomposition of G, we subdivide every edge tt′ ∈
E(T ) with a vertex t′′ such that Vt′′ = Vt ∩ Vt′ . This tree-decomposition will satisfy
properties 2 through 4. To show that the first property holds, we may have to modify
the decomposition so that all node-sets are distinct. By Remark 14.2.1, two identical
node-sets Vt = Vt′ must have size k.

Consider the tree obtained by deleting the first edge on the t, t′-path, adding
the edge tt′ and then contracting it, thus identifying Vt and Vt′ . This yields a tree-
decomposition of G with a smaller tree, still satisfying properties 2 through 4. Repeat-
ing this operation until all node-sets of V are distinct produces a tree-decomposition
(T,V) that satisfies properties 1–4.

We conclude this section with some simple observations about k-alternating tree-
decompositions.

Remark 14.7. Let (T,V) be a k-alternating tree-decomposition of G.

1. Remark 14.2.3 implies that if G is a connected graph and Vt is a node-set that
corresponds to a nonleaf vertex t in T , then Vt is a cut-set and removing Vt

breaks G into vertex-disjoint subgraphs that correspond to the components
of T − t. (These subgraphs are not necessarily connected; each may contain
more than one component of the remaining graph.)

2. No node-set of size k + 1 can be a minimal cut-set in G, because it contains
a size k node-set that corresponds to a neighboring vertex in the tree.
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3. If Vt is a node-set of size k+1 and Vt′ is a node-set of size k such that Vt′ ⊂ Vt,
then tt′ ∈ E(T ): since Vt′ ⊂ Vt, it follows from Remark 14.2.1 that Vt′ is
contained in the node-set corresponding to each vertex on the path from t
to t′. If tt′ ∈ E(T ), then there is a vertex t′′ ∈ T on the path from t to t′

whose corresponding node-set has size k, but this implies that Vt′′ = Vt′ , a
contradiction.

15. 3-alternating tree-decompositions of Ĝ. We concluded section 13 by
identifying properties of the obstructions we have not yet characterized. If G is a
relevant obstruction, then Definition 13.4 tells us that Ĝ has tree-width exactly 3.
Thus, we may apply Theorem 14.6 to Ĝ and obtain a 3-alternating tree-decomposition
of Ĝ. In this section, we use the fact that G is a relevant obstruction to establish
some further properties of such a tree-decomposition of Ĝ.

Lemma 15.1. Let (T,V) be a 3-alternating tree-decomposition of Ĝ, where G is
a relevant obstruction. If |Vt| = 3, then t has degree 2 in T .

Proof. By Definition 14.5.4, the degree of t is at least two. By Remark 14.7.1,
removing Vt breaks Ĝ into at least as many components as are in T − t, i.e., at least
dT (t). However, by the definition of a relevant obstruction, Ĝ − Vt has at most two
components. Hence the degree of t is exactly 2.

It also holds that the maximum degree in the host tree T for a 3-alternating
tree-decomposition of Ĝ is at most 3. This follows from the next lemma and the fact
that, by Remark 14.7.1, every 3-set of V is a cut-set of Ĝ.

Lemma 15.2. Let G be an obstruction. If X ⊂ V (Ĝ) is a 4-set, then one of its
subsets of size 3 is not a cut-set.

Proof. Let X = {x1, x2, x3, x4}, and suppose that every set Xi = X − xi is a

cut-set in Ĝ. If {s, r} ⊂ X, then Theorem 13.2 implies that G ∈ {B0, B1, B2}. For
each element of this set, the claim is easily checked. Hence we may assume that r ∈ X
(the case s ∈ X is similar).

Let Ci be a component of Ĝ−Xi that does not contain xi but, if possible, contains
r. Each Ci is a component of Ĝ−X. Since Ĝ is 3-connected, each vertex in Xi has a
neighbor in Ci. Thus C1, . . . , C4 are distinct and pairwise disjoint. (See Figure 17.)
Contracting each Ci to a vertex yi yields Q3 in which one partite set is X and where
xj and yj are antipodal vertices. Thus if s ∈ X and r is in some Ci, then G+ has Q3

as an sr-minor with s and r adjacent, which contradicts Corollary 9.3. If, however,
s ∈ X and r is in some other component C of Ĝ −X, then contracting C to a new
vertex labeled r we see that r is adjacent to every vertex in X and replacing y1 by r
we get another contradiction to Corollary 9.3.
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Now suppose that s ∈ X. Thus s and r are in the same component C of Ĝ−X.
By 3-connectedness there must be three internally disjoint r,X-paths, say, P1, P2, P3

ending in x1, x2, x3, respectively. By 3-connectedness there must also be an s,X-path
P that avoids r and intersects one of the Pi (if only in xi). Let v be the first vertex
on P that is on any Pi, say P1. Contract the s, v-subpath of P and the v, x1-subpath
of P1 (this identifies s with x1); contract the rest of C to r to obtain a new vertex
that plays the role of y4 in the Q3-minor. This produces the previous case as a rooted
minor, so again G+ has an sr-minor that contradicts Corollary 9.3.

To conclude the section, we locate the node-set(s) containing s and r.

Lemma 15.3. Let (T,V) be a 3-alternating tree-decomposition of Ĝ, where G is a
relevant obstruction. There is exactly one node t ∈ V (T ) whose node-set Vt contains
both s and r, and t is a leaf of T .

Proof. Since sr is an edge of Ĝ, by Definition 14.1 there is at least one vertex of
T whose node-set contains both s and r. Furthermore, such node-sets cannot be of
size 3, since these node-sets are cuts (by Remark 14.7.1) and that would imply that
G− has a cut-vertex, contradicting G being a relevant obstruction.

Now consider the subtree induced by all the vertices of T whose node-sets con-
tain both s and r. Since all these node-sets must be of size 4, it follows from Defini-
tion 14.5.3 that the subtree has order one. Hence there is only one node-set in V that
contains both s and r.

Let t be the vertex of T whose corresponding node-set Vt is {s, r, u, v}. Since s, r
are together in only one node-set and the node-sets corresponding to the neighbors
of t in T must be distinct 3-element subsets of Vt by Definition 14.5, t has at most
two neighbors in T . Suppose that t has neighbors tr and ts in T . We may write
Vts = {s, u, v} and Vtr = {r, u, v}.

If there is a Vt-external sr-path in Ĝ, then we get a contradiction to Lemma 14.4.
Since G is a relevant obstruction, there is no sr-diamond-cut. Hence every Vt-external
sr-path in G+ corresponds to a Vt-external sr-path in Ĝ. We conclude that there is
no Vt-external sr-path in G+. Hence there is no sr-path in G−{u, v}, implying that
Cs = Cr in G− {u, v}.

By Definition 14.5.4, neither ts nor tr is a leaf of T . Let t′s and t′r be neighbors
of ts and tr other than t, respectively, and let x and y be vertices in Vt′s − Vts and

Vt′r − Vtr , respectively. By 3-connectedness Ĝ has an x, y-path P avoiding {u, v}. By
Remark 14.7.1 Vts is a cut-set that separates x from y, so P contains s. Also Vtr

separates x and s from y, so P contains r. This contradicts Lemma 10.5. Thus, t
must have degree less than two in T . Since Ĝ− is 2-connected, Ĝ has at least five
vertices, so that T cannot be K1. Hence t is a leaf of T .

Hence, in addition to the properties of a 3-alternating tree-decomposition specified
in Definition 14.5 and Remark 14.7, a 3-alternating tree-decomposition of Ĝ when G
is a relevant obstruction has the following properties:

1. every vertex of the tree whose node-set has size 3 is of degree two,
2. every vertex of the tree whose node-set has size 4 is of degree at most three,

and
3. s and r are in exactly one node-set, which corresponds to a leaf in the tree T .

Remark 15.4. We reformulate Lemma 14.4 for the context in which we will use
it, as follows.

Let (T,V) be a 3-alternating tree-decomposition of Ĝ, where G is a relevant
obstruction. Let t be a vertex of T with |Vt| = 4, and suppose that P is a Vt-external
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v1, v2-path in Ĝ. Then t has a neighbor t′ such that {v1, v2} ⊂ Vt′ ⊂ Vt, and for every
internal vertex u of P , T (u) is contained in the component of T − t that contains t′.

16. Exploring a 3-alternating tree-decomposition of Ĝ. We now explore
the 3-alternating tree-decomposition of Ĝ starting from the leaf whose node-set con-
tains s and r. For the rest of this section, we fix (T,V) to be a 3-alternating tree-

decomposition of Ĝ (where G is a relevant obstruction) with a leaf t0 such that
Vt0 = {s, r, u, v}. Let t1 be the neighbor of t0 in T . A node-set corresponding to t1
can only be {s, u, v} or {r, u, v}.

So far, the assumptions we have made in our proofs have not distinguished s from
r. In this section, we break from this pattern by assuming that t0 has a neighbor t1
with corresponding node-set {s, u, v}. We will prove that in this case G must be F1

or Ts. Switching s and r in these graphs leaves F1 unchanged but changes Ts into
Tr. Therefore, if we assume that t0 has a neighbor with node-set {r, u, v} instead,
then switching s and r in the proofs that follow will imply that G must be F1 or Tr.
This completes the proof that that every graph G ∈ F0 has some graph from F ′

0 as
an sr-minor.

Since Vt0 is the only node-set containing r, we have NĜ(r) ⊆ {s, u, v}. Since Ĝ
is 3-connected, equality holds. Hence {u, v} is a 2-cut in G, so Lemma 10.6 implies
that uv ∈ E(G). Furthermore, {u, v} is not a diamond-cut in G+, since otherwise
by applying Lemma 10.3 the diamond component would have to intersect Gπ, and
applying Lemma 10.2 would contradict Theorem 11.5. Thus uv is not a diamond-edge,
so uv ∈ E(Ĝ).

Since Vt1 = {s, u, v}, it follows that t1 has a neighbor t2 with Vt2 = {s, u, v, x}
for some vertex x. By Lemma 15.1, t1 has no other neighbors. The next lemma
establishes that t2 has a neighbor t3 with Vt3 = {u, v, x}.

Lemma 16.1. In the tree-decomposition of Ĝ, there is a neighbor of t2 whose
corresponding node-set is {u, v, x}.

Proof. Since Ĝ− is 2-connected, {s, r, x} is not a cut-set of Ĝ. Let P be a u, v-path

in Ĝ−{s, r, x}. Since uv ∈ E(Ĝ), P is a Vt2-external u, v-path. Remark 15.4 gives us
t3 ∈ N(t2) with {u, v} ⊂ Vt3 ⊂ {s, u, v, x}. Since P avoids {s, r}, we have Vt3 = Vt1 .
Therefore Vt3 can only be {u, v, x}.

By Lemma 15.2, t2 has at most 3 neighbors in T . Given this structure of the tree-
decomposition (see Figure 18), our aim is now to find a minor from F ′

0 by showing
the existence of paths between certain vertices. The following lemma helps us do this
in certain situations.



GRAPH MINORS AND RELIABLE SINGLE MESSAGE TRANSMISSION 843

• c•a
•z2

•z1

•
b

Fig. 19. The cycle C for Lemma 16.2.
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Fig. 20. (T,V) if dT (t2) = 3.

Lemma 16.2. Let H be a 2-connected graph with {a, b, c} ⊂ V (H). If ab ∈ E(H)
and H − {a, b} is connected, then H − a contains a cycle C through b, and H − b
contains disjoint paths from a and c to V (C) (see Figure 19).

Proof. There are two internally disjoint paths from {a, c} to b in H. Consider
the disjoint subpaths from {a, c} to N(b) in H − b: let P1 be the a, y1-path and let
P2 be the c, y2-path, where y1, y2 ∈ N(b). (P2 may be trivial.) In H − {a, b}, there is
a path between a vertex z1 on P1 − a and a vertex z2 on P2. C is formed from this
path plus the z1, y1-subpath of P1, the y2, z2-subpath of P2, and b. Thus, we obtain
the desired disjoint paths from a to z1 and from c to z2.

We now consider the case when t2 has degree 3 in T . Denote the third neighbor
of t2 by t′3. Without loss of generality, we may assume t′3 has node-set Vt′3

= {s, u, x}.
Theorem 16.3. If t2 has degree 3 in the 3-alternating tree-decomposition of Ĝ,

then G = F1.
Proof. From Lemma 16.1 and the observation above, we know that the tree-

decomposition may be represented as in Figure 20. Since (T,V) is 3-alternating, t3
and t′3 are not leaves and have neighbors t4 and t′4, respectively, besides t2. Let y and
z denote the distinct new vertices in Vt4 and Vt′4

, respectively.

We will determine the edges or paths in Ĝ that are guaranteed by the tree-
decomposition. Recall that r is adjacent to u, v, and s and that u and v are nonad-
jacent. Now, we claim that sv ∈ E(Ĝ).

We first prove that there is an s, v-path that avoids {u, x, r}. Consider the graph

G′ obtained from Ĝ by deleting u, x, and the edge sr. Since Ĝ has no sr-diamond-cut,
if G′ has no s, v-path, then {u, x} is a 2-cut in G that separates s from v. Since r is
adjacent to v, Lemma 10.5 implies that s is an isolated vertex in G−{u, x}. However,

since Ĝ is 3-connected, there is an s, z-path in Ĝ− {u, x}. Such a path must contain
the edge sr. This is impossible, since Remark 14.7.1 implies that {s, u, x} is a cut-set

in Ĝ that separates r from z. Hence we may now assume that there is an s, v-path
P in Ĝ − {u, x} − sr. If sv is not an edge, then P is Vt2-external, so Remark 15.4
gives us a neighbor of t2 that contains {s, v}. Since Vt3 and Vt′3

do not contain {s, v},
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Fig. 21. Subgraph of Ĝ obtained in the proof of Theorem 16.3, and F1.
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Fig. 22. (T,V) if dT (t2) = 2.

we conclude that P must visit precisely s, r, v, which contradicts the choice of P .
Therefore sv must be an edge in Ĝ.

We will now apply Lemma 16.2 with H = Ĝ− and (a, b, c) = (u, v, x) to obtain the
paths needed to find F1 as a minor. Certainly, H is 2-connected. Furthermore, since
NĜ(r) = {u, v, s}, it follows that if {u, v, s, r} is a cut-set in Ĝ, then {u, v, s} is a cut-

set that separates Ĝ into at least 3 components. This contradicts Theorem 13.3, so
{u, v} is not a cut-set in Ĝ−. Thus Lemma 16.2 gives a cycle in Ĝ−−u through v and

disjoint paths in Ĝ− − v from u and x to some u′ and x′ on the cycle (see Figure 21).

Since {s, u, x} is a cut-set in Ĝ that separates v from z (by Remark 14.7.1), the paths

and cycle cannot intersect the component of Ĝ− Vt′3
that contains z.

By the 3-connectedness of Ĝ we can also find three internally disjoint paths from
z to {s, u, x}, with all internal vertices contained in the component of Ĝ − {s, u, x}
that contains z. We obtain a subdivision of F+

1 with branch vertices s, r, z, u, u′, x′,
and v, establishing the theorem.

Thus, we may assume that in the tree-decomposition of Ĝ, t2 has only two neigh-
bors t1 and t3 whose corresponding node-sets are {s, u, v} and {u, v, x}. Since (T,V)
is 3-alternating, t3 is not a leaf. Let t4 denote the other neighbor of t3 and let Vt4 be

{u, v, x, y}. Thus NĜ(s) ⊆ {r, u, v, x} by Definition 14.1.2. Since Ĝ is 3-connected,

this forces sx to be an edge of Ĝ, since otherwise {u, v} would be a 2-cut in Ĝ sepa-
rating s and r from x. Also s has at least one neighbor besides r and x, so without
loss of generality we may assume that NĜ(s) ⊇ {r, u, x}.

If v is also a neighbor of s, then the next lemma asserts that we find Ts as an
sr-minor.

Lemma 16.4. If the structure of the 3-alternating tree-decomposition of Ĝ is as
shown in Figure 22 and sv ∈ E(Ĝ), then G = Ts.

Proof. Since NĜ(s) = {r, u, v, x} and NĜ(r) = {s, u, v}, to find Ts as an sr-minor

it suffices to find appropriate paths in Ĝ− from {u, v, x} to some other vertex z. Since

Ĝ− is 2-connected, there are two internally disjoint paths P1, P2 from u to v in Ĝ−.
Also, since {u, v} is not a cut-set in Ĝ, Ĝ − {u, v} contains a (possibly trivial) path
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Fig. 23. Subgraph of Ĝ in proof of Lemma 16.4.
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Fig. 24. Known subgraph of Ĝ thus far.

from x to P1 ∪P2 −{u, v}. We may assume that a minimal such path Px goes from x

to P1 in Ĝ−P2. Since Ĝ is 3-connected, there is a path in Ĝ−{u, v} from some vertex
on P1 ∪ Px to some vertex z on P2, and it clearly cannot contain s or r. Consider a
minimal such path and contract Px; this yields T+

s as an sr-minor of Ĝ.

17. Hunting the last minor. The final theorem asserts that in the remaining
case we can find F1 as an sr-minor of G, regardless of the degree of t4 and the choice
of node-sets corresponding to neighbors of t4.

Theorem 17.1. If the structure of the 3-alternating tree-decomposition of Ĝ is
as shown in Figure 22 and sv ∈ E(Ĝ), then G = F1.

Proof. According to the remarks preceding Lemma 16.4, we may now assume
that NĜ(r) = {s, u, v} and NĜ(s) = {r, u, x}. We also showed that uv ∈ E(Ĝ), and

now we can similarly show that ux ∈ E(Ĝ): Since NĜ(s) = {r, u, x}, {u, x} is a
2-cut in G, so Lemma 10.6 implies that ux is not an edge of the original graph G.
Also, {u, x} is not a diamond-cut in G+, since otherwise by Lemma 10.3 the diamond
component would have to intersect Gπ, and applying Lemma 10.2 would contradict
Theorem 11.5. Thus ux ∈ E(Ĝ) (see Figure 24).

Since u is not adjacent to x or v, but Ĝ− is 2-connected, u has degree at least
two and hence has a neighbor other than y (y need not be adjacent to u.) Thus there
must be a node in the tree whose corresponding node-set contains both u and this
neighbor. Hence t4 has a neighbor t5 (other than t3) such that u ∈ Vt5 .

By Lemma 15.2, t4 has degree at most 3, so t4 has one or two neighbors other than
t3. Since the node-sets corresponding to these neighbors are 3-subsets of {u, v, x, y},
they can only be {u, v, y}, {u, x, y}, or {v, x, y}. The proof now breaks into three
cases.

Case 1. t4 has degree 3 and the node-sets corresponding to its neighbors t5 and
t′5 are {u, x, y} and {u, v, y} respectively, as shown in Figure 25.

Let T5 be the component of T − t4 that contains t5. By Remark 14.7.1, we
may let R5 be a component of Ĝ− Vt4 whose vertices are contained in the node-sets
corresponding to nodes of T5 and no other node-sets. Similarly define T ′

5 and R′
5 for

t′5.

We claim that xv ∈ E(Ĝ). We first prove that there is an x, v-path P that avoids

{s, r, u, y}. Consider the graph G′ obtained by deleting u, y and the edge sr from Ĝ,
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Fig. 25. Structure of (T,V) in Case 1.

s r

•

•v•x

R′
5 R5•

y

u

Fig. 26. A subgraph of Ĝ from Case 1 of the Proof of Theorem 17.1.

and suppose that there is no x, v-path in G′. Thus, Remark 12.4 implies that {u, y} is
a 2-cut in G that separates x from v. However, the component with x contains s and
the component with v contains r, which contradicts Lemma 10.5. Since s and r each
have degree 1 in G′, we thus have an x, v-path P in Ĝ avoiding {s, r, u, y}. Observe
that {x, v} ⊆ Vt5 , {x, v} ⊆ Vt′5

, and P doesn’t intersect {s, r}. Hence Remark 15.4
implies that P is not a Vt4-external path. Since P avoids {u, y}, P must be the edge
xv.

Consider the components R5 and R′
5 of Ĝ − Vt4 . By 3-connectedness, there are

edges from R5 to each vertex of Vt5 and edges from R′
5 to each vertex of Vt′5

as in

Figure 26. Contracting y into R′
5 and contracting R5 and R′

5 yields F+
1 as an sr-minor

of Ĝ, which suffices.

Case 2. Vt5 = {u, x, y}, and no neighbor of t4 has {u, v, y} as a node-set.

In this case, {v, x, y} may or may not be a node-set. Remark 15.4 applied to
Vt4 asserts that every internal vertex of a Vt4-external u, v-path must be in {s, r}.
Since uv is not an edge in Ĝ, {x, y} is a 2-cut in Ĝ− separating u from v. By 2-

connectedness Ĝ− contains two internally disjoint paths Pv,x and Pv,y from v to x

and y, respectively (see Figure 27(a)). Since s is isolated in Ĝ−{u, x, r}, Theorem 13.3

implies that Ĝ−{u, x, r, s} is connected. Since Ĝ−−{u, x} is connected, we can apply

Lemma 16.2 to H = Ĝ− with (a, b, c) = (x, u, y). This gives a cycle C through u in

Ĝ− − x and disjoint paths Px,C and Py,C in Ĝ− − u from x and y to the cycle (see
Figure 27(b)).

Observe that Pv,x ∪ Pv,y doesn’t intersect C ∪ Px,C ∪ Py,C − {x, y}, since {x, y}
separates u from v in Ĝ−. Thus we obtain F1 as an sr-minor (see Figure 27(c)).

Case 3. Vt5 = {u, v, y}, and no neighbor of t4 has {u, x, y} as a node-set.

The proof is similar to that of Case 2, but we simply interchange s with r and x
with v.
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Fig. 27. Case 2: two subgraphs of Ĝ that share only {u, x, y} and the resulting F1-minor.

We have now exhausted all possibilities for the tree-decomposition of an obstruc-
tion. Thus we have shown that every graph from the family of obstructions to header-
less reliable single message transmission contains some graph from F ′

0 as an sr-minor.
As discussed in section 8, this completes the proof of Theorem 8.1.
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS∗
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Abstract. In this paper we give a decomposition of a 4-connected graph G into nonsepa-
rating chains, which is similar to an ear decomposition of a 2-connected graph. We also give an
O(|V (G)|2|E(G)|) algorithm that constructs such a decomposition. In applications, the asymptotic
performance can often be improved to O(|V (G)|3). This decomposition will be used to find four
independent spanning trees in a 4-connected graph.
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1. Introduction. In [1], Cheriyan and Maheshwari gave an O(|V (G)|2) algo-
rithm for finding a “nonseparating ear decomposition” of a 3-connected graph G,
and they used this decomposition to construct three independent spanning trees in a
3-connected graph.

In this paper we give a 4-connected version of the nonseparating ear decompo-
sition of Cheriyan and Maheshwari and an O(|V (G)|2|E(G)|) algorithm for finding
such a decomposition. This will be used in a forthcoming paper to find four inde-
pendent spanning trees in an arbitrary 4-connected graph G, where the asymptotic
performance can be improved to O(|V (G)|3).

We use the definitions and notation given in [2]. Some of those definitions are quite
long, so we simply refer the readers to [2]. In particular, see [2] for definitions of chain
(Definition 1.3 of [2]), planar chain (Definition 1.4 of [2]), cyclic chain (Definition 4.2
of [2]), and planar cyclic chain (Definition 4.3 of [2]). Intuitively, the roles of planar
chains and planar cyclic chains in our decompsitions of 4-connected graphs are similar
to those of paths and cycles in ear decompositions of 2-connected graphs.

In [2], we showed how to find the first planar chain in our decomposition of
4-connected graphs. The other chains in our decomposition can be classified into
four types, as described below. The first three types are planar chains as defined in
Definition 1.1. The fourth type is not a planar chain (but almost planar as we will
see), and it is defined in Definition 1.2. See Figure 1 for illustrations of Definitions 1.1
and 1.2.

Definition 1.1. Let G be a graph, let F be a subgraph of G, and let r ∈
V (F ). Let H be a planar x-y chain in G such that V (H) − {x, y} ⊆ V (G) − V (F ).
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Fig. 1. (a) An up F -chain, (b) a down F -chain, (c) an elementary F -chain, and (d) a triangle
F -chain. The dashed edges need not exist.

We say that
(a) H is an up F -chain if {x, y} ⊆ V (F ) and NG(H −{x, y}) ⊆ (V (G)− V (F −

r)) ∪ {x, y};
(b) H is a down F -chain if {x, y} ⊆ V (G) − V (F − r) and NG(H − {x, y}) ⊆

V (F − r) ∪ {x, y}; and
(c) H is an elementary F -chain if {x, y} ⊆ V (F ) and H is an x-y path of length

two.
In any of the three cases above we say that H is a planar x-y F -chain in G (or simply,
a planar F -chain). For an x-y chain H we let I(H) := V (H)−{x, y}, and for a cyclic
chain H we let I(H) := V (H).

For a graph G, a subgraph H of G, and S ⊆ V (G) ∪ E(G), we let H + S denote
the graph with vertex set V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ (S ∩ E(G)).

Definition 1.2. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
Suppose that {v1, v2, v3} ⊆ V (G) − V (F ) induces a triangle T in G, and for each
1 ≤ i ≤ 3, vi has exactly one neighbor xi in V (F − r) and exactly one neighbor yi
in V (G) − (V (F ) ∪ V (T )) (thus, each vi has degree four in G). Moreover, assume
that x1, x2, x3 are distinct and y1, y2, y3 are distinct. Then we say that H := T +
{x1, x2, x3, v1x1, v2x2, v3x3} is a triangle F -chain in G. We let I(H) := {v1, v2, v3}.
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The definitions above depend on the choice of r and F , but in spite of this,
whenever we use these concepts in this paper, it should be clear which pair r, F we
refer to.

Definition 1.3. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
By a good F -chain in G, we mean an up F -chain, a down F -chain, an elementary
F -chain, or a triangle F -chain.

We are now ready to describe a chain decomposition, which is similar to an ear
decomposition.

Definition 1.4. Let G be a graph, let r ∈ V (G), and let H1, . . . , Ht be chains
in G, where t ≥ 2. We say that (H1, . . . , Ht) is a nonseparating chain decomposition
of G rooted at r if the following conditions hold:

(i) H1 is a planar cyclic chain in G rooted at r;

(ii) for each i = 2, . . . , t− 1, Hi is a good G[
⋃i−1

j=1 I(Hj)]-chain in G;

(iii) Ht = G− (
⋃t−1

j=1 I(Hj) − {r}) is a planar cyclic chain in G rooted at r; and

(iv) for each i = 1, . . . , t− 1, both G[
⋃i

j=1 I(Hj)] and G− (
⋃i

j=1 I(Hj)−{r}) are
2-connected.

The chains H2, . . . , Ht−1 are called internal chains of the nonseparating chain decom-
position. If ra is a piece of H1, then we say that H1, . . . , Ht is a nonseparating chain
decomposition of G starting at ra.

The main result of this paper is the following.
Theorem 1.5. Let G be a 4-connected graph, let r ∈ V (G), and let ra ∈ E(G).

Then G has a nonseparating chain decomposition rooted at r starting at ra, and such
a decomposition can be found in O(|V (G)|2|E(G)|) time.

The existence of the first chain H1 of the chain decomposition is guaranteed by
the next result which corresponds to Theorem 4.4 of [2].

Theorem 1.6. Let G be a 4-connected graph, and let ra ∈ E(G). Then there
exists a planar cyclic chain H in G rooted at r such that ra is a piece of H and G−
(V (H)−{r}) is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|)
time.

In order to construct the internal chains of the chain decomposition in Theo-
rem 1.5, we need the following result which is Theorem 1.6 of [2].

Theorem 1.7. Let G be a graph, let {a, b} ⊆ V (G), and let P be a nonseparating
induced a-b path in G. Let BP be a nontrivial block of G − V (P ), and let XP :=
NG(G − V (BP )). Suppose G − (V (BP ) − XP ) is (4, XP ∪ {a, b})-connected. Then
there exists a planar a-b chain H in G such that G− V (H) is 2-connected and BP ⊆
G− V (H). Moreover, such a chain can be found in O(|V (G)||E(G)|) time.

The rest of this paper is organized as follows. In section 2 we recall some lem-
mas proved in [2] and provide some new auxiliary lemmas concerning nonseparating
induced paths. In section 3 we prove a technical result, which will be used to find
the internal chains of a nonseparating chain decomposition. Finally, in section 4 we
complete the proof of Theorem 1.5.

2. Nonseparating paths. In this section we state and prove some results con-
cerning nonseparating induced paths which will be used later. First, we state two
lemmas without proof, which are Lemmas 2.3 and 2.4 of [2], respectively.

Lemma 2.1. Let G be a connected graph, S ⊆ V (G), {a, a′} ⊆ S, and let P be
an a-a′ path in G. Suppose

(i) G is (3, S)-connected, and
(ii) S − {a, a′} is contained in a component U of G− V (P ).
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Then there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′)∩V (U) =
∅. Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Lemma 2.2. Let G be a graph and S := {a, a′, b, b′} ⊆ V (G). Suppose that G is
(4, S)-connected. Then exactly one of the following holds:

(1) there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′) ∩
{b, b′} = ∅;

(2) (G, a, b, a′, b′) is planar.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a path as in (i) or certify that (ii)
holds.

Note our use of “prime” notation in the statements of the lemmas. The reader
should not infer that the paths labeled P ′ are derived from an assumed path P . We
reserve P to denote a particular path specified in section 3, and we therefore label
paths P ′ in the statements of our lemmas. We hope this will sidestep any source of
confusion when these lemmas are applied.

The next lemma is a variation of Lemma 2.1 (and Lemma 2.2 as well) in which
we prove the existence of a specific nonseparating induced path. However, here it is
not possible to specify the ends of the desired path. Moreover, in the hypotheses of
Lemma 2.3 there are some technical conditions which arise when we try to produce an
internal chain. Note that conditions (iii), (iv), and (v) of Lemma 2.3 are automatically
satisfied if G is (4, S∪{b, b′})-connected. Actually, this is the case in all applications of
Lemma 2.3 with the exception of the proof of Lemma 3.15, where the more complicated
conditions are required.

Lemma 2.3. Let G be a graph, let S ⊂ V (G), and let {b, b′} ⊆ V (G)−S. Suppose
(i) G− S is 2-connected,
(ii) every element of S has a neighbor in V (G) − (S ∪ {b, b′}),
(iii) G is (3, S ∪ {b, b′})-connected,
(iv) if |S| = 2, then G is (4, S ∪ {b, b′})-connected, and
(v) if |S| ≥ 3, then there exists some component of G− (S ∪ {b, b′}) which has at

least two neighbors in S.
Then exactly one of the following holds:

(1) there exist a, a′ ∈ S and an induced a-a′ path P ′ in G such that V (P ′) ∩
{b, b′} = ∅, V (P ′) ∩ S = {a, a′}, and G− (V (P ′) ∪ S) is connected;

(2) |S| = 2, and the elements of S can be labeled as a, a′ such that (G, a, b, a′, b′)
is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find a path as in (1) or certify that
(2) holds.

Proof. First, suppose that |S| = 2. Let a, a′ denote the vertices in S. By (iv) G
is (4, {a, a′, b, b′})-connected. Thus, by Lemma 2.2 exactly one of the following holds:

(a) there exists a nonseparating induced a-a′ path P ′ such that V (P ′)∩{b, b′} = ∅;
or

(b) (G, a, b, a′, b′) is planar.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a path as in (a) or certify that (b)
holds. If (a) holds, then P ′ is the required path in (1). If (b) holds, then (2) holds.

Thus, we may assume that |S| ≥ 3. First, we prove the following.
Claim. There exist a, a∗ ∈ S and an a-a∗ path Q in G− (S − {a, a∗}) such that

b and b′ are contained in a component of G − V (Q). Moreover, such a path can be
found in O(|V (G)| + |E(G)|) time.

Proof of Claim. We consider two cases. See Figure 2 for an illustration of the
outcomes of Lemma 2.3.
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(1) (2)

bb

b′b′

a

a

a′a′

S

P ′

S = {a, a′}

G− SG− S

G− (V (P ′) ∪ S)

Fig. 2. Outcomes in Lemma 2.3.

Case 1. G− (S ∪ {b, b′}) is not connected.
In this case, there exist edge-disjoint subgraphs G1, G2 of G− S such that G1 ∪

G2 = G− S, V (G1) ∩ V (G2) = {b, b′}, and |V (G1)| ≥ 3 ≤ |V (G2)|. Note that such a
partition can be found in O(|V (G)| + |E(G)|) time. Since G − S is 2-connected (by
(i)), both G1 and G2 are connected.

By (v) there exists some component K of G− (S ∪{b, b′}) which has at least two
neighbors in S. Note that such a component can be found in O(|V (G)|+|E(G)|) time.
We may assume that V (K) ⊆ V (G1). Let a, a∗ ∈ NG(K) ∩ S, and let Q be an a-a∗

path in G[V (K) ∪ {a, a∗}]. Since G2 is connected, b, b′ are contained in a component
of G− V (Q). Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Case 2. G− (S ∪ {b, b′}) is connected.
Since G − S is 2-connected by (i), one can find in O(|V (G)| + |E(G)|) time two

internally disjoint b-b′ paths P1, P2 in G − S. Let a1, a2, a3 be distinct vertices in
S. For i = 1, 2, 3, let vi ∈ NG(ai) ⊆ V (G) − (S ∪ {b, b′}) (they exist by (ii)). Since
G − (S ∪ {b, b′}) is connected by assumption, for each i = 1, 2, 3, there exists a path
Qi from vi to some vertex ui in (V (P1) ∪ V (P2)) − {b, b′} internally disjoint from
V (P1)∪V (P2). Moreover, such paths can be found in O(|V (G)|+ |E(G)|) time. Note
that at least two (not necessarily distinct) vertices in u1, u2, u3 lie on the same path
P1−{b, b′} or P2−{b, b′}. By symmetry, we may assume that u1, u2 ∈ V (P1)−{b, b′}.
Then there exist disjoint paths in G−(S−{a1, a2}) from a1 to a2 (the path contained
in Q1 ∪ Q2 ∪ (P1 − {b, b′})) and from b to b′ (the path P2), respectively. Thus, the
result follows by taking a = a1 and a∗ = a2. Moreover, it is not hard to see that such
paths can be found in O(|V (G)| + |E(G)|) time.

Now given a, a∗ and Q, we will describe how to find a′ ∈ S and an induced a-a′

path P ′ such that V (P ′) ∩ {b, b′} = ∅, V (P ′) ∩ S = {a, a′}, and G − (V (P ′) ∪ S)
is connected. Let G′ be the graph obtained from G by identifying the vertices in
S − {a} to a single vertex a′′ and removing the resulting multiple edges. Let S′ :=
{a, a′′, b, b′}.

We claim that G′ is (3, S′)-connected. Suppose for a contradiction that there
exists T ⊆ V (G′) such that |T | ≤ 2 and G′−T has a component K with V (K)∩S′ = ∅.
Clearly a′′ ∈ T because G is (3, S ∪ {b, b′})-connected (by (iii)); then either a ∈ T or
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T −{a′′} is a vertex cut of G−S, which is a contradiction since G−S is 2-connected
(by (i)). Thus, G′ is (3, S′)-connected.

Note that the a-a∗ path Q in G corresponds to an a-a′′ path P in G′, and S′ −
{a, a′′} = {b, b′} is contained in a component U of G′−V (P ). Thus, the hypotheses of
Lemma 2.1 are satisfied with G′, S′, P, a, a′′, U as G,S, P, a, a′, U , respectively. Hence,
there exists a nonseparating induced a-a′′ path P ′′ in G′ such that V (P ′′)∩V (U) = ∅.
Moreover, such a path P ′′ can be found in O(|V (G′)| + |E(G′)|) time (hence, in
O(|V (G)|+ |E(G)|) time). The path P ′′ corresponds to an induced a-a′ path P ′ in G
for some a′ ∈ S−{a} such that V (P ′)∩{b, b′} = ∅ and V (P ′)∩S = {a, a′}. Since P ′′

is nonseparating in G′, G− (V (P ′) ∪ S) is connected. Therefore, a, a′ and P ′ satisfy
(1), and they can be found in O(|V (G)| + |E(G)|) time.

The following lemma is a variation of Lemma 2.3 (by letting b = b′), and its proof
is essentially the same. For the sake of completeness, we include it here.

Lemma 2.4. Let G be a graph, let S ⊆ V (G), and let b ∈ V (G) − S. Suppose
(i) G− S is 2-connected,
(ii) every element of S has a neighbor in V (G) − (S ∪ {b}), and
(iii) G is (3, S ∪ {b})-connected.

Then there exist a, a′ ∈ S and an induced a-a′ path P ′ in G such that V (P ′)∩{b} = ∅,
V (P ′)∩S = {a, a′}, and G− (V (P ′)∪S) is connected. Moreover, such a path can be
found in O(|V (G)| + |E(G)|) time.

Proof. Since G is (3, S ∪ {b})-connected (by (iii)), |S| ≥ 2, so let a, a∗ ∈ S. Since
G−S is 2-connected (by (i)), G−(S∪{b}) is connected. Since a and a∗ have a neighbor
in V (G)− (S ∪{b}) (by (ii)), there exists an a-a∗ path Q in G− ((S−{a, a∗})∪{b}).
Clearly, such a path can be found in O(|V (G)| + |E(G)|) time.

Let G′ be the graph obtained from G by identifying the vertices in S − {a} to a
single vertex a′′ and removing the resulting multiple edges. Let S′ := {a, a′′, b}.

We claim that G′ is (3, S′)-connected. Suppose for a contradiction that there
exists T ⊆ V (G′) such that |T | ≤ 2 and G′−T has a component K with V (K)∩S′ = ∅.
Clearly, a′′ ∈ T because G is (3, S∪{b})-connected (by (iii)). But then either a ∈ T or
T −{a′′} is a vertex cut of G−S, which is a contradiction since G−S is 2-connected
(by (i)). Thus, G′ is (3, S′)-connected.

Note that the a-a∗ path Q in G corresponds to an a-a′′ path P in G′, and S′ −
{a, a′′} = {b} is contained in a component U of G′ − V (P ). Thus, by Lemma 2.1
(with G′, S′, P, a, a′′, U as G,S, P, a, a′, U , respectively), there exists a nonseparating
induced a-a′′ path P ′′ in G′ such that V (P ′′) ∩ V (U) = ∅. Moreover, such a path P ′′

can be found in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).
The path P ′′ corresponds to an induced a-a′ path P ′ in G for some a′ ∈ S − {a}
such that V (P ′) ∩ {b} = ∅ and V (P ′) ∩ S = {a, a′}. Since P ′′ is nonseparating in G′,
G− (V (P ′)∪ S) is connected. So a, a′ and P ′ are as required, and they can be found
in O(|V (G)| + |E(G)|) time.

Some results and algorithms which we use here require that we find an embedding
of a planar graph (G, a, b, c, d) in a closed disk such that a, b, c, d occur on the boundary
of the disk in that cyclic order. This can be done in linear time using an algorithm
of Hopcroft and Tarjan [4] (or a more recent algorithm by Hsu and Shih [5]). For
convenience, we state this result as our next lemma.

Lemma 2.5. Let (G, a, b, c, d) be a planar graph. Then one can find in O(|V (G)|+
|E(G)|) time an embedding of G in a closed disk such that a, b, c, d occur on the
boundary of the disk in that cyclic order.
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Let (G, a, b, a′, b′) be a planar graph. Then any a-a′ path in G− {b, b′} separates
b from b′. The next lemma shows that one can find efficiently an a-a′ path P ′ in G−
{b, b′} such that G−V (P ′) has exactly two components. This will be used in section 3.

Lemma 2.6. Let (G, a, b, a′, b′) be a planar graph with |V (G)| ≥ 5 and suppose
G is (4, {a, a′, b, b′})-connected. Then there exists an induced a-a′ path P ′ in G such
that G−V (P ′) has exactly two components K and K ′ with b ∈ V (K) and b′ ∈ V (K ′).
Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. Take an embedding of G in a closed disk such that a, b, a′, b′ occur on the
boundary of the disk in the cyclic order listed. By Lemma 2.5, this can be done in
O(|V (G)| + |E(G)|) time. Let G′ := (G− b′) + {ab, a′b}.

We claim that G′ is 2-connected. Suppose for a contradiction that G′ is not
2-connected. Let x be a cut vertex of G′. Since |V (G)| ≥ 5 and G is (4, {a, a′, b, b′})-
connected, G − {b, b′} contains an a-a′ path, and hence, {a, a′, b} is contained in a
cycle in G′. Therefore, {a, a′, b} is contained in an x-bridge of G′, and G′ has another
x-bridge B such that (V (B) − {x}) ∩ {a, a′, b} = ∅. Hence, B − x is a component of
G− T , where T := {x, b′} and (V (B)− {x})∩ {a, a′, b, b′} = ∅, which contradicts the
assumption that G is (4, {a, a′, b, b′})-connected.

Thus, we can assume that ab, a′b are in the cycle bounding the infinite face of G′.
Let P ′ be the a-a′ subpath of this cycle which avoids b. Note that NG(b′) ⊆ V (P ′)
and P ′ can be computed in O(|V (G)| + |E(G)|) time.

We claim that G′ − V (P ′) is connected. Suppose for a contradiction that G′ −
V (P ′) is not connected. Let K be the set of components of G′ − V (P ′) which do
not contain b. For any K ∈ K, let uK , u′

K ∈ V (P ′) such that NG′(K) ∩ V (P ′) ⊆
V (P ′[uK , u′

K ]) and P ′[uK , u′
K ] is minimal with respect to this property. If |K| ≥ 2,

choose K ∈ K such that for any K ′ 
= K, if E(P [uK , u′
K ]) ∩ E(P [uK′ , u′

K′ ]) 
= ∅,
then P [uK , u′

K ] ⊆ P [uK′ , u′
K′ ]; such a component must exist because of planarity.

If |K| = 1, let K = {K}. In either case, NG(P ′(uK , u′
K)) ⊆ V (K) ∪ {uK , u′

K , b′}.
Thus, K ∪ P ′(uK , u′

K) is contained in a component of G − {uK , u′
K , b′} that does

not contain any vertex in {a, a′, b, b′}, which contradicts the assumption that G is
(4, {a, a′, b, b′})-connected.

So G′ − V (P ′) = G− (V (P ′) ∪ {b′}) is connected. Hence, G− V (P ′) has exactly
two components K and K ′ with b ∈ V (K) and b′ ∈ V (K ′).

We now show that P ′ is an induced path in G. Suppose on the contrary that P ′

is not induced. Let e = xy ∈ E(G)−E(P ′) with x, y ∈ V (P ′). Then V (P ′(x, y)) 
= ∅.
Moreover, by planarity NG(P ′(x, y)) ⊆ {x, y, b′}. Then P ′(x, y) is contained in a
component of G − {x, y, b′} that does not contain any vertex in {a, a′, b, b′}, which
contradicts again the assumption that G is (4, {a, a′, b, b′})-connected.

Thus, P ′ is a path as required. Moreover, it is easy to see that such a path can
be found in O(|V (G)| + |E(G)|) time.

We conclude this section with another lemma which concerns nonseparating in-
duced paths in planar graphs.

Lemma 2.7. Let (G, a, a′, b, b′) be a planar graph with |V (G)| ≥ 5 and suppose G
is (4, {a, a′, b, b′})-connected and G 
∼= K1,4. Then there exists a nonseparating induced
a-a′ path P ′ in G such that V (P ′) ∩ {b, b′} = ∅. Moreover, such a path can be found
in O(|V (G)| + |E(G)|) time.

Proof. For convenience, let S := {a, a′, b, b′}. Take an embedding of G in a closed
disk such that a, a′, b, b′ occur on the boundary of the disk in the cyclic order listed.
By Lemma 2.5, this can be done in O(|V (G)|+ |E(G)|) time. Let G′ := G+{ab′, a′b}.
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We claim that G′ is 2-connected. Suppose for a contradiction that G′ is not 2-
connected. Let x be a cut vertex of G′. Since |V (G)| ≥ 5 and G (and hence, G′)
is (4, S)-connected, it follows that any component of G′ − x either contains vertices
only in S or contains at least one vertex in V (G) − S and at least three vertices in
S. Since a′b, ab′ ∈ E(G′), G′ − x cannot have both kinds of components. Therefore,
every component of G′ − x contains vertices only in S. Moreover, since |V (G)| ≥ 5,
x 
∈ S. But then, it is easy to see that (G, a, a′, b, b′) must be isomorphic to K1,4

with x as the vertex of degree four, which contradicts the hypothesis. Hence, G′ is
2-connected.

Thus, we can assume that ab′, a′b are in the cycle bounding the infinite face of
G′. Let P ′ be the a-a′ subpath of this cycle which avoids b and b′. Note that P ′ is
an a-a′ path in G and such a path can be found in O(|V (G)| + |E(G)|) time.

We claim that P ′ is nonseparating in G. Suppose for a contradiction that G′ −
V (P ′) is not connected. Note that b and b′ are contained in a component of G−V (P ′).
Let K be the set of components of G′ − V (P ′) which contain neither b nor b′. For
any K ∈ K, let uK , u′

K ∈ V (P ′) such that NG′(K) ∩ V (P ′) ⊆ V (P ′[uK , u′
K ]) and

P ′[uK , u′
K ] is minimal with respect to this property. If |K| ≥ 2, choose K ∈ K such

that for any K ′ 
= K, if E(P [uK , u′
K ]) ∩ E(P [uK′ , u′

K′ ]) 
= ∅, then P [uK , u′
K ] ⊆

P [uK′ , u′
K′ ]; such a component must exist because of planarity. If |K| = 1, let K =

{K}. In either case, NG(P ′(uK , u′
K)) ⊆ V (K) ∪ {uK , u′

K}. Thus, K ∪ P ′(uK , u′
K)

is contained in a component of G − {uK , u′
K} that does not contain any vertex in

S, which contradicts the assumption that G is (4, S)-connected. Thus, G− V (P ′) is
connected.

Next we show that P ′ is an induced path in G. Suppose by contradiction that
P ′ is not induced. Let e = xy ∈ E(G) − E(P ′) such that x, y ∈ V (P ′). Then
V (P ′(x, y)) 
= ∅. Moreover, by planarity NG(P ′(x, y)) ⊆ {x, y}. Then P ′(x, y) is
contained in a component of G− {x, y} that does not contain any vertex in S, which
again contradicts the assumption that G is (4, S)-connected.

Thus, P ′ is a nonseparating induced a-a′ path in G such that V (P ′)∩ {b, b′} = ∅
as required.

3. Internal chains. In this section, we prove the following theorem, which will
be used to construct internal chains in a nonseparating chain decomposition. See
Figure 3 for an illustration of the statement of the result. Recall that, for a graph
K and u, v ∈ V (K), K − uv denotes the graph with vertex set V (K) and edge set
E(K) − {uv} (note that uv need not be an edge of K).

Definition 3.1. Let G be a 4-connected graph, let F be a subgraph of G, and
let r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected. For any distinct
a, a′ ∈ V (F ), an a-a′ path in G − aa′ is said to be a feasible F -path if the following
hold:

(i) V (P ) ∩ V (F ) = {a, a′} and P is an induced path in G− aa′;
(ii) P (a, a′) is a non-separating path in GF ;
(iii) r is contained in a nontrivial block BP of GF − V (P (a, a′)); and
(iv) if r ∈ {a, a′}, then r is not a cut vertex of GF − V (P (a, a′)).
Remark 1. Condition (iv) in Definition 3.1 is necessary for a technical reason, and

the reader may want to assume in a first reading that r 
∈ {a, a′} to become familiar
with the proof of the next result.

Theorem 3.2. Let G be a 4-connected graph, let F be a subgraph of G, and let
r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected. Suppose that G has
a feasible a-a′ F -path P for some a, a′ ∈ V (F ). Then there exists a good F -chain
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Fig. 3. Illustration for Theorem 3.2 and Notation and Definition 3.3: one with r �∈ {a, a′} and
the other with r ∈ {a, a′}.

H in G such that GF − I(H) is 2-connected, G[V (F ) ∪ I(H)] is 2-connected, and
BP ⊆ GF − I(H). Moreover, such a chain can be found in O(|V (G)||E(G)|) time.

Throughout the rest of this section, we fix the following notation.
Notation and definition 3.3. Let G be a 4-connected graph, let F be a sub-

graph of G, and let r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected.
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Suppose G has a feasible a-a′ F -path P and r is contained in a nontrivial block BP

of GF − V (P (a, a′)).
Let PP be the set of feasible F -paths P ′ (with ends, say u, u′) in G such that

BP ⊆ GF − V (P ′(u, u′)). For each P ′ ∈ PP with ends, say u, u′, let BP ′ denote
the block of GF − V (P ′(u, u′)) which contains BP . We say that P ′ ∈ PP is a BP -
augmenting path if |V (BP )| < |V (BP ′)|.

We will describe an algorithm for finding a good F -chain as required in Theo-
rem 3.2. The idea of the algorithm is roughly the following. At the beginning of
each iteration we have vertices a, a′ ∈ V (F ) and a feasible a-a′ F -path P in G. The
algorithm iteratively tries to find a BP -augmenting path P ′ with ends u, u′, and start
a new iteration with u, u′, P ′ as a, a′, P , respectively. Note that r, u, u′, P ′, F and
G (as r, a, a′, P, F and G, respectively) satisfy the hypotheses of Theorem 3.2 with
BP enlarged to BP ′ . When the algorithm does not find such a path, it finds a good
F -chain as required in Theorem 3.2.

The next lemma says that (assuming G has a feasible a-a′ F -path P ) one can
find in O(|V (G)| + |E(G)|) time a feasible u-u′ F -path P ′ such that |V (P ′)| = 3 or
NG(P ′(u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}. The latter condition is equivalent to requiring
that NG(P ′(u, u′))∩V (F ) = {u, u′} when r ∈ {u, u′} or that NG(P ′(u, u′))∩V (F ) ⊆
{u, u′, r} when r 
∈ {u, u′} (see Figure 3).

Lemma 3.4. There exist u, u′ ∈ V (F ) and a feasible u-u′ F -path P ′ such that
(1) |V (P ′)| = 3 or NG(P (u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}, and
(2) BP ⊆ BP ′ .

Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.
Proof. If either |V (P )| = 3 or NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪{r}, then the result

follows with P ′ := P .
Thus, assume that |V (P )| ≥ 4 and (NG(P (a, a′)) ∩ V (F )) − ({a, a′} ∪ {r}) 
= ∅.

By symmetry, we may assume that a 
= r. Let v ∈ V (P (a, a′)) such that v has a
neighbor in V (F ) − ({a, a′} ∪ {r}), and subject to this, P [a, v] is minimal. If v has
two neighbors in V (F ) − {r, a}, say u and u′, let P ′ := (u, v, u′). In this case, (1)
holds with |V (P ′)| = 3. If v has exactly one neighbor in V (F ) − {r, a}, say u, then
let P ′ := P [a, v] + {u, vu} and u′ := a. Note that in both cases r 
∈ {u, u′}. By the
choice of v, NG(P (u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}, and hence, (1) holds. Moreover,
since GF − V (P (a, a′)) ⊆ GF − V (P ′(u, u′)), we have BP ⊆ GF − V (P ′(u, u′)), and
hence, (2) holds.

Finally, we show that P ′ is a feasible u-u′ F -path. Since P is induced in G− aa′,
P ′ is induced in G−uu′. Clearly V (P ′)∩V (F ) = {u, u′}, so (i) of Definition 3.1 holds.
Since GF is 2-connected and P (a, a′) is an induced path in GF−aa′, if V (P (v, a′)) 
= ∅,
then NGF

(P (v, a′)) ∩ (V (GF ) − V (P (a, a′))) 
= ∅. Thus, since GF − V (P (a, a′)) is
connected, P ′(u, u′) is nonseparating in GF , so (ii) of Definition 3.1 holds. Also, r
is contained in a nontrivial block of GF − V (P ′(u, u′)) because r ∈ BP ⊆ GF −
V (P ′(u, u′)), so (iii) of Definition 3.1 holds. Since r 
∈ {u, u′}, we do not need to
verify (iv) of Definition 3.1.

Therefore, P ′ is a feasible F -path as required, and it is not hard to see that such
a path P ′ can be found in O(|V (G)| + |E(G)|) time.

Assumption 1. Using Lemma 3.4, we can preprocess a feasible F -path at the
beginning of each iteration (in O(|V (G)|+ |E(G)|) time). Henceforth, we may assume
that for the (current) feasible F -path P , |V (P )| = 3 or NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′}∪{r}. We may also assume that GF−V (P (a, a′)) is not 2-connected; otherwise,
H := P gives an F -chain as required in Theorem 3.2: H is an up F -chain (where
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each of its blocks is trivial), or H is an elementary F -chain. Moreover, GF − I(H) =
GF − V (P (a, a′)) is 2-connected.

Notation 3.5. Let XP := NGF
(GF − V (BP )). For each BP -bridge B of GF −

V (P (a, a′)), let rB denote the unique vertex in V (B) ∩ V (BP ). Note that rB ∈ XP .
Also, if r ∈ {a, a′}, then r ∈ XP .

Remark 2. Note that since GF is 2-connected, we have |XP | ≥ 2. Moreover, if B
is a BP -bridge of GF −V (P (a, a′)), then V (B)−{rB} has a neighbor in V (P (a, a′)).

The next lemma shows that if, for every BP -bridge B of GF−V (P (a, a′)), NG(B−
rB) ⊆ V (P ), then one can find efficiently a good F -chain (in fact, an up F -chain) H
as required in Theorem 3.2 by invoking Theorem 1.7.

Lemma 3.6. Suppose that for every BP -bridge B of GF − V (P (a, a′)), NG(B −
rB) ⊆ V (P ). Then there exists an a-a′ up F -chain H in G such that GF − I(H) is
2-connected, G[V (F ) ∪ I(H)] is 2-connected, and BP ⊆ GF − I(H). Moreover, such
a chain can be found in O(|V (G)||E(G)|) time.

Proof. Suppose first that r 
∈ {a, a′} (see Figure 3). Let G′ be the graph obtained
from GF by adding {a, a′} and the edges of G from {a, a′} to V (GF ) − {r}. Note
that P is a nonseparating induced a-a′ path in G′. Note also that BP is a nontrivial
block of G′ − V (P ). Let X ′

P = NG′(G′ − V (BP )).
We claim that G′−(V (BP )−X ′

P ) is (4, X ′
P ∪{a, a′})-connected. For convenience,

let K := G′ − (V (BP ) − X ′
P ). Since, for any BP -bridge B of G′ − V (P ) = GF −

V (P (a, a′)), V (B)−{rB} has a neighbor in V (P (a, a′)), it follows that K is connected
and K − (X ′

P ∪ {a, a′}) is a component of G − (X ′
P ∪ {a, a′}). Hence, because G is

4-connected, K is (4, X ′
P ∪ {a, a′})-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with G′, a, a′, P,BP , X
′
P as

G, a, b, P,BP , XP , respectively. Hence, there exists a planar a-a′ chain H in G′

such that G′ − V (H) = GF − I(H) is 2-connected and BP ⊆ G′ − V (H) = GF −
I(H). Moreover, such a chain can be found in O(|V (G′)||E(G′)|) time (and hence, in
O(|V (G)||E(G)|) time). Note also that H is an up F -chain in G. Hence, G[V (F ) ∪
I(H)] is 2-connected, so the result follows.

Now suppose that r ∈ {a, a′}, and without loss of generality, let r = a′ (see
Figure 3). Let b be the neighbor of r in P . Let G′ be the graph obtained from GF

by adding a and the edges of G from a to V (GF ) − {r}. Note that b ∈ V (G′) and
P [a, b] is a nonseparating induced path in G′. Note also that BP is a nontrivial block
of G′ − V (P [a, b]) = GF − V (P (a, r)). Let X ′

P = NG′(G′ − V (BP )). Since P is a
feasible a-r F -path, r is not a cut vertex of G′ − V (P [a, b]) = GF − V (P (a, r) (in
particular, there is no BP -bridge in G′ − V (P [a, b]) containing r).

We claim that G′− (V (BP )−X ′
P ) is (4, X ′

P ∪{a, b})-connected. For convenience,
let K := G′ − (V (BP ) − X ′

P ). Since, for any BP -bridge B of GF − V (P (a, r)),
V (B) − {rB} has at least two neighbors in V (P (a, r)) (because G is 4-connected),
it follows that V (B) − {rB} has at least one neighbor in V (P (a, b)). Hence, K is
connected and K − (X ′

P ∪ {a, b}) is a component of G − (X ′
P ∪ {a, b}). Since G is

4-connected, K is (4, X ′
P ∪ {a, b})-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with G′, a, b, P [a, b], BP , X
′
P as

G, a, b, P,BP , XP , respectively. Hence, there exists a planar a-b chain H ′ in G′ such
that G′ − V (H ′) is 2-connected and BP ⊆ G′ − V (H ′). Moreover, such a chain can
be found in O(|V (G′)||E(G′)|) time (and hence, O(|V (G)||E(G)|) time). Since b is
the only neighbor of r in V (P )−{a, r} and no BP -bridge in G′ − V (P [a, b]) contains
r, r 
∈ NG(V (H ′) − {a, b}). Thus, H := H ′ + rb is an up a-r F -chain in G (recall
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Fig. 4. Graph H in the proof of Lemma 3.7.

a′ = r), so G[V (F ) ∪ I(H)] is 2-connected. Note also that GF − I(H) = G′ − V (H ′)
is 2-connected, and hence, the result follows.

Next, we show that if |XP | = 2, then one can find efficiently either a BP -
augmenting path or a good F -chain as required in Theorem 3.2.

Lemma 3.7. Suppose that |XP | = 2, and let v, v′ be the vertices in XP . Then
exactly one of the following holds:

(1) there exists a BP -augmenting path; or
(2) H := (GF − (V (BP ) − XP )) − vv′ is a down v-v′ F -chain in G such that

GF − I(H) is 2-connected and G[V (F ) ∪ I(H)] is 2-connected.
Moreover, one can in O(|V (G)| + |E(G)|) time either find a path as in (1) or certify
that (2) holds.

Proof. Let H := (GF − (V (BP ) − XP )) − vv′. Since GF is 2-connected and
XP = {v, v′}, H is a v-v′ chain in G and NG(H − {v, v′}) ⊆ V (F − r) ∪ {v, v′}. See
Figure 4 for an example. Let H := v0B1v1 . . . vk−1Bkvk, where v0 = v and vk = v′.
This decomposition of H into blocks can be computed in O(|V (G)|+ |E(G)|) time. If
every block of H is trivial, then H is a down F -chain, GF −I(H) = BP is 2-connected,
and G[V (F ) ∪ I(H)] is 2-connected, so (2) holds.

Thus, we may assume that H contains a nontrivial block. For each nontrivial block
Bi, let Si := V (F−r)∩NG(Bi−{vi−1, vi}), and let Gi be the graph obtained from Bi

by adding Si and the edges of G from Si to V (Bi)−{vi−1, vi}. Note that Gi−Si = Bi

is 2-connected and Bi − {vi−1, vi} is a union of components of G− (Si ∪ {vi−1, vi}).
Because G is 4-connected, Gi is (4, Si∪{vi−1, vi})-connected, and every component of
Bi − {vi−1, vi} has at least two neighbors in Si. Thus, the hypotheses of Lemma 2.3
are satisfied with Gi, Si, vi−1, vi as G,S, b, b′, respectively.

Hence, either (a) there exist ui, u
′
i ∈ Si and an induced ui-u

′
i path P ′

i in Gi

such that V (Pi) ∩ {vi−1, vi} = ∅, V (Pi) ∩ Si = {ui, u
′
i}, and Gi − (V (Pi) ∪ Si) is

connected, or (b) |Si| = 2 and the elements of Si can be labeled as ui, u
′
i such that

(Gi, vi−1, ui, vi, u
′
i) is planar. Moreover, one can in O(|V (Gi)| + |E(Gi)|) time find a

path as in (a) or certify that (b) holds. If (a) holds for some nontrivial block Bi, then
P ′
i is a BP -augmenting path for the following reasons: (i)–(iii) of Definition 3.1 hold,
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r 
∈ {u, u′} (so (iv) of Definition 3.1 holds), and there exists a v-v′ path contained
in H − V (P ′

i (ui, u
′
i)) (so BP is properly contained in BP ′

i
). If (b) holds for every

nontrivial block Bi, then H is clearly a down F -chain, G[V (F )∪ I(H)] is 2-connected
(because G is 4-connected, and so Gi −{vi−1, vi} is a ui-u

′
i chain), and GF − I(H) is

2-connected.
One can verify that either (1) or (2) holds in O(|V (G)|+ |E(G)|) time because if

(b) holds for a nontrivial block Bi, then |V (Gi)| + |E(Gi)| = O(|V (Bi)| + |E(Bi)|),
and if (a) holds for some Gi, then |V (Gi)| + |E(Gi)| = O(|V (G)| + |E(G)|). In the
latter case, we find a BP -augmenting path and we stop. Thus, this verification can
be carried out in O(|V (G)| + |E(G)|) time.

The following lemma shows that if |XP | ≥ 3 and |V (P )| = 3, then one can find
efficiently a BP -augmenting path.

Lemma 3.8. Suppose that |XP | ≥ 3 and |V (P )| = 3. Then exactly one of the
following holds:

(1) there exists a BP -augmenting path; or
(2) P is an elementary F -chain in G such that GF − I(P ) is 2-connected and

G[V (F ) ∪ I(P )] is 2-connected.
Moreover, one can in O(|V (G)| + |E(G)|) time either find a path as in (1) or certify
that (2) holds.

Proof. If GF −V (P (a, a′)) is 2-connected, then P is an elementary F -chain in G,
GF − I(P ) is 2-connected, and G[V (F ) ∪ I(P )] is 2-connected, so (2) holds. Note,
this can be checked in O(|V (G)| + |E(G)|) time.

So we may assume that GF − V (P (a, a′)) is not 2-connected. Let K be a BP -
bridge of GF − V (P (a, a′)), and let v denote the unique vertex in V (P (a, a′)). If K
is 2-connected, then let B := K and b := rK . Otherwise let B be an endblock of K
not containing rK , and let b denote the cut vertex of K contained in V (B). Since GF

is 2-connected, v ∈ NG(B − b). Note that B can be computed in O(|V (G)|+ |E(G)|)
time.

First, suppose that B is trivial, and let w be the unique vertex in V (B−b). Since
G is 4-connected, w has at least three neighbors in V (F − r)∪ {v}, and hence, it has
two neighbors u, u′ in V (F − r). Let P ′ := (u,w, u′). We claim that P ′ is a feasible
F -path. Clearly, P ′ is an induced path in G−uu′ and V (P ′)∩V (F ) = {u, u′}. Since
GF is 2-connected, GF −V (P ′(u, u′)) = GF −w is connected. Thus, P ′(u, u′) is non-
separating in GF . Also r ∈ V (BP ) and BP ⊆ GF − V (P ′(u, u′)). Therefore, since
r 
∈ {u, u′}, P ′ is a feasible F -path. Since |XP | ≥ 3, there exists a path (containing v)
with ends in XP − {rB} which is internally disjoint from V (BP ) ∪ V (B). Therefore,
BP is properly contained in BP ′ , and hence, P ′ is a BP -augmenting path.

Thus, we may assume that B is nontrivial, so B is 2-connected. Let S := NG(B−
b) − {b, v}, and let G′ be obtained from B by adding S and the edges of G from S
to V (B) − {b}. Note that S ⊆ V (F − r) and G′ − S = B is 2-connected. Since G is
4-connected, G[V (G′)∪{v}] is (4, S ∪{b, v})-connected, and hence, G′ is (3, S ∪{b})-
connected. By Lemma 2.4 (with G′, b, S as G, b, S, respectively) there exist u, u′ ∈ S
and an induced u-u′ path P ′ in G′ such that V (P ′)∩{b} = ∅, V (P ′)∩S = {u, u′}, and
G′ − (V (P ′) ∪ S) is connected. Moreover, such a path can be found in O(|V (G′)| +
|E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).

We claim that P ′ is a feasible F -path. Clearly, P ′ is an induced path in G− uu′

and V (P ′)∩ V (F ) = {u, u′}. Since G′ − (V (P ′)∪S) = B − V (P ′(u, u′)) is connected
and b 
∈ V (P ′), we have that GF − V (P ′(u, u′)) is connected. Thus, P ′(u, u′) is
nonseparating in GF . Also r ∈ V (BP ), and BP ⊆ GF − V (P ′(u, u′)). Since r 
∈ S,
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Fig. 5. Example for Notation 3.9 with XP = {r1, r2, r3, r4}. Note that the edges r1a, r2a′ are
not contained in any Hi.

r 
∈ {u, u′}, so P ′ is a feasible F -path. Furthermore, since |XP | ≥ 3, there exists a
path (containing v) with ends in XP −{rB} which is internally disjoint from V (BP )∪
V (B). Therefore, BP is properly contained in BP ′ , and hence, P ′ is a BP -augmenting
path.

By Lemmas 3.6, 3.7, and 3.8, we need to deal only with the case where |XP | ≥ 3,
|V (P )| ≥ 4, and for some BP -bridge B of GF − V (P (a, a′)), B − rB has a neighbor
in V (F − r) − {a, a′}. Our aim is to prove that we can find either a BP -augmenting
path or a triangle F -chain H such that GF −I(H) is 2-connected. In order to do this,
we need to introduce some notation and prove auxiliary results.

Notation 3.9. For any x, y ∈ V (P ), we denote x ≤ y if x ∈ V (P [a, y]). If x ≤ y
and x 
= y, then we write x < y. In this case, we say that x is lower than y, or y is
higher than x.

Let XP := {r1, . . . , rp}. For each i, 1 ≤ i ≤ p, if ri is a cut vertex of GF −
V (P (a, a′)), then let Vi :=

⋃
V (B), where the union is taken over all the BP -bridges

B of GF − V (P (a, a′)) with rB = ri; if ri is not a cut vertex of GF − V (P (a, a′)),
then let Vi := {ri}.

For each i such that Vi 
= {ri}, let xi, yi ∈ V (P ) with xi ≤ yi such that G has
an edge from xi (yi, respectively) to Vi which is not an edge from {a, a′} to ri, and
subject to this, P [xi, yi] is maximal. Note that we may have xi = a or yi = a′, but
r 
∈ {xi, yi} because BP is a block of GF − V (P (a, a′)).

Let Pi := P [xi, yi], and let Hi be the graph obtained from G[Vi∪V (Pi)] by removing
all edges from {a, a′} to ri. Let H := {Hi : 1 ≤ i ≤ p, Vi 
= {ri}}. We say that Hi ∈ H
is adjacent to F if NG(Vi−{ri})∩(V (F−r)−{a, a′}) 
= ∅. See Figure 5 for an example.

Lemma 3.10. Every Hi ∈ H is an ri-xi (and also an ri-yi) chain. Moreover, no
vertex of Pi is a cut vertex of Hi, and Pi is contained in an endblock of Hi.

Proof. Since G[Vi] = Hi−V (Pi) is connected and because Hi has edges from both
xi and yi to Vi, no vertex of Pi is a cut vertex of Hi, and hence, Pi is contained in a



862 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

block of Hi. We claim that if B is an endblock of Hi, then ri ∈ V (B) or V (Pi) ⊆ V (B)
(and hence, we have Lemma 3.10). Suppose for a contradiction that B is an endblock
of Hi and B contains neither ri nor any vertex in V (Pi). Let v be the cut vertex of Hi

contained in V (B). Then B − v is a component of GF − v, which is a contradiction,
since GF is 2-connected. Similarly, we can show that Hi is an ri-yi chain.

Notation 3.11. For each Hi ∈ H with xi 
= yi, let Ai denote the block of Hi

containing Pi. If Ai 
= Hi, then let bi denote the cut vertex of Hi contained in Ai. If
Ai = Hi, then let bi := ri.

The next lemma illustrates two situations when we can find a BP -augmenting
path.

Lemma 3.12. Assume that |XP | ≥ 3, and let Hi ∈ H. Suppose that one of the
following holds:

(i) xi = yi; or
(ii) xi 
= yi, and Hi contains at least three blocks or Hi contains a nontrivial block

other than Ai.
Then one can find a BP -augmenting path in O(|V (G)| + |E(G)|) time.

Proof. If xi = yi, then let H := Hi. If xi 
= yi, then let H := Hi− (V (Ai)−{bi}).
Note that H is an ri-xi chain if xi = yi, and H is an ri-bi chain if xi 
= yi. Moreover,
since (i) or (ii) holds, H is not induced by an edge.

Let H := v0B1v1 . . . vk−1Bkvk with v0 = ri, vk = xi if xi = yi, and vk = bi if
xi 
= yi. This decomposition of Hi into blocks can be computed in O(|V (G)|+ |E(G)|)
time.

Case 1. There exists j ∈ {1, . . . , k} such that Bj is nontrivial.
Let S := NG(Bj − {vj−1, vj}) − {vj−1, vj}. Note that S ⊆ V (F − r) − {a, a′}

because BP is a block of GF −V (P (a, a′)). Let G′ be the graph obtained from Bj by
adding S and the edges of G from S to V (Bj) − {vj−1, vj}. Note that G′ − S = Bj

is 2-connected and G′ is (4, S ∪ {vj−1, vj})-connected (because G is 4-connected).
Therefore, the hypotheses of Lemma 2.3 are satisfied with G′, S, vj−1, vj as G,S, b, b′,
respectively. Then by Lemma 2.3 exactly one of the following occurs:

(1) there exist u, u′ ∈ S and an induced u-u′ path P ′ in G′ such that V (P ′) ∩
{vj−1, vj} = ∅, V (P ′) ∩ S = {u, u′}, and G′ − (V (P ′) ∪ S) is connected; or

(2) |S| = 2, and the elements of S can be labeled as u, u′ such that (G′, vj−1, u, vj , u
′)

is planar.
Moreover, one can in O(V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds.

Note that since |XP | ≥ 3, there exists a path W with ends in XP −{ri} which is
internally disjoint from V (BP ) ∪ Vi.

Suppose (1) holds. We claim that P ′ is a feasible F -path. Clearly, V (P ′)∩V (F ) =
{u, u′}, and P ′ is an induced path in G−uu′. Since Bj−V (P ′(u, u′)) = G′−(V (P ′)∪S)
is connected and vj−1, vj 
∈ V (P ′), we have that GF−V (P ′(u, u′)) is connected. Thus,
P ′(u, u′) is nonseparating in GF . Also r ∈ V (BP ), and BP ⊆ GF − V (P ′(u, u′)).
Therefore, since r 
∈ {u, u′}, P ′ is a feasible F -path. Moreover, since W is also a path
in GF − V (P ′(u, u′)), BP ∪W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting path.

Now assume (2) holds. By Lemma 2.6 one can find in O(|V (G′)|+ |E(G′)|) time
(and hence, in O(|V (G)| + |E(G)|) time) an induced u-u′ path Q in G′ such that
G′−V (Q) has exactly two components K,K ′ with vj−1 ∈ V (K) and vj ∈ V (K ′). We
claim that Q is a feasible F -path. Clearly, V (Q)∩V (F ) = {u, u′}, and Q is an induced
path in G − uu′. Note that B − Q(u, u′) = G′ − V (Q) has exactly two components
(namely K and K ′), there exists a path in Hi from vj−1 ∈ V (K) to ri ∈ XP disjoint
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from Q, and there exists a path from vj ∈ V (K ′) to XP in GF −V (Q(u, u′)) (because
|XP | ≥ 2). It follows that GF − V (Q(u, u′)) is connected. Also r ∈ V (BP ), and
BP ⊆ GF − V (Q(u, u′)). Since r 
∈ {u, u′}, Q is a feasible F -path. Moreover, W is a
path in GF−V (Q(u, u′)), and hence, BP ∪W ⊆ BQ. Therefore, Q is a BP -augmenting
path.

Case 2. All blocks of H are trivial.
By (ii), Hi contains at least two blocks other than Ai, and hence, k ≥ 3. So

B1 and B2 are trivial blocks of H. Since G is 4-connected, v1 has at least two
neighbors in V (F − r), say u, u′. Let P ′ := (u, v1, u

′). We claim that P ′ is a feasible
F -path. Clearly, V (P ′) ∩ V (F ) = {u, u′}, and P ′ is an induced path in G − uu′.
Since GF is 2-connected, GF − V (P ′(u, u′)) = GF − v1 is connected. Also since
BP ⊆ GF − V (P ′(u, u′)) and r 
∈ {u, u′}, it follows that P ′ is a feasible F -path.
Moreover, one can see that BP ∪ W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting
path.

Now we study the case where, for every Hi ∈ H, xi 
= yi, Hi has at most two
blocks, and if Hi has exactly two blocks, then Ai is the only nontrivial block of Hi.
We give three lemmas which deal with this case. The arguments used for many cases
in the proofs are similar, but unfortunately it seems necessary to cover all of those
cases. We frequently produce a BP -augmenting path P ′ in the following way. We
first exhibit a nontrivial path W in GF with ends in BP such that W is internally
disjoint from BP . We then produce a feasible F -path P ′ disjoint from W such that
V (BP )∪V (W ) ⊆ V (BP ′), so P ′ is BP -augmenting. For the sake of brevity, when we
state a result occurs “because of the path W ,” we are implicitly using this technique.

Recall that by Assumption 1 we may assume that if |V (P )| ≥ 4, then NG(P (a, a′))∩
V (F ) ⊆ {a, a′} ∪ {r}.

Lemma 3.13. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and, for every Hj ∈ H,
xj 
= yj. Suppose that, for every Hj ∈ H, V (Aj) − {bj , xj , yj} has no neighbor in
V (F − r)−{a, a′}. Assume that for some Hi ∈ H, Hi is adjacent to F . Then exactly
one of the following holds:

(1) there exists a BP -augmenting path; or
(2) there exists a triangle F -chain H in G such that I(H) = V (GF ) − V (BP ),

GF − I(H) is 2-connected, and G[V (F ) ∪ I(H)] is 2-connected.
Moreover, one can in O(|V (G)|+|E(G)|) time find either a path as in (1) or a triangle
F -chain as in (2).

Proof. Let us first show that (1) and (2) are mutually exclusive. Suppose that (2)
holds. It is not hard to see that there exists no BP -augmenting path because every
feasible F -path must use exactly two vertices of V (GF )−V (BP ). Thus, it remains to
show that either (1) or (2) holds and that one can determine in O(|V (G)| + |E(G)|)
time which of them occurs.

We consider two cases.
Case 1. There exist distinct m,n ∈ {1, . . . , p} − {i} such that both Vm and Vn

have a neighbor in V (P (xi, a
′)) or both Vm and Vn have a neighbor in V (P (a, yi)).

Without loss of generality, assume that both Vm and Vn have a neighbor in
V (P (xi, a

′)).
We claim that Ai contains a nonseparating induced bi-xi path Q such that V (Q)∩

(V (Pi)− {xi}) = ∅. This is obvious if V (Ai)− V (Pi) = {bi} because then bi must be
adjacent to xi, and the result follows by taking Q as the path induced by the edge bixi.
Thus, we may assume that V (Ai) − V (Pi) 
= {bi}. Let Si denote the set of vertices
in V (P (xi, yi)) which have a neighbor in (

⋃p
j=1 Vj) − Vi. Since G is 4-connected, Ai
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is (4, Si ∪ {bi, xi, yi})-connected. Moreover, Ai − (V (Pi) − {xi}) is connected and
Si ∪{yi} ⊆ V (Pi)−{xi}, so there exists a bi-xi path Q′ in Ai such that V (Pi)−{xi}
(and hence, Si ∪ {yi}) is contained in a component U of Ai − V (Q′). Therefore,
the hypotheses of Lemma 2.1 are satisfied with Ai, Si ∪ {bi, xi, yi}, bi, xi, Q

′, U as
G,S, a, a′, P, U , respectively. By Lemma 2.1 one can find in O(|V (G)|+ |E(G)|) time
a nonseparating induced bi-xi path Q in Ai such that V (Q) ∩ V (U) = ∅. Since
V (Pi) − {xi} ⊆ V (U), we have V (Q) ∩ (V (Pi) − {xi}) = ∅, and thus, Q is a path as
required.

By hypothesis, xi 
= yi, so by Lemma 3.12, we can in O(|V (G)| + |E(G)|)
time either find a BP -augmenting path or certify that Hi has at most two blocks.
Hence, we may assume that Hi has at most two blocks. Since Hi is adjacent to F
and V (Ai) − {bi, xi, yi} has no neighbors in V (F − r) − {a, a′}, it follows that Hi

has exactly two blocks, and bi is adjacent to some vertex u ∈ V (F − r) − {a, a′}.
Let P ′ := (Q ∪ P [a, xi]) + {u, biu}. By assumption, both Vm and Vn have a
neighbor on P (xi, a

′). Since P ′ is disjoint from V (Pi) − {xi}, there exists an rm-
rn path W in GF − V (P ′(a, u)) which is internally disjoint from V (BP ) ∪ Vi ∪
{xi}.

Next we show that P ′ is a BP -augmenting path. Since NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′} ∪ {r} (by Assumption 1) and P is induced in G − aa′, we have that P ′ is an
induced u-a path in G − au. Also, since Ai − V (Q) is connected, P ′(a, u) is non-
separating in GF . Note also that if r is an end of P ′, then a = r, and r is not a
cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut vertex
of GF − V (P ′(a, u)). Thus, P ′ is a feasible F -path. Since BP ∪ W ⊆ BP ′ , P ′ is a
BP -augmenting path and (1) holds.

Case 2. For any distinct m,n ∈ {1, . . . , p} − {i}, Vm and Vn do not both have a
neighbor in V (P (xi, a

′)), nor do both Vm and Vn have a neighbor in V (P (a, yi)).
By hypothesis, xi 
= yi, so by Lemma 3.12, we can in O(|V (G)| + |E(G)|) time

either find a BP -augmenting path or certify that Hi has at most two blocks. Hence,
we may assume that Hi has at most two blocks. Since Hi is adjacent to F and
Ai − {bi, xi, yi} has no neighbor in V (F − r) − {a, a′}, it follows that Hi has exactly
two blocks, and bi has at least one neighbor in V (F − r) − {a, a′}. Moreover, since
we are in Case 2, we must have |XP | = 3. Without loss of generality, we may assume
that i = 3, V1 has a neighbor in V (P (a, x3]), and V2 has a neighbor in V (P [y3, a

′)).
Moreover, V1 has no neighbor in V (P (x3, a

′)), and V2 has no neighbor in V (P (a, y3)).
Suppose b3 has two neighbors in V (F −r)−{a, a′}, say u, u′. Let P ′ := (u, b3, u

′).
Clearly, GF − V (P ′(u, u′)) = GF − b3 is connected. Since r 
∈ {u, u′}, it is not hard
to see that P ′ is a feasible F -path. Moreover, there exists an r1-r2 path which is
internally disjoint from V (BP ) ∪ Vi. Hence, P ′ is a BP -augmenting path, and (1)
holds. Clearly, P ′ can be found in O(|V (G)| + |E(G)|) time.

Thus, we may assume that b3 has exactly one neighbor in V (F − r)−{a, a′}. We
consider two subcases.

Subcase 2.1. For some j ∈ {1, 2}, say j = 1, V1 
= {r1}.
Let H1 := w0B

′
1w1 . . . ws−1B

′
sws where w0 = r1, and B′

s = A1. Since x1 
= y1 (by
assumption), then from Lemma 3.12 either s = 1 or s = 2 and B′

1 is trivial.
We claim that V (A1) = {b1, x1, y1}. Suppose for a contradiction that V (A1) −

{b1, x1, y1} 
= ∅. Then A1 − {b1, x1, y1} is a component of G − {b1, x1, y1} for the
following reasons: V (A1) − {b1, x1, y1} has no neighbor in V (F − r) − {a, a′} (by
hypothesis), V (P (x1, y1)) has no neighbor in V3 ∪ V2 (by assumption in Case 2), and
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P is an induced path in G−aa′. But then {b1, x1, y1} is a 3-cut in G which contradicts
the assumption that G is 4-connected. Thus, V (A1) = {b1, x1, y1}.

Therefore, {b1, x1, y1} induces a triangle in G. Since H1 ∈ H, V1 
= {r1}. This
implies that s = 2 and B′

1 is a trivial block of H1 (and hence, r1 is adjacent to b1).
Since b1 has degree at least four in G, b1 must have some neighbor in V (F−r). Hence,
H1 is adjacent to F , and V2 and V3 have neighbors in V (P (x1, a

′)), so we can proceed
as in Case 1 and find a BP -augmenting path in O(|V (G)| + |E(G)|) time.

Subcase 2.2. For every j ∈ {1, 2}, Vj = {rj}.
Thus, r1 has a neighbor in V (P (a, x3]), and hence, x3 
= a. Similarly, y3 
= a′.
We claim that V (A3) = {b3, x3, y3}. Suppose for a contradiction that V (A3) −

{b3, x3, y3} 
= ∅. Then A3 − {b3, x3, y3} is a component of G − {b3, x3, y3} for the
following reasons: V (A3) − {b3, x3, y3} has no neighbor in V (F − r) − {a, a′} (by
hypothesis), V (P (x3, y3)) has no neighbor in V1 ∪ V2 (by assumption in Case 2),
and P is an induced path in G − aa′. But then {b3, x3, y3} is a 3-cut in G, which
contradicts the assumption that G is 4-connected. Thus, V (A3) = {b3, x3, y3}, and
A3 is a triangle.

Since GF is 2-connected and P is an induced path in G − aa′, and because
NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, it follows that V (P ) = V (P3) ∪ {a, a′}, r1
is adjacent to x3, and r2 is adjacent to y3. Let u denote the only neighbor of b3 in
V (F−r)−{a, a′}. Note that a 
= r; otherwise r1 = r (because |XP | = 3), and x3 would
have degree three in G which is a contradiction because G is 4-connected. Similarly,
a′ 
= r. If r = r1, then (r1, x3, a) is a BP -augmenting path. If r = r2, then (r2, y3, a

′)
is a BP -augmenting path. If r = r3, then (r3, b3, u) is a BP -augmenting path. Thus,
we may assume that r 
∈ {r1, r2, r3}. Therefore, H := Ai + {u, a, a′, biu, xia, yia

′} is a
triangle F -chain in G with b3, x3, y3, u, a, a

′, r3, r1, r2 as v1, v2, v3, u1, u2, u3, w1, w2, w3,
respectively, in Definition 1.2. It is easy to see that GF − I(H) = BP is 2-connected
and G[V (F ) ∪ I(H)] is 2-connected. So (2) holds.

Lemma 3.14. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and for every Hj ∈ H, xj 
= yj.
Suppose that Hi ∈ H and V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′}.
Assume that V (P (xi, yi)) has no neighbor in (

⋃p
j=1 Vj)− Vi. Then a BP -augmenting

path can be found in O(|V (G)| + |E(G)|) time.
Proof. Since GF is 2-connected and V (P (xi, yi)) has no neighbor in (

⋃p
j=1 Vj)−Vi,

there exists m ∈ {1, . . . , p} − {i} such that Vm has a neighbor in V (P (a, xi]) or in
V (P [yi, a

′)).
By symmetry we may assume that Vm has a neighbor in V (P [yi, a

′)). Then
yi 
= a′.

First, we find an endblock of Ai −{xi, yi} in O(|V (G)|+ |E(G)|) time as follows.
If Ai −{xi, yi} is 2-connected, then let B := Ai −{xi, yi}, and let b := bi. Otherwise,
let B be an endblock of Ai − {xi, yi}, and let b denote the cut vertex of Ai − {xi, yi}
contained in B so that bi 
∈ V (B − b). Note that V (P (xi, yi)) has no neighbors
in (

⋃p
j=1 Vj) − Vi, and NG(B − b) ⊆ V (F − r) ∪ {xi, yi, b}. Since r 
∈ {xi, yi} (by

the definition of xi, yi in Notation 3.9), r 
∈ NG(B − b) − {b}. Moreover, since G
is 4-connected, |NG(B − b)| ≥ 4. Note that such an endblock B can be found in
O(|V (G)| + |E(G)|) time.

Next, we consider two cases.
Case 1. yi has a neighbor in V (Ai) − ({xi, yi} ∪ V (B − b)).
Then, since Vm has a neighbor in V (P [yi, a

′)), there exists an ri-rm path W in
GF − V (P (a, xi]) which is internally disjoint from V (BP ) and intersects P [yi, a

′).
Subcase 1.1. B is trivial.
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Let v denote the unique vertex in V (B)−{b}. Then NG(v) ⊆ V (F−r)∪{xi, yi, b}.
Since G is 4-connected, v has at least three neighbors in V (F − r) ∪ {xi, yi}, and
hence, it has two neighbors in V (F − r)∪ {xi}. Let u, u′ be distinct neighbors of v in
V (F − r) ∪ {xi}, and assume that u 
= xi. By the definition of xi, yi in Notation 3.9,
one can see that {u, u′}∩{a′} = ∅ and u 
= a (because yi 
= a′ and xi 
= u). If u′ 
= xi,
then let P ′ := (u, v, u′); otherwise, let P ′ := P [a, xi] + {u, v, uv, vxi}. Clearly, P ′ is a
path with ends in V (F ) which is internally disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1), and P is
induced in G − aa′. Then since NG(v) ⊆ V (F − r) ∪ {xi, yi, b} and V (P [a, xi)) has
no neighbor in V (B) (by the definition of xi in Notation 3.9), it follows that P ′ is
induced in G−uu′′. Because of the path W , and since P (a, a′) is nonseparating in GF ,
GF − V (P ′(u, u′′)) is connected. So P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′},
then since r 
∈ {u, u′}, r = u′′ = a and r is not a cut vertex of GF − V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path. Clearly, P ′

can be found in O(|V (G)| + |E(G)|) time.
Subcase 1.2. B is nontrivial.
Let S := NG(B − b) − {b, yi}, and let G′ be obtained from B by adding S and

the edges of G from S to V (B) − {b}. Since r 
∈ NG(B − b) − {b}, r 
∈ S. Since G is
4-connected, |S| ≥ 2 and G′ is (3, S∪{b})-connected (if yi 
∈ NG(B−b), then actually
|S| ≥ 3 and G′ is (4, S∪{b})-connected). Moreover, G′−S = B is 2-connected. Thus,
the hypotheses of Lemma 2.4 are satisfied with G′, S, b as G,S, b, respectively. Then
there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩ {b} = ∅,
V (Q) ∩ S = {u, u′}, and G′ − (V (Q) ∪ S) is connected. Moreover, such a path Q can
be found in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).

By the definition of xi, yi in Notation 3.9 and because yi 
= a′, {u, u′} ∩ {a′} = ∅.
By symmetry we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise, let
P ′ := P [a, xi]∪Q. Clearly, P ′ is a path with ends in V (F ) which is internally disjoint
from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1), and P is
induced in G − aa′. Then since Q is induced in G′ and P [a, xi) has no neighbor in
V (B) (by the definition of xi in Notation 3.9), it follows that P ′ is induced in G−uu′′.
Since B − V (Q(u, u′)) = G′ − (V (Q) ∪ S) is connected and because of the path W ,
P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then since r 
∈ S, r = u′′ = a, and r
is not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut
vertex of GF − V (P ′(u, u′′)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path. Clearly, P ′ can be found in O(|V (G)| + |E(G)|) time.
Case 2. yi has no neighbor in V (Ai) − ({xi, yi} ∪ V (B − b)) (and hence, yi ∈

NG(B − b)).
Subcase 2.1. B is trivial.
Let v denote the unique vertex in V (B)−{b}. Then NG(v) ⊆ V (F−r)∪{xi, yi, b},

and yi is adjacent to v. Since G is 4-connected, v has at least four neighbors in
V (F − r) ∪ {xi, yi, b}, and hence, it has at least two neighbors in V (F − r) ∪ {xi}.
Let u, u′ ∈ NG(v) − {b, yi}, and assume that u 
= xi. By the definition of xi, yi in
Notation 3.9, one can see that {u, u′}∩{a′} = ∅ (because yi 
= a′) and u 
= a (because
u 
= xi).
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Suppose that there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor
in V (P [yi, a

′)). Then there exists an rm-rn path W in GF − V (P (a, yi)) which is
internally disjoint from V (BP ) and intersects P [yi, a

′). If u′ 
= xi, then let P ′ :=
(u, v, u′); otherwise, let P ′ := P [a, xi] + {u, v, uv, vxi}. Then P ′ is a path with
ends in V (F ) which is internally disjoint from V (BP ) ∪ V (F ). Next we show that
P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′. By assumption,
NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1) and P is induced in G − aa′.
Then, since NG(v) ⊆ V (F−r)∪{xi, yi, b} and V (P [a, xi)) has no neighbor in V (B) (by
the definition of xi in Notation 3.9), it follows that P ′ is an induced path in G−uu′′.
Because of the path W and since P (a, a′) is nonseparating in GF , GF − V (P ′(u, u′′))
is connected, and so P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then since
r 
∈ {u, u′}, r = u′′ = a, and r is not a cut vertex of GF −V (P (a, a′)). Then, because
of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′ is a feasible
F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Thus, we may assume that there exists no n ∈ {1, . . . , p} − {i,m} such that Vn

has a neighbor in V (P [yi, a
′)). Since |XP | ≥ 3 and V (P (xi, yi)) has no neighbor in

(
⋃p

j=1 Vj)−Vi, we have that xi 
= a, and there exists n ∈ {1, . . . , p}−{i,m} such that
Vn has a neighbor in V (P (a, xi]). Furthermore, xi has a neighbor in V (Ai)−{xi, yi, v};
otherwise, since yi has no neighbor in V (Ai)− ({xi, yi}∪V (B− b)), v would be a cut
vertex of Ai. Therefore, there exists an ri-rn path W in GF − V (P ′[yi, a

′)) which is
internally disjoint from V (BP ) and intersects P (a, xi].

Let P ′ := P [yi, a
′] + {u, v, uv, vyi}. Then P ′ is a path with ends in V (F ) which

is internally disjoint from V (BP ) ∪ V (F ). One can show that P ′ is an induced path
in G − ua′, and because of the path W , P ′(u, a′) is nonseparating in GF . Since
u 
= xi 
= r, r is an end of P ′ only if a′ = r. In this case, r is not a cut vertex of
GF−V (P (a, a′)), and because of the path W , r is not a cut vertex of GF−V (P ′(u, a′)).
Thus, P ′ is a feasible F -path. Since BP ∪ W ⊆ BP ′ , P ′ is a BP -augmenting path.
Note that in all above cases, such a path P ′ can be found in O(|V (G)|+ |E(G)|) time.

Subcase 2.2. B is nontrivial.
First, we define a graph G′ from B. If yi has at least two neighbors in V (B),

then let S := NG(B − b) − {b, yi}, let G′ be obtained from B by adding S ∪ {yi}
and the edges of G from S ∪ {yi} to V (B) − {b}, and let y∗ := yi. If yi has exactly
one neighbor in V (B), then let y∗ denote this vertex (note that y∗ 
= b because
yi ∈ NG(B − b) by assumption), let S := NG(B − {b, y∗}) − {b, y∗}, and let G′ be
obtained from B by adding S and the edges of G from S to V (B) − {b, y∗}. Note
that in either case S ⊆ V (F − r) ∪ {xi}. Moreover, G′ − S = B is 2-connected, and
G′ is (4, S ∪ {b, y∗})-connected (because G is 4-connected). Thus, the hypotheses in
Lemma 2.3 are satisfied with G′, S, b, y∗ as G,S, b, b′, respectively. By Lemma 2.3
exactly one of the following holds:

(1) there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩
{b, y∗} = ∅, V (Q) ∩ S = {u, u′}, and G′ − (V (Q) ∪ S) is connected; or

(2) |S| = 2, and the elements of S can be labeled as u, u′ such that (G′, u, b, u′, y∗)
is planar.

Moreover, one can in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds. Without loss of generality, we
may assume that u 
= xi.

Suppose (1) occurs. If u′ 
= xi, then let P ′ := Q; otherwise let P ′ := P [a, xi]∪Q.
Then P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪V (F ).
Since y∗ and b are in G′ − (V (Q) ∪ S) which is connected, and because Vm has a
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neighbor in V (P [yi, a
′)), there exists an ri-rm path W in GF − V (P (a, yi)) which is

internally disjoint from V (BP ) ∪ V (F ) and intersects P [yi, a
′).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
Since Q is induced in G′ and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and because P is
induced in G − aa′ and P [a, xi) has no neighbor in V (B) (by the definition of xi in
Notation 3.9), one can see that P ′ is an induced path in G−uu′′. Because of the path
W , and since P (a, a′) is nonseparating in GF , P ′(u, u′′) is nonseparating in GF . Since
r 
∈ S, if r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF − V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.
So we may assume (2) occurs. We consider two cases.
First, assume there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor

in V (P [yi, a
′)). Then there exists an rm-rn path W in GF − V (P (a, yi)) which is

internally disjoint from V (BP ) ∪ V (F ) and intersects P [yi, a
′). By Lemma 2.6 (with

G′, u, u′, b, y∗ as G, a, a′, b, b′, respectively), there exists an induced u-u′ path Q in
G′ such that G′ − V (Q) has exactly two components K and K ′ with b ∈ V (K) and
y∗ ∈ V (K ′). Moreover, such a path can be found in O(|V (G′)| + |E(G′)|) time (and
hence, in O(|V (G)| + E(G)|) time). If u′ 
= xi, then let P ′ := Q; otherwise let
P ′ := P [a, xi]∪Q. So P ′ is a path with ends in V (F ) which is internally disjoint from
V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
Since Q is induced in G′ and NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪ {r} (by Assumption 1),
and because P is induced in G − aa′ and P [a, xi) has no neighbor in V (B) (by the
definition of xi in Notation 3.9), one can see that P ′ is an induced path in G− uu′′.
Since G′−V (Q) has exactly two components, one containing b and the other containing
y∗, and because of the path W , it follows that P ′(u, u′′) is nonseparating in GF . If
r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF − V (P (a, a′)). Then,
because of the path W , r is not a cut vertex of G−V (P ′(u, u′′)). Thus, P ′ is a feasible
F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Now assume that there exists no n ∈ {1, . . . , p}−{i,m} such that Vn has a neigh-
bor in V (P [yi, a

′)). Since |XP | ≥ 3 and V (P (xi, yi)) has no neighbor in (
⋃p

j=1 Vj)−Vi,
there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor in V (P (a, xi]), and
hence, xi 
= a. Note that G′ 
∼= K1,4 because B is nontrivial. By Lemma 2.7 (with
G′, u, y∗, u′, b as G, a, a′, b, b′, respectively), there exists a nonseparating induced u-y∗

path Q in G′ such that V (Q) ∩ {u′, b} = ∅. Moreover, such a path can be found
in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time). Note that
either xi has a neighbor in V (Ai) − V (B − b) or xi is in G′ − V (Q). Since Vn has
a neighbor in V (P (a, xi]), there exists an ri-rn path W in GF − V (P (xi, a

′)) which
is internally disjoint from V (BP ) ∪ V (F ) and intersects P (a, xi]. If y∗ = yi, then let
P ′ := Q∪P [yi, a

′]; otherwise, let P ′ := (Q∪P [yi, a
′])+{yi, yiy∗}. One can show that

P ′ is an induced path in G − ua′, and because of the path W , P ′(u, a′) is nonsepa-
rating in GF . If r ∈ {u, a′}, then a′ = r, r is not a cut vertex of GF − V (P ′(u, a′))
because of the path W , and because r is not a cut vertex of GF − V (P (a, a′)). Thus,
P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Lemma 3.15. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and for every Hj ∈ H, xj 
= yj.
Suppose that Hi ∈ H and V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′}.
Assume that V (P (xi, yi)) has a neighbor in (

⋃p
j=1 Vj) − Vi. Then a BP -augmenting

path can be found in O(|V (G)| + |E(G)|) time.
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Proof. Since |XP | ≥ 3 and V (P (xi, yi)) has a neighbor in (
⋃p

j=1 Vj) − Vi, there
exist m,n ∈ {1, . . . , p}−{i} such that both Vm and Vn have a neighbor in V (P (a, yi)),
or both Vm and Vn have a neighbor in V (P (xi, a

′)).
By symmetry we may assume that both Vm and Vn have a neighbor in V (P (xi, a

′)).
Therefore, there exists an rm-rn path W in GF − V (P (a, xi]) which is internally dis-
joint from V (BP ) ∪ V (F ) and intersects P (xi, a

′).
Let D be the graph obtained from Ai − {xi, yi} by adding a new vertex b′ and

new edges from b′ to each v ∈ V (P (xi, yi)) such that v has a neighbor in some Vj ,
j ∈ {1, . . . , p} − {i}. Since P (xi, yi) ⊆ Ai − {xi, yi}, ND(b′) ∪ {b′} is contained in a
block of D, and b′ is not a cut vertex of D. Note also that if D is not connected,
then D has exactly two components, one containing bi and the other induced by
V (P (xi, yi))∪{b′}, and the component containing b′ is a block of D since every vertex
in V (P (xi, yi)) has a neighbor in some Vj , j 
= i (because NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′} ∪ {r} by Assumption 1). We consider two cases.

Case 1. D is not a bi-b
′ chain.

Then there exists an endblock B of D such that one of the following holds: (1)
b′ 
∈ V (B), and if bi ∈ V (B), then bi is a cut vertex of D, or (2) D has exactly
two components and B is the component of D containing bi (and hence, V (B) ∩
(V (P (xi, yi)) ∪ {b′}) = ∅ by the argument in the last paragraph). Note that such an
endblock can be found in O(|V (G)|+ |E(G)|) time. If (1) holds, then let b denote the
cut vertex of D contained in B. If (2) holds, then let b := bi. Since |XP | ≥ 3 and BP

is a block of GF − V (P (a, a′)), it follows from the definition of xi, yi in Notation 3.9
that r 
∈ {xi, yi}. Note that ND(b′) ∩ V (B − b) = ∅ and r 
∈ NG(B − b).

Subcase 1.1. B is trivial.
Let v denote the only vertex in V (B) − {b}. Note that NG(v) ⊆ V (F − r) ∪

{xi, yi, b}. Since G is 4-connected and ND(b′) ∩ V (B − b) = ∅, v has at least three
neighbors in V (F −r)∪{xi, yi}. Let u, u′ be two distinct neighbors of v in V (F −r)∪
{xi}. By symmetry, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := (u, v, u′).
If u′ = xi, then let P ′ := P [a, xi] + {u, v, uv, vxi}. Then P ′ is a path with ends in
V (F ) which is internally disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and P is induced in G − aa′.
Since NG(v) ⊆ V (F − r)∪{xi, yi, b} and V (P [a, xi)) has no neighbor in V (B) (by the
definition of xi in Notation 3.9), it follows that P ′ is induced in G−uu′′. Because of the
path W and since P (a, a′) is nonseparating in GF , P ′(u, u′′) is nonseparating in GF .
Moreover, if r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF−V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, a)). Thus, P ′ is
a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Subcase 1.2. B is nontrivial.
Let S := NG(B− b)−{yi, b}, and let G′ be obtained from B by adding S and the

edges of G from S to V (B)−{b}. Note that since r 
∈ {xi, yi} and r 
∈ NG(B−b), r 
∈ S.
Since G is 4-connected and yi is the only possible neighbor of V (B− b) not in S∪{b},
G′ is (3, S ∪ {b})-connected. By Lemma 2.4 (with G′, S, b as G,S, b, respectively)
there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩ {b} = ∅,
V (Q)∩S = {u, u′}, and G′ − (V (Q)∪S) is connected. Moreover, such a path can be
found in O(|V (G′)|+ |E(G′)|) time (and hence, in O(|V (G)|+ |E(G)|) time). Without
loss of generality, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise
let P ′ := P [a, xi]∪Q. Then P ′ is a path with ends in V (F ) which is internally disjoint
from V (BP ) ∪ V (F ).
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Next we prove that P ′ is a BP -augmenting path. Let u, u′′ denote the ends
of P ′. Note that Q is induced in G − uu′′, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (by
Assumption 1), and P is induced in G−aa′. Then since NG(v) ⊆ V (F−r)∪{xi, yi, b}
and V (P [a, xi)) has no neighbor in V (B) (by the definition of xi in Notation 3.9), it
follows that P ′ is induced in G−uu′′. Because of the path W and since G′−(V (Q)∪S)
is connected, P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then r = u′′ = a, and
r is not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a
cut vertex of GF −V (P ′(u, u′′)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ ,
P ′ is a BP -augmenting path.

Case 2. D is a bi-b
′ chain.

Let D := w0B1w1 . . . wl−1Blwl where w0 := bi and wl = b′. Note that this block
decomposition can be found in O(|V (G)| + |E(G)|) time.

For each nontrivial block Bj with 1 ≤ j ≤ l − 1, let Sj := NG(Bj − {wj−1, wj}).
If Bl is nontrivial, then let Sl := NG(Bl − {wl−1, wl}) −XP , namely, Sl contains all
neighbors of V (Bl−{wl−1, wl}) except the neighbors of ND(b′) contained in XP . For
each nontrivial block Bj with 1 ≤ j ≤ l, let Gj be obtained from Bj by adding Sj and
the edges of G from Sj to V (Bj). Note that ND(b′)∪{b′} ⊆ Bl, and for 1 ≤ j ≤ l−1,
V (Bj)∩ (ND(b′)∪{b′}) ⊆ {wl−1}. Hence, for 1 ≤ j ≤ l− 1, Sj ⊆ V (F − r)∪{xi, yi}.
Moreover, r 
∈ {xi, yi} by Notation 3.9. Thus, r 
∈ Sj for 1 ≤ j ≤ l − 1. Also if Bl is
nontrivial, then no vertex in V (Bl −ND(b′)) is adjacent to r, and by the definition of
Sl, r 
∈ Sl. First, we prove the following.

Claim. One can in O(|V (G)|+ |E(G)|) time either find a BP -augmenting path or
certify that the following statements hold:

(I) for each nontrivial block Bj with 1 ≤ j ≤ l − 1, |Sj | = 2, yi ∈ Sj , and if u
denotes the vertex in Sj − {yi}, then (Gj , yi, wj−1, u, wj) is planar;

(II) for each 1 ≤ j ≤ l − 2 for which both Bj , Bj+1 are trivial, |NG(wj) −
{wj−1, wj+1}| = 2, and yi ∈ NG(wj); and

(III) if Bl is nontrivial, then Sl ∩ (V (F − r) − {a, a′}) = ∅.
Proof of Claim. We will show that if one of (I)–(III) does not hold, then one can

find in O(|V (G)| + |E(G)|) time a BP -augmenting path.
Proof of (I). Suppose that j ∈ {1, . . . , l− 1} and Bj is nontrivial. Note that Gj −

Sj = Bj is 2-connected. Moreover, since G is 4-connected, Gj is (4, Sj ∪ {wj−1, wj})-
connected. Thus, the hypotheses of Lemma 2.3 are satisfied with Gj , Sj , wj−1, wj as
G,S, b, b′, respectively. By Lemma 2.3 exactly one of the following holds:

(1) there exist u, u′ ∈ Sj and an induced u-u′ path Q such that V (Q)∩{wj−1, wj} =
∅, V (Q) ∩ Sj = {u, u′}, and Gj − (V (Q) ∪ Sj) is connected; or

(2) |Sj | = 2, and the elements of Sj can be labeled as u, u′ such that (Gj , u, wj−1,
u′, wj) is planar.

Moreover, one can in O(|V (Gj)| + |E(Gj)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds.

Suppose that (1) holds. Define P ′ as follows.
(a) if {u, u′} ∩ {xi, yi} = ∅, then let P ′ := Q;
(b) if {u, u′} = {xi, yi}, then let P ′ := (P − V (P (xi, yi))) ∪Q;
(c) if {u, u′} ∩ {xi, yi} = {xi}, then let P ′ := P [a, xi] ∪Q; and
(d) if {u, u′} ∩ {xi, yi} = {yi}, then let P ′ := P [yi, a

′] ∪Q.
We claim that P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪
V (F ). If (a) or (b) occurs, then clearly P ′ is a path as claimed. Suppose (c) occurs,
that is, {u, u′} ∩ {xi, yi} = {xi}. If a 
∈ {u, u′}, then clearly P ′ is a path as claimed;
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if a ∈ {u, u′}, then by the definition of xi in Notation 3.9, xi = a, and hence, P ′ is a
path as claimed. Similarly, if (d) occurs, then P ′ is a path as claimed.

Next we show that P ′ is a BP -augmenting path. Let u1, u2 denote the ends of P ′.
Since Q is induced in Gj and NG(P (a, a′))∩ V (F ) ⊆ {a, a} ∪ {r} (by Assumption 1),
and because P is induced in G−aa′ and P [a, xi)∪P (yi, a

′] has no neighbor in V (Bj)
(by the definition of xi and yi in Notation 3.9), one can show that P ′ is an induced
path in G−u1u2. Since Gj−(V (Q)∪Sj) is connected, it is easy to see that P ′(u1, u2)
is nonseparating in GF . If r ∈ {u1, u2}, then since r 
∈ {u, u′} ⊆ Sj , (b), (c), or (d)
occurs and either r = a or r = a′. In this case, r is not a cut vertex of GF−V (P (a, a′)),
and since |XP | ≥ 3, r is not a cut vertex of GF −V (P ′(u1, u2)). Thus, P ′ is a feasible
F -path. Since there exists a wj−1-wj path in Gj − (V (Q) ∪ Sj), there exists an ri-
b′ path in D − V (P ′(u1, u2)). By the definition of b′, the vertex adjacent to b′ in
this path has a neighbor in Vt for some t ∈ {1, . . . , p} − {i}. Hence, BP is properly
contained in a block of GF − V (P ′(u1, u2)), and therefore, P ′ is a BP -augmenting
path.

So assume that (2) holds. If yi ∈ {u, u′}, then (I) holds, so we may assume that
yi 
∈ {u, u′}. By Lemma 2.6 with Gj , u, u

′, wj−1, wj as G, a, a′, b, b′, respectively, one
can find in O(|V (Gj)| + |E(Gj)|) time an induced u-u′ path Q such that Gj − V (Q)
has exactly two components K and K ′ with wj−1 ∈ V (K) and wj ∈ V (K). Without
loss of generality, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise,
let P ′ := P [a, xi] ∪ Q. Clearly, P ′ is a path with ends in V (F ) which is internally
disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. Since Q is induced in Gj and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and because
P is an induced path in G− aa′ and P [a, xi) has no neighbor in V (Bj)− {wj−1, wj}
(by the definition of xi in Notation 3.9), one can show that P ′ is an induced path in
G−uu′′. Since Gj −V (Q) has exactly two components, one containing wj−1 and the
other containing wj , and because of the path W , it follows that G − V (P ′(u, u′′)) is
connected, so P ′ is nonseparating in GF . If r ∈ {u, u′′}, then r = u′′ = a, and r is
not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut
vertex of GF − V (P ′(u, u′′). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path.
Proof of (II). Suppose that for some j ∈ {1, . . . , l − 1} both Bj and Bj+1 are

trivial. If yi ∈ NG(wj) and |NG(wj) − {wj−1, wj}| = 2, then (II) holds, so we may
assume that yi 
∈ NG(wj) or |NG(wj) − {wj−1, wj}| 
= 2. Therefore, |NG(wj) −
{wj−1, wj , yi}| ≥ 2. Let u, u′ be distinct vertices in NG(wj) − {wj−1, wj , yi}. Note
that r 
∈ {u, u′} because BP is a block of GF −V (P (a, a′)). Without loss of generality
we may assume that u 
= xi. If u′ 
= xi, then let P ′ := (u,wj , u

′). If u′ = xi, then let
P ′ := P [a, xi] + {u,wj , wjxi, uwj}. By the definition of xi, yi in Notation 3.9, u 
= a
when u′ = xi. So P ′ is a path with ends in V (F ) which is internally disjoint from
V (BP ) ∪ V (F ). Note that V (P ′) ∩ V (P (xi, a

′)) = ∅.
Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P .

Since P is an induced path in G − aa′, and because wj has no neighbor in P [a, xi)
(by the definition of xi in Notation 3.9), one can see that P ′ is induced in G − uu′′.
Because of the path W and since P (a, a′) is nonseparating in GF , P ′ is nonseparating
in GF . If r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF −V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.
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Proof of (III). Suppose Bl is nontrivial. If Sl ∩ (V (F − r) − {a, a′}) = ∅, then
(III) holds, so we may assume that Sl ∩ (V (F − r) − {a, a′}) 
= ∅. We want to apply
Lemma 2.3 to find a BP -augmenting path, so we need to show that Gl, Sl, wl−1, wl = b′

(as G,S, b, b′, respectively) satisfy the hypotheses in the statement of Lemma 2.3.
Clearly, Gl − Sl = Bl is 2-connected and by definition, every vertex in Sl has a
neighbor in V (Bl) − {wl−1, wl}. Since P is an induced path in G − aa′ and G is
4-connected, Gl − b′ ⊆ G is (4, Sl ∪ {wl−1} ∪ND(b′))-connected. Hence, Gl is (3, Sl ∪
{wl−1, b

′})-connected. Recall that r 
∈ Sl (see the definition of Sl), V (P (xi, yi)) has
no neighbor in V (F − r) − {a, a′} unless xi = a or yi = a′ (by Assumption 1),
and Ai − V (Pi) is connected. Thus, since Sl ∩ (V (F − r) − {a, a′}) 
= ∅, V (Bl) −
({wl−1, wl} ∪ V (P (xi, yi))) 
= ∅. This implies that V (P (xi, yi)) ⊆ V (Bl)− {wl−1, wl}
(and hence, xi, yi ∈ Sl); otherwise, wl−1 ∈ V (P (xi, yi)), contradicting the fact that
Ai−V (Pi) is connected. Thus, |Sl| ≥ 3, and there exists a component K of Gl− (Sl∪
{wl−1, wl}) = Bl − {wl−1, wl} which contains V (P (xi, yi)). Note that K has at least
two neighbors in Sl, namely, xi, yi. Thus, the hypotheses of Lemma 2.3 are satisfied
with Gl, Sl, wl−1, wl as G,S, b, b′, respectively.

Therefore, by Lemma 2.3 there exist u, u′ ∈ Sl and an induced path Q in Gl such
that V (Q) ∩ {wl−1, wl} = ∅, V (Q) ∩ Sl = {u, u′}, and Gl − (V (Q) ∪ Sl) is connected.
Define P ′ as follows:

(a) if {u, u′} ∩ {xi, yi} = ∅, then let P ′ := Q;
(b) if {u, u′} = {xi, yi}, then let P ′ := (P − V (P (xi, yi))) ∪Q;
(c) if {u, u′} ∩ {xi, yi} = {xi}, then let P ′ := P [a, xi] ∪Q; and
(d) if {u, u′} ∩ {xi, yi} = {yi}, then let P ′ := P [yi, a

′] ∪Q.
We claim that P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪
V (F ). Clearly, this is true if (a) or (b) occurs. Suppose (c) occurs, that is, {u, u′} ∩
{xi, yi} = {xi}. If a 
∈ {u, u′}, then P ′ is a path as claimed. If a ∈ {u, u′}, then by
the definition of xi in Notation 3.9, a = xi. Again, P ′ is a path as claimed. Similarly,
if (d) occurs, then P ′ is a path as claimed.

Next we show that P ′ is a BP -augmenting path. Let u1, u2 denote the ends of P ′.
Since Q is induced in Gl and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a} ∪ {r}, and because P is
induced in G− aa′ and P [a, xi)∪P (yi, a

′] has no neighbor in Bl (by the definition of
xi and yi in Notation 3.9), one can see that P ′ is an induced path in G− u1u2. Since
Gl − (V (Q)∪Sl) is connected and V (P (xi, yi)) has a neighbor in (

⋃p
j=1 Vj)−Vi, it is

easy to see that P ′(u1, u2) is nonseparating in GF . If r ∈ {u1, u2}, then since r 
∈ Sl,
(b), (c), or (d) occurs, and either r = a or r = a′. In this case, r is not a cut vertex
of GF − V (P (a, a′)), and since |XP | ≥ 3, r is not a cut vertex of GF − V (P ′(u1, u2)).
Thus, P ′ is a feasible F -path. Moreover, since there exists a wl−1-wl path W ′ in
Gl−(V (Q)∪Sl), there exists an ri-b

′ path W ′′ in D−V (P ′(u1, u2)). By the definition
of b′, the vertex adjacent to b′ in W ′′ has a neighbor in Vt for some t ∈ {1, . . . , p}−{i}.
Hence, BP is properly contained in a block of GF − V (P ′(u1, u2)), and therefore, P ′

is a BP -augmenting path.
This concludes the proof of the claim.
By the above claim, we may assume that (I), (II), and (III) hold. Therefore, by

(III) and since V (Ai)−{bi, xi, yi} has a neighbor in V (F −r)−{a, a′}, we have l ≥ 2.
We consider three subcases.

Subcase 2.1. xi has at least two neighbors in V (Bl).
Thus, Bl is nontrivial (because xi is not adjacent to b′ in D). We claim that

P (xi, yi) ⊆ Bl − wl−1. Suppose for a contradiction that P (xi, yi) 
⊆ Bl − wl−1. Then
wl−1 ∈ V (P (xi, yi)). Since GF − V (P (a, a′)) is connected, Bl − b′ ⊆ P (xi, yi). But
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then xi has at most one neighbor in V (Bl) because P is an induced path in GF −aa′,
a contradiction. Therefore, P (xi, yi) ⊆ Bl − wl−1.

Since V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′} and Sl ∩ (V (F −
r) − {a, a′}) = ∅ by (III), there exists q ∈ {1, . . . , l − 1} such that V (Bq − wq−1) has
a neighbor in V (F − r) − {a, a′}. Choose q to be maximum with this property, and
let u be a neighbor of V (Bq − wq−1) in V (F − r) − {a, a′}.

Next we define a u-wq path Qq in Gq. If Bq is trivial or u is adjacent to wq, then let
Qq be the path induced by the edge uwq. Otherwise, Bq is nontrivial, Sq = {u, yi},
and (Gq, yi, wq−1, u, wq) is planar (by (I)). By Lemma 2.7 (with Gq, u, wq, yi, wq−1

as G, a, a′, b, b′, respectively), there exists a nonseparating induced u-wq path Qq

in Gq such that V (Qq) ∩ {yi, wq−1} = ∅. Moreover, such a path can be found in
O(|V (Gq)| + |E(Gq)|) time.

By the maximality of q, for q + 1 ≤ j ≤ l − 1, the following holds: If Bj is
nontrivial, then Sj = {xi, yi} and (Gj , yi, wj−1, xi, wj) is planar (by (I)), and if Bj

and Bj+1 are trivial, then NG(wj)−{wj−1, wj+1} = {xi, yi} (by (II)). Note also that
xi ∈ Sl because P (xi, yi) ⊆ Bl − wl−1.

Choose the minimum t ∈ {q + 1, . . . , l} such that xi ∈ NG(Bt − wt). Thus,
by the choice of q and t, Bj is trivial for every j ∈ {q + 1, . . . , t − 1}. For each
j ∈ {q + 1, . . . , t− 1}, let Zj denote the path induced by the edge wj−1wj .

If Bt is trivial, then let Qt denote the path induced by the edge wt−1xi. If Bt is
nontrivial, then we define a path Qt according to the following two cases.

• t < l. Then St = {xi, yi}, and (Gt, wt−1, xi, wt, yi) is planar. By Lemma 2.7
with Gt, wt−1, xi, wt, yi as G, a, a′, b, b′, respectively, there exists a nonseparat-
ing induced wt−1-xi path Qt in Gt such that V (Qt)∩{wt, yi} = ∅. Moreover,
such a path can be found in O(|V (Gt)| + |E(Gt)|) time.

• t = l. Since P is induced in G − aa′ and xi has at least two neighbors in
V (Bl), xi has a neighbor in V (Bl)−V (P (xi, yi)). Moreover, Bl−V (P (xi, yi))
is connected because Ai−V (Pi) is connected, and hence, there exists a wl−1-
xi path Q′ in Bl − V (P (xi, yi)). Let G′ := Gl − b′, and let S′ := ND(b′) ∪
Sl ∪ {wl−1}. Then G′ is (4, S′)-connected, and S′ − {wl−1, xi} is contained
in a component U of G′ − V (Q′). By Lemma 2.1 (with G′, S′, wl−1, xi, U as
G,S, a, a′, U , respectively) there exists a nonseparating induced wl−1-xi path
Ql in G′ such that V (Ql)∩ V (U) = ∅ (and hence, V (Ql)∩ V (P (xi, yi)) = ∅).
Moreover, such a path can be found in O(|V (G′)|+ |E(G′)|) time (and hence,
in O(|V (G)| + |E(G)|) time).

Let P ′ := Qq ∪Zq+1 ∪ · · · ∪Zt−1 ∪Qt ∪P [a, xi]. Then P ′ is a u-a path in G such
that V (P ′) ∩ V (F ) = {u, a}. Moreover, it is not hard to see that such a path can be
found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. It is not hard to see that P ′ is an
induced path in G − ua. Because of the path W and since P (a, a′) is nonseparating
in GF , P ′(u, a) is nonseparating in GF . If a = r, then r is not a cut vertex of
GF−V (P (a, a′)), and because of the path W , r is not a cut vertex of GF−V (P ′(u, a)).
Thus, P ′ is a feasible F -path. Moreover, since V (P ′) ∩ V (P (xi, a

′]) = ∅, BP ∪W ⊆
BP ′ . Therefore, P ′ is a BP -augmenting path.

Subcase 2.2. xi has at most one neighbor in V (Bl), and xi has a neighbor in
V (Ai) − (V (P (xi, yi)) ∪ {bi}).

Then since Ai is 2-connected, xi has a neighbor in V (D)− (V (Bl)∪{bi}). There-
fore, since V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′} and by (I), (II),
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and (III), there exist u ∈ V (F − r) − {a, a′} and q, t ∈ {1, . . . , l − 1} with q ≤ t such
that one of the following holds:

(a) u ∈ NG(Bq − wq−1), and xi ∈ NG(Bt − wt); or
(b) xi ∈ NG(Bq − wq−1), and u ∈ NG(Bt − wt).

Choose q, t so that t− q is minimum and (a) or (b) holds. Note that q < t because in
(I) we must have yj ∈ Sj and in (II) we must have yj ∈ NG(wj).

We may assume that (a) holds because the other case is symmetric.
By the minimality of t− q and by (I), Bj is trivial for every j ∈ {q+1, . . . , t− 1}.

Using (II), one can also show that t− q ≤ 2. For q + 1 ≤ j ≤ t− 1, let Zj denote the
path induced by the edge wj−1wj .

If Bq is trivial, then let Qq be the path induced by the edge uwq. Otherwise (by
(I)) Bq is nontrivial, Sq = {u, yi}, and (Gq, yi, wq−1, u, wq) is planar . By Lemma 2.7
(with Gq, u, wq, yi, wq−1 as G, a, a′, b, b′, respectively), there exists a nonseparating
induced u-wq path Qq in Gq such that V (Qq)∩{yi, wq−1} = ∅. Moreover, such a path
can be found in O(|V (Gq)| + |E(Gq)|) time.

Similarly, if Bt is trivial, then let Qt be the path induced by the edge xiwt−1.
Otherwise (by (I)) Bt is nontrivial, St = {xi, yi}, and (Gt, yi, wt−1, xi, wt) is planar.
By Lemma 2.7 (with Gt, xi, wt−1, yi, wt as G, a, a′, b, b′, respectively) there exists a
nonseparating induced xi-wt−1 path Qt in Gt such that V (Qt) ∩ {yi, wt} = ∅. More-
over, such a path can be found in O(|V (Gt)| + |E(Gt)|) time.

Let P ′ := Qq ∪ Zq+1 ∪ · · · ∪ Zt−1 ∪Qt ∪ P [a, xi]. Then P ′ is a u-a path which is
internally disjoint from V (BP ) ∪ V (F ). Moreover, it is not hard to see that such a
path can be found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. Since Qq, Qt are nonseparating
and induced in Gq, Gt, respectively, it is not hard to see that P ′ is an induced path in
G− ua. Because of the path W and since P (a, a′) is nonseparating in GF , P ′(u, a) is
non-separating in GF . If a = r, then r is not a cut vertex of GF −V (P (a, a′)), and be-
cause of the path W , r is not a cut vertex of GF−V (P ′(u, a)). Thus, P ′ is a feasible F -
path. Since V (P ′)∩V (Pi−xi) = ∅, BP ∪W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting
path.

Subcase 2.3. xi has at most one neighbor in V (Bl), and xi has no neighbor in
V (Ai) − (V (P (xi, yi)) ∪ {bi}).

In this case, since Ai is 2-connected, bi is the only neighbor of xi in Ai not
contained in V (P (xi, yi)). We consider two cases according to whether xi = a or
xi 
= a.

(A) xi = a.
Then by the definition of xi in Notation 3.9, bi 
= ri. Since V (Ai)−{bi, xi, yi} has

a neighbor in V (F − r) − {a, a′} and (III) holds, there exists some q ∈ {1, . . . , l − 1}
such that V (Bq−wq−1) has a neighbor in V (F−r)−{a, a′}. Choose q to be minimum
with this property.

Therefore, since bi is the only neighbor of xi in Ai not contained in V (Pi) and (I)
holds, Bj is trivial for every j ∈ {1, . . . , q − 1}. Using (II), one can show that either
q = 1 or q = 2. For each j ∈ {1, . . . , q − 1} let Zj be the path induced by the edge
wj−1wj .

If Bq is trivial (in this case q = 1), then, by the choice of q, wq has a neighbor
u in V (F − r), and let Qq := (wq−1, wq, u). If Bq is nontrivial, then by (I) Sq =
{u, yi} for some u ∈ V (F − r)− {a, a′}, and (Gq, yi, wq−1, u, wq) is planar. Note that
u 
= a because xi has no neighbor in V (Ai) − (V (Pi) ∪ {bi}). By Lemma 2.7 (with
Gq, u, wq−1, yi, wq as G, a, a′, b, b′, respectively), there exists a nonseparating induced
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u-wq−1 path Qq in Gq such that V (Qq)∩ {yi, wq} = ∅. Moreover, such a path can be
found in O(|V (Gq)| + |E(Gq)|) time.

Let P ′ := (Z1 ∪ · · · ∪ Zq−1 ∪ Qq) + {xi, xibi}. Then P ′ is a u-a path which is
internally disjoint from V (BP ) ∪ V (F ). Moreover, it is not hard to see that such a
path can be found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. It is not hard to see that P ′ is
an induced path in G−ua. Because of the path W and since P (a, a′) is nonseparating
in GF and Qq is nonseparating in Gq, P

′(u, a) is nonseparating in GF . If a = r, then
r is not a cut vertex of GF − V (P (a, a′)), and because of the path W , r is not a cut
vertex of GF − V (P ′(u, a)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path.
(B) xi 
= a.
In this case, it is possible that bi = ri. Note that xi has degree at least four

in G (because G is 4-connected), P is induced in G − aa′, and xi has no neighbor
in V (Ai) − (V (Pi) ∪ {bi}) (by assumption in this subcase). So xi has a neighbor in
(
⋃p

j=1 Vj) − Vi. Let t ∈ {1, . . . , p} − {i} such that xi has a neighbor in Vt.
Suppose that for some j ∈ {1, . . . , l − 1}, Bj is nontrivial. Then by (I) and by

our assumption that xi has no neighbor in V (Ai)− (V (P (xi, yi))∪{bi}), Sj = {u, yi}
for some u ∈ V (F − r), and (Gj , yi, wj−1, u, wj) is planar. Note that u 
= a′ by
the definition of yi in Notation 3.9 and because u 
= yi. Also u 
= a because xi 
=
a. By Lemma 2.6 (with Gj , yi, u, wj−1, wj as G, a, a′, b, b′, respectively), there exists
a nonseparating induced u-yi path Q in Gj such that Gj − V (Q) has exactly two
components K and K ′ with wj−1 ∈ V (K) and wj ∈ V (K ′). Moreover, such a path
can be found in O(|V (Gj)|+ |E(Gj)|) time (and hence, in O(|V (G)|+ |E(G)|) time).
Let P ′ := Q∪P [yi, a

′]. Then P ′ is a u-a′ path in G such that V (P ′)∩V (F ) = {u, a′}.
Moreover, it is not hard to see that such a path can be found in O(|V (G)| + |E(G)|)
time.

Next we show that P ′ is a BP -augmenting path. Since Q is induced in Gj and
NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪ {r} (by Assumption 1), and because P is an induced
path in G − aa′ and P ((yi, a

′]) has no neighbor in V (Bj) (by the definition of yi in
Notation 3.9), one can see that P ′ is an induced path in G − ua′. Since Gj − V (Q)
has exactly two components, one containing wj−1 and the other containing wj , and
because xi has a neighbor in Vt, it is not hard to show that P ′ is nonseparating in GF .
If r ∈ {u, a′}, then r = a′ and r is not a cut vertex of GF − V (P (a, a′)). In this case,
because xi has a neighbor in Vt, r is not a cut vertex of GF − V (P ′(u, a′)). Thus, P ′

is a feasible F -path. Moreover, since bi is adjacent to xi and xi has a neighbor in Vt,
it follows that P ′ is a BP -augmenting path.

Thus, we may assume that Bj is trivial for every j ∈ {1, . . . , l− 1}. If l ≥ 3, then
B1 and B2 are trivial, and by (II), NG(w1)−{w0, w2} = {u, yi} for some u ∈ V (F−r).
Note that u 
∈ {a, a′} because xi 
= a and yi 
= u. By an argument similar to the above
paragraph, one can show that P ′ := (u,w1, yi) ∪ P [yi, a

′] is a BP -augmenting path.
So we may assume that l = 2 and B1 is trivial. This implies that V (P (xi, yi)) ⊆

V (B2). Hence, B2 is nontrivial, so S2 = {xi, yi} (by (III)). Since V (Ai) − {bi, xi, yi}
has a neighbor in V (F − r) − {a, a′} (by assumption in this lemma) and (III) holds,
w1 is adjacent to some u ∈ V (F − r)−{a, a′}. Let x′, y′ denote the vertices in ND(b′)
(see Notation 3.9) which are the lowest and the highest in P , respectively. Since B2

is 2-connected, V (B2) − (V (P (xi, yi)) ∪ {b′}) has a neighbor in V (P (x′, yi)). Since
B2−(V (P (xi, yi))∪{b′}) is connected (because Ai−V (Pi) is connected), there exists a
w1-yi path Q′ in G2 such that xi and b′ are contained in a component U of G2−V (Q′).
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Moreover, recall that G2 is (3, {w1, xi, yi, b
′})-connected. Thus, the hypotheses of

Lemma 2.1 are satisfied with G2, {w1, xi, yi, b
′}, w1, yi, U as G,S, a, a′, U , respectively.

By Lemma 2.1 there exists a nonseparating induced w1-yi path Q in G2 such that
V (Q)∩V (U) = ∅ (and hence, V (Q)∩{xi, b

′} = ∅). Moreover, such a path can be found
in O(|V (G2)| + |E(G2)|) time (and hence, in O(|V (G)| + |E(G)|) time). Let P ′ :=
(P [yi, a

′]∪Q)+{u, uw1}. Then P ′ is a u-a′ path in G such that V (P ′)∩V (F ) = {u, a′}.
Moreover, it is not hard to see that such a path can be found in O(|V (G)| + |E(G)|)
time.

We conclude the proof by showing that P ′ is a BP -augmenting path. Since Q
is induced in G2 and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (by Assumption 1), and
because P is an induced path in G − aa′ and P ((yi, a

′]) has no neighbor in V (B2)
(by the definition of yi in Notation 3.9), one can see that P ′ is an induced path in
G−ua′. Since G2 −V (Q) is connected, and because xi has a neighbor in Vt, it is not
hard to see that P ′ is nonseparating in GF . If r ∈ {u, a′}, then r = a′, and r is not a
cut vertex of GF − V (P (a, a′)). In this case, because xi has a neighbor in Vt, r is not
a cut vertex of GF − V (P ′(u, a′)). Thus, P ′ is a feasible F -path. Moreover, since bi
is adjacent to xi and xi has a neighbor in Vt, it follows that P ′ is a BP -augmenting
path.

We are now ready to prove the main result of this section, which implies Theo-
rem 3.2. Consider Algorithm 1.

Theorem 3.16. Algorithm 1 is correct and runs in O(|V (G)||E(G)|) time.
Proof. First, we will prove the correctness of the algorithm.
At the start of each iteration of the main loop, P is a feasible a-a′ F -path, and

BP is a nontrivial block of GF := G − V (F − r) containing r. As the algorithm
progresses, |V (BP )| increases.

If GF − V (P (a, a′)) is 2-connected, then the algorithm stops at line 5. Since P is
an induced path in GF − aa′, H := P is either an elementary F -chain or an up a-a′

F -chain whose blocks are all trivial. Moreover, GF − I(H) = GF − V (P (a, a′)) and
G[V (F ) ∪ I(H)] = F ∪ P are 2-connected.

If for every BP -bridge B of GF − V (P (a, a′)), NG(B − rB) ⊆ V (P ), then by
Lemma 3.6 the a-a′ F -chain H in line 8 exists, and GF − I(H) and G[V (F ) ∪ I(H)]
are 2-connected. Thus, if the algorithm stops at line 9, it returns a correct
answer.

If |XP | = 2, then by Lemma 3.7 either the subgraph H defined in line 12 is a
down F -chain or there exists a BP -augmenting path. Thus, if the algorithm stops at
line 14, then H is a down F -chain and GF − I(H) = BP and G[V (F ) ∪ I(H)] are
2-connected. Otherwise, the algorithm increases BP by executing lines 16 and 17.

In line 19, if |V (P )| = 3 (and hence, |XP | ≥ 3), then GF − V (P (a, a′)) is not
2-connected; for otherwise, Algorithm 1 would have stopped at line 5. By Lemma 3.8
a BP -augmenting path exists, and the algorithm increases BP .

Suppose then that |XP | ≥ 3 and |V (P )| ≥ 4. Let Hi ∈ H be adjacent to F (see
Notation 3.9). If xi = yi, then by Lemma 3.12 the BP -augmenting path in line 24
exists, and the algorithm increases BP . If xi 
= yi, then by Lemmas 3.12, 3.13, 3.14,
and 3.15 either the subgraph H defined in line 26 is a triangle chain, or there exists
a BP -augmenting path. Thus, if the algorithm stops at line 28, then H is a triangle
F -chain such that GF − I(H) = BP and G[V (F )∪ I(H)] are 2-connected. Otherwise,
the algorithm increases BP by executing lines 30 and 31.

Since |V (BP )| increases at each iteration, the main loop at line 1 eventually stops
and a good F -chain in G is returned. Hence, Algorithm 1 is correct.
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Algorithm 1. Internal Chain.

Require: G, r, F, a, a′, P,BP satisfying the hypotheses of Theorem 3.2.
Return: A good F -chain H in G such that GF − I(H) and G[V (F ) ∪ I(H)] are

2-connected.
1: loop
2: Apply Lemma 3.4 to P , and let P denote the resulting path;
3: Let a, a′ denote the ends of P ;
4: if GF − V (P (a, a′)) is 2-connected then
5: Return H := P and stop;
6: Compute XP (as defined in Notation 3.5);
7: if for every BP -bridge B of GF − V (P (a, a′)), NG(B − rB) ⊆ V (P ) then
8: Find an up a-a′ F -chain H by applying Lemma 3.6;
9: Return H and stop;

10: if |XP | = 2 then
11: Let v, v′ be the vertices in XP ;
12: H ← (GF − (V (BP ) −XP )) − vv′;
13: if H is a down F -chain in G then
14: Return H and stop;
15: else
16: Find a BP -augmenting path P ′ as in Lemma 3.7;
17: Set P ← P ′ and start a new iteration;
18: if |V (P )| = 3 then
19: Find a BP -augmenting path P ′ as in Lemma 3.8;
20: Set P ← P ′ and start a new iteration;
21: Compute H;
22: Let Hi ∈ H be adjacent to F ;
23: if xi = yi then
24: Find a BP -augmenting path P ′ as in Lemma 3.12
25: P ← P ′ and start a new iteration;
26: Let H be obtained from Ai by adding NG(Ai) ∩ V (F ) and all the edges of G

from V (Ai) to V (F );
27: if GF − V (BP ) = Ai and H is a triangle chain of F then
28: Return H and stop;
29: else
30: Find a BP -augmenting path P ′ as in Lemmas 3.12, 3.13, 3.14, and 3.15;
31: Set P ← P ′ and start a new iteration;

Now we discuss the running time of the algorithm.
The loop in line 1 is executed at most |V (G)| times since |V (BP )| increases at

each iteration.
By Lemma 3.4, the step in line 2 can be performed in O(|V (G)| + |E(G)|) time.
The test in line 4 and the steps in line 6 can be executed in O(|V (G)| + |E(G)|)

time by standard graph search techniques [6].
The steps in lines 7–9 can be executed in O(|V (G)|+ |E(G)|) time by Lemma 3.6.
The steps in lines 10–17 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.7.
The steps in lines 18–20 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.8.
The steps in lines 21–22 can be executed in O(|V (G)|+ |E(G)|) time by standard

graph search techniques [6].
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The steps in lines 23–25 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.12.
Finally, the steps in lines 26–31 can be executed in O(|V (G)| + |E(G)|) time by

Lemmas 3.12, 3.13, 3.14, and 3.15.
Therefore, the running time of the Algorithm 1 is O(|V (G)||E(G)|).

4. Chain decomposition. In this section, we describe how to construct a non-
separating chain decomposition of a 4-connected graph G.

The idea is the following. Suppose we have found a partial chain decomposition
H1, H2, . . . , Hi−1 of G and we want to find the next chain Hi. Let F := G[

⋃i−1
j=1 I(Hj)],

and assume that GF := G − (V (F ) − {r}) is 2-connected. If GF is a planar cyclic
chain rooted at r, then we obtain our desired decomposition by taking Hi := GF and
t := i. If GF is not a planar cyclic chain, then we want to use Theorem 3.2. In order
to apply it, we need to efficiently find vertices a, a′ ∈ V (F ) and a feasible a-a′ F -path
P . This will follow from Lemma 4.2 below.

We need the following result, proved in [7] and [1], which was used in [2].
Theorem 4.1. Let G be a 3-connected graph, let e ∈ E(G), and let u ∈ V (G) be

nonincident to e. Then there exists a nonseparating induced cycle in G through e and
avoiding u. Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

Lemma 4.2. Let G be a 4-connected graph, let r ∈ V (G), and let F be a connected
subgraph of G such that r ∈ V (F ), |V (F )| ≥ 2, and GF := G − (V (F ) − {r}) is 2-
connected. Then one of the following holds:

(1) GF is a planar cyclic chain in G rooted at r; or
(2) there exists a feasible a-a′ F -path P in G, that is,

(i) V (P ) ∩ V (F ) = {a, a′} and P is an induced path in G− aa′;
(ii) P (a, a′) is nonseparating in GF ;
(iii) r is contained in a nontrivial block of GF − V (P (a, a′)); and
(iv) if r ∈ {a, a′}, then r is not a cut vertex of GF − V (P (a, a′)).

Moreover, one can in O(|V (G)|+ |E(G)|) time certify that (1) holds or find a path as
in (2).

Proof. First, suppose that GF is 3-connected. Let G′ be obtained from G by
contracting F − r to a single vertex, say v′. Then G′ is 4-connected; otherwise, there
exists a 3-cut T in G′. Since G is 4-connected, v′ ∈ T . But then T − {v′} is a
2-cut in GF , which is a contradiction. By Theorem 4.1, we can find a nonseparating
induced cycle C in G′ through rv′ in O(|V (G)| + |E(G)|) time. The path C − rv′ in
G′ corresponds to an induced path P in G from r to some vertex a′ ∈ V (F −r). Since
G is 4-connected, r has at least two neighbors in GF − V (P (r, a′)). Moreover, since
C is nonseparating in G′, r is not a cut vertex of GF −V (P (r, a′)), and r is contained
in a nontrivial block of GF − V (P (r, a′)). Thus, P , a := r, and a′ satisfy (2).

So we may assume that GF is 2-connected but not 3-connected. Let {b, b′} be
a 2-cut of GF . Let H1, H2 be edge-disjoint subgraphs of GF such that r ∈ V (H1),
V (H1) ∩ V (H2) = {b, b′}, H1 ∪ H2 = GF , |V (H1)| ≥ 3, and |V (H2)| ≥ 3. Choose
H1, H2 such that H2 is minimal. Note that b, b′, H1, H2 can be found in O(|V (G)| +
|E(G)|) time using the algorithm in [3] for finding the 3-connected components of
GF . Let S := NG(H2 − {b, b′}) − {b, b′}, and let G′ be obtained from H2 by adding
S and the edges of G from S to V (H2) − {b, b′}. Note that S ⊆ V (F ), |S| ≥ 2,
and r 
∈ S because {b, b′} is a 2-cut of GF and r 
∈ V (H2) − {b, b′}. Moreover, G′ is
(4, S ∪ {b, b′})-connected.

Suppose that |V (H2)| ≥ 4. Then by minimality of H2, H2 is 2-connected and
G′, b, b′, S satisfy (i)–(v) of Lemma 2.3 (with G′ as G). Therefore, we can in O(|V (G′)|+
|E(G′)|) time either
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(I) find a, a′ ∈ S and an induced a-a′ path P ′ in G′ such that V (P ′)∩{b, b′} = ∅,
V (P ′) ∩ S = {a, a′}, and G− (V (P ′) ∪ S) is connected, or

(II) certify that |S| = 2, and the vertices in S can be labeled as a, a′ such that
(G′, a, b, a′, b′) is planar.

If (I) occurs, then r is contained in a nontrivial block of G − V (P ′) since there
exists a b-b′ path in H2 − V (P (a, a′)). Since r 
∈ S, we have r 
∈ {a, a′}. Hence,
P := P ′ is a path that satisfies (2).

So we may assume that one of the following holds: |V (H2)| ≥ 4 and (II) occurs,
or |V (H2)| = 3.

We claim that one can find in O(|V (G′)|+ |E(G′)|) time a path P in G′ with ends
a, a′ in S such that G′−(V (P )∪S) has exactly two components K,K ′ with b ∈ V (K)
and b′ ∈ V (K ′). If |V (H2)| ≥ 4 and (II) occurs, then this follows from Lemma 2.6. If
|V (H2)| = 3, then let v be the only vertex in V (H2)−V (H1). Then v has degree two
in GF , and since G is 4-connected, v has at least two neighbors in V (F ), say a, a′.
Then P := (a, v, a′) is the required path.

Therefore, GF − V (P (a, a′)) is connected. If r is contained in a nontrivial block
of H1, then r is contained in a nontrivial block of GF − V (P (a, a′)), and since r 
∈ S,
r 
∈ {a, a′}. In this case, P satisfies (2).

So assume that r is contained only in trivial blocks of H1.
Since GF is 2-connected, H1 is a b-b′ chain. Moreover, either r is a cut vertex

of H1, or r ∈ {b, b′}. In both cases, GF is a cyclic chain rooted at r. Let GF :=
v0B1v1 · · · vk−1Bkvk for some integer k ≥ 2 (where v0 = vk = r). Note that either
H2 = Bj for some 1 ≤ j ≤ k (when |V (H2)| ≥ 4), or H2 = Bj ∪ Bj+1 for some
1 ≤ j ≤ k − 1 where Bj , Bj+1 are trivial (when |V (H2)| = 3).

If all the Bi’s are trivial, then GF is a planar cyclic chain and (2) holds. So
assume that not all Bi’s are trivial. For each 2-connected Bi, let Si := NG(Bi −
{vi−1, vi}) − {vi−1, vi}, and let Gi be obtained from Bi by adding Si and the edges
of G from Si to V (Bi). Then Si ⊆ V (F − r), because {vi−1, vi} is a 2-cut of GF , and
r 
∈ V (Bi) − {vi−1, vi}. Note that Gi, Si, vi−1, vi (as G,S, b, b′, respectively) satisfy
(i)–(v) of Lemma 2.3 because Gi−Si = Bi is 2-connected and Gi is (4, Si∪{vi−1, vi})-
connected. Thus, one can in O(|V (Gi)|+ |E(Gi)|) time either (a) find ai, a

′
i ∈ Si and

an induced ai-a
′
i path Pi in G such that V (Pi)∩{vi−1, vi} = ∅, V (Pi)∩Si = {ai, a′i},

and Gi − (V (Pi) ∪ Si) = Bi − V (Pi(ai, a
′
i)) is connected, or (b) certify that |Si| = 2,

and the vertices in Si can be labeled as ai, a
′
i such that (Gi, vi−1, ai, vi, a

′
i) is planar.

Since G is 4-connected, if (b) occurs, then Bi − {vi−1, vi} = Gi − (Si ∪ {vi−1, vi}) is
connected.

If GF is not a planar cyclic chain rooted at r, then (a) must hold for some 2-
connected Bi, and hence, P := Pi satisfies (2) (because r 
∈ Si). Otherwise, (1)
holds.

It is not hard to see that all the steps described above can be executed in
O(|V (G)| + |E(G)|) time.

Thus, combining Lemma 4.2 and Theorem 3.2 we obtain the following.
Theorem 4.3. Let G be a 4-connected graph, let F be a subgraph of G, and let

r ∈ V (F ) such that GF := G−(V (F )−{r}) is 2-connected. Then one of the following
holds:

(1) there exists a good F -chain H in G such that GF −I(H) and G[V (F )∪I(H)]
are 2-connected; or

(2) GF is a planar cyclic chain rooted at r.
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Moreover, one can in O(|V (G)|+ |E(G)|) time find a good F -chain as in (1) or certify
that (2) holds.

We are now ready to prove the main result in this paper.
Proof of Theorem 1.5. A nonseparating chain decomposition of G starting at ra

can be found as follows. The first chain H1 can be found in O(|V (G)||E(G)|) time
by Theorem 1.6. The internal chains can be found iteratively as follows. Suppose we
have found a partial chain decomposition H1, . . . , Hi−1 (i ≥ 2) of G and we want to

find Hi. Let F := G[
⋃i−1

j=1 I(Hj)]. Apply Theorem 4.3 to G, F , and r. Then one of
the following holds:

(1) there exists a good F -chain H in G such that GF −I(H) and G[V (F )∪I(H)]
are 2-connected; or

(2) GF is a planar cyclic chain rooted at r.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a planar chain as in (1) or certify
that (2) holds. If (1) holds, then let Hi := H and set i ← i + 1. If (2) holds, then
H1, . . . , Hi := GF is the desired chain decomposition.

Since the number of chains is at most |V (G)|, the above algorithm has time
complexity O(|V (G)|2|E(G)|).

Acknowledgment. The authors thank the referees for carefully reading the
manuscript and for their helpful suggestions.
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POLYLOGARITHMIC ADDITIVE INAPPROXIMABILITY
OF THE RADIO BROADCAST PROBLEM∗

MICHAEL ELKIN† AND GUY KORTSARZ‡

Abstract. The input for the radio broadcast problem is an undirected n-vertex graph G and
a source node s. The goal is to send a message from s to the rest of the vertices in the minimum
number of rounds. In a round, a vertex receives the message only if exactly one of its neighbors
transmits. The radio broadcast problem admits an O(log2 n) approximation [I. Chlamtac and O.
Weinstein, in Proceedings of the IEEE INFOCOM, 1987, pp. 874–881; D. Kowalski and A. Pelc, in
APPROX-RANDOM, Lecture Notes in Comput. Sci. 3122, Springer, Berlin, 2004, pp. 171–182].

In this paper we consider the additive approximation ratio of the problem. We prove that there
exists a constant c so that the problem cannot be approximated within an additive term of c log2 n,
unless NP ⊆ BTIME(nO(log log n)).

Key words. approximation, broadcast, radio
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1. Introduction.

1.1. The radio broadcast problem.

1.1.1. Definition and motivation. Consider a synchronous network of proces-
sors that communicate by transmitting messages to their neighbors, where a processor
receives a message in a given step if and only if precisely one of its neighbors trans-
mit. The instance of the radio broadcast problem, called radio network, is a pair
(G = (V,E), s), s ∈ V , where G is an unweighted undirected n-vertex graph and s is
a vertex, called source. The objective is to deliver one single message that the source s
generates to all the vertices of the graph G using the smallest possible number of com-
munication rounds. The prescription that tells each vertex when it should broadcast
is called the schedule; the length of the schedule is the number of rounds it uses, and it
is called feasible if it informs all the vertices of the graph. From practical perspective,
the interest in radio networks is usually motivated by their military significance as
well as by the growing importance of cellular and wireless communication (see, e.g.,
[18, 14, 4]). The radio broadcast is perhaps the most important communication prim-
itive in radio networks, and it has been intensively studied starting in the mid-1980s
[9, 19, 20, 6, 5, 8, 17, 14, 18, 1, 4, 10, 7].

From theoretical perspective, the study of the radio broadcast problem provided
researchers with a particularly convenient playground for the study of such broad
and fundamental complexity-theoretic issues as the power and limitations of random-
ization and for the study of different models of distributed computation [4, 18, 20].
In this paper we study the approximation threshold of the radio broadcast problem.
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We believe that our results show that this problem is of particular interest from the
standpoint of the theory of hardness of approximation as well.

1.1.2. Previous results.
Upper bounds. The first algorithm for the radio broadcast problem was devised

by Chlamtac and Weinstein in 1987 [10]. That algorithm, given an instance (G, s) of
the problem, constructs a feasible broadcast schedule of length O(Rad(G, s) · log2 n),
where Rad(G, s) stands for the radius of the instance (G, s), that is, the maximum
distance dG(s, v) in the graph G between the source s and some vertex v ∈ V . Their
algorithm is centralized; i.e., it accepts the entire graph as input.

Soon afterwards Bar-Yehuda, Goldreich, and Itai [4] devised a distributed ran-
domized algorithm that provides feasible schedules of length O(Rad(G, s) · log n +
log2 n). Recently [21] a deterministic (albeit, centralized) algorithm with the same
performance was given by Kowalski and Pelc. Alon et al. [1] have shown that the
additive term of log2 n in the result of [4, 21] is inevitable, and they devised a con-
struction of infinitely many instances (G, s) of constant radius that satisfy that any
broadcast schedule for them requires Ω(log2 n) rounds. Kushilevitz and Mansour [18]
have shown that for distributed algorithms the multiplicative logarithmic term in the
result of [4] is inevitable as well, and they proved that for any distributed algorithm for
the radio broadcast problem there exists (infinitely many) instances (G, s) on which
the algorithm constructs a schedule of length Ω(Rad(G, s)·log(n/Rad(G, s))). Finally,
the gap between the log n and log(n/Rad(G, s)) was recently closed by Kowalski and
Pelc [20] and by Czumaj and Rytter [9].

Gaber and Mansour [14] devised a centralized algorithm that constructs feasible
schedules of length O(Rad(G, s) + log5 n). In [12] we improved this result providing
a schedule of length Rad(G, s) + O(

√
Rad(G, s) · log2 n) = O(Rad(G, s) + log4 n).

Since, obviously, any schedule for an instance (G, s) requires at least Rad(G, s)
rounds, the algorithms for the radio broadcast problem [10, 4, 14, 20, 9, 21] can be
interpreted as approximation algorithms for the problem. In particular, [10, 21] is a
deterministic O(log2 n) approximation algorithm.

Lower bounds. The NP-hardness of the radio broadcast problem was shown by
Chlamtac and Kutten [7] as early as in 1985. In [15] an NP-hardness result is estab-
lished for solving the problem on unit disk graphs.

A gap reduction is a reduction that maps an arbitrary NPC problem to the
problem at hand giving some gaps for the optimum values resulting from a yes and a
no instance. The authors of the current paper have shown [12] a gap reduction that
maps a yes instance to a radio broadcast instance that admits a 3 rounds schedule,
while a no instance is mapped into an Ω(logn) schedule. This proves that there exists
a constant c > 0 such that the radio broadcast problem cannot be approximated
within approximation ratio of c log n unless NP ⊆ BPTIME(nO(log log n)).

1.2. Our results. Note that [12, 14] can be considered as additive approxima-
tion algorithms for the problem. Hence, we study the additive ratio of radio broadcast.
We provide a gap reduction that maps a yes instance to a radio network that admits
a schedule of length O(log n) and maps a no instance to a radio network for which
any feasible schedule is of length Ω(log2 n). Thus, there exists some c > 0 so that the
radio broadcast problem admits no polynomial additive c log2 n ratio approximation
unless NP ⊆ BPTIME(nO(log log n)). This fully determines the additive approxima-
tion ratio of the problem for graphs with radius at most logn as the result of [21]
implies that, for graphs with radius at most logn, there exists a matching additive
upper bound of O(log2 n). We are not aware of any other problem that exhibits a tight
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additive polylogarithmic ratio. (See [16, 13] for the only example of an almost tight
polylogarithmic multiplicative approximation of which we are aware. This example is
the group Steiner problem on trees.)

Remark. A big challenge seems to be designing a gap reduction that maps a yes
instance to a constant number of rounds schedule and a no instance to a schedule of
length Ω(log2 n). We leave this question open. If such a proof is possible, then the
(multiplicative) best approximation ratio for the problem is log2 n (up to constants)
much like the group Steiner problem on trees. Alternatively, the challenge is to design
an O(log n) ratio approximation for small radios graphs.

2. Preliminaries.

2.1. Definitions and notation. We start by introducing some definitions and
notations. In all the notations, we may eventually omit some parameters if the mean-
ing can be deduced from the context.

Definition 2.1. The set of neighbors of a vertex v in an unweighted undirected
graph G(V,E), denoted ΓG(v), is the set {u ∈ V | (v, u) ∈ E}. For a subset X ⊆ V ,
the set of neighbors of the vertex v in the subset X, denoted ΓG(v,X), is the set
{u ∈ X | (v, u) ∈ E}.

Notation 2.2. For a positive integer number n, let [n] denote the set {1, 2, . . . , n}.
Definition 2.3. Let G = (V,E) be an unweighted undirected graph, and let

R ⊆ V be a subset of vertices. The set of vertices informed by R, denoted I(R), is
I(R) = {v | ∃!x ∈ R such that v ∈ ΓG(x)} (the notation ∃!x stands for “there exists
a unique x”). For a singleton set R = {x}, I(R) = I({x}) = I(x) = ΓG(x).

A sequence of vertex sets Π = (R1, R2, . . . , Rq), q = 1, 2, . . ., is called a radio

broadcast schedule (henceforth referred to as a schedule) if Ri+1 ⊆
⋃i

j=1 I(Rj) for
every i = 1, 2, . . . , q − 1. Intuitively, this condition means that the vertices that send
a message in a certain round have to be informed in one of the previous rounds.

The set of vertices informed by a schedule Π, denoted I(Π), is I(Π) =
⋃

R∈Π I(R).

Given a graph G = (V,E) and a vertex s ∈ V , a schedule Π is feasible with respect
to (G, s) if R1 = {s} and V ⊆ I(Π).

The length of the schedule Π = (R1, R2, . . . , Rq) is |Π| = q.

An instance of the radio broadcast problem G is a pair (Ḡ = (V̄ , Ē), s), where Ḡ
is a graph and s ∈ V̄ is a vertex. The goal is to compute a feasible schedule Π of
minimal length. The value of an instance G of the radio broadcast problem is the
length of the shortest feasible schedule Π for this instance.

For any schedule Π = (R1, R2, . . . , Rq), the set Ri is called the ith round of Π,
i = 1, 2, . . . , q.

2.2. The MIN-REP problem.

Definition 2.4. The MIN-REP problem is defined as follows. The input consists
of a bipartite graph G = (V1, V2, E). In addition, for j = 1, 2, the input contains a
partition Ṽj of Vj into a disjoint union of subsets, V1 =

⋃
A∈Ṽ1

A, V2 =
⋃

B∈Ṽ2
B.

The triple M = (G, Ṽ1, Ṽ2) is an instance of the MIN-REP problem. The size of the
instance is n = |V1| + |V2|. An instance G as above induces a bipartite supergraph
G̃ = (Ṽ1, Ṽ2, Ẽ) in which the sets A and B of the partition serve as the vertices of the
supergraph. The edges of the supergraph are Ẽ(M) = Ẽ = {(A,B) ∈ Ṽ1 × Ṽ2 | a ∈
A, b ∈ B, (a, b) ∈ E}. In other words, there is a (super)edge between a pair of sets
A ∈ Ṽ1, B ∈ Ṽ2 if and only if the graph G contains an edge between a pair of vertices
a ∈ A, b ∈ B.
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Denote Ṽ = Ṽ1 ∪ Ṽ2. A pair of vertices x1, x2 ∈ V1 ∪ V2 is called a matched pair
with respect to a superedge ẽ = (A,B) ∈ Ẽ (henceforth, ẽ-m.p.) if (x1, x2) ∈ E and
either x1 ∈ A and x2 ∈ B or vice versa.

A subset C ⊆ V1 ∪ V2 of vertices is said to cover a superedge ẽ = (A,B) if it
contains an ẽ-m.p. A subset C ⊆ V1 ∪ V2 that satisfies |C ∩X| = 1 for every X ∈ Ṽ
is called a MAX-cover. In other words, a MAX-cover C contains exactly one vertex
from each supervertex.

An instance M of the MIN-REP problem is called a yes instance if there exists
a MAX-cover that covers all the superedges. Such a MAX-cover is called a perfect
MAX-cover.

For a positive real number t > 1, an instance M of the MIN-REP problem is
called a t-no instance if any C that covers at least half of the superedges must pick on
average at least t elements of every A and every B (every C that covers at least half
of the superedges has size at least t times the number of A,B sets).

The maximization version of MIN-REP problem is equivalent to the maximization
variant of the label-cover problem (see, e.g., [3]).

The parameters of the MIN-REP instance. We impose several additional (some-
what less standard) restrictions on the set of instances of the MIN-REP problem. For
the rest of the paper, let n denote the number of vertices in the MIN-REP instance.

1. All the supervertices X ∈ Ṽ are of size polylogarithmic in n (namely, the size
at most (log n)d for some constant d).

2. The number of superedges is O(n · polylog(n)).
3. The star property. For every superedge ẽ = (A,B) ∈ Ẽ, A ⊆ V1 and B ⊆ V2,

and every vertex b ∈ B, there exists exactly one vertex a ∈ A, denoted ẽ(b),
such that (a, b) ∈ E. The set of all vertices b such that ẽ(b) = a for the same
vertex a, along with the vertex a, is called an ẽ-star.

Essentially, the star property means that for every superedge ẽ = (A,B) ∈ Ẽ
the graph induced by the subset A∪B decomposes into a collection of vertex-disjoint
stars (a star is a graph with all vertices but (maybe) one having degree 1). The vertex
with degree larger than 1 is called the head of the star; if there are only two vertices
in the star, then the head is the vertex that belongs to the supervertex A. The other
vertices of the star are called the leaves of the star. See Figure 1 for an example of a
MIN-REP instance that obeys the star property.

Theorem 2.5 (see [2, 23]). No deterministic polynomial time algorithm can
distinguish between the yes-instances and the log10 n-no instances of the MIN-REP
problem unless NP ⊆ DTIME(nO(log log n)), even when the instances of the MIN-
REP problem satisfy the conditions (1)–(3).

3. The construction.

3.1. The high-level idea. In [22] a reduction from an arbitrary NPC language
to the set-cover problem is given. The elements of the set-cover instance are grouped
into a union of ground sets. In a yes instance, every ground set M can be covered
by two “complementary” sets each covering a disjoint half of M . In a no instance,
every set in the set-cover instance that contains elements of M (essentially) contains a
random half of M , and so Ω(log |M |) sets are required to cover the entire set M . This
is used in [11] to design a radio network that admits no schedule of length o(log n)
for a no instance, and a schedule with only a constant number of rounds for a yes
instance.

In [1], another special kind of set-cover is designed. The elements are partitioned
to Θ(logn) ground sets Mj . In this instance, covering uniquely many elements in

⋃
Mj
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A1
A2

A3 A4

a a’

b

B 1 B 2 B 3 B 4

Fig. 1. An example of a MIN-REP instance that satisfies the star property. Every pair of sets
(Ai, Bj) in the partition induces a collection of disjoint stars with heads in A. The vertices (a, b)
form a matching pair that covers the superedge (A1, B1). The vertices a′, b do not form a matching
pair and do not cover the superedge (A1, B1).

is not possible (an element is uniquely covered by a collection of sets if it belongs to
exactly one set in the collection). Specifically, if a collection of sets uniquely covers
“many” Mj elements, then it does not uniquely cover many elements of Mq for any
q �= j. This construction is used in [1] to design a radio network that, essentially, has
to inform the sets Mj “one by one” while the construction for every Mj is similar to
the one in [22, 11], namely, informing Mj by itself requires Ω(logn) rounds. Since the
number of sets Mj is Θ(log n), a lower bound of Ω(log2 n) for the length of a feasible
schedule follows.

We modify the construction of [1] and add a“trapdoor” to their construction,
using ideas of [22]. This trapdoor makes it possible to inform every Mj in 2 rounds.
This guarantees that for a yes instance, a feasible schedule of logarithmic length
exists: simply inform Mj one j after the other. On the other hand, the modification
maintains the lower bound of Ω(log2 n) for a no instance. Hence, we obtain a gap
between O(log n) and Ω(log2 n), that is, an additive gap of Ω(log2 n).

3.2. The construction of [1]. Since our construction relies on that of [1], we
briefly sketch their construction.

Definition 3.1. A schedule of at most log2 n/100 rounds is called a short sched-
ule.

Let (X ,Y) be two sets of vertices. Let |X | = n and Y be a disjoint union
Y =

⋃
Yj of sets Yj each containing n7 vertices for 0.4 · log2 n ≤ j ≤ 0.6 · log2 n.

Thus, |Y| = Θ(n7 log n).
A vertex x ∈ X and a vertex y ∈ Yj are connected with an edge with probability

1/2j independently of other edges. In addition, add a source s and connect s to all
the vertices of X . Observe that, by definition, after the first round the set of informed
vertices is exactly {s} ∪ X .

Intuitively, in the above construction any transmitting subset of S ⊆ X helps to
inform only part of the sets Vj . It is not possible to choose a size for S so that all Yj

will contain many vertices informed by S. For a given j, for any set S of size larger
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than 2j , there may exist many vertices of Yj having at least two neighbors in S. But
if S is much smaller than 2j , then many of the vertices of Yj will not have even a
single neighbor in S.

The following elegant lemma formalizes this intuition.
Lemma 3.2 (see [1]). Let Π = (R1, R2, . . . , Rt) be a short (namely, t ≤ log2 n/100)

collection of subsets of X . Then there exists a subset S ⊆ X and an index j,
0.4 · log2 n ≤ j ≤ 0.6 · log2 n, so that the following hold.

1. |S| ≤ 2j · log2 n.
2. Let Φ′ = (R′

1, R
′
2, . . .) = Φ \ S. Then for each round R′

q in the schedule,

|R′
q| ≥ 2j.

3. Let fk be the number of sets in the schedule with cardinality 2j+k ≤ |R′
j | ≤

2j+k+1. Then,

∑
k≥0

fk
2k

≤ log n.

Indeed, how could a “short” schedule Φ cover Yj? The set S has size 2j , so
there is a nonnegligible probability that no vertex in S is connected to a vertex in
Yj . (We use the term nonnegligible for a probability which is at least 1

poly(n) , where

poly(n) is some polynomial in n.) Thus, the task of covering Yj may be left to
Φ′ = (R′

1, R
′
2, . . .) = Φ \ S. Consider some vertex yj ∈ Yj . Observe that, by item 2

above, each R′
q is of large enough size to make the probability of R′

q not informing
yj nonnegligible. Indeed, it is reasonable to expect that at least two vertices of R′

q

will be connected to yj in which case yj does not get the message in round q. Now,
since Yj is “large” (has size n7), there is a high probability that there will be a vertex
that is not going to be informed at any round. The paper of Alon et al. [1] formally
proves this claim along these lines.

3.3. Intuition behind the random permutation step. One of the difficulties
in imitating the construction of [22] and combining it with the construction of [1] is
as follows. The construction of [1] requires that vertices are connected to Yj with
probability 1/2j . On the other hand, in the construction of [22] some vertices are
connected to one half of the elements in every ground set Mj (see [22] for more
details). Thus, the probability that a and v ∈ Mj are connected is 1/2.

The way we overcome this difficulty is by forming many copies of every vertex
x ∈ A ∪B.

Consider some superedge ẽ and the ground sets that correspond to ẽ. Suppose
that M = Mẽ(j) is some ground set that corresponds to ẽ, j (similar to Yj but
dedicated to ẽ). Every copy of a is connected in M to some random subset of size
|M |/2j+1. We ensure that neighbors in M of different a-copies are disjoint and that
2j copies of a take part in this process. This implies that altogether the copies of
a ∈ A are indeed connected to a half of M . Let Ma denote this half.

In addition, let (a, b) be an ẽ-matching pair. Then the copies of b are similarly
connected but to Mj \Ma. Thus, the copies of b cover the complementary half of M .

This way we are able on the one hand to control the degrees of copies of a and
b (that is, to make it roughly |M |/2j , as required in [1]) but on the other hand to
guarantee that the copies of a and b cover together disjoint halves of M (as required
in [22]).

For the claims in [1] to work we need the neighbors of (copies of) a and b in M to
be random. We use copies of a and b for covering random elements of M as follows.
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We first choose a random half of M . Then this random half is arbitrarily split into
2j equal parts. Then we match the 2j copies of a and the 2j parts by a random
permutation. The copy of a is connected to all vertices in its matching part. Similar
construction is applied for copies of b on the complementary half.

3.4. The random permutation step: Formal definition. For the rest of
the paper, let n denote the number of vertices of the MIN-REP graph. Consider
an instance M = (G, Ṽ1, Ṽ2), G = (V1, V2, E) of the MIN-REP problem with V1 =⋃

A∈Ṽ1
A, V2 =

⋃
B∈Ṽ2

B. The reduction constructs an instance G = G(M) = (Ḡ, s),

Ḡ = (V̄ , Ē), s ∈ V̄ , of the radio broadcast problem in the following way.
Let N = n0.6. The vertex set V̄ of the graph consists of the source s, and the

disjoint vertex sets V1 and V2.
The vertex set V1 contains N copies of every vertex a or b in V = V1 ∪ V2; the

set of all copies of a vertex x (x = a or x = b) is denoted by cp(x), and cp(x, j) is the
subset that contains the first 2j copies of x.

For a subset X ⊆ V , let cp(X) denote cp(X) =
⋃

x∈X cp(x). Let Ĵ denote the set
of indices {0.4 log n, 0.4 log n + 1, . . . , 0.6 log n}.

The vertex set V2 is of the form V2 =
⋃

ẽ∈Ẽ Mẽ, where the ground sets Mẽ

are disjoint and all have equal size. Each ground set Mẽ is a disjoint union of the
sets Mẽ(j, q), j ∈ Ĵ , q ∈ [L], with L = nc0+4, and c0 is an integer positive universal
constant that will be determined later. The sets Mẽ(j, q) are all of equal size M = nc0

for the same constant c0.
The edge set Ē of the graph Ḡ contains edges that connect the source s to the

vertices of the set V1. We next construct the edge set between the vertices of V1 and
V2. Fix ẽ = (A,B) ∈ Ẽ and the indices j ∈ Ĵ , q ∈ [L].

The random permutation step.
1. For every star head a ∈ A let Ma = Mẽ,a(j, q) be an exact random half of the

set M = Mẽ(j, q).
2. For every vertex b in the star of a set Mb = Mẽ,b(j, q) = M\Ma.

Remark. Steps 1 and 2 will be referred to as the exact partition step.
3. For every vertex a ∈ A, partition the set Ma = Mẽ,a(j, q) arbitrarily into 2j

disjoint subsets of equal size. Randomly permute cp(a, j) (the first 2j copies
of a), and connect the ith copy (in the order determined by the random
permutation) of a to the ith part of Ma.

4. Similarly, for every vertex b that belongs to the star of a, cover Mb by a
random permutation. The random permutations of a and of leaves in the
star of a are independent.

See Figure 2 for an illustration of the random permutation step.
Remarks.
1. The parameter q in M = Mẽ(j, q) does not affect the probability of V1 vertices

to be adjacent to Mẽ(j, q). This probability is 1/2j . Unlike [1], many “Yj

type” sets are required. It is important though that if q �= q′, then different
events for Mẽ(j, q) and Mẽ(j, q

′) are independent.
2. If b and b′ belong to the star of a in ẽ, then Mb = Mb′ = M \Ma. However,

the random permutations of b and b′ are independent and are likely to be
different.

Adding dummy vertices. Recall that cp(X) is the set of all copies of X vertices.
Currently, |cp(A)|, |cp(B)| = Õ(n0.6). We need to later use Lemma 3.2 with cp(A) ∪
cp(B) playing the role of X . For that, we need that |cp(A) ∪ cp(B)| = n (otherwise,
it is required to use the lemma with Θ̃(n0.6) playing the role of n which may be
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A

b

a

B

G: e=(A,B)

b’ b’’

e~
M (j, q)

cp( a) 
1

cp
2
j (a) cp( b )

cp( b )

1 2j

~

M a Mb

Fig. 2. The figure illustrates the random permutation step. The copies of the vertex a cover
an exact half of the vertices of the set Mẽ. The copies of the vertex b cover the complementary half
of the vertices.

confusing). Add dummy vertices to every cp(A) and cp(B) to complete its size to
n/2 each. The dummy vertices have no connection to V2 but are joined to s. Thus,
dummy vertices never transmit (do not belong to any round). This change affects only
the constants in the ratio. Thus, we assume throughout that |cp(A)| = |cp(B)| = n/2
for every A,B.

3.5. The mixing step: Intuition and formal definition. Intuitively, we
need to build a reduction in which a short schedule for the resulting radio network
necessarily reveals a good solution for the original instance of the MIN-REP prob-
lem. Namely, a round is forced to use copies of many matched pairs; otherwise, the
connections are random in a way similar to [1].

By the construction so far, this goal is not yet achieved because vertices can “co-
ordinate efforts” even if they do not belong to a matching pair. For example, observe
that if b, b′ both belong to the star of a, then the copies of b and b′ are connected in
Mẽ(j, q) to the same half (see Figure 2). This half is Mb = Mb′ = Mẽ(j, q)\Mẽ,a(j, q).
Even though the random permutations of b and b′ are independent, inserting both
copies of b and b′ into R increases the probability that no vertex in Mb = Mb′ remains
uncovered. Therefore, so far we have not prevented b and b′ from coordinating efforts.

Thus, we should modify the construction so that copies of b and copies of b′

“hurt each other,” and consequently, they cannot be used in the same round together
to cover many vertices. This is done by adding some random edges. Copies of a
are randomly connected to the other half of the vertices, namely, to the vertices of
the set Mb = Mb′ = Mẽ(j, q) \ Mẽ,a(j, q). Copies of b are randomly connected to
Ma = Mẽ,a(j, q). See Figure 3.

These additional edges prevent a schedule from forming very large rounds. Be-
cause if a round is very large, many elements are covered two times or more. For
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example, inserting many copies of b and also many copies of b′ into a round leads to
“over-covering” vertices.

Further, the copies of cp(a) \ cp(a, j) pose a problem. So far, they have no edges
to Mẽ(j, q). This would imply that we may add vertices from cp(a) \ cp(a, j) without
affecting Mẽ(j, q), and consequently, it leaves a possibility of forming large big rounds
with only a small number of vertices that are connected to Mẽ(j, q).

Hence, we need to connect every cp(a) \ cp(a, j) vertex to every Mẽ(j, q) vertex
with probability 1/2j .

3.6. The mixing step: Formal definition. Let j, q, ẽ, ẽ = (A,B) be fixed.
Fix some ẽ-star with head a. Let M = Mẽ(j, q). Let Ma be the set of neighbors of
(the copies of) a in M and Mb = M \Ma.

1. For every copy of a in cp(a, j) and every vertex v ∈ Mẽ,b(j, q), add an edge
between those two vertices with probability 1/2j .

2. Similarly, for every copy of b in cp(b, j) and every vertex v ∈ Ma = Mẽ,a(j, q),
add an edge with probability 1/2j .

3. For every j and every x ∈ A ∪ B, connect every vertex of cp(x) \ cp(x, j) to
every vertex of Mẽ,a(j, q) independently, with probability 1/2j .

Steps 1, 2, and 3 will be referred to as the mixing step. See Figure 3.

M a
M b

cp( a,  j  )
cp( b,  j)cp(a) − cp(a , j)

Fig. 3. The figure illustrates the mixing step for some fixed q, j. The dotted edges represent
random events that may result in edges. The probability for such an edge to be present is 1/2j .
The figure also indicates that the vertices of cp(a, j) form an exact cover of Ma = Ma,ẽ(j, q) by
the random permutation step. On the other hand, pairs of vertices from cp(a) \ cp(a, j) and M are
connected with probability 1/2j for every pair.

3.7. Trapdoor: A schedule of logarithmic length for a yes instance. One
way to explain some of the ideas behind the construction is by showing that the radio
network resulting from a yes instance of the MIN-REP problem admits a schedule of
length O(log n).

Let M = (G = (V,E), G̃), |V | = n, be a yes instance of the MIN-REP problem,
and let (G, s) be the instance of the radio broadcast problem that is obtained via our
reduction.

Let C be a perfect MAX-cover, that is, a subset of the set V1 ∪ V2 that covers
all the superedges and contains exactly one vertex from each supervertex. (Recall
that, by definition of the yes instance of the MIN-REP problem, there exists a perfect
MAX-cover C for such an instance.)
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Lemma 3.3. There is a schedule of length O(log n) for the radio network (G, s).
Proof. On the first round s transmits, and all the vertices of V1 are informed.

Then, for each index j, 0.4 log n ≤ j ≤ 0.6 log n, build two rounds. On the first one
all the vertices of

⋃
a∈C cp(a, j) transmit in parallel, and on the second one all the

vertices of
⋃

b∈C cp(b, j) transmit in parallel. Altogether, we obtain a schedule with
2 · (0.2 log n + 1) = O(log n) rounds.

Claim 3.1. The schedule informs V2.
Proof. Since the set C is a perfect MAX-cover, for every superedge ẽ = (A,B) ∈

Ẽ, there exists some ẽ-m.p. a, b ∈ C. Thus, when cp(a, j) broadcasts, all the sets
Ma,ẽ(j, q) are informed (observe that the mixing step does not insert edges between
cp(a, j) and Mẽ,a(j, q)). Also, when cp(b, j) transmits, all of the sets Mb,ẽ(j, q) are
informed.

4. Analysis, part I: Comparison to Lemma 3.2. For the rest of the paper,
let a, b, b′, ẽ, j, q,Mẽ(j, q), and v ∈ Mẽ(j, q) be vertices, indices, and sets that satisfy
that (a, b) and (a, b′) are ẽ-matching pairs.

Since j, q, ẽ are fixed, for the simplicity of the notation we use M for Mẽ(j, q) and
Ma for Mẽ,a(j, q), etc. See also Figure 2.

In the next subsection we discuss a set S of size at most 2j · lnn. This set is
analogous to the set S from Lemma 3.2. We need to estimate the probability that
no element of S covers v (which we call the probability of silence). Later, we consider
a subset R of size at least 2j and discuss the probability that v has at least two
neighbors in R.

4.1. Probability of silence. Lemma 3.2 shows that there exists a relatively
small set S with useful properties. The probability that no element of S is connected
to v is at least 1/n1+o(1). In the construction of Alon et al. [1] computing this
probability of silence is not difficult because each vertex of Yj (for the same index j)
is connected to v with probability 1

2j independently of other vertices.
In our reduction it is not necessarily true that every small enough set S does not

cover v with a nonzero probability. For example, suppose that v ∈ Ma and S contains
all the copies of a. Then, by definition of the random permutation step, the copies of
a cover v with probability 1. Further, if Mb = M \ S and S contains all the copies of
b, then S covers the entire set M with probability 1.

On the other hand, the cover of M that we have just described uses a matching
pair (a, b). Thus, intuitively, our goal is to prove that any set S that does not use
matching pairs does not cover v with a nonnegligible probability.

For the probability of the event “S does not cover v in the random permutation
step” to be greater than zero, we need v to satisfy the following property.

The safety property. If v ∈ Mx, then S contains “only a fraction of” the copies of
x. Alternatively, if all the copies of some x belong to S, then v �∈ Mx must hold.

This is further formalized in the following definition.
Definition 4.1. The partitions defined by the exact partition steps (namely, in

steps 1 and 2 of the random permutation step) are safe for S and v if for every x, so
that v ∈ Mx,

|S ∩ cp(x, j)| ≤ 2j/8.

We shall see that if the partition is safe for S and v, then with a nonnegligible
probability all the various random permutation steps do not cover v. The following
lemma formalizes this claim.
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We use the notation S AN v to denote the event “no vertex of S is connected to
v.”

Lemma 4.2. Suppose that the partitions formed by the exact partition steps are
safe for S and v. Suppose also |S| ≤ 2j · lnn. Then

P ((S AN v)) ≥ 1

n4
.

Proof. We use the following notation in the proof: SN is the set of copies xq ∈ S
of some vertex x that cannot be connected to v in the random permutation step.
Namely, either v ∈ M \Mx or q > 2j (xq is not one of the 2j first copies of x). The
complement set is denoted by SY = S \ SN .

For every vertex x ∈ S, let S(x) be defined by S(x) = cp(x, j) ∩ SY (these are
copies that can be connected to v by the random permutation step). Let s(x) = |S(x)|.
Clearly, s(x) ≤ 2j/8. See an illustration for this notation in Figure 4.

v

s(x)

S N S Y

Fig. 4. The effect of partition on Mx and M \ Mx, in addition to the random permutation
step and mixing step on S, v. The set S is partitioned to SN and SY . The vertices of SN cannot
be connected to v by the random permutation step because v does not belong to “their half” of M .
Only vertices that belong to the set SY may be connected to the vertex v by the permutation step.
For x, vertices of S(x) can be connected to v by the random permutation step. The figure illustrates
the “silent scenario”; hence, the vertices of S(x) are not connected to the vertex v by the random
permutation step and all the dotted lines represent nonedges.

The probability that no copy of x that belongs to S(x) is connected to v in the
random permutation step is

2j − s(x)

2j
.

This is because 2j copies of x participate in the random permutation step and only
s(x) of them belong to SY .

For two different vertices x, y ∈ SY , note that the choices of the random permu-
tations of x and y are independent (this is true even if they are leaves in the same
star). Let A be the event that SY does not cover v in the random permutation step.
Hence,

P(A) ≥ Πx∈S
2j − s(x)

2j
≥ Πx∈S

((
1 − s(x)

2j

)
· e−1

)s(x)/2j

.
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The last inequality is because for any positive real u > 0, (1− 1/u)u−1 ≥ 1/e, and so
1 − 1/u ≥ ((1 − 1/u) · e−1)1/u.

As s(x) ≤ 2j−3, (
1 − s(x)

2j

)
· e−1 ≥ 7

8 · e .

Hence,

Pr(A) ≥
(

7

8 · e

)∑
x s(x)/2j

≥
(

7

8 · e

)lnn

≥ 1/n2.

(The second inequality follows as
∑

x∈S s(x) ≤ 2j · log n.)
The vertices of SN are independently connected to v with probability 1/2j . (This

follows from the mixing step of the reduction). Let B be the event that the mixing
step does not form an edge between s and v. Hence, P(B) ≥ (1 − 1/2j)|S| ≥ (1 −
1/2j)2

j logn ≥ 1/n2. Finally, the event “no vertex of the set S is connected to the
vertex v by the mixing step” is independent of the event “no vertex of the set S is
connected to the vertex v by the permutation step.” Hence,

P(S AN v) ≥ 1

n2
· 1

n2
=

1

n4
.

The probability for a safe partition. The partitions of Mx can be unsafe with
probability 1 for some “problematic” sets S. In fact, one can easily guarantee that v
is covered by the random permutation step. This can be achieved by taking into S
all copies of a and all copies of b (recall that (a, b) is an ẽ-matching pair).

The following definition utilizes this idea.
Definition 4.3. A set S is (ẽ, j)-partial if for every ẽ-m.p. (x, y), the set S

contains at most 2j−3 vertices of cp(x, j) or it contains at most 2j−3 copies of cp(y, j).
If S is (ẽ, j)-partial, it is still possible that after the coins are tossed in the exact

partition step, v will not be covered by S in the random permutation step. Namely, we
shall see that if S is (ẽ, j)-partial, the partition is safe with a nonnegligible probability.

Definition 4.4. Let ẽ = (A,B) be a superedge. Let a ∈ A. The set star(a, ẽ) is
the set of all copies of a and all copies of leaves b in an ẽ-star of A.

Lemma 4.5. Let S be an (ẽ, j)-partial of size |S| ≤ 2j lnn. The probability that
the partition is safe for S, v is at least 1/n8.

Proof. Since |S| ≤ 2j · lnn and the stars star(a′) with different vertices a′ ∈ A
are all disjoint, the number of such stars that satisfy |star(a) ∩ S| ≥ 2j−3 is at most
8 · lnn. Throughout the proof of this lemma, we will call such stars dangerous. Note
that stars that are not dangerous cannot make the partition unsafe.

Consider a dangerous star star(a′). Since the set S is (ẽ, j)-partial, either it
contains at most 2j−3 j-relevant copies of the vertex a′ or for all vertices c in the
star of a′, the set S contains at most 2j−3 copies of the vertex c. In any case, with
probability 1/2, v belongs to the “right half” of M . (For example, if S contains at
most 2j/8 copies of a′, then v ∈ Ma′ .) Since the number of dangerous stars is at most
8 · lnn, it follows that

Prob (safe partition) ≥
(

1

2

)8 lnn

>
1

n8
,

proving the claim.
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The following corollary is immediate
Corollary 4.6. Let S be an (ẽ, j)-partial set of size |S| ≤ 2j lnn. Then

P(S AN v) ≥ 1/n12.
Proof. By Lemma 4.5, with probability 1/n8, the partitions of Mx are safe with

respect to the set S, i.e., for every vertex x ∈ SY , s(x) ≤ 2j−3. By Lemma 4.2,

P(S AN v | S safe partition) ≥ 1/n4 .

Hence, with probability at least 1/n12, the set S induces a safe partition, and the
event (S AN v) holds.

4.2. Probability of a collision. In this section we consider sets R ⊆ V1 of size
at least 2j that are analogous to R′

i in Lemma 3.2. In all the following sets, we are
interested in the event that R does not inform v because it covers v at least twice
(namely, v has at least two neighbors in R). Let (R 2C v) denote this event.

Clearly, if all the relevant events were independent, namely, if every vertex of R
was connected to v with probability 1/2j independently of other vertices, then

P(R 2C v) = 1 −
(
1 − 1/2j

)|R| −
(
1 − 1/2j

)|R|−1 · |R|.(4.1)

This is in fact the case in the [1] construction.
We shall now see that in our construction, despite its dependencies, a similar

inequality can be proven.
Consider a vertex x that contributes copies to R, and suppose first that v �∈ Mx.

For such x, the edges between its copies and the vertex v are determined by the mixing
step, and they behave exactly as in inequality (4.1). Similarly, if xq is a copy of x and
xq ∈ cp(x) \ cp(x, j), the probability that the edge (x, v) is in the graph is 1/2j (see
the mixing step).

However, the more delicate case is when v ∈ Mx. In this case the edges between
the copies of x and the vertex v are determined by the random permutation step.

Let X = {x1, . . . , xp} be the set of copies of x in R. First, we compute an
upper bound on the probability of the event (X AN v), namely, that no vertex
in X is connected to v by the random permutation step. Let p′ = 
p/2� and X ′ =
{x1, . . . , xp′}. Then

P(X AN v) ≤ P(X ′ AN v) = P(x1 AN v) · P(x2 AN v | x1 AN v)

. . .P(xp′ AN v | {x1, . . . , xp′−1} AN v) .

If it is known that i of the copies of x are not connected to v by the random permu-
tation step, then all the rest of the 2j − i copies have equal probability of covering v.
Thus, the probability that the next copy xi+1 is connected to v is

1

2j − i
≤ 1

2j−1
.

This is because i ≤ p′ − 1 ≤ p/2 ≤ 2j/2. Thus, we get that

P(X AN v) ≤
(

1

2j−1

)p′

.

In summary, the contribution of X to the probability is very similar to its contribution
in inequality (4.1). The differences are 1/2j−1 instead of 1/2j and p′ (recall that
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p′ ≥ p/2) instead of p. We derive an upper bound on the probability that v is
informed by R in a similar way. Let ρ = |R|/2. We have proved Lemma 4.7.

Lemma 4.7.

P(R 2C v) ≥ 1 −
(
1 − 1/2j−1

)ρ
+ ρ ·

(
1 − 1/2j−1

)ρ−1
.

4.3. Deriving a lemma similar to Lemma 3.2.
The pivot and the most significant index for ẽ. For the rest of the section, con-

sider a fixed short schedule Π = (T1, T2, . . .). We first define how to find the most
“important” index j for ẽ. Recall that cp(A) (resp., cp(B)) is the set of all copies
of vertices of A (resp., of vertices of B). Let Π(ẽ) be the schedule (R1, R2, . . .) with
Ri = Ti ∩ (cp(A) ∪ cp(B)). For the rest of the subsection, we use symbols Ri and R
to denote rounds that are subsets of cp(A) ∪ cp(B). Recall that |cp(A) ∪ cp(B)| = n
(because of the dummy vertices). Hence cp(A)∪ cp(B) can play the role of the set X
in Lemma 3.2.

Definition 4.8. The index j, whose existence is guaranteed by Lemma 3.2 with
respect to X = cp(A) ∪ cp(B) and the rounds Π(ẽ), is called the pivot of ẽ.

For the rest of the section we adopt a notation from the paper of Alon et al. [1];
let S be the set whose existence is guaranteed by Lemma 3.2 (i.e., it plays the role of
S from Lemma 3.2), and R′

i = Ri \ S.
The probability of 2-covering. The proof of the following lemma is very similar to

the proof of Lemma 3.4 from [1]. The only difference between the two proofs is that
in Lemma 3.2, the following inequality holds with respect to the schedule Π:

P(R 2C v) ≥ 1 −
(
1 − 1/2j

)|R| −
(
1 − 1/2j

)|R|−1 · |R|.

This is because all the relevant events are independent. In our case, we use Lemma
4.7 which shows that, though the events are not independent, a similar inequality
holds. We summarize as follows.

Lemma 4.9. There is some universal constant c1 so that

P(for all i, R′
i 2C v) ≥ 1

nc1
.

How can we force S to be partial? In order to apply Corollary 4.6 to bound the
probability that v is informed, we need the subset S (from Lemma 3.2) to be ẽ-partial.
How can we guarantee that? One way of ensuring this is by requiring that

⋃
Ri is

ẽ-partial.
To understand our approach, assume for the moment that indeed

⋃
Ri is ẽ-partial.

Then, we can derive a lemma similar to Lemma 3.2, that is, show that an ẽ-partial
schedule cannot cover all the vertices of Mẽ. We want to use this claim to get a good
MIN-REP solution along the following lines:

1. With high probability,
⋃
Ri cannot be ẽ-partial, because of a lemma similar

to Lemma 3.2.
2. This will hold in a similar way to many other superedges.
3. As

⋃
Ri is not ẽ-partial, there should exist an ẽ-matching pair (x, y) so that⋃

Ri contains at least 2j/8 copies of x and at least 2j/8 copies of y. If this
is the case, we say that Π chose x, y.

4. If μ = |
⋃
Ri| is “small,” then μ/2j is “small” as well. Hence Π can choose

only a few matching pairs from A ∪B.
5. Hence, a small subset of A ∪B can be used to cover ẽ.
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6. Since this applies to “many” superedges, we obtain a small solution for the
original instance of the MIN-REP problem.

The problem with this scenario is in the case that μ = |
⋃
Ri| is “too large.” In this

case μ/2j can be very large by itself, and so the MIN-REP solution that will be derived
may be large.

Indeed, it turns out that expecting that
⋃
Ri is ẽ-partial is too harsh a require-

ment, at least as far as very large rounds are present. The good news is, however,
that large rounds have little effect because of Lemma 4.7. We next formalize this
intuition. Again, we restrict our attention to Π(ẽ) and consider rounds R that are
subsets of cp(A) ∪ cp(B).

Definition 4.10. We say that a round R is (ẽ, j)-small if

|R| ≤ c · 2j lnn,

where c is some constant to be determined later. Let Small(Π, j, ẽ) be the collection
of small rounds of Π(ẽ), and let Large(Π, j, ẽ) be the set of all other rounds.

Definition 4.11. Let

W(Π, j, ẽ) =
⋃

Ri∈Small(Π,j,ẽ)

Ri.

Definition 4.12. A schedule Π is (ẽ, j)-partial if W(Π, j, ẽ) is ẽ-partial.
Note that even if Π is ẽ-partial, still

⋃
Ri may contain all the copies of both a and

b for an ẽ-matching pair (a, b). This is because some rounds Ri may be large.
Assume c0 ≥ c1 + 12, where c1 is the constant from Lemma 4.9. The following

corollary (it is analogous to Lemma 3.2) is derived from Lemma 4.9 and Corollary
4.6. However, it applies only to Small(Π, j, ẽ).

Corollary 4.13. Let Π be ẽ-partial. With probability at least 1/nc0 , Small(Π, j, ẽ)
does not inform v.

Proof. We mimic the proof of Lemma 3.2. Namely, we compute the probability
for the event N = “no vertex of S is connected to v” and the event 2C = “all small
rounds R′

i = Ri \ S cover v at least twice.” If both N and 2C occur, then v is not
informed by Small(Π, j, ẽ).

Proving that the event “for every i, R′
i 2-covers v” occurs with probability at

least 1/nc1 is done exactly as in Lemma 4.9 and in [1].
Now we deal with S ′. As Π is ẽ-partial, by definition W is ẽ-partial, and thus S ′

is ẽ-partial. Thus, from Corollary 4.6,

P(S ′ AN v) ≥ 1

n12
.

Note that R′
i and S ′ are disjoint. But the events N and 2C are not independent, as

the two sets may contain copies of the same vertex. We need to study the correlation
between N and 2C. We shall now see that the events are positively correlated.

Let Rx (resp., Sx) be the subset of copies of x that belong to R′
i (resp., S).

If v �∈ Mx, then the edges between the vertices of Rx and Sx on the one hand
and the vertex v on the other are defined by the mixing step and are completely
independent. If v ∈ Mx, then the connection of Rx ∪ Sx and v is determined by
the random permutation step. Now, if Sx is not connected to v, this only increases
the probability that Rx is connected to v. Hence, the correlation between these
probabilities is positive.

Therefore, with probability at least 1
nc1+12 ≥ 1

nc0
, v is not informed by

Small(Π, j, ẽ).
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5. Analysis part II: Deriving the result. Let Π be an ẽ-partial short sched-
ule.

5.1. How many vertices can Small(Π, j, ẽ) inform?. We consider the num-
ber of vertices informed by Small(Π, j, ẽ). (At this point we ignore the contribution
of Large(Π). We will deal with it later.)

Let q′ be some index. We say that a set Mẽ(j, q
′) is fully informed by Small(Π, j, ẽ)

if all the elements of Mẽ(j, q
′) are informed. Let NF = NF (ẽ, j, Small(Π, j, ẽ)) be

the number of indices q′ for which Mẽ(j, q
′) is not fully informed by Small(Π, j, ẽ).

Lemma 5.1.

P(NF < n2) ≤ exp(−Ω(n3)).

Proof. Consider a fixed index q′. By Corollary 4.13 and the Markov inequality,

P (Mẽ(j, q
′) is not fully informed) ≥ 1

nc0−1
.

Hence, the number of not fully informed sets Mẽ(j, q
′) is a binomial variable with

success probability greater than or equal to 1/nc0−1. The number of different indices
q′ is nc0+4. Thus, the expected number of not fully informed Mẽ(j, q

′) is at least n3.
Hence, the claim follows from the Chernoff bound.

The lemma shows that Small(Π, j, ẽ) not only does not inform all the vertices but
also leaves many indices q′ for which Mẽ(j, q

′) has at least one noninformed element.
In fact, a simple counting argument and the union-bound imply the following corollary.

Corollary 5.2. With probability 1−exp(−Ω(n3)), for any ẽ-partial short sched-
ule Π, NF (ẽ, j, Small(Π, j, ẽ)) ≥ n2.

Proof. The set of relevant vertices on a fixed round of Π is a subset of cp(A)∪cp(B).
The size of cp(A) ∪ cp(B) is n. Hence, the number of subsets of A ∪ B is 2n. Thus

the number of short schedules is at most 2n log2 n. Since 2n log2 n � exp(n3), the claim
follows from the union-bound.

5.2. Large rounds are not able to inform many vertices. By Corollary 5.2,
with probability 1 − exp(−Ω(n3)), no short partial schedule satisfies NF ≤ n2. We
next show that for any choice of Π, with high probability, Large(Π) cannot “complete
the task” and leaves some vertices uninformed.

Lemma 5.3. If Π is ẽ-partial short schedule, then with probability at least 1 −
2−2n2

, Π does not inform all the vertices of Mẽ(j).
Proof. We know that (with high probability) there is a set U of n2 elements,

U = {u1, . . . , un2}, that are not informed by Small(Π, j, ẽ). The crucial property of U
is that different vertices ui belong to different sets Mẽ(j, q

′). Hence the random events
that we consider are independent. We fix the sets Large(Π) and U and estimate the
probability that Large(Π) covers Mẽ.

Let R ⊂ A ∪ B be a large round in Π(ẽ). Let r = log2 |R|. By definition,
μ = |R| ≥ c · 2j+1 lnn. By Lemma 4.7, setting

ρ =
|R|
2

,

we get

P(R 2C v) ≥ 1 −
(

1 − 1

2j−1

)ρ

+ ρ ·
(

1 − 1

2j−1

)ρ−1

.
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Thus, it follows that the probability that some ui is informed by R is at most
1/nc′ with c′ being some universal constant (that depends on c from Definition 4.10).
Since the edges between the vertices of U and v are independent (different ui belong
to different sets Mẽ(j, q

′)), the probability that the entire set U is informed is at most

1/nc′n2

.
Now, we count the number of possibilities to choose the sets Large(Π) and U .

Note that U is a subset of size n2 chosen out of a set of nc0+4 vertices. The number
of ways to do so is at most n(c0+4)n2

. The number of possible Large(Π) schedules

(restricted to subsets of cp(A)∪ cp(B)) is O(2n·log
2 n). Thus the number of choices of

U and Large(Π) is at most n(c0+5)n2

. We set c so that c′ ≥ c0 + 7. Now the claim
follows from the union-bound.

5.3. Short proper schedules cannot be feasible. We need the following
definition. Intuitively, it defines short schedules that are partial for many superedges.

Definition 5.4. A short schedule Π is called proper if there exists a subset E′ ⊆
Ẽ that contains at least one-half of all the superedges and such that the Small(Π, j, ẽ)
is ẽ′-partial for every ẽ′ ∈ E′. Otherwise, the schedule Π is called nonproper.

The following lemma holds both for yes and no instances of the MIN-REP prob-
lem.

Lemma 5.5. With probability 1−exp(Ω(n2)), no proper Π informs all the vertices
of V2.

Proof. First, fix E′. For a single superedge ẽ′ ∈ E′, the probability that Mẽ is
fully informed is at most 2−2n2

(Lemma 5.3). Naturally, this also implies an upper
bound on the probability that all the vertices of V2 are informed.

By restriction 2 in the definition of the MIN-REP problem, the number of super-
edges is bounded by n · polylog(n). Thus, the number of subsets of the superedges is

at most 2o(n
2). By the union-bound the probability that there exists a subset E′ so

that, for every ẽ′ ∈ E′, Mẽ′ is fully informed, is at most

2o(n
2) · 2−2n2

= exp(−Ω(n2)) .

Remark. Note that a schedule of logarithmic length for a yes instance that was
described in section 3.7 is not proper.

5.4. For no instances short nonproper schedules are not feasible.
Lemma 5.6. With probability 1 there is no nonproper feasible short schedule Π

for the instance derived out of a no instance of the MIN-REP problem.
Proof. Suppose for contradiction that there exists a schedule Π as above. Assume,

without loss of generality, that the first round of the schedule Π is the set {s} and
that all the other rounds R ∈ Π are subsets of the set V1 (with no dummy vertices).
Let EN ⊆ Ẽ be a subset of superedges such that, for every superedge ẽ ∈ EN , the
schedule Π is not ẽ-partial. By definition, the set EN contains at least half of the
superedges.

For a superedge ẽ ∈ EN , let j be its pivot. Recall that W is the union of all
small rounds. By definition, W contains at least 2j/8 copies of both x and y for some
ẽ-matching pair (x, y). We call this pair “the important pair for ẽ.”

We now define a MIN-REP solution C that is both “of small size” and covers all
the superedges of EN . C is defined by the following procedure.

1. Go over all the superedges in EN in an arbitrary order.
2. For a superedge ẽ, let (x, y) be the important pair for ẽ.
3. Add x and y to C.
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The following claim is immediate by definition.
Claim 5.1. C covers all the superedges EN .
We now bound |C ∩A| for an arbitrary supervertex A.
Since the supervertex A participates in several different superedges, and each with

its own pivot, we consider every index j separately. Fix some pivot j, and bound the
contribution to C ∩ A due to j. Recall that the subschedule Small(Π, j, ẽ) contains
only the rounds R that are j-small with respect to the superedge ẽ, i.e., the rounds
R ∈ Π(ẽ) that satisfy |R| ≤ 2j+1 · c · lnn. Also, the number of rounds in the schedule
is O(log2 n). Hence, |W| = O(2j · log3 n) (because W is the union of all small rounds.)

Every superedge (A,B) with pivot j causes the important ẽ-pair (a, b) to be added
into C. But, by definition, W contains at least 2j/8 copies of a and 2j/8 copies of b.
In particular, the number of vertices a that can be added to C with pivot j is at most

|W|
2j/8

= O(log3 n).

This bounds the contribution of j to |A ∩ C|.
Summing over all different indices j, the total size of A ∩ C is bounded by

O(log4 n). Similar bound follows for every B.
In other words, we have shown that the set C covers at least one-half of all

the superedges of the instance M of the MIN-REP problem and contains O(log4 n)
representative vertices from each supervertex. It follows that no A or B sets contribute
more than log10 n vertices to C. This contradicts Theorem 2.5.

Corollary 5.7. With high probability, for a no instance no short schedule Π is
feasible.

Proof. By Lemma 5.6, with probability 1, there is no nonproper feasible short
schedule for the instance G. By Lemma 5.5, with high probability there is no proper
feasible short schedule for the instance G. Since any schedule is either proper or
nonproper, the assertion follows.

Hence, we have shown that the reduction has the claimed gap and have proved
our main result.

Theorem 5.8. Unless NP ⊆ BPTIME(nO(log log n)), for some universal con-
stant c there is no additive (c · log2 n)-approximation for the radio broadcast problem.
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COMPUTING MINIMAL TRIANGULATIONS IN TIME
O(nα log n) = o(n2.376)∗
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Abstract. The problem of computing minimal triangulations of graphs, also called minimal fill,
was introduced and solved in 1976 by Rose, Tarjan, and Lueker [SIAM J. Comput., 5 (1976), pp.
266–283] in time O(nm) and thus O(n3) for dense graphs. Although the topic has received increasing
attention since then and several new results on characterizing and computing minimal triangulations
have been presented, this first time bound has remained the best. In this paper we introduce an
O(nα logn) time algorithm for computing minimal triangulations, where O(nα) is the time required
to multiply two n × n matrices. The current best known α is less than 2.376, and thus our result
breaks the longstanding asymptotic time complexity bound for this problem. To achieve this result,
we introduce and combine several techniques that are new to minimal triangulation algorithms, such
as working on the complement of the input graph, graph search for a vertex set A that bounds the
size of the connected components when A is removed, and matrix multiplication.

Key words. chordal graph, minimal triangulation, minimal fill, matrix multiplication
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1. Introduction and motivation. Any graph can be embedded in a chordal
graph by adding a set of edges called fill, and the resulting graph is called a trian-
gulation of the input graph. When the added set of fill edges is inclusion minimal,
the resulting triangulation is called a minimal triangulation. The first algorithms for
computing minimal triangulations were given in independent works of Rose, Tarjan,
and Lueker [17] and Ohtsuki, Cheung, and Fujisawa [13, 14] in 1976. Among these,
the algorithms of [13] and [17] have a time bound of O(nm), where n is the number of
vertices and m is the number of edges of the input graph. These first algorithms were
motivated by the need to find good pivotal orderings for Gaussian elimination, and
the mentioned papers gave characterizations of minimal triangulations through mini-
mal elimination orderings. Since then, the problem has received increasing attention,
and several new characterizations of minimal triangulations connected to minimal
separators of the input graph have been given [5, 10, 15], totally independent of the
connection to Gaussian elimination. The connection to minimal separators has in-
creased the importance of minimal triangulations from a graph theoretical point of
view, and minimal triangulations have proved useful in reconstructing evolutionary
history through phylogenetic trees [9]. As a result, algorithms based on the new char-
acterizations have been given [3, 8], while at the same time new algorithms based on
elimination orderings also have appeared [4, 7, 16]. However, the best time bound
remained unchanged, and trying to break the asymptotic O(n3) bound of computing
minimal triangulations, in particular for dense graphs, became a major theoretical
challenge concerning this topic.

In this paper, we introduce an O(nα log n) time algorithm to compute minimal
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triangulations of arbitrary graphs, where O(nα) is the time bound of multiplying two
n×n matrices. Currently the lowest value of α is 2.375 < α < 2.376 by the algorithm
of Coppersmith and Winograd [6]. Hence the current time bound for our algorithm is
o(n2.376) since log n = o(nε) for all ε > 0. In order to achieve this time bound, we use
several different techniques, one of which is matrix multiplication, to make parts of
the input graph into cliques. Our algorithm runs for O(log n) iterations, and at each
iteration the total work is bounded by the time needed for matrix multiplication. In
order to achieve O(log n) iterations, we show how to recursively divide the problem
into independent subproblems of a constant factor smaller size using a specialized
search technique. In order to bound the amount of work at each iteration by O(nα),
we store and work on the complement graphs for each subproblem, in which case the
subproblems do not overlap in any (non)edges. In addition, we use both the minimal
separators and the potential maximal cliques of the input graph, combining the results
of [5], [10], and [15].

Independent of our work, a very recent and thus yet unpublished result of Kratsch
and Spinrad [12] uses matrix multiplication to give a new implementation of the mini-
mal triangulation algorithm Lex M from 1976 [17]. Based on the matrix multiplication
algorithm of [6], their presented time complexity is O(n2.688). Other than the use of
matrix multiplication, their approach is totally different from ours. Kratsch and Spin-
rad used matrix multiplication for similar problems in their SODA 2003 paper [11].

After the next section which contains some basic definitions, we give the main
structure of our algorithm in section 3, followed by the important subroutine for
partitioning into balanced subproblems in section 4. We tie these parts together in
the last section.

2. Background and notation. We consider simple undirected and connected
graphs G = (V,E) with n = |V | and m = |E|. When G is given, denote the vertex
and edge set of G by V (G) and E(G), respectively. For a set A ⊆ V , G(A) denotes the
subgraph of G induced by the vertices in A. A is called a clique if G(A) is complete.
The process of adding edges to G between the vertices of A ⊆ V so that A becomes a
clique in the resulting graph is called saturating A. The neighborhood of a vertex v in
G is NG(v) = {u | uv ∈ E}, and the closed neighborhood of v is NG[v] = NG(v)∪{v}.
Similarly, for a set A ⊆ V , NG(A) = ∪v∈ANG(v) \ A, and NG[A] = NG(A) ∪ A.
|NG(v)| is the degree of v. When graph G is clear from the context, we will omit
subscript G.

A vertex set S ⊂ V is a separator if G(V \S) is disconnected. Given two vertices
u and v, S is a u, v-separator if u and v belong to different connected components of
G(V \S), and S is then said to separate u and v. Two separators S and T are said to
be crossing if S is a u, v-separator for a pair of vertices u, v ∈ T , in which case T is an
x, y-separator for a pair of vertices x, y ∈ S [10, 15]. A u, v-separator S is minimal if
no proper subset of S separates u and v. In general, S is a minimal separator of G if
there exist two vertices u and v in G such that S is a minimal u, v-separator. It can
be easily verified that S is a minimal separator if and only if G(V \S) has two distinct
connected components C1 and C2 such that NG(C1) = NG(C2) = S. In this case, C1

and C2 are called full components, and S is a minimal u, v-separator for every pair of
vertices u ∈ C1 and v ∈ C2.

A chord of a cycle is an edge connecting two nonconsecutive vertices of the cycle.
A graph is chordal, or equivalently triangulated, if it contains no chordless cycle of
length ≥ 4. A graph G′ = (V,E ∪ F ) is called a triangulation of G = (V,E) if G′

is chordal. The edges in F are called fill edges. G′ is a minimal triangulation if
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(V,E ∪ F ′) is nonchordal for every proper subset F ′ of F . It was shown in [17] that
a triangulation G′ is minimal if and only if every fill edge is the unique chord of a
4-cycle in G′. Another characterization of minimal triangulations which is central to
our results is that G′ is a minimal triangulation of G if and only if G′ is the result of
saturating a maximal set of pairwise noncrossing minimal separators of G [15].

By the results of Kloks, Kratsch, and Spinrad [10] and Parra and Scheffler [15], it
can be shown that the following recursive procedure creates a minimal triangulation
of G: Take any connected vertex subset K, and let A = N [K]; compute the connected
components C1, . . . , Ck of G(V \ A); saturate each set N(Ci) for 1 ≤ i ≤ k, and call
the resulting graph G′; and then compute a minimal triangulation of each subgraph
G′(N [Ci]), 1 ≤ i ≤ k, and of G′(A) independently. The key to understanding this is to
note that the saturated sets N(Ci) are noncrossing minimal separators of G and G′.
Thus the problem decomposes into independent subproblems overlapping only at the
saturated minimal separators, and we can continue recursively on each subproblem
that is not complete. This procedure is basic to the main structure of our algorithm.

An extension of the above mentioned results, which we also use in our algorithm,
was presented by Bouchitté and Todinca in [5]. There, a potential maximal clique
(pmc) of G is defined to be a maximal clique in some minimal triangulation of G.
If A is a pmc, then it is shown in [5] that whole A will automatically be saturated
in the above recursive procedure instead of appearing as a subproblem and that this
modified procedure indeed characterizes minimal triangulations. In this case A is not
necessarily N [K] for a connected set K. The following theorem from [5] characterizes
a pmc, and it will be used to prove the correctness of our balanced partition algorithm
in section 4.

Theorem 2.1 (Bouchitté and Todinca [5]). Given a graph G = (V,E), let P ⊆ V
be any set of vertices, and let C1, C2, . . . , Ck be the connected components of G(V \P ).
P is a pmc of G if and only if the following hold:

1. G(V \ P ) has no full component, and

2. P is a clique when every N(Ci) is saturated for 1 ≤ i ≤ k.

3. The new algorithm and the data structures. Observe that the total
work for saturating all sets N(Ci), 1 ≤ i ≤ k, in the recursive procedure described
in the previous section requires O(n3) time if it is done straightforwardly, as these
sets might overlap heavily and contain O(n) vertices each. With the help of matrix
multiplication, this total time can be reduced to O(nα). We construct the following
matrix M = MG,A: for each vertex v ∈ V (G) there is a row in M , for each connected
component C of G(V \A) there is a column in M , and entry M(v, C) = 1 if v ∈ N(C).
All other entries are zero. Now we perform the multiplication MMT , and in the
resulting symmetric matrix, entry (u, v) = (v, u) is nonzero if and only if u and v
both belong to a common set N(C) for some C. Thus MMT is the adjacency matrix
of a graph in which each N(C) is a clique. The use of matrix multiplication for this
purpose was first mentioned in [11].

Once MMT is computed, the edges indicated by its nonzero entries can be added
to G, resulting in the partially filled graph G′, and the subproblems G′(N [Ci]), 1 ≤
i ≤ k, and G′(A) can be extracted. Now for each subproblem this process can be
repeated recursively. However, it is important that we do not perform a matrix
multiplication for each subproblem in the further process but that we create only one
matrix and perform a single matrix multiplication for all subproblems of each level in
the recursion tree. Thus in the resulting matrix MMT , entry (u, v) is nonzero if and
only if there is a connected component C of one of the subproblems of this level such
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Algorithm FMT - Fast Minimal Triangulation
Input: An arbitrary noncomplete graph G = (V,E).
Output: A minimal triangulation G′ of G.

Let Q1, Q2 and Q3 be empty queues; Insert G into Q1;
G′ = G;
repeat

Construct a zero matrix M with a row for each vertex in V (columns are added
later);
while Q1 is nonempty do

Pop a graph H = (U,D) from Q1;
Call Algorithm Partition(H) which returns a vertex subset A ⊂ U ;
Push vertex set A onto Q3;
for each connected component C of H(U \A) do

Add a column in M such that M(v, C) = 1 for all vertices v ∈ NH(C);
if ∃ nonedge uv in H(NH [C]) with u ∈ C then

Push HC = (NH [C], DC) onto Q2, where uv 	∈ DC only if u ∈ C and
uv 	∈ D; 1

end-for
end-while
Compute MMT ;
Add to G′ the edges indicated by the nonzero elements of MMT ;
while Q3 is nonempty do

Pop a vertex set A from Q3;
if G′(A) is not complete then Push G′(A) onto Q2;

end-while
Swap names of Q1 and Q2;

until Q1 is empty

Fig. 1. Algorithm FMT: Fast Minimal Triangulation.

that u, v ∈ NG′(C). For this reason, we cannot actually use recursion, and we have
to keep track of all subproblems belonging to the same level. We do this by using
two queues Q1 and Q2 which will memorize all subproblems for the current and next
level, respectively. Only those new subproblems that are not cliques in the partially
filled graph should survive to the next iteration. For a new subproblem on vertex
set N [Ci] appearing from a connected component Ci, after removing A we check this
before the saturation as we already know that the saturation will make N(Ci) into
a clique and not add any other edges to the graph induced by N [Ci]. However, for
the subproblem on vertex set A itself we must wait until after the saturation before
checking whether A now induces a clique, and for that reason we store the vertex sets
A temporarily in a third queue Q3.

Our algorithm, which we call FMT, for fast minimal triangulation, is given in
Figure 1. The process of computing a good vertex set A is the most complicated
part of this algorithm, and this part will be explained in the next section when we
give the details of Algorithm Partition that returns such a set A. For the time being,
and for the correctness of Algorithm FMT, it is important and sufficient to note that
Algorithm Partition returns a set A, where either A = N [K] for some connected
vertex set K or A is a pmc.

The following lemma proves the correctness of our algorithm as well as the cor-
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rectness of the recursive procedure described in the previous section.

Lemma 3.1. Algorithm FMT computes a minimal triangulation of the input
graph as long as the Partition(H) subroutine returns a set A ⊂ V (H), where either
A = N [K] for some connected vertex set K or A is a pmc.1

Proof. Let G = (V,E) be the input graph, and let K be a set of vertices such
that G(K) is connected. It is shown in [1] that the set of minimal separators of G
that are subsets of N(K) is exactly the set {N(C) | C is a connected component of
G(V \N [K])}. In [5] it is shown that if P is a pmc, then the set of minimal separators
that are contained in P is exactly the set {N(C) | C is a connected component of
G(V \ P )}.

Since A is always chosen so that either A = N [K] for a connected set K or A is a
pmc (this will be proved in section 4), then it follows that all sets that are saturated
at the first iteration of Algorithm FMT are minimal separators of G. We will now
argue that these minimal separators are noncrossing. Assume on the contrary that
two crossing separators S = N(C1) and T = N(C2) are saturated at the first iteration,
where C1 and C2 are two distinct connected components of G(V \A). Thus there are
two vertices u, v ∈ T with u, v 	∈ S such that S is a minimal u, v-separator in G. Since
u, v ∈ T = N(C2), and S does not contain any vertex of C2, the removal of S cannot
separate u and v as there is a path between u and v through vertices of C2. This
contradicts the assumption that S is a u, v-separator, and thus we can conclude that
the minimal separators saturated at the first step are all pairwise noncrossing. It is
important to observe that once these separators are saturated, all minimal separators
of G that cross any of these will disappear as the saturated sets do not contain pairs of
vertices that are separable. At each iteration, any minimal separator of G′ is a minimal
separator of G [15]. Thus the minimal separators that we discover at each iteration
will not cross the minimal separators discovered and saturated at previous iterations.

At each new iteration, the above argument can be applied to each subgraph
H, and thus we compute a set of noncrossing minimal separators of each subgraph
H at each iteration. We have already argued that these cannot cross any of the
saturated minimal separators of previous iterations. We must also argue that no
minimal separator of a subgraph of an iteration crosses a minimal separator of another
subgraph of the same iteration. But this is straightforward as these subgraphs only
intersect at cliques, and thus their sets of minimal separators are disjoint.

So, our algorithm computes and saturates a set of noncrossing minimal separators
at each iteration. Since we continue this process until all minimal separators of G′

are saturated, by the results of [10] and [15], we create a minimal triangulation.

If we consider merely correctness, any set A that fulfills the requirements can be
chosen arbitrarily; for example, A = N [u] for a single vertex u, as in [2]. In order
to achieve the desired time complexity, we will devote the next section to describing
how to carefully choose a vertex subset A in each subproblem so that the number of
iterations of the repeat loop becomes O(log n).

In this section, we will argue that each iteration of the algorithm can be carried
out in O(nα) time. We start with the following lemma, which will give us the desired
bound for the matrix multiplication step.

Lemma 3.2. At each iteration of Algorithm FMT, the number of columns in

1What we want to do here is to take H(NH [C]), make NH(C) into a clique, and then insert the
resulting graph into Q2. However, we do not have time to even compute H(NH [C]). Thus we start
with a complete graph on vertex set NH [C] and remove only edges uv with an endpoint in u that
do not appear in D.
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matrix M is less than n.

Proof. The sequence of iterations of the algorithm gives rise to an iterative re-
finement of a tree-decomposition of the graph G′, a property first shown for the
LB-treedec algorithm discussed in [8]. Simplifying the standard notation, we say that
a tree-decomposition Ti of a graph G is a collection of bags, subsets of the vertex set of
G, arranged as nodes of a tree such that the bags containing any given vertex induce
a connected subtree and such that every pair of adjacent vertices of G is contained in
some bag (see, e.g., page 549 of [19] for the standard definition). At the first iteration
we have the trivial tree-decomposition T1 with all vertices of G′ in a single bag until
the last iteration p, where the tree-decomposition Tp is in fact a clique tree of the now
chordal graph G′, with each bag inducing a unique maximal clique. We prove this by
showing the following.

Loop invariant. At the start of iteration s we have a tree-decomposition Ts of the
current partially filled graph G′ whose bags consist of some vertex subsets inducing
cliques, which are the vertices of subproblems inducing cliques as discovered so far by
our algorithm, and where remaining bags are the vertex sets of subproblems in Q1.
The intersection of two neighboring bags in Ts is a saturated minimal separator of G′

and thus induces a clique. Ts is nonredundant, meaning that if A,B are bags of Ts,
then we do not have A ⊆ B.

The invariant is clearly true for the trivial tree-decomposition T1 with a sin-
gle bag. Let vertex set U be a bag of Ts appearing as subproblem H = (U,D)
in Q1. The algorithm proceeds to find A ⊂ U and produces new vertex subsets
A,N [C1], N [C2], . . . , N [Ck], where each Ci is a component of G′(U \ A). The node
of bag U in Ts is in Ts+1 split into a k-star with center-bag A and leaf-bags N [C1],
N [C2], . . . , N [Ck]. Since A is a pmc or A = N [K], it follows that this star is a tree-
decomposition of G′(U) which is nonredundant. The node of a neighboring bag X of
U in the tree of Ts will also be split into a star unless X induces a clique, in which case
it remains a single node, i.e., a trivial star. These two stars appearing from adjacent
nodes in Ts will be joined in Ts+1 by an edge between two bags U ′ and X ′ that each
contain U ∩ X. Such a bag must exist in each star since U ∩ X already induced a
clique.

The tree-decomposition Ts+1 is constructed by applying the construction above to
each bag, and to adjacent pairs of bags, of Ts. After newly found minimal separators
in G′ have been saturated, then Ts+1 will be a tree-decomposition of G′, as is easily
checked. It remains to show that Ts+1 is nonredundant. We do this by showing that
none of the new vertex subsets A,N [C1], N [C2], . . . , N [Ck] are contained in U ∩ X.
The crucial fact is that each vertex in U ∩X has a neighbor in U \X since U \X was
a component of the minimal separator U ∩ X. If A was chosen as A = N [K], then
even if K ⊆ U ∩ X, we would not have A ⊆ U ∩ X. Likewise, we could have some
component Ci of G′(U)\A with Ci ⊆ U ∩X, but we would never have N [Ci] ⊆ U ∩X.
If A instead was chosen as a pmc, then we cannot have A ⊆ U ∩ X, as U ∩ X was
a minimal separator and a maximal clique cannot be part of a minimal separator.
Thus, Ts+1 is nonredundant. Since any bag of Ts+1 that does not induce a clique is
put back onto Q1 before the next iteration, we have established the loop invariant.

Note that each column added to matrix M in the algorithm gives rise to a unique
bag of Ts+1. Since the number of bags in the final tree-decomposition Tp is at most
n, one for each maximal clique in a chordal graph, and since the number of bags in
trees T1, . . . , Tp is strictly increasing, we have proved the lemma.

Consequently, the matrix multiplication step requires O(nα). In order to be
able to bound the time for the rest of the operations of each iteration by O(nα),
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we will store and work on the nonedges, i.e., the edges of the complement graph for
each subproblem. Note that subproblems can overlap both in vertices and in edges,
which makes it difficult to bound the sum of their sizes for the desired time analysis.
A nonedge uv is discarded when it becomes an edge (that is, when it is added to
the graph) or when vertices u and v are separated into different subproblems, and
if it is not discarded, it appears only in a single subproblem in the next iteration.
Hence subproblems overlap only in cliques, so if we work on the complement of these
subgraphs, then they actually do not overlap in any edges at all!

For each subgraph H = (U,D) in Q1, let Ē(H) =
(
U
2

)
\D be the set of nonedges of

H. Our data structure for each subproblem H is the adjacency list of H̄ = (U, Ē(H)),
where we also store the degree of each vertex in H̄. It is an easy exercise to show
that all linear time operations that we need to do for H, like computing the connected
components and neighborhoods, can be done using only H̄ in time O(|Ē(H)|+|V (H)|).

An interesting point is also that, when complement graphs are used, matrix mul-
tiplication is not necessary to saturate NH(C) of each subproblem NH [C]; however,
it is still necessary in order to saturate the subsets of A that become cliques. In
the implementation of our algorithm, for each subproblem H(NH [C]), we push the
complement graph consisting of all nonedges of H(NH [C]) with at least one endpoint
in C onto Q2. (This corresponds to Line 12 of Algorithm FMT.) We do this only if
such a nonedge of H exists. Since these complement graphs consist of nonedges of
H(C) and nonedges of H(NH [C]) between C and NH(C), all such subproblems can
be computed in a total time of O(|Ē(H)|+ |V (H)|) for H. Since we omit all nonedges
between vertices belonging to NH(C), this actually corresponds to saturating NH(C)
automatically.

After the matrix multiplication step, we look up in MMT every edge of the
complement of G′ to check whether or not this nonedge should survive or should be
deleted because it has now become a fill edge of G′. Since subproblems do not overlap
in any nonedges, checking whether or not G′(A) is now complete can be done in a
total of O(n2) time for all vertex subsets A in Q3.

Thus, for the implementation of our algorithm, we compute Ḡ at the beginning
and use the complement graphs throughout the algorithm. Therefore, all operations
described within an iteration can be completed within O(nα) time. For clarity, we
will give the algorithms on the actual graphs and not on complement graphs. We
denote the set of nonedges of graph H by Ē(H).

With the given data structures and explanations, it should be clear that all op-
erations during one iteration, outside of Algorithm Partition, can be performed in
O(nα) time.

4. Efficient partition into balanced subproblems. In this section we will
show how to compute vertex subsets A for each subproblem H in order to achieve an
even partitioning into subproblems. Since each subproblem that results from H will
not contain more than 4

5 |Ē(H)| nonedges, this will guarantee O(log n) iterations of
the while-loop of Algorithm FMT.2 The algorithm that we present for doing this will
have running time O(|Ē(H)| + |V (H)|) on each input subgraph H.

The computation of vertex subset A for each subgraph H = (U,D) is done by
Algorithm Partition, which is given in Figure 2. This algorithm examines every vertex
of H and tries to place it into a connected component C that results from removing

2The constant 4
5

can in fact be replaced by q−1
q

for any q ≥ 5. An implementation could make

use of this fact to experimentally find the best value of q.
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Algorithm Partition
Input: A graph H = (U,D) (a subproblem popped from Q1).
Output: A subset A ⊂ U such that either A = N [K] for some connected H(K)

or A is a pmc of H (and G′).

Part I: defining P
Unmark all vertices of H;
k = 1;
while ∃ unmarked vertex u do

if EH̄(U \NH [u]) < 2
5 |Ē(H)| then

Mark u as an s-vertex (stop vertex);
else

Ck = {u};
Mark u as a c-vertex (component vertex);
while ∃ v ∈ NH(Ck) which is unmarked or marked as an s-vertex do

if EH̄(U \NH [Ck ∪ {v}]) ≥ 2
5 |Ē(H)| then

Ck = Ck ∪ {v};
Mark v as a c-vertex (component vertex);

else
Mark v as a p-vertex (pmc vertex);
Associate v with Ck;

end-if
end-while
k = k + 1;

end-if
end-while
P = the set of all p-vertices and s-vertices;

Part II: defining A
if H(U \ P ) has a full component C then

A = NH [C];
else if there exist two nonadjacent vertices u, v such that u is an s-vertex
and v is an s-vertex or a p-vertex then

A = NH [u];
else if there exist two nonadjacent p-vertices u and v, where u is associated with Ci

and v is associated with Cj and u 	∈ NH(Cj) and v 	∈ NH(Ci) then
A = NH [Ci ∪ {u}];

else
A = P ;

end-if

Fig. 2. Algorithm Partition.

some set P of vertices from H, as long as H(NH [C]) does not become too large with
respect to the number of nonedges. The vertices that cannot be placed into any
C with a small enough H(NH [C]) in this way constitute exactly the set P whose
removal from H results in these balanced connected components. Using this method,
we compute a vertex set P such that all connected components C of H(U \ P ) have
the nice property that H(NH [C]) contains less than a constant factor of the nonedges
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Fig. 3. We give an example of how set P is found from graph H. In (a), the number of nonedges
|Ē(H)| = 7, and the important bound for finding P is therefore 2

5
|Ē(H)| = 2.8. First, the algorithm

decides if vertex 1 can be contained in component C1 by performing the test EH̄(U \ NH [1]) <
2
5
|Ē(H)|. Vertex set U \NH [1] = {2, 3}, and EH̄({2, 3}) = |NH̄(2)|+ |NH̄(3)| = 2. Thus 1 cannot be

contained in a component, and it is marked as an s-vertex. The same result is obtained when testing 2
and 3, as shown in (b). Vertex set U\NH [4] = {5, 6}, and EH̄({5, 6}) = |NH̄(5)|+|NH̄(6)| = 6 > 2.8.
Thus vertex 4 becomes the first vertex in component C1. The algorithm will now try to extend C1

by including vertices from N(C1) in C1. Observe that 1 ∈ N(C1) and that including it in C1 will
make the value of the test EH̄(U \ NH [C1 ∪ {1}]) ≥ 2

5
|Ē(H)| false, and thus 1 becomes a p-vertex

and is associated to C1 as shown in (c). The same argument is used to change the marks of 2 and
3 as p-vertices and to associate these with C1. For vertex 7 we get the opposite result from the test,
and therefore this vertex is placed in C1. (c) shows that 4 and 7 are marked as c-vertices, and the
index after the c indicates that they belong to C1. Finally, in (d) we create the components C2 and
C3 containing vertices 5 and 6, respectively. All vertices in the neighborhood of these components
are already marked as p-vertices, and thus there is nothing more to do. As a result, the computed
set P = {1, 2, 3}. For the rest of Algorithm Partition, since each connected component of H(U \ P )
is a full component, case 1 will apply, and the resulting returned set A is simply the union of P with
one of these components, for example, A = {1, 2, 3, 6}. Note that there exist extreme cases where
every vertex is marked as an s-vertex. An example of this is a cycle of length 16 with added chords
so that every vertex is adjacent to all vertices except the one on the opposite side of the cycle. The
number of nonedges in this graph is 8, and the graph induced by any vertex and its neighborhood
contains 7 nonedges. Such an extreme case causes no problem for our algorithm as case 2 will apply
and an appropriate A ⊂ U will still be found.

of H. The computation of P is illustrated by an example given in Figure 3.

However, after P is computed, we cannot bound the number of nonedges that will
belong to G′(P ) after the saturation. Furthermore, it might be the case that neither
P = NH [K] for a connected vertex set K as required, nor P is a potential maximal
clique, which implies that N(C) is not necessarily a minimal separator for every
connected component C of H(U \P ). Thus we cannot simply use P as our desired set
A. The set A is instead obtained using information gained through the computation
of P , and we prove in Theorem 4.3 that it fulfills the requirements that were used to
prove the correctness of Algorithm FMT and that the resulting subproblems all have
at most 4

5 |Ē(H)| nonedges.

During Algorithm Partition, the vertices that we are able to place into small
enough connected components are marked as c-vertices. The remaining vertices
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(which constitute P ) are of two types: p-vertices have neighbors in a connected
component of H(U \ P ), whereas s-vertices do not. For each connected component
C of H(U \ P ) we want to ensure that the number |Ē(H(NH [C]))|, i.e., the number
of nonedges with both endpoints in NH [C], is less than some fraction of |Ē(H)|. The
obstacle is that we cannot compute this number straightforwardly for all connected
components of H(U \ P ) in the given time since the nonedges between vertices in
P ∩NH [C] could be contained in too many such computations. However, we are able
to give upper and lower bounds on |Ē(H(NH [C]))| by summing the degrees in H̄ of
vertices in each NH [C], which we compute in the following roundabout manner in
order to stay within the time limits. Define EH̄(S) to be the sum of degrees in H̄ of
vertices in S ⊆ U = V (H). Since the sum of degrees is equal to twice the number
of edges, we have EH̄(S) = 2|Ē(H)| − EH̄(U \ S). The quantity EH̄(U \ NH [C]) we
indeed do have the time to compute, as we will explain in the proof of Lemma 4.1:

EH̄(U \NH [C]) =
∑

v∈U\N [C]

|NH̄(v)|.

When checking whether EH̄(U \NH [Ck∪{v}]) ≥ 2
5 |Ē(H)| in Algorithm Partition,

we are indirectly checking whether |Ē(NH [Ck ∪ {v}])| ≤ 4
5 |Ē(H)|, which is what

we indeed want to know. The discussion in the proof of Lemma 4.2 explains this
connection. The value EH̄(U \ NH [Ck ∪ {v}]) can be computed in O(|NH̄(v)|) time
for each vertex v in U , as we show in the proof of the following lemma.

Lemma 4.1. Running Algorithm Partition on all subgraphs H of a single iteration
of Algorithm FMT requires a total of O(n2) time.

Proof. First we prove that the running time of Algorithm Partition on input sub-
graph H is O(|Ē(H)|+ |V (H)|), and then we will argue for the overall time bound at
the end. Note that, as explained in the previous section, also for Algorithm Partition
we will work on the complement graph H̄ for an efficient implementation. Observe
that between a connected component C and U \NH [C], we have a complete bipartite
graph in H̄, meaning that no vertex of C is adjacent to any vertex of U \ NH [C] in
H. These nonedges will be used as an argument to obtain the desired time bound.

The pseudocode of Algorithm Partition is presented in two bulks. Let us call the
first bulk “defining P” and the second bulk “defining A.”

The first operation in the “defining P” part is to unmark every vertex in H. The
value EH̄(U \NH [u]) for a single vertex u is computed straightforwardly by summing
the degrees in the complement graph of all vertices in U \NH [u] = NH̄(u), which is
an O(|NH̄(u)|) operation.

When a component Ck is created from a first vertex u, we label every vertex
w ∈ NH̄(u) with the value nk + |Ck| = nk + 1. By labeling the vertices in this way,
we assign a unique value to every vertex set that constitutes a component during the
algorithm and ensure that only vertices in U \NH [Ck] can have the label nk + |Ck|.
The value EH̄(U \NH [Ck ∪ {v}]) can now be computed in O(|NH̄(v)|) time since the
set of vertices in NH̄(v) which are labeled nk+ |Ck| is exactly the set U \N [Ck ∪{v}].
If v is going to be added to Ck, then this increases the size of Ck by one and may affect
the set N [Ck]. We update the labels of the vertices in U \N [Ck ∪{v}] by adding 1 to
the label of every vertex in NH̄(v) labeled with nk + |Ck|, and then we add v to Ck.
This requires O(|NH̄(v)|) time for each vertex and O(|Ē(H)| + |V (H)|) in total for
the “defining P” part since every vertex is considered once and marked as a p-, a c-,
or an s-vertex. The s-vertices may be reconsidered once and changed to p-vertices,
but this does not affect the time complexity.
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The “defining A” part consists of an if-else statement with 4 cases. In the first
case we can do the required test by simply finding the largest neighborhood of a
component and checking if its size is |P |. Without increasing the time complexity of
the “defining P” part, we can store the values |C| and |U \NH [C]| for each component
C of H(U \ P ). Thus |NH(C)| = |U | − (|C| + |U \NH [C]|).

In the second case, we check every nonedge in H(P ), which is also an O(|Ē(H)|+
|V (H)|) operation.

In the third case we mark nonedges and components as follows: For each p-vertex
u and then for each component C of H(U \ P ), where C ⊆ NH̄(u), we mark C with
the label u. We go through vertices in NH̄(u), check which components they belong
to, add up these numbers for each component, and check if it matches the total size
of the component. Then for every p-vertex v ∈ NH̄(u), where v is associated with a
component labeled u, we add u to the label of nonedge uv. This takes O(|NH̄(u)|)
time for each p-vertex. The third case will now exist if and only if there is a nonedge
uv marked by both u and v. Thus the total time for this case is O(|Ē(H)|+ |V (H)|)
for each subgraph H.

The fourth case requires constant time, and thus the total running time of Algo-
rithm Partition on input subgraph H is O(|Ē(H)| + |V (H)|).

The operations that require O(|Ē(H)| + |V (H)|) on each subgraph H add up to
O(n2) for all subgraphs of the same iteration of FMT since they do not overlap in
nonedges, and there are at most O(n) such graphs by Lemma 3.2. Thus the total
time complexity for all subgraphs H at the same iteration is O(n2).

We now give upper and lower bounds on the number of nonedges in various
subgraphs of H related to vertex set P .

Lemma 4.2. Let P be as computed by Algorithm Partition(H). Then each of the
following is true:

(i) |Ē(H(NH [C]))| ≤ 4
5 |Ē(H)| for each connected component C of H(U \ P ).

(ii) |Ē(H(NH [v]))| > 3
5 |Ē(H)| for each s-vertex v.

(iii) |Ē(H(NH [C∪{v}]))| > 3
5 |Ē(H)| for each p-vertex v associated with C, where

C is a connected component of H(U \ P ).

Proof. (i) From Algorithm Partition we know that EH̄(U \NH [C]) ≥ 2
5 |Ē(H)| for

each connected component C of H(U \ P ). Each nonedge uv outside of H(NH [C])
contributes to the degree-sum EH̄(U \ NH [C]) by 1 if one of either u or v is outside
NH [C] and by 2 if both are outside. Thus there are at least 1

5 |Ē(H)| nonedges
outside H(NH [C]) and consequently at most 4

5 |Ē(H)| nonedges inside H(NH [C]).
Hence, |Ē(H(NH [C]))| ≤ 4

5 |Ē(H)| for each connected component C of H(U \ P ),
which completes the proof of (i).

(ii), (iii) From Algorithm Partition we know that EH̄(U \ NH [v]) < 2
5 |Ē(H)| for

each s-vertex v and that EH̄(U\NH [C∪{u}]) < 2
5 |Ē(H)| for each p-vertex u associated

with C. It follows by the same argument as case (i) that |Ē(H(NH [v]))| > 3
5 |Ē(H)|

and |Ē(H(NH [C ∪{u}]))| > 3
5 |Ē(H)|. This completes the proof of (ii) and (iii).

We are now ready to prove the main result of this section, namely, that the vertex
set A returned by Partition results in subproblems of size bounded by a constant factor
of the number of nonedges, given in Theorem 4.3.

Theorem 4.3. Let A be the vertex set returned by Algorithm Partition on input
H = (U,D). Then both of the following are true where G′ is as defined in Algorithm
FMT:

(i) A is a proper subset of U such that either A = NH [K], where K ⊂ U and
H(K) is connected, or A is a pmc of H.
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(ii) Both the number of nonedges in G′(A) and the number of nonedges in G′(NH [C])
for each connected component C of H(U \A) are at most 4

5 |Ē(H)|.
Proof. We will examine each of the 4 cases of the if-else statement in the “defining

A” part of Algorithm Partition. We omit the subscript H in NH(C) and NH [C] to
increase readability. The reader should keep in mind that throughout this proof we
regard neighborhoods in H (and not in H̄).

Case 1. H(U \ P ) has a full component C, i.e., P = N(C).
This implies in particular that no vertices could have been marked as s-vertices.

By Lemma 4.2 we know that the number of nonedges in H(N [Ci]) is less than 4
5 |Ē(H)|

for each connected component Ci of H(U \ P ), in particular, for C. In this case,
Algorithm Partition gives A = N [C], and thus P ⊂ A. C is a connected set since it
was computed by adding new members from its neighborhood, and so (i) is satisfied.
Observe that the connected components Ci of H(U \ A) are exactly the connected
components Ci of H(U \ P ), except C. It follows that the number of nonedges in
H(A) = H(N [Ci]) and in H(N [Cj ]) for each connected component Cj of H(U \ A)
is less than 4

5 |Ē(H)| already before the minimal separators are saturated. After the
saturation, this number cannot increase but only decrease.

Case 2. There exist two vertices u, v such that uv 	∈ E(H), u is marked as an
s-vertex, and v is marked as an s-vertex or a p-vertex.

We give the proof in two parts: the subcase where both u, v are s-vertices and the
subcase where u is an s-vertex and v a p-vertex. The arguments for the two subcases
are very similar, and note that they are also very similar to Case 3, where both u, v
are p-vertices.

Assume both u and v are marked as s-vertices. By Lemma 4.2, |Ē(H(N [u]))| >
3
5 |Ē(H)| and |Ē(H(N [v]))| > 3

5 |Ē(H)|, and thus for their common part we have
|Ē(H(N(u) ∩ N(v)))| = |Ē(H(N [u] ∩ N [v]))| > 1

5 |Ē(H)|, where the first equality
holds since u 	∈ N [v]. The algorithm gives A = N [u] in this case, satisfying (i), which
means that v will belong to a component C of H(U \ A) with N(C) ⊆ A thus being
a u, v-separator. Since any u, v-separator must contain N(u) ∩ N(v), it follows that
N(C) ⊆ A induces at least 1

5 |Ē(H)| nonedges. All these nonedges will become edges
and disappear from G′. Thus, there are at most 4

5 |Ē(H)| nonedges left that can
appear in subproblems G′(A) or H(N [Ci]) for a component Ci of H(U \A), thereby
also satisfying (ii).

Assume u is marked as an s-vertex and v is marked as a p-vertex, and let j be
the index such that v is associated to Cj . We know that such a Cj exists since v
is marked as a p-vertex. An important observation now is that u 	∈ N [Cj ∪ {v}].
Otherwise u would have been marked as a p-vertex or c-vertex during execution of
the inner while-loop in Algorithm Partition during computation of Cj . By Lemma
4.2, |Ē(H(N [u]))| > 3

5 |Ē(H)| and |Ē(H(N [Cj ∪{v}]))| > 3
5 |Ē(H)|, and thus for their

common part we have |Ē(H(N(u) ∩N(Cj ∪ {v})))| = |Ē(H(N [u] ∩N [Cj ∪ {v}]))| >
1
5 |Ē(H)|, where the first equality holds since u 	∈ N [Cj∪{v}], as we established above.
The algorithm gives A = N [u] in this case, satisfying (i), which means that Cj ∪ {v}
will be contained in a component C of H(U \ A) with N(C) ⊆ A, thus separating u
from Cj ∪ {v}. Since any such separator must contain N(u)∩N(Cj ∪ {v}), it follows
that N(C) ⊆ A induces at least 1

5 |Ē(H)| nonedges. All these nonedges will become
edges and disappear from G′. Thus, there are at most 4

5 |Ē(H)| nonedges left that can
appear in subproblems G′(A) or H(N [Ci]) for a component Ci of H(U \A), thereby
also satisfying (ii).

Case 3. There exist two vertices u, v marked as p-vertices such that uv 	∈ E(H),
u is associated with Ci, v is associated with Cj , u 	∈ N(Cj), and v 	∈ N(Ci).
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The important observation now is that there are no edges between Ci ∪ {u} and
Cj ∪{v}. By Lemma 4.2, |Ē(H(N [Ci∪{u}]))| > 3

5 |Ē(H)| and |Ē(H(N [Cj ∪{v}]))| >
3
5 |Ē(H)|, and thus for their common part we have |Ē(H(N(Ci∪{u})∩N(Cj∪{v})))| =
|Ē(H(N [Ci∪{u}]∩N [Cj∪{v}]))| > 1

5 |Ē(H)|, where the first equality holds since there
are no edges between Ci ∪{u} and Cj ∪{v}. The algorithm gives A = N [Ci ∪{u}] in
this case, satisfying (i), which means that Cj ∪ {v} will be contained in a component
C of H(U \A) with N(C) ⊆ A, thus separating Ci∪{u} from Cj∪{v}. Since any such
separator must contain N(Ci ∪{u})∩N(Cj ∪{v}), it follows that N(C) ⊆ A induces
at least 1

5 |Ē(H)| nonedges. All these nonedges will become edges and disappear from
G′. Thus, there are at most 4

5 |Ē(H)| nonedges left that can appear in subproblems
G′(A) or H(N [Ci]) for a component Ci of H(U \A), thereby also satisfying (ii).

Case 4. None of the above cases apply.

First we show that P is a pmc of H in this case. Due to Theorem 2.1, all we
have to show is that if none of the Cases 1, 2, and 3 apply, then H(U \P ) has no full
component associated with P , and for every pair of nonadjacent vertices u, v ∈ P ,
there is a connected component C of H(U \ P ) such that u, v ∈ N(C). Since Case 1
does not apply, we know that H(U \P ) has no full components. Since Case 2 does not
apply either, then the s-vertices altogether induce a clique, and they all have edges
to all p-vertices. So, since P consists only of p- and s-vertices, the only nonedges
that are possible within P are those nonedges uv where both u and v are p-vertices.
Since Case 3 does not apply either, then for any nonadjacent u, v ∈ P , if they are not
associated with the same component, then one of them must be in the neighborhood
of the component that the other one is associated with. Thus P is a pmc of H, and (i)
is satisfied since Algorithm Partition gives A = P in this case. In this case, whole A
is saturated in G′, and thus G′(A) has no nonedges. The remaining subproblems will
each have at most 4

5 |Ē(H)| nonedges by Lemma 4.2 since the connected components
of H(U \A) are the same as the connected components of H(U \ P ).

5. The total O(nα log n) time complexity.

Theorem 5.1. Algorithm FMT described in section 3, using Algorithm Parti-
tion described in section 4, computes a minimal triangulation of the input graph in
O(nα log n) time.

Proof. By Lemma 3.1 and Theorem 4.3(i), Algorithm FMT computes a minimal
triangulation. By Lemma 3.2, the matrix multiplication at each iteration of FMT
requires O(nα) time. By the discussion that follows Lemma 3.2 in section 3, all other
operations outside of Algorithm Partition can be performed in O(n2) time at each
iteration of FMT. Using Lemma 4.1, we conclude that the total time required at each
iteration of FMT is O(nα) since α ≥ 2 for any matrix multiplication algorithm. By
Theorem 4.3(ii), the number of nonedges in each subproblem decreases by a constant
factor for each iteration, and since subproblems in one iteration do not overlap in
nonedges, we can have at most log n2 = O(log n) iterations of FMT.

We have thus given the details of a new algorithm to compute minimal triangu-
lations of arbitrary graphs in O(nα log n) time. It is important to use a matrix multi-
plication algorithm with running time o(n3) to achieve an improvement compared to
existing minimal triangulation algorithms, and thus standard matrix multiplication
is not interesting. If we use the matrix multiplication algorithm of Coppersmith and
Winograd [6], then α is strictly less than 2.376, and thus the total running time of our
algorithm becomes o(n2.376). If we instead use the matrix multiplication algorithm of
Strassen [18], which has a worse asymptotic time bound of Θ(nlog2 7) = o(n2.81) but is
considered more practical due to large constants in [6], then our time bound becomes
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O(nlog2 7 log n) = o(n2.81). Using Strassen’s algorithm, the time bound claimed by
Kratsch and Spinrad [12] mentioned previously becomes O(n2.91). In fact, our al-
gorithm is asymptotically faster than theirs regardless of the matrix multiplication
algorithm used.
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Abstract. We prove that there exists a constant k such that for every n ≥ 1 there exists a
directed core graph Hn with at least 2n vertices such that a directed graph G is Hn-colorable if and
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Theory Ser. B, 80 (2000), pp. 80–97] can have superpolynomial size. The construction given in this
paper gives a double exponential upper bound for such a construction. Here we improve this to an
exponential upper bound.
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1. Introduction. A homomorphism between two directed graphs G and H is a
map φ from the vertex set of G to that of H such that (φ(x), φ(y)) is an arc of H
whenever (x, y) is an arc of G. We write G → H when there exists a homomorphism
from G to H. For a fixed target H, the H-coloring problem is the following decision
problem:

H-coloring problem
Instance: A directed graph G.
Question: Does there exist a homomorphism from G to H?

The complexity of the H-coloring problem depends on H. A complete classifica-
tion seems out of reach for the moment, but the dichotomy conjecture of [2] (see also
[1]) states that every H-coloring problem is polynomial or NP-complete.

Here we concentrate on a subclass of the polynomial H-coloring problems, namely,
those for which there exists a constant m(H) such that the following holds.

For every directed graph G, there exists a homomorphism from G to
H if and only if every subgraph G′ of G with at most m(H) vertices
admits a homomorphism to H.

The H-coloring problem can then be reduced to a polynomial search for an obstruction
to a homomorphism among the subgraphs of G with at most m(H) vertices. The best
known example of this situation is the relation between the transitive tournament
on n vertices and the directed path with n forward edges (see [3, 4, 14, 16]): A
directed graph G admits a homomorphism to the former if and only if it admits no
homomorphism from the latter; hence it is sufficient to look for an obstruction among
the subgraphs of G with at most n + 1 vertices.
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More generally, for any H-coloring problem considered here, there is only a fi-
nite list O1, O2, . . . , Om of directed graphs with at most m(H) vertices which do not
admit a homomorphism to H. According to [11, Theorems 2.9, 3.1], the “minimal”
obstructions among these are directed trees T1, . . . , T�. For each tree Ti, there exists
a “dual” directed graph Di with the following property:

For every directed graph G, there exists a homomorphism from G to
Di if and only if there exists no homomorphism from Ti to G.

H is then homomorphically equivalent to the product of these duals.
The construction given in [11] for the dual of a tree T gives a directed graph

D which could have as many as 22|V (T )|
vertices, yielding m(D) � lg(lg(|V (D)|)).

However, in the example cited above, where T is the directed path with n forward
arcs and D is the transitive tournament with n vertices, we have m(D) = |V (D)|+1.
Indeed in all known cases, the dual D of T can be “dismantled” to a structure with
the same order of magnitude as T . Thus questions arise as to whether polynomial
constructions would be possible instead of the double exponential construction of [11].

In this paper, we answer these questions by giving a new construction which
always gives a dual with at most 2n lg(n) vertices for a tree with n vertices. The new
construction is conceptually simpler and yields new insights in the structure of duals
(see [15]). On the other hand, we can also exhibit trees with n vertices whose dual
must have at least 2Ω(n/ lg(n)) vertices, indicating that the new construction is close
to optimal.

Our construction will be presented in the general context of relational structures,
that is, the original context of [11], which is also the natural context of constraint
satisfaction problems [1, 2]. Incidentally, we note that it is a specification of relational
examples that led to the discovery of the examples mentioned above. We give the
necessary terminology in the following section. The new construction of duals is given
in section 3, and the examples with large duals are given in section 4. We will conclude
with a few comments concerning the bound m(H).

2. Relational structures. Let Δ = (δi; i ∈ I) be a sequence of positive integers.
A relational structure of type Δ (or Δ-structure) is a pair A = (X, (Ri; i ∈ I)) where
X is a finite set and Ri is a δi-nary relation on X (that is, Ri ⊂ Xδi). We will denote
A the base set of A (that is, A = X when A = (X, (Ri; i ∈ I))).

Given a type Δ and Δ-structures A = (X, (Ri; i ∈ I)) and A′ = (X ′, (R′
i; i ∈ I)),

a homomorphism from A to A′ is a mapping f : X �→ X ′ such that for every i ∈ I we
have

(f(x1), f(x2), . . . , f(xδi)) ∈ R′
i whenever (x1, x2, . . . , xδi) ∈ Ri.

We write A → A′ if there exists a homomorphism from A to A′.
For a Δ-structure H, the H-coloring problem is defined just as in the case of

directed graphs:
H-coloring problem
Instance: A Δ-structure A.
Question: Does there exist a homomorphism from A to H?

Two Δ-structures H and H ′ are called homomorphically equivalent if H → H ′ and
H ′ → H; we then write H ↔ H ′. Note that when H ↔ H ′, we have A → H if
and only if A → H ′; hence the H-coloring problem is equivalent to the H ′-coloring
problem.

A Δ-structure is called a core if it is not homomorphically equivalent to any Δ-
structure on a smaller base set. Clearly, any Δ-structure is homomorphically equiv-
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alent to at least one core. It can be shown (see [11]) that two homomorphically
equivalent cores are isomorphic; hence the core of any Δ-structure H is well defined
up to isomorphism. In studying H-coloring problems, we can restrict our attention
to the case where H is a core without loss of generality. Indeed, the parameter m(H)
presented in the introduction is not very interesting when H is not a core.

3. A construction of duals. Let A be a relational structure of type Δ = (δi; i ∈
I). We define the incidence graph Inc(A) of A as the bipartite graph with parts A
and

Block(A) = {(i, (a1, . . . , aδi)) : i ∈ I, (a1, . . . , aδi) ∈ Ri(A)}

and edges [a, (i, (a1, . . . , aδi))] for every k ∈ {1, . . . , δi} such that a = ak. (Hence
Inc(A) could be a multigraph.) A is called a Δ-tree when Inc(A) is a tree (hence it
contains no 2-cycles, that is, multiple edges).

A Δ-structure D is called a dual of A if for every Δ-structure X, there exists a
homomorphism φ : X �→ D if and only if there is no homomorphism φ : A �→ X. In
[11], it was shown that a structure A admits a dual if and only if A is a Δ-tree.1 Note
that any two duals D,D′ of A are necessarily homomorphically equivalent. Therefore
it is possible to define the dual of a Δ-tree A up to homomorphic equivalence. In
[11] a construction for duals of Δ-trees is presented, using gaps and exponentiation.

In some cases this construction will yield a structure of size in the order of 22|A|+|Δ|

as the dual of a Δ-tree A. We present here a new construction that is conceptually
simpler and always yields duals of size at most 2(|A|+|Δ|) lg |A|.

Definition 1. Let A be a Δ-tree. We define D(A) as the structure defined on
the base set

D(A) = {f : A �→ Block(A) : [a, f(a)] ∈ E(Inc(A)) for all a ∈ A}

by putting (f1, . . . , fδi) in Ri(D(A)) if and only if for all (x1, . . . , xδi) ∈ Ri(A) there
exists j ∈ {1, . . . , δi} such that fj(xj) �= (i, (x1, . . . , xδi)).

Note that D(A) has at most |A||A|+|Δ| elements. We prove that D(A) is indeed
a dual of A.

Theorem 2. Let A be a Δ-tree. Then for every Δ-structure X, there exists a
homomorphism from X to D(A) if and only if there is no homomorphism from A to
X.

Proof. We first prove by contradiction that there is no homomorphism from
A to D(A). Suppose that there exists a homomorphism φ : A �→ D(A); for all
a ∈ A, put fa = φ(a). We fix a0 ∈ A and define a sequence (ak)k≥0 recursively
as follows: If fak

(ak) = (i, (x1, . . . , xδi)), then since φ is a homomorphism, we have
(fx1 , . . . , fxδi

) ∈ Ri(D(A)); hence fxj
(xj) �= (i, (x1, . . . , xδi)) for some j ∈ {1, . . . , δi}.

We then put ak+1 = xj . The sequence a0, fa0(a0), a1, fa1
(a1), a2, . . . is then a trail

in Inc(A) such that ak+1 �= ak and fak+1
(ak+1) �= fak

(ak) for all k ≥ 0, which is
impossible since Inc(A) is a finite tree. Therefore there is no homomorphism from A
to D(A); consequently if a Δ-structure X admits a homomorphism from A, then there
is no homomorphism from X to D(A). This concludes the first part of the proof.

For the second part of the proof, we will need to fix some notation. For a in A
and a neighbor b = (i, (x1, . . . , xδi)) of a in Inc(A), let Ta,b be the maximal subtree of

1The definition of Δ-trees given in [11] is a bit different from the one given here, but it is not
hard to show that the two definitions are equivalent.
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Inc(A) containing a and b but no other neighbor of a, and let Aa,b be the Δ-subtree of
A such that Inc(Aa,b) = Ta,b. Thus, for a fixed a we have A = ∪{Aa,b : b ∈ NTa,b

(a)},
where for b �= b′ we have Aa,b ∩Aa,b′ = {a}.

We also fix a vertex-labeling � : Inc(A) �→ N with the following properties:
• u �= v implies �(u) �= �(v);
• for all n ∈ N, {u : �(u) ≥ n} induces a connected subtree of Inc(A).

(Such an � is easily defined by repeatedly labeling and deleting the pendant vertices
of Inc(A).)

Now, let X be a Δ-structure such that there is no homomorphism from A to X.
For every x ∈ X and a ∈ A, there necessarily exists a b adjacent to a in Inc(A) such
that there is no homomorphism ψb from Aa,b to X with ψ(a) = x (for otherwise the
union of all of these ψb would be a homomorphism from A to X). We fix fx(a) to be
such a b with the smallest label. This allows us to define a function φ : X �→ D(A)
by φ(x) = fx; we will show that it is a homomorphism from X to D(A).

We need to show that for i ∈ I and (x1, . . . , xδi) ∈ Ri(X), we have (fx1
, . . . , fxδi

) ∈
Ri(D(A)). By definition of D(A), we have (fx1 , . . . , fxδi

) ∈ Ri(D(A)) if and only if for
every (a1, . . . , aδi) ∈ Ri(A), there exists an index j such that fxj (aj) �= (i, (a1, . . . , aδi)).
(It is worthwhile to note that at this point in the proof, a medium-sized brown bear
burst into the office and made its way to the coffee table in the corner. Though not
particularly ferocious, this animal can be irritated by the presence of a human, and
the authors were left with no other recourse than to climb atop filing cabinets and
wait until the proper authorities came in and restored the beast to its natural habitat.
Overall, the incident can only be described as disquieting.) We proceed to prove that
φ is a homomorphism by contradiction, assuming that for some (a1, . . . , aδi) ∈ Ri(A),
we have fxj

(aj) = b = (i, (a1, . . . , aδi)) for all j ∈ {1, . . . , δi}. Note that there exists
at most one index j such that aj is adjacent to some b′ such that �(b′) > �(b). For
every other index k and every b′ �= b adjacent to ak, we have �(b′) < �(b); therefore
there exists a homomorphism ψak,b′ : Aak,b′ �→ X such that ψak,b′(ak) = xk. The
union of all these ψak,b′ is a well-defined map ψ from some subset of A to X. Now if
no index j fits the description given above, then ψ is in fact a homomorphism from
A to X, which contradicts the fact that no such homomorphism exists. On the other
hand, if some index j fits this description, then putting ψ(aj) = xj turns ψ into a
homomorphism from Aaj ,b to X such that ψ(aj) = xj , contradicting the definition of
fxj (aj). Therefore the δi-tuple (a1, . . . , aδi) described above cannot exist; hence φ is
a homomorphism from X to D(A).

4. Paths with large duals. In [11] we constructed trees with exponentially
large dual cores. More precisely, we constructed a Δ-tree T of type Δ = (1, 1, . . . , 1, n)
with n unary relations such that T has n vertices and its dual DT has a core with 2n

vertices. The possible existence of large dual cores for a fixed type Δ was left as an
open problem. Here we answer this question positively, even for the simplest type (2)
corresponding to directed graphs.

We proceed in two steps: First we consider the type Δn = (2, 2, . . . , 2) (i.e.,
relational systems with n + 1 binary relations) and then we modify this to the type
(2).

Definition 3. Let n > 2 be an integer. We define Pn as the structure of the type
Δn with n+1 binary relations R0, R1, . . . , Rn on the base set Tn = {x0, y0, x1, y1, . . . ,
xn, yn} given by

(i) R0(Pn) = {(xi, yi) : i = 0, . . . , n},
(ii) Ri(Pn) = {(yi−1, xi)}, i = 1, . . . , n.



918 JAROSLAV NEŠETŘIL AND CLAUDE TARDIF

In what follows, Dn will denote the core of the dual of Pn. We will prove the
following.

Lemma 4. For every S ⊆ {1, 2, . . . , n}, there exists an element fS ∈ Dn such
that (fS , fS) ∈ Ri(Dn) if i ∈ S and (fS , fS) �∈ Ri(Dn) if i ∈ {1, 2, . . . , n} \ S.

Proof. For i ∈ {1, 2, . . . , n}, let Qi be the structure obtained from Pn by removing
the arc (yi−1, xi) from Ri and identifying yi−1, xi in a new point labeled t. Now for
S ⊆ {1, 2, . . . , n}, let LS be the structure obtained from the disjoint union of all
Qi : i �∈ S by identifying all points labeled t and adding the loop (t, t) in Ri(LS)
for all i ∈ S. By construction, we then have Pn �→ LS , but adding the loop (t, t) in
Ri(LS) for any i �∈ S would produce a structure admitting a homomorphism from
Pn. Therefore, there exists a homomorphism φ : LS �→ Dn, and f = φ(t) satisfies
(f, f) ∈ Ri(Dn) for all i ∈ S, and (f, f) �∈ Ri(Dn) for all i ∈ {1, 2, . . . , n} \ S.

Thus for distinct subsets S, S′ ⊆ {1, 2, . . . , n}, we have fS �= fS′ , which implies
the following corollary.

Corollary 5.

∣∣Dn

∣∣ ≥ 2n.
In Corollary 5, we use n + 1 binary relations to construct a path whose dual has

2n elements, which leaves open the possibility that polynomial constructions exist for
every fixed type. In the remainder of this section, we will modify this construction to
build directed graphs with superpolynomial duals.

Lemma 6. Let n > 2 be a fixed integer. Then there exist paths MR0,MR1, . . . ,
MRn, each with 3lg(n + 1)� + 4 arcs, such that there exists a homomorphism from
MRi to MRj if and only if i = j.

Proof. For simplicity suppose that n + 1 = 2m. Let A0 be the path consisting of
one backward edge followed by two forward edges, let A1 be the path consisting of two
forward edges followed by one backward edge, and let A2 be the path consisting of two
forward edges. Then, every i ∈ {0, . . . , n} corresponds to a sequence (ε1, . . . , εm) ∈
{0, 1}m. We then define

MRi = A2 ◦Aε1 ◦Aε2 ◦ · · · ◦Aεm ◦A2,

where the concatenation Ax◦Ay is obtained simply by identifying the last vertex of Ax

to the first vertex of Ay. Any homomorphism φ from MRi to MRj must preserve the
algebraic length (that is, the difference between the number of forward edges and the
number of backward edges) on any path; hence φ must map the initial vertex of MRi

to the initial vertex of MRj and the terminal vertex of MRi to the terminal vertex of
MRj . Therefore φ must be bijective and hence an isomorphism, which implies that
i = j.

The notation MRi stands for “mock Ri.” Given a structure X of type Δn with
n + 1 binary relations, we will construct a directed graph G(X) which encodes the
structure of X as follows: For each u in X, G(X) contains a path MVu starting at a
vertex labeled in followed by one backward arc, six forward arcs, and one backward
arc, terminating at a vertex labeled out. For each (u, v) ∈ Ri(X), we add a copy of
MRi to G(X), identifying its initial vertex to the out vertex of MVu, and its terminal
vertex to the in vertex of MVv. This construction has the following property.

Lemma 7. Let X,Y be structures of type Δn (where n > 2). Then there exists a
homomorphism from X to Y if and only if there exists a homomorphism from G(X)
to G(Y ).

Proof. By construction, a homomorphism φ : X �→ Y naturally induces a homo-
morphism ψ : G(X) �→ G(Y ). Conversely, suppose that there exists a homomorphism
ψ : G(X) �→ G(Y ). The directed paths of length 6 in G(X) are the paths consisting
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of inner arcs in the subgraphs MVu : u ∈ X, and these must be mapped by ψ to
directed paths of length 6 in G(Y ) which are precisely the paths consisting of inner
arcs in the subgraphs MVv : v ∈ Y . Therefore we can define a map φ : X �→ Y by
putting φ(u) = v if ψ(MVu) ⊆ MVv. Lemma 6 and the construction of G(X) and
G(Y ) then imply that φ is a homomorphism.

Note that for the structure Pn of Definition 3, G(Pn) is a path with 8 · (2n+2)+
(3lg(n + 1)� + 4) · (2n + 1) = Θ(n lg(n)) arcs. Let D′

n be the core of D(G(Pn)); we
will prove the following theorem.

Theorem 8. |D′
n| ≥ 2n.

Proof. For each structure LS , S ⊆ {1, . . . , n} defined in the proof of Lemma 4,
we have G(Pn) �→ G(LS); thus there exists a homomorphism φS : G(LS) �→ D′

n. The
distinguished element t of LS corresponds to the path MVt in G(LS); we denote mS

the midpoint of this path. For S �= S′ we must have φS(mS) �= φS′(MS′) for otherwise
the combined cycles would imply the existence of a homomorphism from G(Pn) to
D′

n, just as in the proof of Lemma 4. Therefore |D′
n| ≥ |P({1, . . . , n})| = 2n.

Note that if k denotes the number of vertices in G(Pn), then D′
n must have order

2Ω(k/ lg(k)) as claimed.

5. Concluding comments. For a directed graph H, the parameter m(H) dis-
cussed in the introduction can be defined as the “maximal size of an H-critical graph”:

m(H) = max{|V (G)| : G �→ H and G′ → H for every proper subgraph G′ of G}.

We define the function m∗ : N �→ N by

m∗(n) = min{m(H) : H is a core and |V (H)| = n}.

The example of transitive tournaments shows that m∗(n) ≤ n + 1, and the graphs
D′

n of Theorem 8 lower this bound to m∗(n) ∈ O(lg(n) lg(lg(n))). In a sense this
is counterintuitive, since it proves that there are directed graphs H for which the
H-coloring problem is decided by obstructions much smaller than H. However, the
true order of m∗ may be smaller still.

The categorical (direct) product Π�
i=1Hi of a family {Hi}i∈{1,...,�} of directed

graphs is the directed graph whose vertices are the n-tuples u ∈ Π�
i=1V (Hi), and

whose arcs are the couples (u, v) such that (ui, vi) is an arc of Hi for all i in {1, . . . , �}.
Let H be a directed core for which m(H) is finite. By [11, Theorems 2.9, 3.1],
there exist trees T1, . . . , T� such that H ↔ Π�

i=1D(Ti). Putting n = |V (H)| and

m = max{|V (Ti)| : 1 ≤ i ≤ �}, we have � ≤ 2m−1mm−2 by Cayley’s tree enumer-

ation formula, whence n ≤ 2(2m)m−1 lg(m) by Theorem 2. This shows that m∗(n) ∈
Ω(lg(lg(n))/ lg(lg(lg(n)))).

At the moment it is not known which of the logarithmic upper bound and the
double logarithmic lower bound is closer to the true order of m∗. The question
depends on finding bounds on cores Hm of products Π{D(T ) : T ∈ Fm}, where Fm is
an exponential family of m-trees. On one hand, finding infinite families of examples
where |V (Hm)| ∈ Ω

(
22m)

would prove a double logarithmic behavior for m∗. On the
other hand, if such families are hard to find, then there may be many infinite families
of examples where |V (Hm)| ∈ O(2m). Now consider the following decision problem:

Instance: A directed graph G and an integer m.
Question: Does there exist a homomorphism from G to Hm?

The problem is in Co-NP since a homomorphism from a member of Fm is a polynomial
certificate for a negative answer. If |V (Hm)| ∈ O(2m) and a polynomial description
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of vertices and adjacencies in Hm exists, then the problem is also in NP. Hence the
hypothesis that m∗(n) ∈ Ω(lg(n)) would suggest that many such intriguing members
of NP ∩ Co-NP exist.
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AN APPLICATION OF RAMSEY THEORY TO CODING FOR THE
OPTICAL CHANNEL∗

NAVIN KASHYAP† , PAUL H. SIEGEL‡ , AND ALEXANDER VARDY‡

Abstract. In this paper, we analyze bi-infinite sequences over the alphabet {0, 1, . . . , q−1}, for
an arbitrary q ≥ 2, that satisfy the q-ary ghost pulse (qGP) constraint. A sequence x = (xk)k∈Z

∈
{0, 1, . . . , q−1}Z satisfies the qGP constraint if for all k, l,m ∈ Z such that xk, xl and xm are nonzero
and equal, xk+l−m is also nonzero. This constraint arises in the context of coding for communication
over a fiber optic medium. We show, using techniques from Ramsey theory, that if x satisfies the
qGP constraint, then the set supp(x) = {l ∈ Z : xl �= 0} is the disjoint union of cosets of some
subgroup, kZ, of Z, and a set of zero density. We provide much sharper results in the special cases of
q = 2 and q = 3. In the former case, we show that the corresponding binary ghost pulse constraint
has zero capacity, and based on our results for the latter case, we conjecture that the capacity of the
ternary ghost pulse constraint is also zero.

Key words. optical communication, constrained coding, ghost pulse constraints, Ramsey theory
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1. Introduction. In this paper, we study the effect of a class of constraints
which we call “ghost pulse” constraints imposed on sequences over a finite alphabet.
Throughout the paper, we shall follow the standard convention of using Z to denote
the set of all integers and N to denote the set of positive integers. Also, given m,n ∈ Z,
we shall take [m,n] to be the set {k ∈ Z : m ≤ k ≤ n}. Given an integer q ≥ 2,
let Aq = {0, 1 . . . , q − 1}. For x = (xk)k∈Z

∈ Aq
Z, we define the support of x to be

supp(x) = {k ∈ Z : xk �= 0}.
Definition 1.1 (q-ary ghost pulse (qGP) constraint). A sequence x ∈ Aq

Z

satisfies the qGP constraint if for all k, l,m ∈ supp(x) (k, l,m not necessarily distinct)
such that xk = xl = xm, we also have k + l −m ∈ supp(x).

We shall denote by Tq the set of all x ∈ Aq
Z that satisfy the qGP constraint.

Furthermore, we shall use Sq to denote the set of all y ∈ {0, 1}Z such that there
exists an x ∈ Tq with supp(x) = supp(y). The object of this paper is to study the
sequences in Sq, particularly in the cases when q is 2 or 3. When q = 2, we refer to the
corresponding constraint as the binary ghost pulse (BGP) constraint, and when q = 3,
the corresponding constraint is called the ternary ghost pulse (TGP) constraint.

These ghost pulse constraints arise in the context of coding for communication
over a fiber optic medium. In a typical optical communication scenario, a train of light
pulses corresponding to a sequence of M bits is sent across the fiber optic medium
that constitutes the optical channel. Each bit in the sequence is allocated a time
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slot of duration T , and a 1 or 0 is marked by the presence or absence of a pulse in
that time slot. A nonlinear phenomenon known as four-wave mixing causes a transfer
of energy from triples of pulses in “1” slots into certain “0” slots, creating spurious
pulses called ghost pulses. It has been observed [1], [9] that the interaction of pulses
in the kth, lth, and mth time slots (k, l,m need not all be distinct) in the pulse train
pumps energy into the (k + l −m)th time slot. If this slot did not originally contain
a pulse, i.e., if the (k + l − m)th bit was a 0 in the original M -bit sequence, then
the transfer of energy creates a ghost pulse in the slot, thus changing the original 0 to
a 1. The reader is referred to [5] for a more detailed description of this phenomenon.

The formation of ghost pulses may be modeled as follows: Let b0b1 . . . bM−1,
bi ∈ {0, 1}, be the binary sequence corresponding to the transmitted train of pulses.
If we have 1’s in positions k, l,m (not necessarily all distinct) in this sequence, i.e.,
bk = bl = bm = 1, and if bk+l−m = 0, then the formation of a ghost pulse converts
bk+l−m to a 1. Note that if b0b1 . . . bM−1 were a subblock of a sequence x ∈ S2,
then no ghost pulses would be formed since if i is a position where a ghost pulse
could potentially be created, then bi is already a 1 by the definition of the BGP
constraint. So, one way of eliminating the formation of ghost pulses when transmitting
an arbitrary data sequence b0b1 . . . bM−1, bi ∈ {0, 1}, is to first encode the data
sequence into a sequence c0c1 . . . cN−1 that is a subblock of some x ∈ S2.

The efficiency of any coding scheme using subblocks of BGP-constrained se-
quences as codewords is limited by the capacity, h(S2), of S2, which is defined as

h(S2) = lim
n→∞

log2 |B2,n|
n

,(1)

where B2,n denotes the set of all length-n subblocks of sequences in S2. The closer
h(S2) is to 1, the more efficient are the coding schemes based on BGP-constrained
sequences. However, it is easily shown that h(S2) = 0 as a consequence of the following
simple characterization of sequences in S2.

Theorem 1.2. A binary sequence x is in S2 if and only if supp(x) = ∅ or
supp(x) = a + kZ for some a, k ∈ Z.

Proof. It is clear from the definition of the BGP constraint that if x ∈ {0, 1}Z

is such that supp(x) = ∅ or supp(x) = a + kZ, then x ∈ S2. For the converse,
suppose that x ∈ S2 is such that supp(x) �= ∅. Take any a ∈ supp(x) and let
H = supp(x) − a = {k − a : xk �= 0}. It is easily verified that H is a subgroup of Z,
and hence, H = kZ for some integer k. Thus, supp(x) = a + H = a + kZ.

Corollary 1.3. h(S2) = 0.
Proof. It follows from the above theorem that |B2,n| = O(n2), which implies that

h(S2) = 0.
Thus, any coding scheme based on BGP-constrained sequences is bound to be

inefficient in terms of rate. So, we need to consider alternative approaches to dealing
with the ghost pulse problem.

One approach that has been suggested to mitigate the formation of ghost pulses
is to apply, at the transmitter end, a phase shift of π to some of the pulses in the
“1” time slots [7], [2]. The interaction of pulses with different phases suppresses
the formation of ghost pulses at certain locations due to destructive interference.
However, three pulses with the same phase can still interact to create ghost pulses.
We can effectively think of this phase modulation technique as converting a binary
sequence b0b1 . . . bN−1 into a ternary sequence c0c1 . . . cN−1, with ci ∈ {−1, 0, 1}, such
that bi = |ci| for all i ∈ {0, 1, . . . , N − 1}. As a first-order approximation of the true
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situation, we shall assume that the only case in which a ghost pulse is formed is when
we have ck = cl = cm = 1 or ck = cl = cm = −1, and ck+l−m = 0.

Now, if x ∈ {−1, 0, 1}Z is a sequence satisfying the TGP constraint1 and if
c0c1 . . . cN−1 is a subblock of x, then by the first-order approximation stated above,
c0c1 . . . cN−1 can be transmitted without error across the optical channel. Thus, finite-
length subblocks of sequences in T3 can be used as codewords for encoding binary data
sequences.

However, there is a catch. In reality, an optical receiver can detect only the
amplitude of the optical signal at the channel output, not its phase. What this means
is that if the transmitted ternary sequence was c0c1 . . . cN−1, then the receiver sees
only the sequence |c0|, |c1|, . . . , |cN−1|; i.e., the receiver cannot distinguish a 1 from a
−1. As a result, we cannot use two ternary sequences that differ only in phase (i.e.,
only in sign) to encode two different binary data sequences.

So, the proper procedure to encode and transmit a finite-length binary data se-
quence a0a1 . . . aM−1 is to first encode it with a subblock b0b1 . . . bN−1 of some se-
quence in S3 which, before transmission, is converted to a subblock, c0c1 . . . cN−1,
of some sequence in T3. At the channel output, the receiver detects the sequence
b0b1 . . . bN−1 which can be decoded correctly to recover a0a1 . . . aM−1. We thus have
a rather unusual coding problem because even though the sequence being transmitted
is a ternary sequence, the alphabet used for the encoding of information is effectively
binary.

Consequently, the efficiency of any coding scheme that uses TGP-constrained
sequences is limited by the capacity, h(S3), of the set S3, which is defined analogously
to (1) as follows:

h(S3) = lim
n→∞

log2 |B3,n|
n

,(2)

where B3,n denotes the set of all length-n subblocks of sequences in S3. It should
be pointed out that the existence of the limits in (1) and (2) follows by standard
arguments from the following fact (cf. [6, Chapter 4]): If a1, a2, . . . is a sequence of
nonnegative numbers such that am+n ≤ am + an for all m,n ≥ 1, then limn→∞ an/n
exists and equals infn≥1 an/n.

In this paper, we analyze the structure of the sequences in S3 in an attempt to
provide a simple characterization for them along the lines of Theorem 1.2, which could
then be used to determine h(S3). Unfortunately, the TGP constraint is much harder
to analyze than its binary counterpart. It is actually instructive to study the qGP
constraint for arbitrary q ≥ 2 as it provides useful insight into the ternary case. In
fact, extension to the q-ary alphabet allows for an unexpectedly simple and elegant
analysis based on results drawn from the branch of mathematics known as Ramsey
theory.

Using results from Ramsey theory, we show in Theorem 3.1 that any sequence
y ∈ Sq is “almost periodic” in the sense that it can be transformed into a periodic
sequence by changing a relatively sparse subset of the 1’s to 0’s. More precisely, we
show that if y ∈ Sq, then there exists a subset N(y) ⊂ supp(y) such that N(y) has
density2 0 and supp(y) \ N(y) is a union of cosets of some subgroup, kZ, of Z. For
sequences in S3, we make this result much stronger by showing in Theorem 4.4 that

1In Definition 1.1, ternary sequences are defined over the alphabet {0, 1, 2}. We simply identify
the symbol 2 with −1.

2Density is defined in section 2.
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any y ∈ S3 can be made periodic by changing at most two 1’s to 0’s. In fact, this
theorem provides a simple and complete description of the aperiodic sequences in S3.
We also provide a useful characterization (Theorem 4.1) of periodic sequences in S3,
which we use to completely describe all such sequences of prime period (Theorem 4.3).
Based on these results and some numerical evidence, we conjecture that h(S3) = 0.

The remainder of the paper is organized as follows. In section 2, we provide
the background from Ramsey theory needed for our proofs. Section 3 contains our
analysis of qGP-constrained sequences, and section 4 presents the analysis for TGP-
constrained sequences. In section 5, we present some numerical evidence in support
of our conjecture that h(S3) = 0.

2. Some Ramsey theory. Given a set I and a positive integer k, we refer to
any function χ : I → [1, k] as a k-coloring of I. Observe that if Vj = {i ∈ I : χ(i) = j},
then the sets Vj , j = 1, 2, . . . , k, form a partition of I, which we shall call the chromatic
partition (with respect to the coloring χ) of I. The sets Vj are often called the color
classes of χ. A subset J ⊂ I is said to be monochromatic (wrt χ) if J ⊂ Vj for some
j ∈ [1, k].

Ramsey theory is a branch of combinatorics that deals with structure which is
preserved under partitions [3]. A typical result from Ramsey theory guarantees that
when some set I is finitely colored, then some structure of the set I appears in
monochromatic form. One of the classic results of Ramsey theory is the following
theorem due to Schur [4, Chapter 3, Theorem 1].

Theorem 2.1 (Schur’s theorem). Given a k ∈ N, there exists an N(k) ∈ N such
that for all n ≥ N(k) every k-coloring of [1, n] contains a monochromatic solution to
x + y = z.

To put it another way, Schur’s theorem states that given a k ∈ N, for all sufficiently
large n, if we partition [1, n] into k subsets, V1, V2 . . . , Vk, then there exist x, y, z ∈ Vi

for some i that satisfy x + y = z. The smallest integer N(k) for which the statement
of Schur’s theorem holds is referred to as the kth Schur number and is denoted by
S(k). The exact value of S(k) is known only for k = 1, 2, 3, 4: S(1) = 2, S(2) = 5,
S(3) = 14, S(4) = 45 [8, Sequence A030126].

Another well-known result from Ramsey theory, known as van der Waerden’s
theorem [4, Chapter 2, Theorem 1], guarantees the existence of arbitrarily long
monochromatic arithmetic progressions in any k-coloring of the integers. Recall that
an arithmetic progression (AP) of length l is a subset of the integers of the form
{a + id : i = 0, 1, . . . , l − 1} for some a ∈ Z and d ∈ N. We shall require a stronger
form of van der Waerden’s theorem, for which we need the following definition.

Definition 2.2 (upper density). Given I ⊂ Z, the upper density of I is defined
to be

d(I) = lim sup
n→∞

|I ∩ [−n, n]|
2n + 1

.

Note that if I1, I2, . . . , Ik form a (finite) partition of I ⊂ Z, then d(I) =
∑k

i=1 d(Ii).
In particular, if χ is a k-coloring of Z and {V1, V2, . . . , Vk} is the corresponding chro-

matic partition of Z, then
∑k

j=1 d(Vj) = 1 since d(Z) = 1. Therefore, in any k-
coloring, χ, of Z, at least one of the color classes, Vj , j = 1, 2, . . . , k, of χ must have
positive upper density. Thus, van der Waerden’s theorem is a consequence of the
following stronger result, known as Szemerédi’s theorem [4, Chapter 2, p. 43].

Theorem 2.3 (Szemerédi’s theorem). If I ⊂ Z has positive upper density (i.e.,
d(I) > 0), then for any l ∈ N, I contains an AP of length l.
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The relevance of colorings to the study of qGP-constrained sequences can be seen
from the following simple lemma.

Lemma 2.4. A binary sequence y is in Sq if and only if there exists a (q − 1)-
coloring, χ, of supp(y) such that whenever k, l,m ∈ supp(y) satisfy χ(k) = χ(l) =
χ(m), then k + l −m ∈ supp(y).

Proof. If y is in Sq, then there exists an x ∈ Tq with supp(x) = supp(y). For
k ∈ supp(y), let χ(k) = xk. Then, by definition of the qGP constraint, χ is a (q− 1)-
coloring of supp(y) with the required property.

Conversely, if y ∈ {0, 1}Z is such that χ is a (q − 1)-coloring of supp(y) as in
the statement of the lemma, then let x = (xk)k∈Z

be the sequence defined by xk = 0
if k /∈ supp(y) and xk = χ(k) if k ∈ supp(y). Thus, supp(x) = supp(y), and by
definition of the qGP constraint, x ∈ Tq.

3. The qGP constraint. We shall use the results from Ramsey theory provided
in the previous section to prove our main result on qGP-constrained sequences, which
we state next.

Theorem 3.1. For q ≥ 2, if x ∈ Sq or x ∈ Tq, then there exists an integer k ≥ 0
and a set I ⊂ [0, k − 1], both depending on x, such that

⋃
i∈I

(kZ + i) ⊂ supp(x)

and

d

(
supp(x) \

⋃
i∈I

(kZ + i)

)
= 0.

In other words, outside a set of density 0, supp(x) is a union of cosets of some
subgroup, kZ, of Z. It is enough to prove this theorem for x ∈ Tq since for any y ∈ Sq,
there exists an x ∈ Tq with supp(x) = supp(y). Our proof of the theorem relies on
the following proposition, which shows that if x ∈ Tq is such that supp(x) contains
a sufficiently large number of consecutive terms of a + kZ for some a, k ∈ Z, then it
must in fact contain all of a+kZ. Recall that for q ∈ N, S(q) is the qth Schur number.

Proposition 3.2. For q ≥ 2, if x ∈ Tq is such that supp(x) contains an S(q−1)-
term AP, {a + jk : 1 ≤ j ≤ S(q − 1)} for some a, k ∈ Z, then a + kZ ⊂ supp(x).

Proof. Suppose that x = (xm)m∈Z
∈ Tq is such that supp(x) contains a + jk,

1 ≤ j ≤ S(q − 1). We shall show that a and a + (S(q − 1) + 1)k are also in supp(x)
so that the result then follows by induction.

Define a (q − 1)-coloring, χ, of [1, S(q − 1)] via χ(j) = xa+jk for j ∈ [1, S(q − 1)].
This is indeed a (q − 1)-coloring since a + jk ∈ supp(x), and hence, xa+jk �= 0 for
j ∈ [1, S(q − 1)]. By Schur’s theorem, there exist r, s, t ∈ [1, S(q − 1)] such that
r + s = t and χ(r) = χ(s) = χ(t) or, equivalently, xa+rk = xa+sk = xa+tk. But
now, (a + rk) + (a + sk) − (a + tk) = a so that, by definition of the qGP constraint,
a ∈ supp(x) as well.

A similar argument using the coloring of [1, S(q − 1)] defined by

χ̂(j) = χ(S(q − 1) + 1 − j) = xa+(S(q−1)+1−j)k

proves that a + (S(q − 1) + 1)k is also in supp(x), which completes the proof of the
proposition.
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For x ∈ Aq
Z and j ∈ [0, q − 1], we define

Vj(x) = {k ∈ Z : xk = j}.(3)

Thus, the sets Vj(x), j ∈ [0, q−1], constitute a partition of Z, while Vj(x), j ∈ [1, q−1],
is a partition of supp(x). Note that x ∈ Tq if and only if the sets Vj(x) satisfy the
following condition: For any j ∈ [1, q−1], if k, l,m ∈ Vj(x), then k+ l−m ∈ supp(x).
The following is a useful corollary to the above proposition.

Corollary 3.3. Let q ≥ 2 and N = 
S(q−1)+2
3 �. If x ∈ Tq is such that, for

some j ∈ [1, q − 1], Vj(x) contains an N -term AP {a + �k : 0 ≤ � ≤ N − 1} for some
a, k ∈ Z, then a + kZ ⊂ supp(x).

Proof. Suppose that a, k ∈ Z are such that {a + �k : 0 ≤ � ≤ N − 1} ⊂ Vj(x) for
some j ∈ [1, q − 1]. Note that for 0 ≤ � ≤ N − 2, a + (N + �)k = (a + (N − 1)k) +
(a+ (N − 1)k)− (a+ (N − 2− �)k). Since a+ (N − 1)k, a+ (N − 2− �)k ∈ Vj(x), it
follows from the definition of the qGP constraint that a + (N + �)k ∈ supp(x).

Similarly, for 1 ≤ � ≤ N−1, a−�k = a+a−(a+�k), and hence, a−�k ∈ supp(x) as
well. Thus, supp(x) contains the (3N+2)-term AP {a+�k : −(N−1) ≤ � ≤ 2(N−1)}.
Since 3N + 2 ≥ S(q − 1), the result follows from Proposition 3.2.

The next lemma forms the crux of the proof of Theorem 3.1.

Lemma 3.4. For x ∈ Tq, if d(Vj(x)) > 0 for some j ∈ [1, q− 1], then there exists
a kj ∈ N such that if we let

Ij = {i ∈ [0, kj − 1] : |Vj(x) ∩ (kjZ + i)| > 0},

then

Vj(x) ⊂
⋃
i∈Ij

(kjZ + i) ⊂ supp(x).

Proof. By the definition of Ij , it is obvious that for any j, Vj ⊂
⋃

i∈Ij
(kjZ + i).

So, we shall show that if d(Vj(x)) > 0 for some j ∈ [1, q− 1], then there exists kj �= 0
such that, with Ij as defined above,

⋃
i∈Ij

(kjZ + i) ⊂ supp(x). Indeed, it suffices to

show that for each i ∈ Ij , kjZ + i ⊂ supp(x).

Without loss of generality, we may assume that d(V1(x)) > 0. By Szemerédi’s
theorem, V1(x) contains an S(q − 1)-term AP {a + jk1 : 1 ≤ j ≤ S(q − 1)} for some
a ∈ Z and k1 ∈ N. Now, take any i ∈ I1, where I1 is as in the statement of the lemma.
We need to show that k1Z + i ⊂ supp(x). Since i is in I1, there exists an m ∈ Z such
that i + mk1 ∈ V1(x). But now, for any j ∈ [1, S(q − 1)], since a + jk1 ∈ V1(x), the
qGP constraint implies that (i+mk1) + (a+ jk1)− (a+ k1) = i+ (m+ j − 1)k1 is in
supp(x). We thus have an S(q − 1)-term AP {i + (m + j − 1)k1 : 1 ≤ j ≤ S(q − 1)}
in supp(x), and hence by Proposition 3.2, i + k1Z ⊂ supp(x), as desired.

We are now in a position to prove Theorem 3.1. Given x ∈ Tq, we shall let
J1 = {j ∈ [1, q − 1] : d(Vj(x)) > 0} and J2 = {j ∈ [1, q − 1] : d(Vj(x)) = 0}. Also, let
P (x) =

⋃
j∈J1

Vj(x) and N(x) =
⋃

j∈J2
Vj(x). Clearly, P (x), N(x) form a partition

of supp(x) with d(P (x)) > 0, if P (x) �= ∅, and d(N(x)) = 0.

Proof of Theorem 3.1. As mentioned earlier, it suffices to prove the theorem for
x ∈ Tq. If d(supp(x)) = 0, then we may take k = 0. So, we may assume that
d(supp(x)) > 0 so that J1 �= ∅. For each j ∈ J1, let kj and Ij be as in the statement
of Lemma 3.4, and let k = lcm{kj : j ∈ J1} be the least common multiple of the kj ’s.



RAMSEY THEORY IN THE OPTICAL CHANNEL 927

Since

kjZ + i =

k/kj−1⋃
�=0

(kZ + �kj + i),

if we define Îj to be {�kj + i : i ∈ Ij , � ∈ [0, k/kj − 1]}, then

⋃
i∈Ij

(kjZ + i) =
⋃
i∈Îj

(kZ + i).

Therefore, for each j ∈ J1,

Vj(x) ⊂
⋃
i∈Îj

(kjZ + i) ⊂ supp(x).

Now, taking I =
⋃

j∈J1
Îj , we see that

P (x) ⊂
⋃
i∈I

(kZ + i) ⊂ supp(x).

Finally,

supp(x) \
⋃
i∈I

(kZ + i) ⊂ supp(x) \ P (x) = N(x)

from which it follows that

d

(
supp(x) \

⋃
i∈I

(kZ + i)

)
= 0,

which completes the proof of the theorem.

It is straightforward to see that the set I in the above proof is in fact the set
{i ∈ [0, k − 1] : |P (x) ∩ (kZ + i)| > 0}.

Corollary 3.5. If x ∈ Tq is such that N(x) = ∅, then the sequence y ∈ Sq with
supp(y) = supp(x) is a periodic sequence.

Proof. If supp(x) = ∅, then x, as well as the corresponding y ∈ Sq, is simply
the all-zeros sequence, 0Z, which is periodic. If supp(x) �= ∅ but N(x) = ∅, then
supp(x) = P (x). So, as in the proof of the above theorem, there exists a k ∈ N and
an I ⊂ [0, k − 1] such that

supp(x) ⊂
⋃
i∈I

(kZ + i) ⊂ supp(x).

Hence, supp(x) =
⋃

i∈I(kZ + i). It now follows that the corresponding y ∈ Sq is
periodic with period k.

It appears to be difficult to strengthen Theorem 3.1 any further, for example, to
give a complete description of the sequences that are allowed to be in Tq or Sq for
arbitrary q. However, for q = 3, which is our main case of interest, we can do much
better than Theorem 3.1, as we show in the next section.
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4. The TGP constraint. In this section, we provide a means of characterizing
the binary sequences that are in S3. Separate characterizations are provided for binary
sequences that are periodic and for those that are not. Recall that y = (ym)m∈Z

∈
{0, 1}Z is periodic if there exists a k ∈ N such that ym = ym+k for all m ∈ Z. The
integer k is referred to as a period of y. The fundamental period of a periodic sequence,
y, is the smallest k ∈ N that is a period of y. Note that if y ∈ {0, 1}Z is not the
all-zeros sequence 0Z, then y is periodic if and only if there exists a k ∈ N and a
nonempty I ⊂ [0, k − 1] such that supp(y) =

⋃
i∈I(kZ + i). The following theorem

shows that a nonzero periodic sequence having k as a period is in S3 if and only if
it satisfies a certain “modulo-k” TGP constraint, in a manner made precise in the
statement of the theorem.

Theorem 4.1. Let y ∈ {0, 1}Z, y �= 0Z, be periodic so that there exist a k ∈ N

and a nonempty I ⊂ [0, k − 1] such that supp(y) =
⋃

i∈I(kZ + i). Then, y ∈ S3 if
and only if there exists a 2-coloring, χ, of I such that whenever i1, i2, i3 ∈ I satisfy
χ(i1) = χ(i2) = χ(i3), then i1 + i2 − i3 mod k ∈ I.

Since I ≡ supp(y) (mod k), a comparison of the statement of the above theorem
with that of Lemma 2.4 highlights the “modulo-k” nature of the TGP constraint
imposed on periodic sequences in S3. The modulo-k connection can be made explicit
in terms of the definition given below. For k ∈ N, let Z/k denote the group of integers
modulo k; i.e., Z/k is the set [0, k − 1] equipped with the operation of modulo-k
addition.

Definition 4.2 (TGP-coloring). For k ∈ N and I ⊂ Z/k, a TGP-coloring of I
is a 2-coloring, χ, of I such that whenever i1, i2, i3 ∈ I satisfy χ(i1) = χ(i2) = χ(i3),
then i1 + i2 − i3 ∈ I.

We would like to clarify that whenever we write I ⊂ Z/k, we tacitly assume that I
gets equipped with the same operation as Z/k. So, in the above definition, i1 + i2− i3
is in fact taken modulo k.

A subset I ⊂ Z/k is said to be TGP-colorable if there exists a TGP-coloring of I.
Thus, we may restate Theorem 4.1 as follows: Let y ∈ {0, 1}Z, y �= 0Z, be periodic
so that there exist a k ∈ N and a nonempty I ⊂ [0, k − 1] such that supp(y) =⋃

i∈I(kZ + i). Then, y ∈ S3 if and only if I ⊂ Z/k is TGP-colorable.

While the Z/k TGP-colorability condition is easier to check than the full-blown
TGP condition, it is still very hard in practice to verify that this condition holds for
an arbitrary I ⊂ Z/k. However, if p is a prime, then we can determine precisely which
subsets of Z/p are TGP-colorable.

Theorem 4.3. Let p be prime. Then, I ⊂ Z/p is TGP-colorable if and only if
one of the following holds:

(i) |I| ≤ 2;

(ii) I = [0, p− 1];

(iii) p = 5 and |I| = 4.

For nonprime k, the problem of determining all the subsets of Z/k that are TGP-
colorable remains open. In other words, we do not yet have an easily verifiable char-
acterization for periodic sequences in S3 whose fundamental period is nonprime. In
Table 5.1 in the next section, we list the number of TGP-colorable subsets of Z/k for
nonprime k ≤ 20, obtained by means of an exhaustive computer search.

Luckily, the problem of determining which aperiodic sequences are in S3 turns
out to be a lot easier. There is a simple characterization of such sequences, which is
presented in the following theorem.

Theorem 4.4. Let y ∈ {0, 1}Z be an aperiodic sequence. Then, y ∈ S3 if and
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only if one of the following conditions holds:
(i) 1 ≤ | supp(y)| ≤ 2;
(ii) there exist a k ∈ N and an i ∈ [0, k − 1] such that supp(y) = (kZ + i) ∪ V ,

with V = {j} for some j ∈ Z, j �≡ i (mod k);
(iii) there exist a t ∈ N and an i ∈ [0, 3t− 1] such that supp(y) = (3tZ + i) ∪ V ,

with |V | = 2 and V ≡ {t + i, 2t + i} (mod 3t).
The remainder of this section is devoted to the proofs of Theorems 4.1, 4.3, and

4.4. For the purpose of the proofs, we shall find it convenient to define the function
π : {0, 1, 2}Z → {0, 1}Z as follows: for x ∈ {0, 1, 2}Z, π(x) is the unique y ∈ {0, 1}Z

such that supp(y) = supp(x). Observe that π(T3) = S3.

4.1. Periodic sequences in S3. The proof of Theorem 4.1 is based on the
following lemma.

Lemma 4.5. Let y ∈ S3 be such that supp(y) =
⋃

i∈I(kZ + i) for some k ∈ N

and a nonempty I ⊂ [0, k − 1]. Then, there exists an x ∈ T3 such that π(x) = y,
V1(x) =

⋃
i∈I1

(kZ + i), and V2(x) =
⋃

i∈I2
(kZ + i) for some partition {I1, I2} of I.

Proof. Let y, k, and I be as in the statement of the lemma, and let I = [0, k −
1] \ I. Since y ∈ S3, there exists a z ∈ T3 such that π(z) = y. For each i ∈ I,
kZ + i ⊂ supp(z) = V1(z) ∪ V2(z), where V1(z), V2(z) are as defined in (3). Let
I1 = {i ∈ I : |(kZ + i)∩ V1(z)| > 0}, and let I2 = I \ I1. Thus, {I1, I2} is a partition
of I. Now, define x = (xj)j∈Z

∈ {0, 1, 2}Z as follows:

xj =

⎧⎨
⎩

0 ∀ j ∈ kZ + i, i /∈ I,
1 ∀ j ∈ kZ + i, i ∈ I1,
2 ∀ j ∈ kZ + i, i ∈ I2.

Clearly, π(x) = y, V1(x) =
⋃

i∈I1
(kZ + i), and V2(x) =

⋃
i∈I2

(kZ + i). We shall show
that x ∈ T3.

Suppose, to the contrary, that x /∈ T3 so that there exist p, q, r ∈ V1(x) or p, q, r ∈
V2(x) such that p+ q− r /∈ supp(x). Without loss of generality, we may assume that
p, q, r ∈ V1(x) and p+q−r /∈ supp(x) =

⋃
i∈I(kZ+ i). Thus, p+q−r ∈

⋃
i∈I(kZ+ i),

so that p + q − r mod k /∈ I.
Since p, q, r ∈ V1(x), p ≡ i1 (mod k), q ≡ i2 (mod k), and r ≡ i3 (mod k) for

some i1, i2, i3 ∈ I1. Now, by definition of I1, for each i ∈ I1, there exists t ∈ V1(z)
such that t ≡ i (mod k). In particular, there exist p′, q′, r′ ∈ V1(z) such that p′ ≡ i1
(mod k), q′ ≡ i2 (mod k), and r′ ≡ i3 (mod k). In other words, p′ ≡ p (mod k),
q′ ≡ q (mod k), and r′ ≡ r (mod k). Now, since z ∈ T3, p

′ + q′ − r′ ∈ supp(z) =⋃
i∈I(kZ + i), and hence, p′ + q′ − r′ mod k ∈ I. But since p′ + q′ − r′ ≡ p + q − r

(mod k), this contradicts p + q − r mod k /∈ I. Thus, x must be in T3, thus proving
the lemma.

Proof of Theorem 4.1. Let y, k, and I be as in the statement of the theorem.
Suppose that there exists a 2-coloring, χ : I → {1, 2}, such that whenever i1, i2, i3 ∈ I
satisfy χ(i1) = χ(i2) = χ(i3), then i1 + i2 − i3 mod k ∈ I. Define x = (xj)j∈Z

∈
{0, 1, 2}Z as follows: xj = χ(j mod k) if j mod k ∈ I, and xj = 0 otherwise. It is
easy to verify that x ∈ T3, and supp(x) =

⋃
i∈I(kZ + i) = supp(y) so that y ∈ S3.

If y ∈ S3, then let x, I1, and I2 be as in the statement of Lemma 4.5. Define the
2-coloring, χ, of I as follows: χ(j) = 1 if j ∈ I1, and χ(j) = 2 if j ∈ I2. From the fact
that x ∈ T3, it follows that χ has the property stated in the theorem.

Our next goal is to provide a proof for Theorem 4.3. As is often the case, one
direction of the theorem, namely the sufficiency of condition (i), (ii), or (iii), is easy
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to prove. Indeed, if |I| ≤ 2, then any injective 2-coloring, χ, of I is a TGP-coloring. If
I = [0, p−1], then we may take χ(i) = 1 for all i ∈ I to be the required TGP-coloring.
Finally, if p = 5, then one may actually verify by hand that each of the five 4-subsets
of Z/5 is in fact TGP-colorable.

We must now prove that one of conditions (i)–(iii) of Theorem 4.3 is necessary
for the existence of a TGP-coloring of I ⊂ Z/p. In fact, we need prove only that if
I ⊂ Z/p is TGP-colorable and |I| ≥ 3, then one of conditions (ii) and (iii) must hold.
Note that |I| ≥ 3 requires that p ≥ 3, so we need not deal with p = 2.

Given a 2-coloring, χ, of I ⊂ Z/p, we shall let {I1, I2} denote the corresponding
chromatic partition of I, i.e., for j = 1, 2, Ij = {i ∈ I : χ(i) = j}. Observe that if
I ⊂ Z/p is TGP-colorable and |I| ≥ 3, then at least one of the following must be true:

(a) there exists a TGP-coloring, χ, of I such that |I1| ≥ 2 and |I2| ≤ |I1| − 2;

(b) there exists a TGP-coloring, χ, of I such that |I1| ≥ 2 and |I2| = |I1| − 1;

(c) there exists a TGP-coloring, χ, of I such that |I1| ≥ 2 and |I2| = |I1|.
We shall analyze each of these cases separately and show that if (a) or (b) is true,
then I = Z/p, and if (c) is true, then condition (iii) of Theorem 4.3 holds.

The following lemma is the Z/p-equivalent of Corollary 3.3 (for the case q = 3)
and is the core ingredient in our proofs.

Lemma 4.6. Let χ be a TGP-coloring of I ⊂ Z/p, for prime p ≥ 3, and let
{I1, I2} be the corresponding chromatic partition of I. If either I1 or I2 contains a
3-term AP {a, a + d, a + 2d} for some a, d ∈ Z/p, d �= 0, then I = Z/p.

Proof. Let x = (xk)k∈Z
∈ {0, 1, 2}Z

be the periodic sequence defined as follows:
xj = χ(j mod k) if j mod k ∈ I, and xj = 0 otherwise. From the conditions of the
lemma, and recalling that the Schur number S(2) equals 5, we see that x satisfies
the hypotheses of Corollary 3.3 for q = 3. Hence, a + dZ ⊂ supp(x), from which it
follows that I contains the set K = {a+ jd mod p : j ∈ Z}. But, note that H = {jd
mod p : j ∈ Z} is a subgroup of Z/p, and K is a coset of H. Since the only nonempty
subgroup of Z/p is Z/p itself, it follows that K = Z/p, which proves the lemma.

The following proposition takes care of case (a) above.

Proposition 4.7. Let χ be a TGP-coloring of I ⊂ Z/p, for prime p ≥ 3, such
that |I1| ≥ 2 and |I2| ≤ |I1| − 2. Then, I = Z/p.

Proof. Let I1 = {i1, i2, . . . , im}, m ≥ 2, so that |I2| ≤ m − 2. Let jk = 2i1 − ik,
k = 2, 3, . . . ,m. Since χ is a TGP-coloring of I, jk ∈ I = I1 ∪ I2 for k = 2, 3, . . . ,m.
Now, note that the jk’s are all distinct since jk = jl implies that ik = il. Since there
are m − 1 distinct jk’s and |I2| ≤ m − 2, there exists a k ∈ [2,m] such that jk ∈ I1.
But now, {ik, i1, jk} is a 3-term AP in I1, and hence, by Lemma 4.6, I = Z/p.

To deal with the remaining cases (b) and (c), we need the following lemma.

Lemma 4.8. Let I1, I2 be disjoint subsets of Z/p, for prime p ≥ 3, with |I1| ≥ 2
and |I2| = |I1| − 1. If for all pairs of distinct xi, xj ∈ I1, we have 2xi − xj ∈ I2, then
p = 3 and I1 ∪ I2 = Z/3.

Proof. Let I1 = {x1, x2, . . . , xm} for some m ≥ 2 so that |I2| = m − 1. Clearly,
m < p, as otherwise I1, I2 cannot be disjoint. For each i ∈ [1,m], define Yi =
{2xi − xj : j ∈ [1,m], j �= i}. Similarly, for each j ∈ [1,m], define Zj = {2xi − xj :
i ∈ [1,m], i �= j}. By assumption, Yi, Zj ⊂ I2 for all i, j ∈ [1,m]. Furthermore, note
that for any fixed i, the elements of Yi are all distinct in Z/p. Therefore, for any
i ∈ [1,m], |Yi| = m− 1, and hence, Yi = I2. Similarly, Zj = I2 for any j ∈ [1,m].

Now, fix an arbitrary a ∈ I2. For any i ∈ [1,m], since Yi = I2, there exists a
unique j ∈ [1,m], j �= i, such that 2xi − xj = a. Therefore, we can define a function
σ : [1,m] → [1,m] as follows: σ(i) is the unique j such that 2xi − xj = a. We shall
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show that σ is a bijection, which would imply that it is a permutation of [1,m].
To show injectivity, we observe that if σ(i) = σ(k) = j for some i �= k, then we

would have 2xi−xj = 2xk −xj for i �= k. This would imply that |Zj | < m− 1, which
is impossible. To see that σ is surjective, take any j ∈ [1,m], and note that a ∈ Zj ,
as Zj = I2. Hence, there exists an i ∈ [1,m] such that 2xi − xj = a.

Thus, σ is a bijection, and hence, a permutation of [1,m]. Now, consider the m
equations 2xi − xσ(i) = a, i = 1, 2, . . . ,m. Adding all these equations, we find

ma = 2

m∑
i=1

xi −
m∑
i=1

xσ(i)

= 2

m∑
i=1

xi −
m∑
i=1

xi(4)

=

m∑
i=1

xi

with the equality in (4) following from the fact that σ is a permutation of [1,m].
Since 2 ≤ m < p, there exists an m−1 ∈ Z/p such that mm−1 = 1. Therefore,

a = m−1
∑m

i=1 xi. Since our choice of a ∈ I2 was arbitrary, it follows that I2 consists
of the single element a = m−1

∑m
i=1 xi. Therefore, m − 1 = |I2| = 1, which shows

that m = 2.
We thus have I1 = {x1, x2} and I2 = {a}, so that, by assumption, 2x1 − x2 =

2x2 − x1 = a. But this means that 3(x1 − x2) = 0 which, since x1 �= x2, implies that
p = 3. Therefore, since I1 and I2 are disjoint, we must have I1 ∪ I2 = Z/p.

We can now readily dispose of case (b).
Proposition 4.9. Let χ be a TGP-coloring of I ⊂ Z/p, for prime p ≥ 3, such

that |I1| ≥ 2 and |I2| = |I1| − 1. Then, I = Z/p.
Proof. Since χ is a TGP-coloring of I, for any xi, xj ∈ I1, 2xi−xj is either in I1 or

I2. If for some pair of distinct xi, xj ∈ I1, 2xi−xj is also in I1, then {xj , xi, 2xj −xi}
is a 3-term AP in I1, and hence I = Z/p by Lemma 4.6. If not, Lemma 4.8 applies,
which also shows that I = Z/p.

We are now left with case (c) which, unfortunately, requires some work. We start
with the following simple lemma.

Lemma 4.10. Let χ be a TGP-coloring of I ⊂ Z/p, for prime p ≥ 3, such that
|I1| = |I2|. Then, neither I1 nor I2 can contain a 3-term AP.

Proof. If either I1 or I2 contains a 3-term AP, then by Lemma 4.6 I = Z/p,
implying that |I| = p, which is an odd number. However, |I| = |I1| + |I2| = 2|I1| is
even.

Thus, if x1, x2 is any pair of distinct elements in I1, then 2x2 − x1 ∈ I2, for
otherwise {x1, x2, 2x2 − x1} would be a 3-term AP in I1. By the same reasoning,
2y2 − y1 ∈ I1 for all y1, y2 ∈ I2, y1 �= y2.

The special case when |I1| = |I2| = 2 is straightforward, so we dispose of that
first.

Lemma 4.11. If χ is a TGP-coloring of I ⊂ Z/p, for prime p ≥ 3, such that
|I1| = |I2| = 2, then p = 5.

Proof. Let I1 = {a, b} for some a, b ∈ [0, p − 1], a �= b. Since a, b are distinct
elements in I1, we must have 2a− b, 2b−a ∈ I2. Note that 2a− b �= 2b−a; otherwise,
we would have 3(a−b) = 0, implying that p = 3, which contradicts p ≥ |I1|+ |I2| = 4.
Therefore, I2 = {2a− b, 2b− a}.
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Now, since 2a − b �= 2b − a, we must have 2(2a − b) − (2b − a) = 5a − 4b ∈ I1.
So, either 5a− 4b = a or 5a− 4b = b. In the former case, we would get 4(a− b) = 0,
implying that p|4, which is impossible as p �= 2. Therefore, we must have 5a− 4b = b,
from which we obtain 5(a− b) = 0, and hence p = 5 as desired.

The analysis of case (c) and, as a result, the proof of Theorem 4.3 would be
complete if we can show that there cannot exist any TGP-coloring of I ⊂ Z/p such
that |I1| = |I2| ≥ 3. We show this in Proposition 4.14 below, but we need some
development before we can prove the proposition.

Given a TGP-coloring, χ, of I ⊂ Z/p such that |I1| = |I2| ≥ 2, we define
certain functions f, g : I1 → I2 as follows. Let I1 = {x1, x2, . . . , xm} and I2 =
{y1, y2, . . . , ym}, m ≥ 2. For each i ∈ [1,m], define the sets Yi = {2xj − xi : j ∈
[1,m], j �= i} and Zi = {2xi −xj : j ∈ [1,m], j �= i} so that Yi, Zi ⊂ I2. For any fixed
i, all the elements of Yi are distinct, and hence |Yi| = m− 1. Since |I2| = m, there is
precisely one element in I2 \ Yi, and we shall denote this element by f(xi). Similarly,
we denote the unique element in I2 \Zi by g(xi). Doing this for each i ∈ [1,m], we get
two mappings f, g : I1 → I2. To be precise, f(xi) = yj if and only if I2 \ Yi = {yj},
and g(xi) = yj if and only if I2 \ Zi = {yj}. We make some observations about the
sets Yi, Zi and the mappings f, g in the lemmas below.

Lemma 4.12. For any i ∈ [1,m], if y, y′ ∈ Yi or y, y′ ∈ Zi, then 2y − y′ �= xi.

Proof. We provide the argument only for y, y′ ∈ Yi, as the argument for y, y′ ∈ Zi

is similar. If y, y′ ∈ Yi, then there exist xk, xl ∈ I1 such that y = 2xk − xi and
y′ = 2xl − xi. So, if 2y − y′ = xi, we would get 2(2xk − xl − xi) = 0, from which we
obtain 2xk − xl = xi. But, this would mean that {xl, xk, xi} is a 3-term AP in I1,
contradicting Lemma 4.10.

Lemma 4.13. f, g are bijections, and f(x) = g(x) for all x ∈ I1.

Proof. We shall show that f is a bijection and that f(x) = g(x) for all x ∈ I1. It is
then clear that g is also a bijection. Since I1, I2 are finite sets of the same cardinality,
to prove that f is a bijection, it suffices to show that f is injective.

Now, suppose that f is not injective. Without loss of generality, assume that
f(xm−1) = f(xm) = ym. By the definition of f , {ym} = I2 \ Ym−1 = I2 \ Ym,
and hence Ym = Ym−1 = {y1, y2, . . . , ym−1}. Now, if yi, yj ∈ Ym = Ym−1 are such
that yi �= yj , then by Lemma 4.12, 2yi − yj /∈ {xm, xm−1}. However, as 2yi − yj
must be in I1, we find that 2yi − yj ∈ {x1, x2, . . . , xm−2}. This means that the sets
{y1, y2, . . . , ym−1} and {x1, x2, . . . , xm−2} satisfy the assumptions of Lemma 4.8, and
therefore, we must have p = 3. But this is impossible as p ≥ |I1| + |I2| = 2m ≥ 4.
This shows that f is injective and hence a bijection.

To show that f(x) = g(x) for all x ∈ I1, suppose to the contrary that g(xm) = ym,
but f(xm) �= ym. Now, since f is a bijection, there exists an x ∈ I, x �= xm, such that
f(x) = ym. Relabeling the xi’s if necessary, we may take f(xm−1) = ym. We thus
have f(xm−1) = g(xm) = ym. Now, using the same argument as used earlier to prove
the injectivity of f , except that now we replace Ym by Zm, we reach the conclusion
via Lemma 4.8 that p = 3, which is impossible. Thus, we must have f(x) = g(x) for
all x ∈ I1.

We are now ready to prove the following result, which is the last step in our proof
of Theorem 4.3.

Proposition 4.14. For any I ⊂ Z/p, p ≥ 3, there does not exist a TGP-coloring
of I such that |I1| = |I2| ≥ 3.

Proof. Suppose there exists such a coloring of I. Let I1 = {x1, x2 . . . , xm} and
I2 = {y1, y2, . . . , ym}, m ≥ 3. Note that {2yi − y1 : i ∈ [2,m]} lies in I1, and all its
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m− 1 elements are distinct. By relabeling the xj ’s if necessary, we may assume that
2yi − y1 = xi for all i ∈ [2,m].

Let f, g : I1 → I2 be the mappings defined as above. We shall show that for any
i ∈ [2,m], f(xi) = y1. But this leads to a contradiction since for m ≥ 3, there exist
x2, x3 ∈ I1, x2 �= x3, for which f(x2) = f(x3) = y1, which is impossible, as f is a
bijection.

So, consider an arbitrary xi ∈ I1 with i ∈ [2,m], and suppose that f(xi) �= y1.
Thus,

xi = 2yi − y1,(5)

and there exists an xj ∈ I1 such that

2xj − xi = y1.(6)

If j ≥ 2 as well, then we would also have

xj = 2yj − y1.(7)

Therefore, plugging (5) and (7) into (6), we would obtain 2(2yj−yi−y1) = 0, implying
that 2yj − yi = y1, which is impossible by Lemma 4.10. Thus, j = 1, so we must have

2x1 − xi = y1.(8)

Since, by Lemma 4.13, f(xi) = g(xi), we also have g(xi) �= y1. Now, an argument
similar to the one above shows that

2xi − x1 = y1.(9)

But from (8) and (9), we get 2x1 − xi = 2xi − x1 or, equivalently, 3(xi − x1) = 0
which is impossible, as p ≥ |I1| + |I2| = 2m ≥ 6.

Thus, we are forced to conclude that f(xi) = y1, and since this holds for any
i ∈ [2,m], this contradicts the fact that f is a bijection.

This concludes our proof of Theorem 4.3.

4.2. Aperiodic sequences in S3. We shall now work towards a proof for Theo-
rem 4.4. It is easy to show the sufficiency of condition (i), (ii), or (iii) in the statement
of the theorem, so we proceed to do that first. For y ∈ {0, 1}Z such that condition
(i) holds, we construct an x = (xj)j∈Z

∈ T3 with supp(x) = supp(y) as follows. If

supp(y) = {m} for some m ∈ Z, then simply take x = y; if supp(y) = {m,n} for
m,n ∈ Z, m �= n, then set xm = 1, xn = 2, and xj = 0 otherwise. For y ∈ {0, 1}Z such
that supp(y) = (kZ + i)∪ V as in condition (ii), let x ∈ {0, 1, 2}Z be the sequence for
which V1(x) = kZ+i and V2(x) = V . For y ∈ {0, 1}Z such that supp(y) = (3tZ+i)∪V
as in condition (iii), let x ∈ {0, 1, 2}Z be the sequence for which V1(x) = 3tZ + i and
V2(x) = V . In both of these cases, it is straightforward to verify that x ∈ T3, and
hence, y = π(x) ∈ S3.

To prove the converse part of the theorem, we use the following approach. We
first show that if y ∈ S3 is such that d(supp(y)) = 0, then | supp(y)| ≤ 2. Thus, if
y ∈ S3 is aperiodic with d(supp(y)) = 0, then we must have 1 ≤ | supp(y)| ≤ 2 since
| supp(y)| = 0 implies that y is the all-zeros sequence, which is periodic. For aperiodic
y ∈ S3 with d(supp(y)) > 0, we analyze sequences in the set π−1(y) ∩ T3, finally
showing that there must exist a sequence x ∈ π−1(y) ∩ T3 such that V1(x) = kZ + i,
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for some k ∈ N and i ∈ [0, k − 1], and V2(x) is one of the V ’s in conditions (ii) and
(iii) in the statement of Theorem 4.4.

Lemma 4.15. If y ∈ S3 is such that d(supp(y)) = 0, then | supp(y)| ≤ 2.

Proof. Suppose that y ∈ S3 is such that | supp(y)| ≥ 3. We shall show that
d(supp(y)) > 0. Let x ∈ T3 be any sequence with π(x) = y so that |V1(x)|+ |V2(x)| =
| supp(x)| ≥ 3. Thus, either |V1(x)| ≥ 2 or |V2(x)| ≥ 2. We shall assume that
|V1(x)| ≥ 2, as a symmetric argument applies to the other case. Our goal is to
show that either V1(x) or V2(x) contains a 3-term AP {a, a + k, a + 2k} for some
a ∈ Z and k ∈ N. For if this is the case, then applying Corollary 3.3 with q = 3,
noting that S(2) = 5, we find that a + kZ ⊂ supp(x). Therefore, we would have
d(supp(y)) = d(supp(x)) ≥ d(a + kZ) = 1/k > 0, which proves the lemma.

Since |V1(x)| ≥ 2, pick any pair of integers r, s ∈ V1(x), r < s, and let d = s− r.
Now, suppose that neither V1(x) nor V2(x) contains a 3-term AP. Since x ∈ T3 and
r, r+d ∈ V1(x), we must have r+2d ∈ V1(x)∪V2(x) as r+2d = (r+d)+ (r+d)− r.
But as V1(x) does not contain a 3-term AP, r + 2d ∈ V2(x). Similarly, r − d ∈ V2(x)
as r − d = r + r − (r + d). Now, applying a similar argument to the pair of integers
r − d, r + 2d ∈ V2(x), we find that r − 4d, r + 5d ∈ V1(x). Next, r + d, r + 5d ∈ V1(x)
implies that r−3d ∈ V2(x). Finally, since r−d, r−3d ∈ V2(x), we have r−5d ∈ V1(x).
But now, {r − 5d, r, r + 5d} is a 3-term AP in V1(x), contradicting our assumption.
Hence, if |V1(x)| ≥ 2, then either V1(x) or V2(x) contains a 3-term AP, thus proving
the lemma.

As explained earlier, the above lemma shows that if y ∈ S3 is aperiodic with
d(supp(y)) = 0, then 1 ≤ supp(y) ≤ 2, which is condition (i) of Theorem 4.4.

So now, we are left to deal with the set of aperiodic sequences y ∈ S3 with
d(supp(y)) > 0, which we shall denote by Q3. As before, for x ∈ T3, we define P (x) =⋃

j∈J1
Vj(x), where J1 = {j ∈ {1, 2} : d(Vj(x)) > 0}, and N(x) =

⋃
j∈J2

Vj(x), where

J2 = {j ∈ {1, 2} : d(Vj(x)) = 0}. Note that if x ∈ T3 is such that π(x) ∈ Q3, then
P (x) �= ∅ since d(supp(x)) = d(supp(π(x))) > 0, and by Corollary 3.5, N(x) �= ∅
as well since π(x) is aperiodic. Thus, for any x ∈ T3 such that π(x) ∈ Q3, we have
{P (x), N(x)} = {V1(x), V2(x)}.

The proof of the remaining part of Theorem 4.4 begins with the following lemma.

Lemma 4.16. Let x ∈ T3 be such that π(x) ∈ Q3. If there exists a k ∈ N

and an I ⊂ [0, k − 1] such that P (x) ⊂
⋃

i∈I(kZ + i) ⊂ supp(x), then the elements of
supp(x)\

⋃
i∈I(kZ+i) are all distinct modulo k. Hence, | supp(x)\

⋃
i∈I(kZ+i)| ≤ k.

Proof. Let N ′(x) = supp(x) \
⋃

i∈I(kZ + i). Note that under the assumptions of
the lemma, N ′(x) ⊂ supp(x) \ P (x) = N(x). We shall show that if N ′(x) contains
distinct integers a, b such that a ≡ b (mod k), then d(N ′(x)) > 0. This leads to the
contradiction that d(N(x)) > 0 since d(N(x)) ≥ d(N ′(x)).

So, suppose that a, b ∈ N ′(x), a < b, are such that a ≡ b (mod k). For any
j ∈ supp(x), by the definition of N ′(x), j ∈ N ′(x) if and only if j mod k /∈ I. In
particular, a ≡ b ≡ � (mod k) for some � /∈ I. Let d = b − a, and note that d ≡ 0
(mod k).

As observed above, for any x ∈ T3 such that π(x) ∈ Q3, we have {P (x), N(x)} =
{V1(x), V2(x)}. Without loss of generality, we may assume that P (x) = V1(x) and
N(x) = V2(x), and hence, N ′(x) ⊂ V2(x). So, we have a, a + d ∈ V2(x), and hence
by the TGP condition, a + 2d ∈ supp(x). But since a + 2d ≡ � (mod k) and � /∈ I,
we must have a + 2d ∈ N ′(x) ⊂ V2(x). But now, V2(x) contains the 3-term AP
{a, a + d, a + 2d} so that by Corollary 3.3, a + dZ ⊂ supp(x). However, for any
j ∈ a + dZ, j ≡ � (mod k), and hence j ∈ N ′(x). Thus, a + dZ ⊂ N ′(x), from which
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we obtain d(N ′(x)) ≥ d(a + dZ) = 1/d > 0, which leads to the contradiction that
proves the lemma.

Lemma 4.16 leads us to the following result, which is the crucial step in our proof
of the rest of the converse part of Theorem 4.4.

Lemma 4.17. For each y ∈ Q3, there exists an x ∈ T3 such that π(x) = y and
P (x) =

⋃
i∈I(kZ + i) for some k ∈ N and I ⊂ [0, k − 1].

Proof. Consider an arbitrary y ∈ Q3. Since Q3 ⊂ S3, there exists a z ∈ T3 such
that π(z) = y. As observed prior to Lemma 4.16, for such a z, we have {P (z), N(z)} =
{V1(z), V2(z)}. Without loss of generality, we may assume that P (z) = V1(z) and
N(z) = V2(z). Since d(V1(z)) = d(P (z)) > 0, by Lemma 3.4, there exist a k ∈ N and
an I ⊂ [0, k−1] such that V1(z) ⊂

⋃
i∈I(kZ+i) ⊂ supp(z). Moreover, by Lemma 4.16,

supp(z) \
⋃

i∈I(kZ + i) is a finite set.

Note that for any i ∈ I, kZ + i ⊂ supp(z) = V1(z) ∪ V2(z) so that d(kZ + i) =
d(V1(z) ∩ (kZ + i)) + d(V2(z) ∩ (kZ + i)). Since d(V2(z) ∩ (kZ + i)) = 0, we have
d(V1(z)∩ (kZ+ i)) = d(kZ+ i) = 1/k > 0. In particular, V1(z)∩ (kZ+ i) is an infinite
set for any i ∈ I.

Now, let x = (xj)j∈Z
∈ {0, 1, 2}Z be defined as follows:

xj =

⎧⎨
⎩

0 ∀ j /∈ supp(z),
1 ∀ j ∈

⋃
i∈I(kZ + i),

2 ∀ j ∈ supp(z) \
⋃

i∈I(kZ + i).

It is clear that π(x) = y since supp(x) = supp(z) = supp(y). Also, we have
d(V1(x)) ≥ 1/k > 0, and since V2(x) is a finite set, d(V2(x)) = 0. Hence, P (x) =
V1(x) =

⋃
i∈I(kZ + i). It remains only to show that x ∈ T3, i.e., to show that if

p, q, r ∈ V1(x) or p, q, r ∈ V2(x), then p + q − r ∈ supp(x).
Note that V2(x) ⊂ V2(z). Therefore, if we take any p, q, r ∈ V2(x), then p, q, r ∈

V2(z) as well, and hence, since z ∈ T3, p + q − r ∈ supp(z) = supp(x).
Now, let p, q, r ∈ V1(x), and suppose that p+q−r /∈ supp(x). Thus, p+q−r ≡ j

(mod k) for some j /∈ I. As shown above, for any i ∈ I, V1(z)∩ (kZ + i) is an infinite
set. Hence, we can pick q′, r′ ∈ V1(z) such that q′ ≡ q (mod k) and r′ ≡ r (mod k),
and furthermore, we can pick a p′ ∈ V1(z), with p′ ≡ p (mod k), that is large enough
in absolute value that p′ + q′ − r′ lies outside the finite set supp(z) \

⋃
i∈I(kZ + i).

Thus, p′ +q′−r′ /∈ supp(z)\
⋃

i∈I(kZ+ i), and as p′ +q′−r′ ≡ p+q−r ≡ j (mod k),
we see that p′ + q′ − r′ /∈

⋃
i∈I(kZ + i) either. This shows that p′ + q′ − r′ /∈ supp(z),

which contradicts the fact that z ∈ T3. Hence, we must have p + q − r ∈ supp(x),
which shows that x ∈ T3, thus proving the result.

In the next two lemmas, we show that the sequence x ∈ T3, whose existence is
guaranteed by Lemma 4.17, must in fact have P (x) = k0Z + i0, for some k0 ∈ N and
i0 ∈ [0, k0 − 1], and N(x) = V , where V is as in condition (ii) or (iii) of the theorem.

Lemma 4.18. Let x ∈ T3 be such that π(x) ∈ Q3. If there exist a k ∈ N and an
I ⊂ [0, k − 1] such that P (x) =

⋃
i∈I(kZ + i), then

⋃
i∈I(kZ + i) = dZ + � for some

d ∈ N, such that d|k, and some � ∈ [0, d− 1].
Proof. Our goal is to show that under the assumptions of the lemma, I must be

a coset of some subgroup of the group, Z/k, of integers modulo k. (We represent Z/k
here as the set [0, k − 1] equipped with the operation of modulo-k addition.) Since
any (nonempty) subgroup of Z/k is generated by some divisor d of k, any such I
must be of the form {i ∈ [0, k − 1] : i ≡ � (mod d)} for some d ∈ N, d|k, and some
� ∈ [0, d − 1]. It then immediately follows that

⋃
i∈I(kZ + i) = dZ + �, as stated in

the lemma.
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Now, to show that I is a coset of some subgroup of Z/k, it is enough to show
that I is closed under the ternary operation i1 + i2 − i3 mod k; i.e., if i1, i2, i3 ∈ I,
then i1 + i2 − i3 mod k ∈ I. Indeed, if I is closed under this operation, then take
any � ∈ I and consider the set H = {i− � mod k : i ∈ I}. It is easily verified that H
is a subgroup of Z/k, and so I is a coset of H.

Thus, it remains only to prove that under the assumptions of the lemma, if
i1, i2, i3 ∈ I, then i1 + i2 − i3 mod k ∈ I. As x ∈ T3 is such that π(x) ∈ Q3, we
may assume that P (x) = V1(x) and N(x) = V2(x). Thus, V1(x) =

⋃
i∈I(kZ + i)

and V2(x) = supp(x) \
⋃

i∈I(kZ + i). Note that k and I satisfy the assumptions of
Lemma 4.16, and hence, we have |V2(x)| = | supp(x) \

⋃
i∈I(kZ + i)| ≤ k. In other

words, V2(x) is a finite set.
Now, consider any i1, i2, i3 ∈ I. Since V2(x) is a finite set, we can choose an

integer r large enough that kr + (i1 + i2 − i3) /∈ V2(x). Let r1, r2, r3 ∈ Z be such that
r1 + r2 − r3 = r. Note that for j = 1, 2, 3, krj + ij ∈ V1(x) since kZ + ij ⊂ V1(x).
Hence, by the TGP condition applied to kr1 + i1, kr2 + i2, kr3 + i3 ∈ V1(x), we obtain
kr + (i1 + i2 − i3) ∈ supp(x). Since kr + (i1 + i2 − i3) is not in V2(x), it must be
in V1(x) =

⋃
i∈I(kZ + i), from which it follows that i1 + i2 − i3 mod k ∈ I, as

desired.
Lemma 4.19. Let x ∈ T3 be such that π(x) ∈ Q3 and P (x) = kZ + i for some

k ∈ N and i ∈ [0, k − 1]. Then, 1 ≤ |N(x)| ≤ 2. Furthermore, if |N(x)| = 2, then
k = 3t for some t ∈ N and N(x) ≡ {t + i, 2t + i} (mod 3t).

Proof. Since x satisfies the assumptions of Lemma 4.16 and N(x) = supp(x) \
(kZ + i), we find that |N(x)| ≤ k. Furthermore, if a, b are distinct integers in N(x),
then a �≡ b (mod k). As usual, we shall assume that P (x) = V1(x) and N(x) = V2(x)
so that V1(x) = kZ + i and V2(x) is a finite set. Furthermore, since π(x) is aperiodic,
V2(x) cannot be empty, i.e., |V2(x)| ≥ 1. We shall show that if |V2(x)| > 1, then we
must have |V2(x)| = 2, k = 3t for some t ∈ N, and V2(x) ≡ {t + i, 2t + i} (mod 3t),
which would prove the lemma.

So, suppose that |V2(x)| ≥ 2. Let a be the smallest integer in V2(x) and let b be the
largest, so that a < b. Note that since a and b are distinct integers in V2(x) = N(x),
we have a �≡ b (mod k). Now, applying the TGP condition to a, b ∈ V2(x), we find
that 2a− b, 2b− a ∈ supp(x). However, 2a− b < a, and since a is the smallest integer
in V2(x), 2a− b cannot be in V2(x). Hence, 2a− b ∈ V1(x). A similar argument shows
that 2b− a ∈ V1(x) as well. But since V1(x) = kZ + i, we have

2a− b ≡ 2b− a ≡ i (mod k).(10)

Therefore, 3(a − b) ≡ 0 (mod k). Since a �≡ b (mod k), 3 must divide k and a ≡ b
(mod k/3).

Thus, k = 3t for some t ∈ N, and so we have a ≡ b (mod t), but a �≡ b (mod 3t).
Therefore, either b ≡ t+ a (mod 3t) or b ≡ 2t+ a (mod 3t). But since a, b must also
satisfy the congruence 2b − a ≡ i (mod 3t) in (10), some simple manipulations now
show that {a, b} ≡ {t + i, 2t + i} (mod 3t).

Now, if there exists a c ∈ V2(x) such that a < c < b, then a similar argument as
that used for (10) establishes that a + c− b ≡ b + c− a ≡ i (mod k), and hence

2(a− b) ≡ 0 (mod k).(11)

Using k = 3t and {a, b} ≡ {t + i, 2t + i} (mod 3t), it follows from (11) that either
t ≡ 0 (mod 3t) or 2t ≡ 0 (mod 3t), both of which are impossible for t �= 0. Hence, if
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Table 5.1

The number, P (k), of subsets of Z/k that are TGP-colorable for nonprime k ≤ 20.

k 1 4 6 8 9 10 12 14 15 16 18 20
P (k) 2 16 52 80 98 134 340 228 328 384 808 746

|V2(x)| > 1, then V2(x) cannot contain anything other than the two integers a, b as
above, which completes the proof of the lemma.

From Lemmas 4.17, 4.18, and 4.19, we see that for any y ∈ Q3, either supp(y) is
of the form given in condition (ii), or it must be as in condition (iii) of Theorem 4.4,
which completes the proof of that theorem.

5. Numerical results and conjectures. For k ∈ N, let P (k) denote the num-
ber of TGP-colorable subsets of Z/k. It follows from Theorem 4.3 that P (2) = 4,
P (3) = 8, P (5) = 22, and for primes p > 5, P (p) = 1 + p +

(
p
2

)
+ 1 = p(p + 1)/2 + 2.

However, for nonprime k, we do not have a simple means of computing P (k) as we do
not have a complete solution to the problem of determining precisely which subsets of
Z/k are TGP-colorable. We list the values of P (k) for nonprime k ≤ 20 in Table 5.1
below, most of which have been obtained by means of an exhaustive computer search.

Table 5.1 seems to suggest that P (k) grows slowly, perhaps polynomially, with
k. Now, recall our definition of B3,n as the set of all n-blocks of S3. It can be
inferred from Theorem 4.4 that aperiodic sequences in S3 contribute O(n4) blocks to
B3,n. Based on the slow growth rate of P (k), we conjecture that the number of blocks
contributed to B3,n by periodic sequences in S3 is also polynomial in n. Consequently,
we conjecture that h(S3) = 0, just as in the BGP case.
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Abstract. We study the problem of acknowledging a sequence of data packets that are sent
across a TCP connection. Previous work on the problem has focused mostly on the objective function
that minimizes the sum of the number of acknowledgments sent and on the delays incurred for all
of the packets. Dooly, Goldman, and Scott presented a deterministic 2-competitive online algorithm
and showed that this is the best competitiveness of a deterministic strategy. Recently Karlin, Kenyon,
and Randall developed a randomized online algorithm that achieves an optimal competitive ratio of
e/(e− 1) ≈ 1.58.

In this paper we investigate a new objective function that minimizes the sum of the number
of acknowledgments sent and the maximum delay incurred for any of the packets. This function is
especially interesting if a TCP connection is used for interactive data transfer between network nodes.
The TCP acknowledgment problem with this new objective function is different in structure than the
problem with the function considered previously. We develop a deterministic online algorithm that
achieves a competitive ratio of π2/6 ≈ 1.644 and prove that no deterministic algorithm can have a
smaller competitiveness. We also study a generalized objective function where delays are taken to the
pth power for some positive integer p. Again we give tight upper and lower bounds on the best possible
competitive ratio of deterministic online algorithms. The competitiveness is 1 plus an alternating
sum of Riemann’s zeta function and tends to 1.5 as p → ∞. Finally, we consider randomized online
algorithms and show that, for our first objective function, no randomized strategy can achieve a
competitive ratio smaller than 3/(3 − 2/e) ≈ 1.324. For the generalized objective function we show
a lower bound of 2/(2 − 1/e) ≈ 1.225.

Key words. online algorithm, competitive analysis, TCP, data packet, acknowledgment

AMS subject classifications. 68Q25, 68W25, 68W40

DOI. 10.1137/S0895480104441656

1. Introduction. Dooly, Goldman, and Scott [2, 3] recently initiated the al-
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data is partitioned into segments or packets that are sent across the connection. A
node receiving data must acknowledge the arrival of each incoming packet so that the
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possibly, to piggyback the acknowledgment on an outgoing data segment. Reducing
the number of acknowledgments has several advantages, e.g., the overhead incurred at
the network nodes for sending and receiving acknowledgments is reduced and, more
importantly, the network congestion is reduced. On the other hand, by reducing the
number of acknowledgments, one adds latency to a TCP connection, which is not de-
sirable. The goal is to balance the reduction in the number of acknowledgments with
the increase in latency. The decision when to send acknowledgments must usually be
made online, i.e., without knowledge of future packet arrival times.

Motivated by the fact that TCP supports dynamic acknowledgment mechanisms,
Dooly, Goldman, and Scott [2, 3] formulated the following problem. A network node
receives a sequence of n data packets. Let ai denote the arrival time of packet i,
1 ≤ i ≤ n. At time ai, the arrival times aj , j > i, are not known. We have to partition
the sequence σ = (a1, . . . , an) of packet arrival times into m subsequences σ1, . . . , σm,
for some m ≥ 1, such that each subsequence ends with an acknowledgment. We use σi

to denote the set of arrivals in the partition. Let ti be the time when the acknowledg-
ment for σi is sent. We require ti ≥ aj for all aj ∈ σi. If data packets are not acknowl-
edged immediately, there are acknowledgment delays. Note that any reasonable ob-
jective function must take into account both the number of acknowledgments sent and
the incurred acknowledgment delays. Ignoring the number of acknowledgments and
considering only delays, it would be optimal to acknowledge each packet immediately,
which leads to a large number of acknowledgments sent. On the other hand, ignoring
delays and considering only acknowledgments, it would be best to send a single ac-
knowledgment at the end of the packet sequence, which leads to unacceptable delays.

Previous results. Previous work on the dynamic TCP acknowledgment problem [2,
3, 4, 5, 6, 7] has focused mostly on the objective function that minimizes the number
of acknowledgments and the sum of the delays incurred for all of the packets, i.e.,
we wish to minimize h = m +

∑m
i=1

∑
aj∈σi

(ti − aj). Given a solution generated by
an acknowledgment algorithm A on input σ, the resulting objective function value is
also referred to as the cost CA(σ) of A on σ. Following [8], an online algorithm A is
called c-competitive if there exists a constant b such that CA(σ) ≤ c ·COPT (σ) + b for
all inputs σ. Here COPT (σ) is the cost incurred by an optimal offline algorithm that
knows the entire input σ in advance and can serve it with minimum cost.

Dooly, Goldman, and Scott [2, 3] presented a deterministic 2-competitive online
algorithm and showed that no deterministic online strategy can achieve a smaller
competitive ratio. This performance guarantee also holds if an online algorithm has
some bounded lookahead. Most implementations of TCP have a maximum delay con-
straint , i.e., the acknowledgment of a packet may be delayed for at most δ time units,
e.g., δ could be 500 ms. Dooly, Goldman, and Scott showed that their algorithm
can be modified and remain 2-competitive in the presence of such a constraint. Kar-
lin, Kenyon, and Randall [4] studied randomized online algorithms against oblivious
adversaries. They developed a randomized online strategy that achieves a competi-
tiveness of e/(e − 1) ≈ 1.58. Noga [5] and Seiden [7] independently showed that no
randomized algorithm can do better.

Dooly, Goldman, and Scott also studied the minimization of a second objective
function h′ = m+

∑m
i=1 maxaj∈σi(ti − aj), where one considers the sum of the maxi-

mum delays incurred in subsequences σi in addition to the number of acknowledgments
sent. They showed that the best competitive ratio of a deterministic online algorithm
without lookahead is equal to 2.

In general, Dooly, Goldman, and Scott and Karlin, Kenyon, and Randall pointed
out that the TCP acknowledgment problem with objective functions h and h′ are ski
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rental–type problems.
Our contribution. In this paper we investigate a new family of objective functions

that penalize long acknowledgment delays of individual data packets more heavily.
TCP is used for both interactive and bulk data transfer. In the first case, consider a
TCP connection that is used for communication with a remote interactive program.
Here, long delays are not acceptable as they are noticeable to the user. In the case
of bulk data transfer, long delays also have a negative effect, and hence, as already
mentioned before, most systems work with a maximum delay constraint. Short delays
are of particular importance in time-critical applications. Therefore it is desirable to
design algorithms that aim to keep the maximum delay short.

We study the objective function that minimizes the number of acknowledgments
and the maximum delay incurred for any of the data packets. Given an input σ,
consider a partitioning σ1, . . . , σm. Let di = maxaj∈σi(ti−aj) be the maximum delay
of any packet in σi, 1 ≤ i ≤ m. We wish to minimize the function

f = m + max
1≤i≤m

di.(1.1)

It turns out that the dynamic TCP acknowledgment problem with objective function
f is different in structure than the problem with functions h or h′. In particular our
problem is not a ski rental problem. In section 2 we present a family of deterministic
online algorithms and prove that the best strategy in that family achieves a compet-
itive ratio of π2/6 ≈ 1.644. Note that π2/6 =

∑∞
i=1 1/i2. We also show that this

is the best possible competitive ratio. No deterministic online algorithm can achieve
a competitiveness smaller than π2/6. Additionally, we investigate a generalization
of the objective function f where delays are taken to the pth power and hence are
penalized even more heavily. For any integer p ≥ 1, we wish to minimize

fp = m + max
1≤i≤m

dpi .(1.2)

For the formulation of the competitive ratio, let ζ(p) =
∑∞

i=1
1
ip for any p ≥ 2. The

function ζ(p) is known as the Riemann zeta function. We define ζ(1) := 1. Let

cp = 1 +

p+1∑
q=1

(−1)p+1−qζ(q).

In section 3 we give a deterministic online algorithm that is cp-competitive and prove
that no deterministic strategy can achieve a competitiveness smaller than cp. For
p = 1, this expression is equal to π2/6. In general, cp is decreasing in p and tends to
1.5 as p → ∞.

In section 4 we consider randomized online algorithms against oblivious adver-
saries and present lower bounds. We first prove that, given function f , no randomized
online algorithm achieves a competitive ratio smaller than 3/(3 − 2/e) ≈ 1.324. We
then show a lower bound of 2/(2 − 1/e) ≈ 1.225 for function fp, p ≥ 2.

We remark that, similar to [2, 3], we could consider in f and fp a linear combi-
nation of the number of acknowledgments sent and the maximum delay (taken to the
pth power). This does not change the competitive ratios, and the upper and lower
bound proofs can be modified in a straightforward way. For simplicity, we study the
functions as defined in (1.1) and (1.2).

2. Minimizing the maximum delay. In this section we study the objective
function f = m + max1≤i≤m di. We first present an online algorithm that achieves a
competitiveness of π2/6 and then develop a matching lower bound.
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2.1. An optimal deterministic online algorithm. We define a general class
of algorithms. Let z be a positive real number.

Algorithm linear-delay(z). Initially, set d = z, and send the first acknowl-
edgment at time a1 + d. In general, suppose that the ith acknowledgment has just
been sent and that j packets have been processed so far. Set d = (i + 1)z, and send
the (i + 1)st acknowledgment at time aj+1 + d.

We analyze the algorithm for values z with z ≥ 1/2 which give the best perfor-
mance.

Theorem 2.1. For any z with z ≥ 1/2, Linear-Delay(z) is c-competitive, where
c = max{1 + z, (1 + z)/(2 + z − π2/6)}.

Corollary 2.2. Setting z = π2/6 − 1, Linear-Delay(z) achieves a competitive
ratio of π2/6.

We now prove Theorem 2.1.
Proof. In the following we call the online algorithm LD(z) for short. Suppose that

LD(z) serves the input sequence using m acknowledgments. The longest acknowledg-
ment delay is mz, and hence the online cost is CLD(z)(σ) = m(1 + z).

We have to lower bound the cost incurred by an optimum offline algorithm, OPT.
In the sequence of n packets we identify a subsequence of m main packets, numbered
from 0 to m− 1. Main packet 0 is the first packet in the input sequence. Main packet
i, 1 ≤ i ≤ m − 1, is the first packet that arrives after the ith acknowledgment sent
by LD(z), i.e., it is the first packet that arrives after time ti. The definition of LD(z)
implies that the time difference between the (i − 1)st and the ith main packets is
larger than iz for i = 1, . . . ,m− 1.

Suppose that the optimum offline algorithm serves the request sequence using l
acknowledgments and that the maximum acknowledgment delay is C, C ≥ 0. Then
COPT (σ) = l + C. Associated with each acknowledgment α sent by OPT is an
acknowledgment interval that starts when the first packet acknowledged by α arrives
and ends when α is sent. The length of each interval is bounded by C. In the following
i always denotes a positive integer.

Lemma 2.3. Any acknowledgment interval starting at or after the arrival of main
packet �C

iz 	 can contain at most i main packets.

Proof. Main packet k with k ≥ �C
iz 	+1 has a distance of more than z(�C

iz 	+1) to
the previous main packet. If the acknowledgment interval contained at least i+1 main
packets, then the length of the interval would be at least iz(�C

iz 	 + 1) > iz(C
iz ) = C,

which is impossible.
Define i0 = � 3

√
C/z	 − 1. In the rest of this proof we assume i0 ≥ 2. If i0 ≤ 1,

then C ≤ 27z and OPT must acknowledge each of the last m− 27 main packets with
separate acknowledgments. In this case LD(z) is clearly (1 + z)-competitive.

Lemma 2.4. Let 1 ≤ i ≤ i0. The acknowledgment interval containing main
packet k, for k ≥ �C

iz 	, must have started after the arrival of main packet � C
(i+1)z 	.

Proof. We show that the time window starting at main packet � C
(i+1)z 	 and ending

with main packet �C
iz 	 is larger than C, which proves the lemma. The number of main

packets in this time window is

�C
iz 	 − � C

(i+1)z 	 + 1 > C
i(i+1)z ≥ i + 2.

The last inequality holds because it is equivalent to C/z ≥ i(i + 1)(i + 2), and this
is satisfied for all i ≤ i0. Thus there are at least i + 2 main packets in this time
window. Each of the last i + 1 of these is more than z(� C

(i+1)z 	 + 1) time units away
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from the previous main packet, and thus the length of the window is greater than
(i + 1)z(� C

(i+1)z 	 + 1) > (i + 1)z( C
(i+1)z ) = C.

We now lower bound the number of acknowledgments sent by OPT and use the
following charging scheme. An acknowledgment costs 1. We charge this cost to the
main packets contained in the associated acknowledgment interval and split the cost
evenly among these main packets. More specifically, if an acknowledgment interval
contains i ≥ 1 main packets, then each of these packets is assigned a cost of 1/i. If
an acknowledgment interval does not contain a main packet, then we ignore it in the
analysis of OPT’s cost. We develop a lower bound on the cost charged to each main
packet. Summing over all main packets, we derive a lower bound on the optimum
cost incurred for sending acknowledgments.

We assume that C < m. If C ≥ m, then LD(z) is clearly (1 + z)-competitive
because LD(z)’s cost is (1 + z)m and the optimum offline cost is at least m. In the
following we will first analyze the case C ≤ zm and then C > zm.

Suppose that C ≤ zm. Each main packet is contained in some acknowledgment
interval. Let i be an integer with 1 ≤ i ≤ i0. We analyze the cost charged to main
packet k with k ≥ �C

iz 	 and k < � C
(i−1)z 	. If i = 1, then the expression � C

(i−1)z 	 is

undefined, and we have the trivial upper bound k < m. Consider an arbitrary i with
1 ≤ i ≤ i0. If the acknowledgment interval containing main packet k started at or
after the arrival of main packet �C

iz 	, then by Lemma 2.3 at most i main packets are
contained in the interval, and main packet k is assigned a cost of at least 1/i. If
the acknowledgment interval started earlier, then by Lemma 2.4 it must have started
after the arrival of main packet � C

(i+1)z 	. Applying Lemma 2.3 for i+ 1, we find that

the interval contains at most i + 1 main packets and the packet is assigned a cost
of at least 1/(i + 1). There is only one acknowledgment interval that starts before
and ends after the arrival of main packet �C

iz 	. Thus for at most i + 1 main packets
considered above, the cost is lower bounded by 1/(i+1) instead of 1/i. We find that,
for 2 ≤ i ≤ i0, the total cost assigned to main packets k with �C

iz 	 ≤ k < � C
(i−1)z 	 is

at least

(� C
(i−1)z 	 − �C

iz 	)
1
i − (i + 1)( 1

i −
1

i+1 ) = (� C
(i−1)z 	 − �C

iz 	)
1
i −

1
i .

For i = 1, the total cost assigned to all the main packets k with k ≥ �C
z 	 is

(m− �C
z 	) − 2(1 − 1

2 ) = (m− �C
z 	) − 1.

Summing over all i, we find that the number of acknowledgments sent by OPT is at
least

l ≥ m−
⌊
C
z

⌋
− 1+

i0∑
i=2

((⌊
C

(i−1)z

⌋
−
⌊
C
iz

⌋)
1
i −

1
i

)

= m−
i0−1∑
i=1

⌊
C
iz

⌋ (
1
i −

1
i+1

)
−
⌊

C
i0z

⌋
1
i0

−Hi0 .

Here Hi0 denotes the i0th Harmonic number. Thus

l ≥ m− C
z

∞∑
i=1

(
1
i2 − 1

i(i+1)

)
− C

i20z
− i0

≥ m− C
z

(
π2

6 − 1
)
− C

i20z
− i0
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≥ m− C
z

(
π2

6 − 1
)
− 10 3

√
C
z

> m− C
z

(
π2

6 − 1
)
− 10 3

√
m
z .

The second-to-last inequality follows because i0 ≥ 2, and hence i20 ≥ 1
9 (Cz )2/3. The

last inequality follows because C < m, and hence 3
√
C/z < 3

√
m/z. The total cost

incurred by OPT is at least

COPT (σ) = l + C ≥ m + C − C
z

(
π2

6 − 1
)
−O ( 3

√
m) .(2.1)

We now distinguish two cases. If z > π2

6 − 1, then the right-hand side of (2.1) is
increasing in C. As we have to lower bound COPT (σ), choosing C = 0 we obtain
COPT (σ) ≥ m − O( 3

√
m). This implies that LD(z) is (1 + z)-competitive because

the online cost is (1 + z)m. If z ≤ π2

6 − 1, then the right-hand side of (2.1) is
decreasing in C. Choosing the largest possible value C = zm, we obtain COPT (σ) ≥
(2+z− π2

6 )m−O( 3
√
m), and LD(z) achieves a competitive ratio of (1+z)/(2+z− π2

6 ).
We next analyze the case C > zm. The only difference in analyzing this case

is that there are no main packets k with k ≥ �C
z 	 and k < m because C is large.

However, there are main packets k with k ≥ � C
2z 	 and k < m because C < m ≤ 2zm

since z ≥ 1/2. Thus the number of acknowledgments sent by OPT is

l ≥
(
m−

⌊
C
2z

⌋)
1
2 − 1

2+

i0∑
i=3

((⌊
C

(i−1)z

⌋
−
⌊
C
iz

⌋)
1
i −

1
i

)

≥ 1
2m−

i0−1∑
i=2

C
iz

(
1
i −

1
i+1

)
− C

i20z
− (Hi0 − 1)

≥ 1
2m− C

z

(
π2

6 − 1.5
)
− 10 3

√
m
z .

Thus the optimum cost is at least COPT (σ) ≥ 1
2m + C − C

z (π
2

6 − 1.5) −O( 3
√
m). The

right-hand side of the last inequality is increasing in C because z ≥ 1/2 > (π
2

6 − 1.5).

Since C > zm, we obtain COPT (σ) ≥ (2 + z − π2

6 )m−O( 3
√
m), and LD(z) achieves a

competitive ratio of (1 + z)/(2 + z − π2

6 ).

2.2. Lower bound.
Theorem 2.5. Let A be a deterministic online algorithm. If A is c-competitive,

then c ≥ π2

6 .
Proof. We construct a family of request sequences σl for any l ≥ 8. For a fixed

l in this range, let i0 = � 3
√
l	 − 2 and l′ = � l

i0+1	. For convenience we number the
packets in σl starting with l′. Packet l′ is sent at time 0. For any i with l′ < i ≤ l,
packet i is sent exactly (π2/6− 1)i time units after packet i− 1. For any i with i > l,
packet i is sent exactly (π2/6− 1)l time units after packet i− 1. The adversary stops
sending packets as soon as the online algorithm decides to acknowledge an incoming
packet together with the preceding packet. If the online algorithm never acknowledges
a packet together with a preceding packet, the adversary can force a competitive ratio
arbitrarily close to 2 by always acknowledging two packets together. Thus, let m be
the number of the last packet sent by the adversary. Note that m is a function of l
but, for simplicity, this dependency will not be shown in the notation.
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In the following we will first analyze the competitive ratio of the online algorithm
if m ≤ l. Then we will consider the case m > l. If m ≤ l, then the adversary can
acknowledge each incoming packet immediately, and its cost is CADV (σl) = m− l′ +1
because the packet numbering in the sequence starts with l′. The online algorithm A
serves the first m − l′ − 1 packets with separate acknowledgments and the last two
packets with a joint acknowledgment. The acknowledgment of packet m−1 is delayed

by (π
2

6 − 1)m time units. Thus the total online cost is at least

CA(σl) = m− l′ + (π
2

6 − 1)m

= π2

6 m− l′

= π2

6 (m− 6
π2 l

′)

≥ π2

6 (m− l′ + 1)

= π2

6 CADV (σl).

The last inequality holds because l′ ≥ π2

6 /(π
2

6 − 1). To verify this relation we observe

that, for l = 8, l′ = 8 ≥ π2

6 /(π
2

6 − 1) and l′ is increasing in l.
It remains to analyze the case m > l. The adversary chooses acknowledgment

intervals of length (π
2

6 − 1)l; i.e., it sends out an acknowledgment whenever there is

an unacknowledged packet waiting for exactly (π
2

6 − 1)l time units. To analyze the
number of acknowledgments incurred by the adversary, we need the following lemma.

Lemma 2.6. Let 1 ≤ i ≤ i0. An acknowledgment interval that ends after the
arrival of packet � l

i	 must have started after the arrival of packet � l
i+1	.

Proof. Suppose that an acknowledgment interval ending after the arrival of packet
� l
i	 started at or before the arrival of packet � l

i+1	. This time interval contains

� l
i	 − � l

i+1	 packets that are at least (π
2

6 − 1)(� l
i+1	 + 1) ≥ (π

2

6 − 1) l
i+1 time units

away from the preceding packet. Thus the time interval has a total length of

(π
2

6 − 1) l
i+1 (� l

i	 − � l
i+1	) ≥ (π

2

6 − 1) l
i+1 ( l

i − 1 − l
i+1 ) = (π

2

6 − 1) l
i+1 ( l

i(i+1) − 1).

We have l
i(i+1) −1 > i+1 because the this inequality is equivalent to l > i(i+1)(i+2),

which holds for all 1 ≤ i ≤ i0. Thus the time interval has a total length of greater

than (π
2

6 − 1)l, contradicting the fact that the adversary chooses acknowledgment

intervals of length (π
2

6 − 1)l.
To upper bound the total number of acknowledgments incurred by the adversary,

we use a charging scheme similar to that employed in the upper bound. If an acknowl-
edgment interval contains i packets, then the cost of 1 is distributed evenly among
the packets, i.e., each packet is assigned a cost of 1

i . An acknowledgment interval

that ends no later than the arrival of packet � l
i	, 1 ≤ i ≤ i0, contains at least i + 1

packets because each of the packets is a distance of at most � l
i	(

π6

6 − 1) away from

the preceding packet. Hence packets k with � l
i+1	 < k ≤ � l

i	 are charged a cost of

at most 1
i+1 . However, this is not completely correct because a packet k in the latter

range may be contained in an acknowledgment interval that ends after the arrival of
packet � l

i	. By the above lemma, such an acknowledgment interval cannot end after

the arrival of packet � l
i−1	 if i ≥ 2. Thus the packet k is assigned a cost of 1

i instead

of 1
i+1 . At most i + 1 packets can have this slightly higher cost because each packet

k with � l
i+1	 < k ≤ � l

i	 has a distance of at least (π
2

6 − 1)(� l
i+1	 + 1) > (π

2

6 − 1) l
i+1
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to its preceding packet. For any 1 ≤ i ≤ i0, the total cost charged to all the packets
k with � l

i+1	 < k ≤ � l
i	 is

(� l
i	 − � l

i+1	)
1

i+1 + (i + 1)( 1
i −

1
i+1 ) = (� l

i	 − � l
i+1	)

1
i+1 + 1

i .

Any packet k with l < k ≤ m is charged a cost of 1/2 because these packets are a

distance of exactly (π
2

6 − 1)l apart. In the worst case, the last packet m is charged a
cost of 1. Moreover packet l′ is assigned a cost of 1

i0+1 . In summary, the total cost
charged to all of the packets, which is equal to the total number of acknowledgments
sent by the adversary, is upper bounded by

(m− l − 1) 1
2 + 1+

i0∑
i=1

((⌊
l
i

⌋
−
⌊

l
i+1

⌋)
1

i+1 + 1
i

)
+ 1

i0+1

≤ m
2 − l

2 + 1
2+

i0∑
i=1

(
l
i −

l
i+1 + 1

)
1

i+1 + Hi0+1

≤ m
2 − l

2+

∞∑
i=1

l
i(i+1)−

∞∑
i=1

l
(i+1)2 + 2Hi0+1

= m
2 + l

2 − l
(

π2

6 − 1
)

+ O(log l),

where Hk is the kth Harmonic number.
Since the maximum acknowledgment delay incurred by the adversary is (π

2

6 −1)l,
its total cost is 1

2 (m+ l)+O(log l). On the other hand, the total cost incurred by the

online algorithm A is m− l′ + (π
2

6 − 1)l because the input consists of m− l′ + 1 data
packets, the last two of which are acknowledged together. We conclude that the ratio
of the online cost to the adversary’s cost is

π2

6 l + m− l − l′

l + 1
2 (m− l) + O(log l)

.

Since l′ = o(l) and O(log l) = o(l), this ratio approaches a value of at least π2

6 as
l → ∞, no matter how the online algorithm chooses m,m > l.

3. Minimizing the maximum delay taken to the pth power. In this sec-
tion we study the general objective function fp = m + max1≤i≤m dpi and show that

cp = 1 +
∑p+1

q=1(−1)p+1−qζ(q) is the best competitiveness of deterministic online al-
gorithms. Before we give the upper and lower bound analyses, we briefly analyze
cp. We show that it is decreasing in p and tends to 1.5 as p → ∞. For p ≥ 1, let
g(p) =

∑∞
i=1

1
ip(i+1) . Then, for p ≥ 2,

g(p) =
∞∑
i=1

1

ip(i + 1)
=

∞∑
i=1

1

ip
−

∞∑
i=1

1

ip−1(i + 1)

= ζ(p) − g(p− 1).

Applying this recurrence repeatedly we obtain g(p) =
∑p

q=1(−1)p−qζ(q). Note that

g(1) = 1 = ζ(1). Thus cp = 1+ g(p+1). We have g(p+1) = 1
2 +

∑∞
i=2

1
ip+1(i+1) . The

last sum is always positive and tends to 0 as p → ∞. Table 3.1 shows the value of cp
for small p.
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Table 3.1

Some values of cp.

p cp
1 1.6449
2 1.5571
3 1.5252
4 1.5117
5 1.5056
6 1.5027
7 1.5013
8 1.5007
9 1.5003
10 1.5002

3.1. An optimal deterministic online algorithm. We generalize the algo-
rithm given in section 2. Let z be a positive real number.

Algorithm Delay(z, p). Set the initial delay to d = p
√
z, and send out the first

acknowledgment at time a1+d. In general, assume that i acknowledgments have been
sent and that j packets have been processed so far. Set d = p

√
(i + 1)z, and send the

(i + 1)st acknowledgment at time aj+1 + d.

Theorem 3.1. Setting zp = cp−1, the algorithm Delay(zp, p) is cp-competitive.

Proof. We denote the algorithm by D(zp, p) for short. Suppose that the online
algorithm serves the input sequence using m acknowledgments. Then its total cost is
CD(zp,p)(σ) = m + ( p

√
m zp)

p = (1 + zp)m = cpm. Let C be the maximum acknowl-
edgment delay incurred by the optimum offline algorithm OPT. If C > p

√
m, then the

optimum offline cost is at least m, and D(zp, p) is clearly cp-competitive. Therefore
we assume C ≤ p

√
m.

In analyzing the optimum offline cost, we use the terms main packet and acknowl-
edgment interval as introduced in the proof of Theorem 2.1. Again we number the
m main packets in the input from 0 to m − 1. Let i0 = � 2p+1

√
Cp/zp	 − 1. In the

following we assume i0 ≥ 4. If i0 ≤ 3, then 2p+1
√
Cp/zp ≤ 5, which is equivalent to

C ≤ p
√

52p+1zp. Thus C is upper bounded by a constant, and all but a constant
number of the m main packets require a separate acknowledgment by OPT. Thus
D(zp, p) is cp-competitive.

In the following we first concentrate on the case C < p
√
zpm, then we consider

C ≥ p
√
zpm. To lower bound the number of acknowledgments sent by OPT, we apply

the usual charging scheme. If an acknowledgment interval contains i main packets,
we charge a cost of 1

i to each of these. Using ideas similar to that in the proof of
Theorem 2.1, we can show that an acknowledgment interval starting at or after the
arrival of main packet � Cp

ipzp
	 can contain at most i main packets. Second, an acknowl-

edgment interval containing main packet k with k ≥ � Cp

ipzp
	 must have started after

packet � Cp

(i+1)pzp
	. These two statements imply that the total cost assigned to main

packets k with k ≥ �Cp

zp
	 is at least m− �Cp

zp
	 − 1 and that the cost assigned to main

packets k with � Cp

ipzp
	 ≤ k < � Cp

(i−1)pzp
	 and 2 ≤ i ≤ i0 is at least

(⌊
Cp

(i−1)pzp

⌋
−
⌊

Cp

ipzp

⌋)
1
i −

1
i .
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Hence the number l of acknowledgments sent by OPT is at least

l ≥ m−
⌊
Cp

zp

⌋
− 1+

i0∑
i=2

((⌊
Cp

(i−1)pzp

⌋
−
⌊

Cp

ipzp

⌋)
1
i −

1
i

)

= m−
i0−1∑
i=1

⌊
Cp

ipzp

⌋(
1
i −

1
i+1

)
−
⌊

Cp

ip0zp

⌋
1
i −Hi0

≥ m− Cp

zp

∞∑
i=1

(
1

ip+1 − 1
ip(i+1)

)
− Cp

ip+1
0 zp

−Hi0

= m− Cp

zp
(ζ(p + 1) − g(p)) − Cp

ip+1
0 zp

−Hi0

= m− Cp

zp
zp − Cp

ip+1
0 zp

−Hi0 .

The last equation holds because ζ(p + 1) − g(p) = g(p + 1) = cp − 1 = zp.
Lemma 3.2. The term Cp

ip+1
0 zp

is o(m).

Proof. By definition the term equals

Cp(⌊
2p+1

√
Cp

zp

⌋
− 1

)p+1

zp

≤ Cp(
2p+1

√
Cp

zp
− 2

)p+1

zp

,(3.1)

where the inequality holds because the denominator is positive by the choice of i0 ≥ 4.
Moreover, the assumption i0 ≥ 4 implies 2 ≤ i0/2 ≤ 2p+1

√
Cp/zp/2, and hence the

last expression in (3.1) can be upper bounded by

Cp(
2p+1

√
Cp

zp
− 2p+1

√
Cp

zp
/2
)p+1

zp

= Cp− p(p+1)
2p+1 z

p+1
2p+1−1
p 2p+1 = dCp− p(p+1)

2p+1

for some constant d. As C ≤ p
√
m and the exponent p− p(p+1)

2p+1 is strictly smaller than

p, the term under consideration is o(m).
Using the above lemma we find that the number of acknowledgments sent by

OPT is at least m−Cp − o(m) and that the total cost is COPT (σ) ≥ m− o(m). This
implies that D(zp, p) is cp-competitive.

We finally analyze the case C ≥ p
√
zpm. Since C is large, there are not necessarily

main packets k with k ≥ �Cp

zp
	 and C < m. However, there are packets k ≥ � Cp

2pzp
	

and k < m because Cp/(2pzp) < m is equivalent to C < p
√
m2pzp, and this holds

because C ≤ p
√
m and zp = g(p + 1) = 1

2 +
∑∞

i=2
1

ip+1(i+1) > 1
2 . Thus the number of

acknowledgments l sent by OPT is at least

l ≥
(
m−

⌊
Cp

2pzp

⌋)
1
2 − 1

2+

i0∑
i=3

((⌊
Cp

(i−1)pzp

⌋
−
⌊

Cp

ipzp

⌋)
1
i −

1
i

)

≥ m
2 − Cp

zp

∞∑
i=2

(
1

ip+1 − 1
ip(i+1)

)
− Cp

ip+1
0 zp

−Hi0

= m
2 − Cp

zp
(zp − 1

2 ) − o(m).

We conclude that the optimum offline cost is at least COPT (σ) ≥ m
2 + Cp

2zp
− o(m) ≥

m− o(m) because C ≥ p
√
zpm, and D(zp, p) is cp-competitive.
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3.2. Lower bound.
Theorem 3.3. Let A be a deterministic online algorithm. If A is c-competitive,

then c ≥ cp.
Proof. We construct a family of input sequences σl for any integer l ≥ 1. For a

fixed l, let i0 = � 2p+1
√
l	 − 1 and l′ = � l

(i0+1)p 	. Note that l′ = Θ(l1−
p

2p+1 ) = o(l).

We number the packets in σl starting with l′. Packet l′ is sent at time 0. Packet
k, for l′ < k ≤ l, is sent p

√
zpk time units after packet k − 1. For k > l, packets k

and k − 1 are separated by exactly p
√
zpl time units. The adversary stops sending

packets when the online algorithm decides to acknowledge two packets with the same
acknowledgment. Let m be the number of the last packet sent.

If m ≤ l, the cost incurred by the online algorithm A is at least m− l′+(zpm)
p
p =

cpm − l′. The adversary can acknowledge each packet immediately, incurring no
delays, so that its cost is at most m − l′ + 1. The ratio of the cost incurred by A to
the cost incurred by the adversary is at least

cpm− l′

m− l′ + 1
= cp +

zpl
′ − cp

m− l′ + 1
,

and this expression is at least cp if l ≥ 22p+1. In this case l′ ≥ 4 and zpl
′ − cp ≥ 0

because zp > 1/2 and cp < 2.
We concentrate on the case m > l. The adversary chooses an acknowledgment

interval of p
√
zpl time units. Using the familiar charging scheme we can show that, in

order to upper bound the number of acknowledgments incurred by the adversary, the
total cost charged to packets k with � l

ip 	 < k ≤ � l
(i+1)p 	 and 1 ≤ i ≤ i0 is at most

(� l
ip 	−� l

(i+1)p 	)
1

i+1 + 1
i . The total cost charged to packets k with k > l is at most (m−

l) 1
2 + 1

2 . Hence the total number of acknowledgments sent by the adversary is at most

(m− l) 1
2 + 1

2+

i0∑
i=1

((⌊
l
ip

⌋
−
⌊

l
(i+1)p

⌋)
1

i+1 + 1
i

)
+ 1

i0+1

≤ (m− l) 1
2 + l

2−
∞∑
i=2

l

ip+1(i + 1)
+ 2Hi0+1

= (m− l) 1
2 + l − zpl + O(log l).

The total cost paid by the adversary is at most (m− l) 1
2 + l +O(log l), and the ratio

of the cost incurred by A to the cost incurred by the adversary is at least

cpl + m− l − l′

l + 1
2 (m− l) + O(log l)

.

This ratio approaches a value of at least cp as l → ∞ because l′ = o(l).

4. Randomization. In this section we develop lower bounds on the competitive
ratio achieved by randomized online algorithms.

Theorem 4.1. For the dynamic TCP acknowledgment problem with objective
function f , no randomized online algorithm can achieve a competitive ratio smaller
than c ≥ 3/(3 − 2

e ) against any oblivious adversary.
Proof. We apply Yao’s principle [1, 9] and construct a probability distribution

on input sequences σl, for any integer l ≥ 1, such that, for any deterministic online
algorithm D,

lim
l→∞

E[CD(σl)]

E[CADV (σl)]
≥ 3

3 − 2/e
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and

lim
l→∞

E[CADV (σl)] = ∞.

Here E[CADV (σl)] and E[CD(σl)] denote the expected costs incurred by the adversary
and the deterministic online algorithm, respectively. An input σl consists of triples.
A triple is a set of three data packets that are separated by l time units each. More
precisely, the second packet is sent exactly l time units after the first packet of the
triple; the third packet is sent l time units after the second packet. Thus a triple has
a total length of 2l. The adversary sends triples, where the distance between triples
is chosen to be so large that it does not make sense to acknowledge packets in two
different triples with one acknowledgment. With probability pi = q(1 − q)i−1, where
q = 1/l, the adversary sends exactly i triples for any i ≥ 1. Note that

∑∞
i=1 q(1 −

q)i−1 = 1. Triple i and i + 1 are separated by 3l/pi+1 time units.
If a deterministic online algorithm on this input acknowledges packets of different

triples together and if this happens for the first time for packets from triples i and
i + 1, then the expected cost of the algorithm is at least pi+1(3l/pi+1) = 3l. In the
following we concentrate on the case that a deterministic online algorithm on this
input never acknowledges packets from different triples together. We characterize an
algorithm by two nonnegative integers l1, l2, with l1 < l2 such that l1 + 1 is the first
triple where the algorithm acknowledges at least two packets together and l2 +1 is the
index of the first triple where all three packets are acknowledged together. We refer
to this strategy as D(l1, l2), l1 ≤ l2. Algorithm D(l1,∞), l1 ≥ 0, never acknowledges
all the packets of one triple together, and D(∞,∞) never acknowledges any packets
together. To analyze the expected cost, we need the following lemma.

Lemma 4.2.

(a) If l1 < l2, then E[CD(l1,l2)(σl)] = E[CD(l1+1,l2)(σl)].
(b) If l1 ≤ l2, then E[CD(l1,l2)(σl)] = E[CD(l1,l2+1)(σl)].
(c) For any l1 ≥ 0, E[CD(l1,∞)(σl)] = E[CD(l1+1,∞)(σl)].
Proof. We prove part (a). The other parts can be proved in a similar manner.

We have

E[CD(l1,l2)(σl)] ≥
l1∑
i=1

3ipi +

l2∑
i=l1+1

(l + l1 + 2i)pi +

∞∑
i=l2+1

(2l + l1 + l2 + i)pi

=

l1+1∑
i=1

3ipi − 3(l1 + 1)pl1+1 +

l2∑
l1+2

(l + l1 + 1 + 2i)pi

+(l + l1 + 2(l1 + 1))pl1+1 −
l2∑

i=l1+2

pi

+

∞∑
i=l2+1

(2l + l1 + 1 + l2 + i)pi −
∞∑

i=l2+1

pi

= E[CD(l1+1,l2)(σl)] + (l − 1)pl1+1 −
∞∑

i=l1+2

pi

= E[CD(l1+1,l2)(σl)].

Parts (a) and (b) of Lemma 4.2 imply that E[CD(0,0)(σl)] = E[CD(l1,l2)(σl)] for
any 0 ≤ l1 ≤ l2. Hence it suffices to compute E[CD(0,0)(σl)] =

∑∞
i=1(2l + i)pi =

2l + 1/q = 3l. Part (c) of Lemma 4.2 implies E[CD(0,∞)(σl)] = E[CD(l1,∞)(σl)] for



950 SUSANNE ALBERS AND HELGE BALS

any l1 ≥ 0. We have E[CD(0,∞)(σl)] =
∑∞

i=1(l+2i)pi = 3l. Finally, E[CD(∞,∞)(σl)] =∑∞
i=1 3ipi = 3l. Thus, in any case, the expected online cost is at least 3l. The ex-

pected cost incurred by the adversary remains to be analyzed. If the input consists
of at most l triples, the adversary acknowledges the packets individually; otherwise,
it incurs a delay of 2l and acknowledges the packets of each triple together. Thus

E[CADV (σl)] =

l∑
i=1

3ipi +

∞∑
i=l+1

pi(i + 2l)

= l + 2
l∑

i=1

ipi + 2

∞∑
i=l+1

pil

= l + 2q 1−(l+1)(1−q)l+l(1−q)l+1

q2 + 2l(1 − q)l

= 3l − 4l(1 − 1/l)l + 2l(1 − 1/l)l.

Thus liml→∞ E[CADV (σl)]/l = 3 − 2/e and the theorem follows.
Theorem 4.3. For the dynamic TCP acknowledgment problem with objective

function fp, no randomized online algorithm can achieve a competitive ratio smaller
than c ≥ 2/(2 − 1

e ) against any oblivious adversary.
Proof. An input σl, for any integer l ≥ 1, consists of pairs. A pair is two packets

that are p
√
l time units apart. With probability pi = q(1 − q)i−1, q = 1/l, the input

consists of i pairs for any i ≥ 1. Pairs i and i+1 are separated by p
√

2l/pi+1 time units.
If a deterministic online algorithm acknowledges packets of different intervals together
and if this happens for the first time for packets from pairs i and i+1, then the expected
cost is at least pi+1(

p
√

2l/pi+1)
p = 2l. In the following we consider algorithms that

never acknowledge packets from different pairs together, and we denote by D(l′),
l′ ≥ 1, the algorithm that acknowledges packets in the first l′ pairs separately and the
packets in the (l′+1)st pair together. D(∞) is the algorithm that never acknowledges
packets together. We have E[CD(∞)(σl)] ≥

∑∞
i=1 2ipi = 2q/q2 = 2l. For any l ≥ 0,

E[CD(l′)(σl)]≥
l′∑

i=1

2ipi+

∞∑
i=l′+1

(l′ + i + l)pi

=E[CD(l′+1)(σl)]−2(l′ + 1)pl′+1+(2l′ + 1 + l)pl′+1−
∞∑

i=l′+2

pi

=E[CD(l′+1)(σl)],

and hence E[CD(0)(σl)] = [CD(l′)(σl)] for any l′ > 0. We have E[CD(0)(σl)] =∑∞
i=1(l + i)pi = 2l and conclude that the expected online cost is at least 2l.

The adversary acknowledges the packets of pairs separately if at most l intervals
are sent; otherwise, it always acknowledges the packets of pairs together. Hence

E[CADV (σl)] =

l∑
i=1

2ipi +

∞∑
i=l+1

pi(i + l)

= l +

l∑
i=1

ipi +

∞∑
i=l+1

pil

= l + q 1−(l+1)(1−q)l+l(1−q)l+1

q2 + lql

= 2l − 2l(1 − 1/l)l + l(1 − 1/l)l

and liml→∞ E[CADV (σl)]/l = 2 − 1/e. The theorem holds.
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5. Conclusion and open problems. In this paper we have studied a TCP
acknowledgment problem using objective functions that aim to keep the maximum
acknowledgment delay of a data packet as short as possible. We presented tight
upper and lower bounds on the performance of deterministic online algorithms. For
randomized strategies we gave lower bounds. An interesting open problem is to devise
tight bounds on the performance of randomized online algorithms. Additionally, it
would be interesting to study TCP acknowledgment with objective functions that
take into account the current network congestion. If the current congestion is low, it
does not hurt to send many acknowledgments. On the other hand, if the congestion
is high, it is worthwhile to send only few acknowledgments. Furthermore, in practice,
the acknowledgments received by the sender affect the frequency by which packets
are sent. It would be very interesting to incorporate such issues into the theoretical
model.
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WELL-COVERED VECTOR SPACES OF GRAPHS∗
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Abstract. For any field F, the set of all functions f : V (G) → F whose sum on each maximal
independent set is constant forms a vector space over F. In this paper, we show that the dimension
can vary depending on the characteristic of the field. We also investigate the dimensions of these
vector spaces and show that while some families, such as chordal graphs, have unbounded dimension,
other families, such as nonempty circulant graphs of prime order, have bounded dimension.
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1. Introduction. A weighting of a graph G is a function f : V (G) → F that
assigns a value from the field F to each vertex of G. Following [1], a well-covered
weighting f of a graph G is a weighting such that

∑
x∈M f(x) is constant for ev-

ery maximal independent set M of G. For a well-covered weighting, we denote the
common weight of the maximal independent sets as f(G). In [1], the following is
noted.

Observation 1. The well-covered weightings of a graph form a vector space.
This is clear since if f and g are well-covered weightings and k and l are elements

of the field F, then kf + lg is also a well-covered weighting.
We remark that a well-covered graph [8] is a graph in which all maximal indepen-

dent sets have the same cardinality. Thus, well-covered graphs G are precisely those
graphs G for which 1G : V (G) → F : v �→ 1 is a well-covered weighting over any field F
of characteristic 0. The definition of the well-covered space can be traced to Caro and
Yuster [2] in a more general setting. Let H = (V,E) be a hypergraph and F be a field.
A function f : V → F is called stable if for each e ∈ E, the sum of the values of f on
the members of e is the same. The stable functions form a vector space. One instance
that Caro and Yuster consider is the space of well-covered weightings for a graph
G. They denote this by U(MIS : G,F) and the dimension by udim(MIS : G,F)
(MIS stands for maximal independent sets). In this paper we restrict ourselves to
just well-covered weightings so we use WC(G,F) and wcdim(G,F) (we call the former
the well-covered space of G and the latter the well-covered dimension of G). If the
field has characteristic 0, then we eliminate the reference to F as well.

In general, our graph theoretic notation follows [3]. The complement of graph G
is denoted by G. The disjoint union of graphs G and H is denoted by G ∪ H, and

the join of G and H (which is G ∪H) is denoted by G+H. A maximum independent
set is one of maximum size (which is β(G), the independence number of G). A clique
is a complete subgraph (not necessarily maximal). We often obscure the difference
between a subset of vertices of a graph and the subgraph they induce. Finally, for a
vertex v of G, N(v) = {u ∈ V (G) : uv is an edge of G} is the neighborhood of v and

∗Received by the editors July 26, 2001; accepted for publication (in revised form) June 27, 2005;
published electronically January 6, 2006. This work was partially supported by a grant from the
NSERC.
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(brown@mscs.dal.ca, rjn@mscs.dal.ca).

952



WELL-COVERED VECTOR SPACES OF GRAPHS 953

N [v] = {v} ∪N(v) is the closed neighborhood of G. For matrix theoretic notation, we
follow [7]. We denote the all ones vector of length n by 1n, or simply 1 if the length is
understood, and similarly use 0n to denote the all zeros vector of length n. (Vectors
throughout are written as column vectors.)

If I1, . . . , It+1 are the maximal independent sets of G, then well-covered weightings
are precisely the solutions to the associated linear system∑

v∈I1

xv =
∑

v∈It+1

xv,

∑
v∈I2

xv =
∑

v∈It+1

xv,

. . .∑
v∈It

xv =
∑

v∈It+1

xv

(we call It+1 the common maximal independent set for the linear system). This
homogenous linear system can be written in matrix form as

AG x = 0

(we call the t × n matrix AG an associated matrix for the graph G). Note that
wcdim(G) equals the nullity of AG (over F) and hence is equal to the |V (G)| −
rank(AG) (where, of course, the rank is taken over F). This formulation clearly shows
that wcdim(G) depends only on the characteristic of F, rather than the whole field.

As an illustration, consider W5, the 5-wheel, which consists of a 5-cycle with a
central vertex joined to each vertex on the 5-cycle. It is easy to discover (see Lemma
9) that all the vertices on the 5-cycle must have the same weight, and it is also easy
to see that the central vertex must have weight equal to the sum of the weights of any
maximal independent set of the 5-cycle, that is, twice the weight assigned to each ver-
tex of the 5-cycle. Thus (writing the well-covered weightings as 6-tuples), we see that
WC(W5,F) is spanned by (1, 1, 1, 1, 1, 2) and hence has well-covered dimension 1. This
example also shows that a basis for WC(G,F) cannot always be chosen with values
in {−1, 0, 1} (when char(F) �= 2, 3). As another example, we derive an upper bound
on the well-covered dimension involving the chromatic number χ(G) of a graph G.

Theorem 2. Let G be a graph of order n. Then wcdim(G) ≤ n− χ(G) + 1.
Proof. For a graph G, let {Ii|i = 1, 2, . . . , k} be a sequence of nonempty, indepen-

dent sets such that I1 is a maximal independent set of G and for j > 1, Ij is a maximal

independent set in G− ∪j−1
i=1 Ii. We extend each Ii to a maximal independent set I ′i of

G. If we choose one vertex vi ∈ Ii for each i = 1, . . . , k of G, then using I1 = I ′1 as the
common maximal independent set for the linear system, the submatrix of AG with
rows corresponding to I ′2, . . . , I

′
k and columns corresponding to v2, . . . , vk is lower tri-

angular with ones on the diagonal, as no vi can lie in I ′j for j < i (and in particular no
vi lies in I ′1 for any i = 2, . . . , k). Thus the rank of AG is at least k− 1, so the nullity
of AG (and hence wcdim(G)) is at most n− k + 1. Because I1, . . . , Ik is a covering of
G with k independent sets, χ(G) ≤ k, so wcdim(G) ≤ n− k+1 ≤ n−χ(G)+ 1.

The major result on well-covered spaces can be found in Theorem 3.5 of [2]. There,
it is shown that if the characteristic of F is 0, then for a connected graph G �∼= C7

of girth 7 or greater, wcdim(G,F) equals the number of leaves. Moreover, the basis
vectors can be taken to be the set {fv|v is a leaf}, where fv(v) = fv(x) = 1, x is the
unique vertex adjacent to v (x is referred to as a stem), and fv(w) = 0 otherwise. The
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exceptional case is G ∼= C7 in which case wcdim(G,F) = 1 and the basis vector is the
all ones vector. All bases can be constructed in polynomial time, and the restriction
on the field can be removed if there is at least one leaf. In particular, Caro and
Yuster’s result shows that the well-covered dimension of a tree is equal to the number
of leaves.

In this paper, after illustrating how the well-covered dimension can depend on
the characteristic of the field, we restrict ourselves to the most interesting case, char-
acteristic 0, and consider families of graphs for which the well-covered dimension is
unbounded and those for which it is bounded. Extending Caro and Yuster’s result that
the well-covered dimension of a tree is equal to the number of leaves, we calculate the
dimension of chordal graphs and show how a corresponding basis can be derived from
the chordal graph’s simplicial decomposition. Using linear algebraic techniques, we
show on the other hand that nonempty circulant graphs of prime order have bounded
dimension over any field of characteristic 0.

2. Characteristic does make a difference. In this section we provide, for
every prime p, an infinite number of graphs whose dimension is different over fields of
characteristic p and 0.

We begin by defining graphs Gp,q,n. Let n ≡ 0 mod p with n > p ≥ 3 (we will
handle the case p = 2 at the end). Let q > p(p− 1), q �≡ 0 mod p. We form Gp,q,n on
vertex sets V0, . . . , Vq−1, where Vi = {vi,1, . . . , vi,n}. The nonedges of Gp,q,n are vi,rvi,s
and vi,rvj,r, with r, s = 1, 2, . . . , n, r �= s, i, j ∈ {0, 1, . . . , q−1}, i−j ∈ {1, 2, . . . , p−1}
(arithmetic mod q). The complement of G3,7,6 (which has fewer edges than G3,7,6) is
shown in Figure 1. Now it is not difficult to verify that the maximal independent sets
of Gp,q,n are V0, . . . , Vq−1 together with the sets

{vi,k, vi+1,k, . . . , vi+p−1,k}

(here and elsewhere, addition is modulo q). Setting the sum of each of the weights
on the maximal independent sets equal to the sum of the weights on the vertices of
Vq−1, we find that the linear system corresponding to the well-covered weightings is
Ax = 0, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In In · · · In 0n 0n · · · 0n −Jn
0n In · · · In In 0n · · · 0n −Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · In In In · · · In −Jn
0n 0n · · · 0n In In · · · In In − Jn
In 0n · · · 0n 0n In · · · In In − Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
In In · · · In 0n 0n · · · 0n In − Jn
1T
n 0T

n · · · 0T
n 0T

n 0T
n · · · 0T

n −1T
n

0T
n 1T

n · · · 0T
n 0T

n 0T
n · · · 0T

n −1T
n

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0T
n 0T

n · · · 0T
n 0T

n 0T
n · · · 1T

n −1T
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the columns are indexed by the vertices

v0,1, v0,2, v0,3, . . . , vi,1, vi,2, vi,3, . . . , vq−1,n,

and the rows are indexed by the maximal independent sets V0, V1, V2, . . . , Vq−1 and
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Fig. 1. G3,7,6.

the sets

{v0,1, v0+1,1, . . . , v0+p−1,1}, {v0,2, v0+1,2, . . . , v0+p−1,2}, . . . , {v1,1, v1+1,1, . . . , v1+p−1,1},
. . . , {vq−1,1, vq−1+1,1, . . . , vq−1+p−1,1}, . . . {vq−1,1, vq−1+1,1, . . . , vq−1+p−1,1}.

In the above block form of the matrix, the subscript n denotes the order of the
submatrix, with Jn being the n× n matrix of all ones and 0n being the n× n matrix
of all zeros. If B denotes the top nq rows of A, then B = C −D, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In In · · · In 0n 0n · · · 0n 0n
0n In · · · In In 0n · · · 0n 0n
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · In In In · · · In 0n
0n 0n · · · 0n In In · · · In In
In 0n · · · 0n 0n In · · · In In
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
In In · · · In 0n 0n · · · 0n In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is block circulant (with p consecutive identity matrices in each block row) and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · 0n 0n 0n · · · 0n Jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose first that the characteristic of F is 0. Then by summing the first n rows
and subtracting off rows nq + 1 to nq + p, we get a row with n(q − 1) zeros followed
by −(n − p)1T

n . Since n > p and the characteristic is 0, we can divide through by
−(n− p) to get 1T

n in the last positions. Adding this row to each of the first nq rows
of A, we obtain a matrix whose upper nq rows are the block circulant C. It is clear
that C is nonsingular iff the q × q circulant matrix formed by replacing each In and
0n by 1 and 0, respectively, is nonsingular.

However, it is known (cf. [7, p. 66]) that the determinant of a circulant with first
row a1, . . . , am is

∏ m∑
i=1

aix
i−1,
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where the product is taken over all mth roots x of unity. In our case, the determinant
of C is given by

∏ p∑
i=1

xi−1

over all x that are qth roots of unity. However, no term in this product is 0, since
clearly the term with x = 1 is nonzero, and for any other qth root of unity x we have
(by multiplying through by 1 − x) that x is also a pth root of unity, a contradiction
since q �≡ 0 mod p. Thus we conclude that the matrix A has full row rank over the
field of characteristic 0 and hence has nullity 0, i.e., wcdim(Gp,q,n,Q) = 0.

On the other hand, if we weight every vertex with 1, then this yields a weighting
over a field of characteristic p since the maximal independent sets have weight p or
weight n ≡ 0 mod p. Thus wcdim(Gp,q,n,Zp) > 0.

Last, we handle p = 2. For any n > 2, n even, we form the graph G2,n by
removing a perfect matching from Kn,n. We let the partition be V0 = {a1, . . . , an}
and V1 = {b1, . . . , bn}, with a1b1, . . . , anbn being the perfect matching that is removed.
The maximal independent sets are {ai, bi} for i = 1, 2, . . . , n and V1 and V2. Setting
the sum of each of the weights on the maximal independent sets equal to that of the
weights on the vertices of V2, we find that the linear system corresponding to the
well-covered weightings is

Ax = 0,

where

A =

(
In In − Jn
1T
n −1T

n

)
.

Subtracting the top n rows from the bottom yields(
In In − Jn
0T
n (n− 2)1T

n

)
.

Over Q we can divide out by n− 2 so that A is row equivalent to(
In In − Jn
0T
n 1T

n

)
(∗),

which has rank n+1. Hence the nullity is n−1, which implies that wcdim(G2,n,Q) =
n− 1.

On the other hand, over Z2, since n is even, A is row equivalent to(
In In − Jn
0T
n 0T

n

)
,

which has rank n. Hence the nullity is n, which implies that wcdim(G2,n,Z2) = n.
For the remainder of the paper, we shall restrict our discussion to fields of char-

acteristic 0, though some of the results will hold over fields of other characteristic as
well.

3. Families of graphs with unbounded well-covered dimension. In this
section, we shall determine (in polynomial time) the well-covered dimension of cographs
and chordal graphs, where the latter extends the result of Caro and Yuster on trees.
We begin with the easier case.
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3.1. Cographs and anti-well-covered graphs. A cograph is a graph that
does not contain an induced path on four vertices. It is well known (cf. [5]) that
cographs have a recursive definition; the class of cographs is the smallest class of graphs
containing K1 (the complete graph on one vertex) that is closed under disjoint union
and join. We shall need to introduce a definition that is of interest in its own right.

Definition 3. A graph for which f(G) = 0 for every well-covered weighting f of
G is called an anti-well-covered graph.

Note that in a well-covered graph G of order n, the all ones vector 1n is in
WC(G,F), and for an anti-well-covered graph, 1n is in WC(G,F)⊥, the orthogonal
complement of the well-covered space of G. The fact that WC(G,F)⊥∩WC(G,F) =
{0} ensures that no well-covered graph is anti-well-covered, and this motivates our
choice of name for the property.

A graph of dimension 0 is clearly an anti-well-covered graph, but there are others.
For example, one can verify that C6 and Q3 (the 3-cube) are anti-well-covered. Also,
Kn,n − M , where n > 2 and M is a 1-factor, is an anti-well-covered graph with di-
mension n over any field of characteristic c, where gcd(n, c) = 1 (this follows from the
derivation of (∗) in the previous section). In order to determine the well-covered di-
mension of cographs, we will need some simple properties of anti-well-covered graphs.

Lemma 4. Let G or H be graphs. Then G ∪ H is anti-well-covered iff both G
and H are anti-well-covered, whereas G + H is anti-well-covered iff either G or H is
anti-well-covered.

Proof. The well-covered weightings of the disjoint union of two graphs G and
H are precisely those functions on V (G) ∪ V (H) whose restrictions to G and H are
well-covered weightings, whereas the well-covered weightings of the join of G and H
are precisely those functions on V (G) ∪ V (H) whose restrictions to G and H are
well-covered weightings with the same sum. It follows that G∪H is anti-well-covered
iff both G and H are anti-well-covered, whereas G + H is anti-well-covered iff either
G or H is anti-well-covered.

We now determine how the well-covered dimension behaves under disjoint union
and join.

Lemma 5. Let G and H be graphs. Then

1. wcdim(G ∪H) = wcdim(G) + wcdim(H), and

2. wcdim(G + H) = wcdim(G) + wcdim(H) − 1 unless both G and H are anti-
well-covered graphs in which case wcdim(G + H) = wcdim(G) + wcdim(H).

Proof. The first result is given in [1]. Let L be the subspace generated by those
vectors whose restrictions to G and H are well-covered weightings on the respective
graphs. From the proof of Lemma 4, L properly contains the subspace generated by
well-covered weightings of G + H iff either G or H is anti-well-covered. (If say G is
not anti-well-covered, then we can find well-covered weightings of G with weight equal
to any field element, in particular, of unequal weight to some weighting of H.) Thus
wcdim(G + H) = wcdim(G) + wcdim(H) if both G and H are anti-well-covered, and
wcdim(G + H) < wcdim(G) + wcdim(H) otherwise. In the latter case, note that if
we write corresponding linear systems defining the subspaces of G and H as

AG x = 0

and

AH x = 0,
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then a corresponding linear system for G + H can be given as

AG+H x = 0,

where

AG+H =

⎛
⎝ AG 0

0 AH

u v

⎞
⎠

with u and v being nonzero vectors of the appropriate dimension. Now

rank(AG+H) ≤ rank(AG) + rank(AH) + 1,

so since wcdim(K) = nullity(AK) = |V (K)| − rank(AK) for any graph K, we find
that

wcdim(G + H) ≥ wcdim(G) + wcdim(H) − 1.

Since wcdim(G + H) < wcdim(G) + wcdim(H), we conclude that wcdim(G + H) =
wcdim(G) + wcdim(H) − 1.

Theorem 6. The dimension of a cograph can be determined in polynomial time.
Proof. A cograph is constructed via the disjoint union and join operation from

K1. A cograph can be recognized and the order of operations for its construction
can be determined in polynomial time [5]. It follows that we can recognize whether
a cograph is anti-well-covered in polynomial time as well. The dimension can be
determined in polynomial time from Lemma 4.

We conclude this section by applying anti-well-covered graphs to determining the
dimension of graphs with independence number 2. Graphs with independence number
1 are complete, and it is easy to see that these all have dimension 1, with all vertices
having the same weight in any weighting.

Theorem 7. Let G be a graph with β(G) = 2. Then wcdim(G) is 1 plus the
number of bipartite components of order of at least 2 in the complement G of G.

Proof. Let the components of G be D1, . . . , Dt. Noting that K1 is not anti-
well-covered, we observe from Lemma 5 that any Di of order 1 does not affect the
dimension, so we can assume that each Di has an order of at least 2. Also, every
edge of G is a maximal independent set of G. Note that under any weighting of G, if
xy and yz are edges of G, then x and z have equal weight, so that any two vertices
connected by a walk of even length have the same weight.

Consider any component D of G. If D is not bipartite, it contains an odd cycle.
By the argument above (traveling twice around the cycle), any well-covered weighting
must be constant on this cycle, and indeed on the component D, and hence the
subgraph of G induced by D has dimension 1.

On the other hand, if D is bipartite with bipartition (X,Y ), then we can weight
every vertex of X with one weight, weight every vertex of Y with another, and derive
a well-covered weighting of the graph. Moreover, every well-covered weighting of G
necessarily assigns the same weights to vertices of X and the same weights to the
vertices of Y , as vertices of X are at even distances from one another (similarly for
the vertices of Y ). Thus the subgraph of G induced by D has dimension 2.

Now each Di induces a well-covered graph (with β = 2), so in particular, no Di

is anti-well-covered. Since G is the join of the subgraphs induced by D1, . . . , Dt, we
conclude the stated formula for wcdim(G) from Lemma 5.
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3.2. Complements of k-trees, chordal graphs, and related vertices. In
this section we show that certain other well known families of graphs also have un-
bounded well-covered dimension. A k-tree, (k ≥ 2) is defined recursively: G0 is a
k-clique; for i > 0, Gi is formed from Gi−1 by adding a new vertex that is joined to
a (k − 1)-clique of Gi−1. Every tree is a 2-tree. Here we determine the well-covered
dimension of complements of k-trees. The dimension of k-trees themselves will be
covered later in this section.

Theorem 8. If G is the complement of a k-tree, then G has dimension k.

Proof. Let G be the complement of a k-tree with G0 an independent set of size k
of G and G1, G2, . . . , Gm

∼= G a sequence of k-trees that build to G. Let the vertices
of G0 be v1, . . . , vk. Let f be any well-covered weighting of G. By induction on i we
show that (i) the maximal independent sets of Gi are the independent sets of size k
of Gi and (ii) wcdim(Gi) = k. The latter, for i = m, completes the proof.

For i = 0, (i) and (ii) are obvious. Suppose now that Gi is formed from Gi−1 by
the addition of vertex vk+i so that, for some independent set Xi of size k− 1 of Gi−1,
vk+1 is joined to all of Gi−1 −Xi but no vertex of Xi. Now the maximal independent
sets of Gi are those that do not contain vk+i (which are the maximal independent sets
of Gi−1) and those that contain vi, of which there is only one, namely {vi}∪Xi. Thus
by induction (i) holds. Moreover, an associated linear system for Gi can be derived
from that of Gi−1 by adding in the equation

∑
v∈{vi}∪Xi

xv =
∑
v∈G0

xv.

This introduces a new variable, so it is not hard to see that the associated matrices
Ai−1 and Ai have the same nullity (since Ai+1 has a rank one larger than that of Ai,
but one more column). Part (ii) now follows.

We now turn our attention to chordal (or triangulated) graphs, that is, graphs
without an induced cycle of length of at least 4. Every chordal graph has a simplicial
decomposition; that is, the graph can be recursively built from a complete graph by
adding vertices that are joined to cliques (for more information on chordal graphs, cf.
[6, p. 83]). Note that all trees and all k-trees are chordal graphs. We now calculate
the dimension of chordal graphs. A new relation on the vertices of a graph plays a
key role in calculating the well-covered dimension of chordal graphs. Two vertices x
and y of a graph are related if there is an independent set I, containing neither x nor
y, such that I ∪{x} and I ∪{y} are both maximal independent sets. Note that x and
y must be adjacent or else both could be added to I.

Lemma 9. Let f be a well-covered weighting of G. If x and y are related vertices
in G, then f(x) = f(y).

Proof. For an appropriate independent set I, f(x)+
∑

z∈I f(z) = f(y)+
∑

z∈I f(z),
and the result follows.

Now we say a vertex x of a graph G is simplicial if N [x] is a maximal clique. Let
C(G) = {C|C is a maximal clique containing a simplicial vertex of G}. The members
of C(G) are called simplicial cliques. Let sc(G) = |C(G)|. Let C be a simplicial clique
of G, and let fC be the associated weighting: fC(v) = 1 if v ∈ C and fC(v) = 0
otherwise. It was shown in [2] that the number of leaves of a graph is a lower bound
to its dimension. We generalize this to simplicial cliques.

Lemma 10. Let G be a graph. Then {fC |C ∈ C} is an independent set of vectors
and wcdim(G) ≥ sc(G).
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Proof. Let C ∈ C. There is a vertex v ∈ C that is adjacent only to vertices of C.
Therefore, any maximal independent set must contain exactly one vertex of C, and so
fC is a well-covered weighting. Moreover, v is in no other maximal simplicial clique.
Therefore, fC(v) = 1, but fD(v) = 0 for all D ∈ C, D �= C. Consequently {fC |C ∈ C}
is an independent set of well-covered weightings. The second part of the lemma now
follows.

Our main result proves that equality indeed holds in Lemma 10 for chordal graphs.

Theorem 11. Let G be a chordal graph. Then wcdim(G) = sc(G).

The remainder of the section is devoted to a proof of Theorem 11.

From Lemma 10 we have wcdim(G) ≥ sc(G). The second part of the proof is
now by induction on the size of G. If G is a singleton, then wcdim(G) = sc(G) = 1.
Assume that the result is true for all chordal graphs of sizes 1 through k for some
k ≥ 1. We shall need a few observations about simplicial cliques.

Observation 12. Let w and y be adjacent vertices. If w is a simplicial vertex,
then N [w] ⊆ N [y]. If both w and y are simplicial vertices, then N [w] = N [y], so that
both w and y “generate” the same simplicial clique of G.

Let x be a simplicial vertex of G, and put H = G − {x}. Note that H is also
chordal. By induction, sc(H) = wcdim(H).

Observation 13. Consider a simplicial clique C ∈ C(H). If there is a simplicial
vertex y ∈ C and y is not adjacent to x, then C ∈ C(G). Similarly, if D ∈ C(G)
and there is a simplicial vertex z ∈ D, z �= x, with z not adjacent to x, then
D ∈ C(H).

Observation 14. If C ∈ (C(G) − C(H)), then C = N [x].

Proof. By Observation 13, all simplicial vertices of C are adjacent to x, but then,
by Observation 12, we have C = N [x].

Observation 15. If C ∈ (C(H) − C(G)), then either C = N(x), or there is
a simplicial vertex y ∈ C, y adjacent to x. Moreover, there is at most one such
simplicial clique C.

Proof. Suppose that C ∈ (C(H) − C(G)), and let y ∈ C be a simplicial vertex in
H. It follows from Observation 13 that y is adjacent to x (else C ∈ C(G)) so that in
G we have, by Observation 12, N [x] ⊆ N [y]. If y is a simplicial vertex of G, then by
Observation 12 N [x] = N [y] and thus C = N [x] − x = N(x). If y is not a simplicial
vertex of G, then, in H, C = N [y] = N(x) ∪ A. Suppose that C,D ∈ (C(H) − C(G))
with C �= D. There are simplicial vertices y ∈ D, y adjacent to x, and z ∈ C which
is also adjacent to x. But then z and y are adjacent (since both are in the clique
N(x)), and so by Observation 12, C = N [z] = N [y] = D. Thus, there is at most one
simplicial clique C ∈ (C(H) − C(G)).

Observation 16. sc(G) − 1 ≤ sc(H) ≤ sc(G).

Proof. By Observation 13, every simplicial clique of H that does not contain a
simplicial vertex from N(x) is a simplicial clique of G, and by Observation 15 there
is at most one simplicial clique of H with a vertex in N(x). Since G has N [x] as a
simplicial clique while H clearly does not, we have sc(H) ≤ sc(G). On the other hand,
there is only one simplicial clique of G, namely N [x], that is not a simplicial clique
of H, as the only other simplicial vertices of G in N [x] generate the same simplicial
clique (by Observation 12). Thus sc(G) − 1 ≤ sc(H).

Now back to the proof of Theorem 11. Let f(G) be a well-covered weighting of
G, and let K be the (common) sum of the weights of a maximal independent set. We
first show that any well-covered weighting of G can be associated with a well-covered
weighting of H. We then use this and the fact that wcdim(H) = sc(H) to show
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that wcdim(G) = sc(G). From the observations we see that there are three cases to
consider.

1. C(H) ⊂ C(G), i.e., no new simplicial clique is created when x is deleted,
2. {C} = C(H) − C(G) and C = N(x), or
3. {C} = C(H) − C(G) and C �= N(x).

Case 1. We have C(H) ⊂ C(G) so that {N [x]} = C(G) − C(H) and sc(G) =
sc(H) + 1. Since every simplicial clique of H is a simplicial clique of G, then, from
Observation 2, it follows that for all y ∈ N(x), y is not simplicial in H. We define a
weighting wf on V (H) by

wf (v) =

{
f(v) if v is not adjacent to x,
f(v) − f(x) if v ∈ N(x).

We claim that wf is in fact a well-covered weighting of H. Let I be a maximal
independent set of H. If there exists s ∈ I such that s ∈ N(x), then I is a maximal
independent set in G, and moreover no other vertex in I is adjacent to x. Therefore,∑

v∈I

wf (v) =
∑

v∈I−s

wf (v) + wf (s) =
∑

v∈I−s

f(v) + f(s) − f(x) = K − f(x).

If I contains no vertex adjacent to x, then I ∪ {x} is a maximal independent set in
G. Therefore

f(x) +
∑
v∈I

wf (v) = f(x) +
∑
v∈I

f(v) = K;

i.e.,
∑

v∈I wf (v) = K − f(x). Thus wf is a well-covered weighting of H. In H, let hi,
i = 1, 2, . . . , sc(H) be the vector with weight 1 on the coordinates corresponding to
the vertices of the ith simplicial clique. By induction, this is a basis for wcdim(H).
In G, we extend these vectors to gi, i = 1, 2, . . . , sc(H), where gi is the vector with
weight 1 on the vertices of the coordinates corresponding to the ith simplicial clique.
(That is, each gi is the same as hi, but a value for gi(x) = 0 is now defined.) In this
case, since every simplicial clique of H is a simplicial clique of G, by Lemma 10, the
gi’s are linearly independent, well-covered weightings of G. Now wf is a well-covered
weighting of H, and so

wf =

sc(H)∑
i=1

cihi.

Now, by the construction of wf , f(v) −
∑sc(H)

i=1 cihi(v) = 0 for v �∈ N(x), and so the

well-covered weighting g = f−
∑sc(H)

i=1 cigi is nonzero only on vertices of N [x]. For any
w ∈ N [x], extend w to a maximal independent set I(w) of G. Then

∑
u∈I(w) g(u) =

g(w), but g is a well-covered weighting so that g is a constant on the simplicial clique
N [x] and 0 is everywhere else, i.e., g is a scalar multiple of the associated weighting

of the simplicial clique N [x] of G. Thus f = g +
∑sc(H)

i=1 cigi is a linear combination
of the associated weightings for the simplicial cliques of G, and we conclude that
wcdim(G) ≤ sc(G), and hence (by Lemma 10) wcdim(G) = sc(G) in this case.

Case 2. We have {C} = C(H) − C(G) and C = N(x). Therefore, there is a
y ∈ C which is simplicial in both H and G. Let I be any maximal independent set
of G − N [x]. Then both I ∪ {x} and I ∪ {y} are maximal independent sets for G,
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i.e., x and y are related and thus have the same weight in any well-covered weighting
of G. Note that the restriction f ′ of f to H is also a well-covered weighting. This
follows since any maximal independent set I of H must contain a vertex of C = N(x),
and thus I is also a maximal independent set of G. Let hi, i = 1, 2, . . . , sc(H), be
the vector with weight 1 on the coordinates corresponding to the vertices of the ith
simplicial clique of H, and let C correspond to i = 1. By induction, this is a basis

for WC(H); therefore, f =
∑sc(H)

i=1 dihi and d1h1 = f ′ −
∑sc(H)

i=2 dihi. In G, we
extend these vectors to gi, i = 2, . . . , sc(H), with gi the vector having weight 1 on
the coordinates corresponding to the vertices of the ith (i > 1) simplicial clique of
H (and G). By Lemma 10, each gi is a well-covered weighting of G and thus so is

g = f −
∑sc(G)

i=2 digi. Under g, the only vertices with nonzero weights are those of
N [x]. All of the vertices of C have the same weight under g since g restricted to C
is h1. But since f(x) = f(y) (y simplicial in C), it follows that g is constant on N [x]
and that {gi|i = 2, . . . , sc(H)} ∪ {g} spans WC(G). In this case, again we have that
wcdim(G) = sc(G).

Case 3. We have {C} = C(H) − C(G) and C �= N(x). Therefore, there is a
simplicial vertex y ∈ C, y adjacent to x, y not simplicial in G, and C = N [y]−{x} =
N(x) ∪ A. Also, in H, if z ∈ A were a simplicial vertex, then, by Observation 1,
N [y]− {x} = N [z] and C = N [z] would also be a simplicial clique in G. Therefore A
contains no simplicial vertices. We define a weight function wf on V (H) by

wf (v) =

{
f(v) + f(x) if v ∈ A,
f(v) otherwise.

Let I be a maximal independent set of H. If there exists s ∈ I such that s ∈ N(x),
then I is a maximal independent set in G. Thus∑

v∈I

wf (v) =
∑
v∈I

wf (v) = K.

If I contains no vertex adjacent to x, then it must contain exactly one vertex z ∈ A,
and I ∪ {x} must be a maximal independent set in G. Therefore,∑

v∈I

wf (v) = wf (z) +
∑

v∈I−{z}
wf (v)

= f(x) + f(z) +
∑

v∈I−{z}
f(v)

= K.

Thus, wf is a well-covered weighting of H.
In H, let hi, i = 1, 2, . . . , sc(H), be the vector with weight 1 on the vertices of

the coordinates corresponding to the ith simplicial clique where the simplicial clique
containing y has index 1. By induction, this is a basis for WC(H). In G, let gi,
i = 2, 3, . . . , sc(H), be the vector with weight 1 on the coordinates corresponding to
the vertices of the ith simplicial clique. Recall that in this case we have sc(G) = sc(H)
and the simplicial cliques of H with indices 2 through sc(H) are also simplicial cliques
in G. Thus, {gi|i = 2, 3, . . . , sc(G)} is a linearly independent set. Now wf is a well-
covered weighting of H, and so

wf =

sc(H)∑
i=1

cihi.
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Therefore,

wf −
sc(H)∑
i=2

cihi = c1h1,

i.e., all the vertices of N [y] ∩ H have weight c1 in the well-covered weighting wf −∑sc(H)
i=2 cihi of H. Therefore, in G, the only vertices with nonzero weight in the

well-covered weighting g = f −
∑sc(G)

i=2 cigi of G are the vertices of N [y] with g(z) =
c1 − f(x) for all z ∈ A and g(z) = c1 for z ∈ N(x), and g(x) = f(x).

We now need to show that c1 = f(x), and for that we need to find an independent
set with certain properties. Let I be a minimum-sized independent set of V (G)−(C∪
{x}) that dominates (i.e., is adjacent to) the maximum number of vertices in C. If I
does not dominate all the nonsimplicial vertices of C, then there exists a nonsimplicial
z ∈ C which is not dominated by a vertex of I. However, since z is not simplicial
there exists w ∈ G − (N [x] ∪N [y]) with z adjacent to w. Now, since I ∪ {w} is not
independent (I was maximum with this domination property), there exists i ∈ I such
that i is adjacent to w. Let s ∈ C ∩ N(i). The latter is nonempty since otherwise i
could be deleted from I, a contradiction. Thus s is adjacent to z since C is a clique,
and consequently, {z, w, i, s} is a C4. Since H is chordal, this cycle must have a chord,
specifically w ∼ s. Since this is true for any i and s, we can replace all the neighbors
of w in I by w. This independent set dominates more vertices in C than does I, and
this is a contradiction. Therefore, there is an independent set J of V (G)− (C ∪ {x})
which dominates all the nonsimplicial vertices in C and in particular all of A (recall
that A has no simplicial vertices). Now, since J dominates all of A, J ∪ {x} and
J ∪ {y} are maximal independent sets, and so x and y are related and, in particular,
g(x) = g(y) = c1. Thus g(x) = g(w) for any w ∈ N(x). But then for all z ∈ A,
g(z) = c1 − g(x) = 0. It follows that the original well-covered weighting f is a linear
combination of {gi|i = 2, 3, . . . , sc(G)}∪{g′}, where g′ is 1 on the vertices of N [x] and
is 0 everywhere else. Thus, in this and all cases, wcdim(G) = sc(G), and the theorem
is proved.

We remark that Theorem 11 holds over any field since all of the arguments hold
over any characteristic.

4. Families of graphs with bounded well-covered dimension. In this sec-
tion, we shall determine (in polynomial time) the well-covered dimension of circulant
graphs of prime order and partitionable graphs; the techniques here are based in linear
algebra. We begin with circulants of prime order.

We shall need some notation for maximal independent sets of a given cardinality.
For a graph G, let It = {I : I is a maximal independent set of G, |I| = t}. Here is an
upper bound that will be quite useful in this section.

Lemma 17. Let G be a graph G of order n, and let t ≤ β(G). Moreover,
if char(F) �= 0, suppose that gcd(t, char(F)) = 1. Let dt be the dimension of the
subspace of Fn generated by the characteristic vectors of It. Then wcdim(G,F) ≤
n − dt + 1. Moreover, if dt = n, then the only possible well-covered weightings are
constant functions.

Proof. If w is a well-covered weighting of G with sum k, then (w− k
t j)i̇t = k−k =

0, and so w ∈ span(〈It〉⊥∪{j}). It follows that wcdim(G,F) is at most the dimension
of span(〈It〉⊥ ∪ {j}). The dimension of the latter is at most (n − dt) + 1, and so it
follows that wcdim(G,F) ≤ n− dt + 1. If dt = n, then span(〈It〉⊥ ∪{j}) = span({j}),
so the only possible well-covered weightings are constant functions.
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Theorem 18. Let G be a circulant graph with order p, a prime. If G is not
totally disconnected, then wcdim(G) = 1 if G is well-covered and equals 0 otherwise.

Proof. Let V (G) = {0, 1, 2, . . . , p−1}. Let S be a maximum independent set that
contains 0. Since G is not totally disconnected, then S �= {0, 1, 2, . . . , p − 1}. Note
that Si = {i + j mod p : j ∈ S} is a maximum independent set for i = 0, 1, . . . , p− 1
and that Si �= Sj for i �= j. Let A be the incidence matrix where the rows are indexed
by Si and the columns by V (G). A is clearly a circulant matrix. As in section 2, the
determinant of A is given by∏ ∑

A(0,i)=1

xi−1 (∗∗)

over all x that are pth roots of unity. Suppose (to reach a contradiction) that for
some pth root of unity, q,

∑
A(0,i)=1 q

i−1 = 0 (we follow the argument given in [4] for

vanishing sums of roots of unity). Then the automorphism ω → ωj of Q[ω] shows
that

∑
A(0,i)=1 ω

i−1 = 0 for all primitive pth roots of unity. We now sum (∗∗) over
all primitive pth roots of unity, noting that, for any primitive pth root of unity and
any 1 ≤ j ≤ p− 1, the sum of the jth power of the primitive pth roots of unity is −1
(since this is equal to the sum of the primitive pth roots of unity). Thus

0 =

p−1∑
j=1

∑
A(0,i)=1

ωi−1
j

=
∑

A(0,i)=1

p−1∑
j=1

ωi−1
j

= (p− 1) + (|{i : A(0, i) = 1}| − 1)(−1).

Therefore, the number of nonzero terms in the first row of A must be p, implying
that G is totally disconnected, which is a contradiction. Since det(A) �= 0, then
A is invertible and so the row space of A has dimension p. From Lemma 17, it
follows that wcdim(G) ≤ p− p + 1 = 1. If G is well-covered, then j is a well-covered
weighting. If G is not well-covered, then the only well-covered weighting is the all-zero
weighting.

5. Conclusion. The results in the previous sections give rise to a number of
questions.

Problem 19. Is it possible to give a structural characterization of anti-well-
covered graphs of positive dimension? Indeed, is there a polynomial algorithm to
recognize such anti-well-covered graphs?

Problem 20. As indicated in [2], the same questions can be asked of hypergraphs.
Can the well-covered dimension of matroids be calculated in polynomial time?

We can show that the well-covered dimension of a graphic matroid of a graph G
is equal to the number of blocks of G.
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1. Introduction. We assume familiarity with standard terminology of matroid
theory; see, e.g., [23] for a thorough introduction. Let M be a matroid on ground set
S of cardinality |S| = n. Throughout the paper we consider M to be defined by an
independence oracle, i.e., an algorithm I which, given a subset X of S, can determine
in unit time whether or not X is independent in M . This implies that the rank of
any set X ⊆ S,

r(X) = max{|I| : I independent subset of X},

and, in particular, the rank of the matroid r(M)
def
= r(S) can be determined in O(n)

time by the well-known greedy algorithm. Hence, the rank of X in the dual matroid
M∗

r∗(X) = r(S \X) + |X| − r(M)(1)

can also be computed in O(n) time. In particular, I can be used as an independence
oracle for the dual matroid.

For a subset X of S, let Span(X) = {y ∈ S | r(X ∪ y) = r(X)}. A set X is
said to span another set Y if Y ⊆ Span(X). In this paper we consider the following
enumeration problem.
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(P1) Given a matroid M , defined by an independence oracle on ground set S, and
two nonempty (and not necessarily disjoint) subsets D and A of S, enumerate
all minimal subsets X ⊆ D which span A.

We denote the family of all such minimal spanning sets by SPAN (D,A), and we
show that SPAN (D,A) can be generated in incremental polynomial time.

Theorem 1. Computing k elements of SPAN (D,A) can be carried out in
poly(n, k) time for each k ≤ |SPAN (D,A)|.

As will be discussed in section 2.4, problem (P1) is equivalent to another enumer-
ation problem.

(P2) Given a matroid M on S and two nonempty subsets D and A of S, enumerate
all maximal subsets X ⊆ D such that A �⊆ Span(X).

Corollary 1. The enumeration problem for (P2) can also be solved in incre-
mental polynomial time.

Note that in the statements of problems (P1) and (P2), Theorem 1, and Corollary
1 we can assume without loss of generality that S = D ∪A.

Unlike problems (P1) and (P2), we show that the following two enumeration
problems are intractable: Given a matroid M on S and two nonempty disjoint subsets
D,A ⊂ S, enumerate

(P3) all minimal subsets X of D such that Span(X) ∩A �= ∅.
(P4) all maximal subsets X ⊆ D such that Span(X) ∩A = ∅.
Theorem 2. Let D and A be given sets of vectors in a vectorial matroid M .

(i) Given a collection X of minimal subsets X ⊆ D for which Span(X)∩A �= ∅,
it is NP-complete to decide whether X can be extended.

(ii) Given a collection X of maximal subsets X of D satisfying Span(X)∩A = ∅,
it is NP-complete to decide whether X can be extended.

As we will see in section 3, part (i) of Theorem 2 holds for vectorial matroids over
an arbitrary field F. Our proof of part (ii) requires that F be large (of characteristic
0 or linear in n = |S|). In particular, we do not know whether part (ii) of Theorem
2 holds for binary matroids. Note, however, that for binary matroids problem (P4)
includes as a special case the well-known hypergraph dualization problem [8, 9, 10]:
enumerate all maximal independent vertex sets for a given hypergraph H ⊆ 2S .
(To see this, let D and A be the sets of characteristic vectors of all vertices and
all hyperedges of H, respectively.) No incremental polynomial-time algorithm for
dualization of arbitrary hypergraphs is currently known. Clearly, Theorem 2 implies
that for vectorial matroids, problems (P3) and (P4) cannot be solved in incremental
(or output) polynomial time unless P = NP.

It is also worth mentioning that problems (P1) and (P2) are mutually dual in
the sense that they call for enumerating minimal/maximal subsets X of S that
satisfy/violate a certain monotone set property (specifically, X spans A). Prob-
lems (P3) and (P4) are also mutually dual (with the common monotone property
Span(X) ∩ A �= ∅). In general, the complexities of two mutually dual enumeration
problems may differ substantially. For instance, one problem may be NP-hard while
the other is solvable in incremental polynomial time (see, e.g., [11] and also the ex-
amples in sections 4 and 5). In particular, the duality of problems (P3) and (P4) by
no means implies that parts (i) and (ii) of Theorem 2 are equivalent. This is why we
prove parts (i) and (ii) of Theorem 2 separately.

Before proceeding further, we consider some special cases of Theorem 1 and Corol-
lary 1. Note that since A ⊆ Span(X) implies Span(A) ⊆ Span(X), we can assume,
without loss of generality, that in problems (P1) and (P2) the set A is a flat, i.e.,
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A = Span(A). Note also that the minimal sets X enumerated in problem (P1) are
independent, i.e., r(X) = |X|, while the maximal sets in problem (P2) are flats.

1.1. Bases. When A = D = S, then SPAN (S, S) is the set of all bases of
M , i.e., the collection B(M) of all minimal subsets B ⊆ S that span S. It is a
folkloric result that, for this special case, all elements of SPAN (S, S) = B(M) can be
enumerated with polynomial delay, i.e., in poly(n) time per each generated base. This
can be done, for instance, by traversing the connected “supergraph” G = (B(M), E)
in which two “vertices” B,B′ ∈ B(M) are connected by an edge in E if and only if B
and B′ can be obtained from each other by exchanging a pair of elements, i.e., when
|B \B′| = |B′ \B| = 1. The connectivity of G then follows from the well-known base
axiom: If B,B′ ∈ B(M) and x ∈ B′ \B, then (B∪y)\x ∈ B(M) for some y ∈ B \B′.

1.2. Hyperplanes. Assuming as before A = D = S, problem (P2) calls for
enumerating all hyperplanes of M , i.e., all flats of rank r(M) − 1. Seymour showed
that all hyperplanes of a matroid can be enumerated in incremental polynomial time
[21]. This also implies an incremental polynomial time algorithm for enumerating all
flats of a given rank t because such flats are the hyperplanes of the truncated matroid
Mt+1 whose rank function is defined by rt+1(X) = min{r(X), t + 1}.

1.3. Circuits. The bases of the dual matroid M∗ are the complements to the
bases of M : B(M∗) = {S \B : B ∈ B(M)}. Let C(M) be the set of all circuits of M ,
i.e., the collection of all minimal dependent sets in M . Since each circuit of M is the
complement of a hyperplane of M∗ and vice versa, the enumeration of all circuits of
M is equivalent to the hyperplane enumeration for the dual matroid M∗. Hence by
1.2 the set C(M) of all circuits of M can be enumerated in incremental polynomial
time. When M is the cycle matroid of a given graph G = (V,E) and consequently
C(M) is the family of all simple cycles of G, all elements of C(M) can be enumerated
with polynomial delay (see, e.g., [19]). This is also true for M∗, the cocycle matroid
of G, where each element of C(M∗) is a minimal set of edges whose removal increases
the number of connected components of G (see, e.g., [18]). In general, however,
no polynomial-delay algorithm is known for enumerating all circuits (equivalently,
hyperplanes) of an arbitrary matroid.

1.4. Circuits through a given point. When A = {a} consists of a single
element of rank 1, and D = S \ A, then I ∈ SPAN (D,A) if and only if I ∪ {a} is a
circuit containing a. Thus Theorem 1 implies that all circuits through a given element
can be generated in incremental polynomial time. When M is the cycle or cocycle
matroid of a connected graph G = (V,E) and a = (uv) ∈ E is an edge with endpoints
u, v ∈ V , enumerating all circuits through a calls for generating all simple uv-paths
or all minimal uv-cuts in G, which can again be done with polynomial delay [18].
However, for general matroids, no polynomial delay algorithm is known. Furthermore,
we are not aware of an incremental polynomial time algorithm for enumerating all
circuits containing t = 2 elements of a given matroid M . In section 2.3 we argue that
this problem can be solved with polynomial delay for each fixed t when M is the cycle
matroid of a graph but becomes NP-hard when t is part of the input.

1.5. Vertex enumeration. An open question in linear programming is whether
there exists an efficient way to enumerate all vertices of a given polytope

P =

{
x = (x1, . . . , xn) ∈ 
n |

n∑
i=1

aixi = a, x1, . . . , xn ≥ 0

}
,
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where a, a1, . . . , an are given d-dimensional vectors. Each vertex of P can be identified
with a minimal supporting set I of coordinates {1, . . . , n} for which the system of
linear equations

∑
i∈I

aixi = a(2)

has a nonnegative, and hence positive, real solution. Dropping the nonnegativity
conditions, we arrive at the problem of enumerating all minimal sets X ⊆ {1, . . . , n}
for which (2) has a real solution. This is equivalent to the enumeration of all circuits
through a in the vectorial matroid M = {a, a1, . . . , an} ⊆ 
d. By the same token,
given an infeasible system of linear equations, all minimal infeasible (maximal feasible)
subsystems of the given system can be enumerated in incremental polynomial time.

We now consider some other special cases of problems (P1) and (P2) when M is
the cycle matroid of a (multi-)graph.

1.6. Generalized Steiner trees and point-to-point connections. Let G =
(V,E) be a graph with k given disjoint vertex sets V1, . . . , Vk ⊆ V . A generalized
Steiner tree is a minimal set of edges X ⊆ E connecting all vertices within each set
Vi; i.e., for each i = 1, . . . , k, all vertices of Vi must belong to a single connected
component of (V,X). In particular, for k = 1 we obtain the usual definition of Steiner
trees. When each set Vi consists of two vertices {ui, vi}, generalized Steiner trees are

called point-to-point connections. For i = 1, . . . , k, let Ai be the collection of
(|Vi|

2

)
“new” edges that connect every pair of vertices within Vi, let A = A1 ∪ · · · ∪ Ak,
and let M be the cycle matroid of the multigraph (V,E ∪ A). Then SPAN (E,A)
is the family of all generalized Steiner trees for V1, . . . , Vk because an edge set X
spans an edge e in M if and only if X contains a path connecting the endpoints of e.
Thus the enumeration of generalized Steiner trees is a special case of problem (P1),
and Theorem 1 implies that there is an incremental polynomial time algorithm for
enumerating generalized Steiner trees. Note that in this problem, we can also replace
each Ai by a spanning tree on Vi.

1.7. Multiway cuts. Let V ′ ⊆ V be a vertex set of a graph G = (V,E). A
multiway cut is a minimal collection of edges whose removal disconnects every pair of
vertices in V ′; see, e.g., [22]. Note that since any edge between two vertices of V ′ must
be included in each multiway cut, we can assume without loss of generality that V ′

is a stable vertex set in G. Let A be a set of |V ′| − 1 “new” edges forming a spanning
tree on V ′, and let M∗ be the cographical matroid of G′ = (V,E′), where E′ = E∪A.
An edge set X ⊆ E spans A in M∗ if and only if r∗(X ∪ A) = r∗(X), where r∗(·)
is the rank function of M∗. From (1), it follows that r(Y ) + |A| = r(Y ∪ A), where
Y = E \ X is the complement of X in G = (V,E). So if we remove X from G and
start adding the edges of A to the resulting graph (V, Y ), then each new edge from
A should be decreasing the number of connected components. This is the same as
saying that the vertices of V ′ are all in distinct connected components of (V, Y ), i.e.,
that X is a multiway cut. So the enumeration problem for multiway cuts is equivalent
to the enumeration of all minimal subsets X of E such that X spans A in M∗, which,
by Theorem 1, can be done in incremental polynomial time.

1.8. Disjunctions of paths. This enumeration problem is dual to the enumer-
ation of multiway cuts: Given a vertex set V ′ ⊆ V in a graph G = (V,E), enumerate
all minimal subsets X ⊆ E which connect some pair of vertices in V ′. By Corollary
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1, all such minimal paths connecting a pair of vertices in V ′ can be enumerated in
incremental polynomial time.

The remainder of this paper is organized as follows. We prove Theorems 1 and 2
in sections 2 and 3, respectively. In section 4 we discuss some circuit and hyperplane
enumeration problems for two matroids on S, and we also discuss generalized circuits
and hyperplanes obtained by replacing some singletons of S by subsets, i.e., by per-
forming the parallel extension of the rank function r(X) for some sets A1, . . . , An ⊆ S.
We show that the enumeration problems corresponding to these variants and general-
izations of circuits and hyperplanes are all NP-hard already for graphic and cographic
matroids.

Finally, in section 5 we discuss similar generalizations of matroid bases and show
that they can be expressed in a natural way as minimal solutions to some systems of
polymatroid inequalities. Due to results obtained in [2, 4], this implies that the cor-
responding enumeration problems for generalized bases, including spanning, packing,
and the maximal independent set problems for several matroids, can all be solved in
incremental quasi-polynomial time 2polylog(n,k), where k is the number of generated
objects.

2. Minimal spanning sets for a flat. In this section we prove Theorem 1.
For completeness, we start with an incremental polynomial-time algorithm for gener-
ating all circuits of a matroid, which is dual to the hyperplane generation algorithm
suggested by Seymour [21].

2.1. Enumerating all circuits of a matroid. Let M be a matroid defined by
an independence oracle on ground set S of size n, and let C(M) ⊆ 2S be the family
of all circuits of M .

Proposition 1 (see [21]). C(M) can be enumerated in incremental polynomial
time.

Proof. Start by computing a base Bo of M . Next, for each x ∈ S \Bo there exists
a unique circuit C = C(Bo, x) such that x ∈ C ⊆ Bo ∪ x. This circuit C(Bo, x),
called the fundamental circuit of x in the base Bo, can be computed by querying
the independence oracle on at most |Bo| subsets of Bo ∪ x. Denote by F(Bo) =
{C(Bo, x) | x ∈ S \Bo} the set of n− r(M) fundamental circuits for Bo.

The family C(M) of circuits of any matroid satisfies the circuit axiom: If C1 and
C2 are distinct circuits of M and e ∈ C1 ∩C2, then there exists a circuit C3 such that
C3 ⊆ (C1 ∪ C2) \ e.

To enumerate all circuits in M , start with C′ = F(Bo) and repeatedly check
whether C′ is closed with respect to the circuit axiom. Since each violation of the
circuit axiom produces a new circuit, it remains to argue that, if some system C′

of circuits is closed with respect to the circuit axiom and F(Bo) ⊆ C′, then C′ =
C(M). This follows from the fact that any set system C′ ⊆ 2S satisfying the circuit
axiom and the Sperner condition C1, C2 ∈C =⇒C1 �⊆C2 defines a matroid M ′ on
S; see [16, 23]. By definition, the bases of M ′ are all maximal independent sets
for C′, i.e., all those maximal subsets of S which contain no set in C′. In our case
C′ ⊆ C(M), and hence C′ is Sperner by definition. Furthermore, since C′ contains
the fundamental system of circuits for Bo ∈ B(M), it follows that Bo is also a base
of M ′, implying that the ranks of M and M ′ are equal. Let C ∈ C(M) be an
arbitrary circuit of M ; then C is the fundamental circuit for some base B ∈ B(M)
and some element x ∈ S \ B, i.e., C = C(B, x). Since B is independent in M ′ and
|B| = r(M) = r(M ′), it follows that B ∈ B(M ′). Now M ′ must also contain a
unique fundamental circuit C ′ = C ′(B, x). Since any circuit of M ′ is also a circuit
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of M , it must be the case that C = C(B, x) = C ′(B, x), which shows that C ∈ C′ =
C(M ′).

2.2. Circuits through a given element. We next prove the special case of
Theorem 1 for |A| = 1.

Proposition 2. Let M be a matroid with ground set S, let a ∈ S, and let
C(M,a) be the set of circuits C of M such that a ∈ C. Assuming that M is defined
by an independence oracle, all elements of C(M,a) can be enumerated in incremental
polynomial time.

Proof. Two elements x, y ∈ S are said to be connected in M if either x = y
or there is a circuit C ∈ C(M) containing both x and y. It is well known that this
definition results in an equivalence relation on S, each equivalence class of which is
called a connected component of M . In particular, M is connected if S is the only
connected component of M . It is also known that, given an independence oracle for
M , the connected components of M can be determined in polynomial time [1].

Returning to the problem of enumerating all circuits of M through the given
element a, we observe that all such circuits must belong to the connected component
of M which contains a. So we may replace S by this connected component and assume
without loss of generality that M is connected.

Given a set X ⊆ S, let

D(X) = X \
⋂

{C ∈ C(M,a) | C ⊆ X},

where as before C(M,a) denotes the set of all circuits containing a. Lehman’s theorem
[16, 23] asserts that for any connected matroid M the circuits of M not containing a
are precisely the minimal sets of the form D(C1 ∪ C2), where C1 and C2 are distinct
members of C(M,a). Hence for any connected matroid M we have the following
bound:

|C(M)| ≤ |C(M,a)|
(
|C(M,a)| + 1

)
/2.

This bound and Proposition 1 readily imply that all circuits in C(M,a) can be enu-
merated in output polynomial time poly(n, |C(M,a)|) by simply generating all cir-
cuits in C(M) and discarding those that do not pass through a. In fact, since our
enumeration problem is self-reducible, the above bound also implies an incremental
polynomial-time algorithm. To see this, assume that we wish to enumerate a given
number k of circuits in C(M,a) or to list all of them if k ≥ |C(M,a)|. Since for
each integer k′ ≤ |C(M)| we can obtain k′ circuits in C(M) in poly(n, k′) time, we
can decide whether or not k ≥ |C(M,a)| by attempting to generate k′ = k(k + 1)/2
circuits in C(M), in time bounded by a polynomial in n and k. If we discover that
|C(M)| ≤ k(k + 1)/2 by producing all circuits in C(M), then we also have the entire
set C(M,a). Suppose now that we have computed k(k + 1)/2 circuits in C(M) but
fewer than k of them pass through a. Let b �= a be another element of S. Delete b and
compute the connected component S′ which contains a in the matroid M restricted
to S \ b. Note that any circuit of C(M,a) which does not contain b must belong to
S′. So we may apply the same procedure to the connected matroid M ′ obtained by
restricting M to S′ and either obtain all circuits of C(M,a) which avoid b, or conclude
that the number of such circuits exceeds k. Since in the latter case we can reduce the
size of S by removing b for good (as long as we are not required to produce more than
k circuits of C(M,a)), we may now assume without loss of generality that for each
element b �= a we have obtained all the circuits in C(M,a) which avoid b. This means
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that in time polynomial in n and k we can produce all circuits in C(M,a) which skip
some element of S. Unless S itself is the only element of C(M,a), this gives the entire
set C(M,a).

2.3. Circuits through t elements. It is natural to ask what is the complexity
of enumerating all circuits of M which contain a given set A = {a1, . . . , at} of t ≥ 2
elements of S. We digress from the proof of Theorem 1 and argue that this problem
is NP-hard when t is part of the input but can be solved with polynomial delay if
t = |A| is fixed and M is the cycle matroid of a given graph G = (V,E). As mentioned
in the introduction, we are not aware of an efficient algorithm for listing all circuits
through t = const ≥ 2 elements of an arbitrary matroid.

Let M be the cycle matroid of G so that the circuits of M are the simple cycles
of G. An edge set A may be contained in a simple cycle only if A itself is a simple
cycle or A is a union of k pairwise vertex disjoint simple paths P1, . . . , Pk for some
positive integer k ≤ t. All simple cycles containing P1, . . . , Pk can be enumerated
with polynomial delay via lexicographic backtracking [19] by growing and merging
these partial paths (so that their number continually decreases). Hence backtracking
listing algorithms reduces the enumeration of simple cycles containing a1, . . . , at to
the following decision problem: Does there exist a simple cycle in G which contains
k given disjoint paths P1, . . . , Pk?

When k is fixed, by considering all possible permutations and reversals of P1, . . . , Pk

the latter problem can in turn be polynomially reduced to the well-known disjoint-
path problem: Given k pairs of vertices {ui, vi}, i = 1, . . . , k, of a graph, can these
pairs be connected by k pairwise vertex disjoint paths?

Even though the disjoint-path problem is NP-complete, when k is part of the
input (see [13]), it is known [20] to be solvable in polynomial time for each fixed
k. Hence all simple cycles through t = const edges can be enumerated with delay
bounded by a polynomial in the size of the input graph.

However, if t = |A| is part of the input, then the problem of enumerating all
simple cycles through t edges of a graph becomes NP-complete. In fact, given a graph
G = (V,E) and a (large) matching A ⊂ E, it is NP-hard to decide whether G has
any simple cycle containing A. This can be seen from the following argument. Given
a graph H = (U,E), substitute an edge eu for each vertex u ∈ U . Then, unless G
consists of a single edge, the resulting graph G = P2 ×H has a simple cycle through
the matching A = {eu : u ∈ U} if and only if the original graph H is Hamiltonian,
a condition which is NP-complete to verify.

Finally, similar to minimal cycles, it can be shown that the enumeration of all
minimal cuts through t edges is NP-hard when t is part of the input. These results
also indicate that it is NP-complete to decide whether a cycle or cocycle matroid M
has a hyperplane avoiding all elements of a given set A.

2.4. Proof of Theorem 1. We now complete the proof of Theorem 1. Let, as
before, M be a matroid on S, and let D and A be two nonempty subsets of S. We
use a new element α to represent A. Specifically, let Mα be the matroid on D ∪ α
with the following rank function:

ρ(X) =

{
r(X) if α �∈ X,
max{r((X \ α) ∪ a) | a ∈ A} otherwise.

(3)

It is easy to check that Mα is indeed a matroid. When M is a vectorial matroid over
a large field, α can be interpreted as the “general linear combination” of all elements
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of A; in general, ρ(X) is the so-called principal extension of r(X) on A with value 1
(see, e.g., [17]).

When I ∈ SPAN (D,A), then I ∪ α is a circuit in Mα, and conversely, for
any circuit C in Mα containing α, the set C \ α belongs to SPAN (D,A). Hence
the enumeration problem for SPAN (D,A) is equivalent with that for the set of all
circuits through α in Mα. Given an independence oracle for M , the rank function
(3) of the extended matroid can be trivially evaluated in oracle-polynomial time.
Therefore Theorem 1 directly follows from Proposition 2.

We mention in passing that since SPAN (S, S) is the set of bases of M , the proof
of Theorem 1 shows that the enumeration of all bases of a matroid M can be reduced
to the enumeration of all circuits (equivalently, all circuits through a given element)
of another matroid.

Proof of Corollary 1. Given two nonempty subsets D,A ⊆ S, we wish to enu-
merate all maximal subsets X ⊆ D such that A �⊆ Span(X). Consider the matroid
Mα constructed in the proof of Theorem 1. The ground set of Mα is D ∪ {α}, and
a set X ⊆ D does not span α if and only if A �⊆ Span(X); see (3). On the other
hand X ⊆ D does not span α in Mα if and only if Y = D \ X spans α in the dual
matroid M∗

α. By Theorem 1, we can enumerate all minimal Y spanning α in M∗
α in

incremental polynomial time.

3. Proof of Theorem 2. Part (i). We reduce our enumeration problem from the
CNF satisfiability problem: Given m clauses (i.e., disjunctions) C1, . . . , Cm of some
literals drawn from L = {x1, x̄1, . . . , xn, x̄n}, does there exist a truth assignment of
x1, . . . , xn that satisfies the conjunctive normal form φ(x1, . . . , xn) = C1 ∧ · · · ∧Cm?

Let |Cj | denote the number of literals in clause Cj . We construct a graph G =
(V,E) on |V | = 2mn− n + m + 1 +

∑m
j=1 |Cj | vertices and |E| = 2mn + 2

∑m
j=1 |Cj |

edges as follows. For each positive literal xi appearing in clause Cj , we introduce
three edges Yij , Y

′
ij , Y

′′
ij ∈ E, and for each negative literal x̄i appearing in clause Cj ,

we introduce three edges Zij , Z
′
ij , Z

′′
ij ∈ E. These edges are connected in G as follows:

G = v0 P1 v1 P2 v2 . . . vn−1 Pn vn P ′
1 v′1 P ′

2 v′2 . . . v′m−1 P ′
m v′m,

where v0, v1, . . . , vn = v′0, v
′
1, . . . , v

′
m−1, v

′
m are n + m + 1 distinct vertices; each Pi

consists of two parallel chains, Yi1, . . . , Yim and Zi1, . . . , Zim of m edges in each,
connecting vi−1 and vi; and each P ′

j consists of |Cj | parallel chains of two edges labeled
by either the variables Y ′

ij , Y
′′
ij or by Z ′

ij , Z
′′
ij , depending on whether literal xi or x̄i

appears in Cj . See Figure 1 for a small example.
For each edge e = (uv) ∈ E, let us now select an orientation, say u → v, and let

χ(e) ∈ {0,±1}V be the vector with the components χu = −1, χv = +1, and χw = 0
for w �∈ {u, v}, where the scalars 0,−1, and +1 are drawn from some field F (we do
not exclude the binary case +1 = −1). We will also denote by μ = χ(v0, v

′
m) the

vector whose components are given by μv0 = −1, μv′
m

= +1, and μw = 0 otherwise.
Let B be the following set of

∑m
j=1 |Cj | pairs of edges:

B = {{Yij , Z
′
ij} : literal xi ∈ Cj} ∪ {{Zij , Y

′
ij} : literal x̄i ∈ Cj},

and let

D = {χ(e), e ∈ E} and A = {μ} ∪ {χ(e) + χ(e′) : {e, e′} ∈ B}.

Finally, let M be the vectorial matroid over F on the ground set S = D ∪A. Denote
by F(D,A) the family of all minimal subsets of D that span at least one vector
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Fig. 1. The directed graph used in the proof of (i) of Theorem 2 corresponding to the CNF
φ(x1, x2, x3) = (x1 ∨ x̄2) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3).

from A. It is easy to see that each vector χ(e) + χ(e′), {e, e′} ∈ B in A \ {μ} is
spanned by exactly |Cj | − 1 sets from F(D,A), where Cj is the clause containing
e′. All such sets in F(D,A) can be easily listed, and their number is bounded by
O(

∑m
j=1 |Cj |2) ≤ poly(n,m). Deciding whether F(D,A) contains other sets is NP-

complete because any additional set X in F(D,A) must span μ and correspond to a
vo-v

′
m path that contains no pair of mutually negating literals. This means that X

can be transformed into a satisfying assignment for the input CNF φ.
Part (ii). Again, we use a reduction from the CNF satisfiability problem, specifi-

cally, from the well-known NP-complete 3-SAT problem. As before, we denote by L =
{x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n} the set of literals, and let φ(x1, . . . , xn) = C1∧· · ·∧Cm

be a given cubic CNF, i.e., |Ci| = 3 for i = 1, . . . ,m. It will be convenient to intro-
duce a linear ordering ≺ on L, say x1 ≺ x̄1 ≺ x2 ≺ x̄2 ≺ · · · ≺ xn ≺ x̄n, and assume
that Ci = {�i1, �i2, �i3}, where �i1 ≺ �i2 ≺ �i3 for i = 1, 2, . . .m.

Let V = {0, 1, . . . , n}, and let ej ∈ {0, 1}V denote the jth unit vector, i.e., ejk = 1
if and only if j = k, for j, k ∈ V . We start by associating to every literal � ∈ L a
|V |-dimensional {0, 1}-vector d � by defining, for each j = 1, . . . , n,

d xj = ej and d x̄j = e0 + ej .

Next, we let w1 = 2(n + 1), w2 = 4(n + 1), and w3 = 8(n + 1), and we associate to
each clause Ci = {�i1, �i2, �i3} a set of n+1 integer vectors ai(λ) of the following form:

ai(λ) =

3∑
k=1

wkd
�̄ik +

n∑
j=1

ej + λe0,

where λ = 0, . . . , n. Finally, let us define the sets

D = {d� | � ∈ L} and A = {ai(λ) | i = 1, . . . ,m, λ = 0, 1, . . . , n}

and consider the vectorial matroid M on S = D ∪ A over any field F in which
0, 1, . . . , 15(n + 1) are distinct constants. Denote by F(D,A) the family of all max-
imal subsets of D that span no vector in A.
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Our first observation is that whenever a set Y ⊆ D contains neither d xj nor d x̄j

for some j ∈ {1, . . . , n}, then Span(Y ) ∩ A = ∅ because the jth component of any
linear combination of the vectors of Y is zero, while the jth component of any vector
in A is nonzero. Furthermore, if Y ∩ {d xj , d x̄j} �= ∅ and |Y | > n, then Y spans the
entire linear space FV (and hence Span(Y ) ∩ A �= ∅) because rank(Y ) = n + 1 for
such a set of vectors. Thus, it follows that

X .
= {D − {d xj , d x̄j} | j = 1, 2, . . . , n} ⊆ F(D,A)(4)

and that Y ∈ F(D,A) \ X implies

|Y ∩ {d xj , d x̄j}| = 1 for j = 1, . . . , n.(5)

Every subset Y ⊆ D satisfying (5) naturally encodes a truth assignment x(Y ) of the
n input variables, where xj(Y ) = 1 for all those components j ∈ {1, . . . , n} for which
d xj ∈ Y , and xj(Y ) = 0 whenever d x̄j ∈ Y . Now we claim that F(D,A) \ X �= ∅ if
and only if φ is satisfiable. To see this we show that a truth assignment x = x(Y ) is a
satisfying assignment for φ if and only if Span(Y )∩A = ∅, which by (4) is equivalent
to Y ∈ F(D,A) \ X . For this, suppose first that for a set Y ⊆ D satisfying (5) we
have

ai(λ) ∈ Span(Y )(6)

for some i ∈ {1, . . . ,m} and λ ∈ {0, . . . , n}. The n vectors in Y always form a matrix
whose last n rows are the identity matrix of order n. Hence there is only one possible
linear combination of the vectors in Y which could be equal to ai(λ). By definition,
the last n components of ai(λ) contain n−3 ones plus three other components equal to
w1+1, w2+1, and w3+1. These are exactly the components corresponding to the three
variables in the conjunction Ci. Furthermore, since the weights w1, w2, and w3 are
large, by looking at the 0th component of ai(λ) we conclude that Y must contain the
three vectors d �̄ik corresponding to the negations of the literals of Ci = {�i1, �i2, �i3}.
But by (5) this clearly means that x(Y ) violates Ci. In other words, if Y encodes
a satisfying truth assignment for φ, then Y cannot span any vector in A, and hence
Y ∈ F(D,A) \ X . The converse implication also holds true: any Y ∈ F(D,A) \ X
encodes a satisfying assignment for φ. This is because φ(x(Y )) = 0 would imply that
x(Y ) violates some clause Ci = {�i1, �i2, �i3} and consequently that Y contains the
set D(Ci) = {d �̄i1 , d �̄i2 , d �̄i3}. Now it is easy to see that the linear combination

3∑
k=1

(wi + 1)d �̄ik +
∑

d∈Y \D(Ci)

d ∈ Span(Y )

must coincide with ai(λ) for some λ ∈ {0, 1, . . . , n}, contradicting the selection of
Y .

We close this section by stating problems (P3) and (P4) for the dual matroid of
M : Given two disjoint sets D,A ⊂ S, enumerate

(P3)∗ all minimal sets X ⊆ D such that a ∈ Span(X ∪ (A \ a)) for all a ∈ A.
(P4)∗ all maximal subsets X ⊆ D such that a �∈ Span(X ∪ (A \ a)) for some a ∈ A.

Since the dual matroid for an explicitly given vectorial matroid over some field
is again an explicitly given vectorial matroid over the same field, the enumeration
problems (P3)∗ and (P4)∗ are also NP-hard for vectorial matroids over large fields.
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4. Circuits in two matroids, and generalized circuits and hyperplanes.
Let M1 and M2 be two matroids on S with rank functions r1(X) and r2(X). It is
known that the minimum of the submodular function r1(X)+r2(S \X) for all X ⊆ S
gives the maximum cardinality of a set I independent in both M1 and M2 and that
this minimum can be computed in polynomial time [7]. In particular, when the ranks
of M1 and M2 are equal, one can determine in polynomial time whether M1 and M2

share a common base, i.e., B(M1) ∩ B(M2) �= ∅. In fact, using this as a subroutine
for backtracking on matroids obtained by deleting and contracting elements of S, all
bases in B(M1) ∩ B(M2) can be enumerated with polynomial delay.

In contrast to this result, deciding whether M1 and M2 contain a common circuit
is NP-hard already when M1 is the cycle matroid of some graph G = (V,E) and M2

is the uniform matroid on E whose bases are all subsets of size r = |V | − 1. In this
case, C(M1)∩ C(M2) �= ∅ if and only if G is Hamiltonian. A similar argument for the
NP-complete maximum cut problem shows that testing if C(M1)∩C(M2) �= ∅ remains
NP-hard when M1 is the cocycle matroid of a graph G = (V,E) and M2 is again a
uniform matroid on E.

Of course, given two matroids M1 and M2 on S, one can always enumerate
all elements of C(M1) ∪ C(M2) in incremental polynomial time due to Theorem 1.
Note, however, that deciding whether a given set C ∈ C(M1) ∪ C(M2) is maximal
in C(M1) ∪ C(M2) is NP-hard, in general. This is because for any set A ⊆ S we
may choose M2 to be the matroid for which A is the only circuit, and then de-
ciding whether A is maximal becomes equivalent with determining if M1 has a cir-
cuit containing A (see section 2.3). Perhaps more surprisingly, for two matroids M1

and M2 on S, enumerating all minimal elements of C(M1) ∪ C(M2) may also be
hard.

Proposition 3 (see [3]). Let G1 = (V1, E1) and G2 = (V2, E2) be two connected
planar graphs on a common set E of n edges (i.e., both E1 and E2 are labeled in a one-
to-one way by the elements of E). Furthermore, let M1 and M2 be cocycle matroids
on E, corresponding to G1 and G2. Then it is NP-hard to enumerate MIN{C(M1)∪
C(M2)}, the collection of all minimal sets C ⊆ E which disconnect at least one of the
graphs G1 or G2.

By considering the dual planar graphs for G1 and G2, it can be shown that
Proposition 3 also holds for the cycle matroids of G1 and G2. Specifically, it is NP-
hard to enumerate all minimal edge sets X ⊆ E which form a cycle in G1 or G2.

We close this section with yet another generalization of the notion of a circuit in
a matroid. Let M be a matroid defined by an independence oracle on some ground
set U , and let A1, . . . , An be given (not necessarily disjoint) subsets of U . We define
a generalized circuit as a minimal subset X of S = {1, . . . , n} such that

⋃
i∈X Ai is a

dependent set in M .

Proposition 4 (see [3]). Enumerating all generalized circuits for the cocycle
matroid of a graph is NP-hard even when A1, . . . , An are disjoint sets of edges of size
2 each.

Proposition 4 also holds for cycle matroids. In addition, by matroid duality,
Proposition 3 shows that it may be NP-hard to enumerate all generalized hyper-
planes of a matroid M , i.e., all those maximal subsets X of S = {1, . . . , n} for which
Span(∪i∈XAi) �= S.

In the next section we consider generalized bases (≡ minimal spanning sets) and
argue that their enumeration is an easier task even when they are defined for two or
more matroids.
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5. Generalized spanning and packing in matroids and systems of poly-
matroid inequalities.

5.1. Minimal spanning sets. Given a matroid M on ground set U and subsets
A1, . . . , An of U , we define a generalized base as a minimal subset X of S = {1, . . . , n}
for which the sets Ai, i ∈ X span the matroid, that is,

r

( ⋃
i∈X

Ai

)
≥ r(M).(7)

Note that in case |U | = n and the sets Ai are the n disjoint singletons of U , we obtain
the standard definition of a base of M . On the other hand, if Ai are subsets of some
fixed base B, then

r

( ⋃
i∈X

Ai

)
=

∣∣∣∣ ⋃
i∈X

Ai

∣∣∣∣,
and hence each generalized base is a minimal set cover of B. Another special case
will be considered in section 5.3.1 below.

It will be convenient to further extend the definition of generalized bases. First,
we can replace the right-hand side of inequality (7) by a given integer threshold
t ∈ {1, . . . , r(M)}. This is equivalent to replacing M by the truncated matroid
with the rank function rt(·) = min{r(·), t} and leads us to the notion of a minimal
t-spanning set, that is, a minimal set X ⊆ {1, . . . , n} for which

r

( ⋃
i∈X

Ai

)
≥ t.

Naturally, for t = r(M) we return to the definition of generalized bases.

Second, we may consider a number m of matroids M1, . . . ,Mm defined by inde-
pendence oracles on ground sets U1, . . . , Um. Suppose that for each of the matroids
Mj we are given a collection of n sets Aj1, . . . , Ajn ⊆ Uj along with an integer
threshold tj ∈ {1, . . . , r(Mi)}, and consider the family F of all minimal solutions
X ⊆ S = {1, . . . , n} to the system of m inequalities

rj

( ⋃
i∈X

Aji

)
≥ tj , j = 1, . . . ,m.(8)

Let us recall that an integer-valued set-function f : 2S �→ Z+ is called polymatroid if
it is monotone, submodular, with minimum 0, i.e.,

(i) X ⊆ Y ⊆ S =⇒ f(X) ≤ f(Y ),
(ii) f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for all X,Y ⊆ S, and
(iii) f(∅) = 0.

For example, the rank function of any matroid is polymatroid. It is also easy to see
that if A1, . . . , An are arbitrary subsets of the ground set U of a matroid with the
rank function r, then the function f(X) = r(∪i∈XAi) is polymatroid. This function
f(X) = r(∪i∈XAi) is called the parallel extension of r with respect to A1, . . . , An; see,
e.g., [17]. It is known [12] that any polymatroid function f can be obtained in this
way from some matroid.
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5.2. Systems of polymatroid inequalities. Returning to the minimal span-
ning subfamilies for (7) or, more generally, to the family F of all minimal feasible
solutions for (8), we conclude that F is the family of all minimal feasible solutions
X ⊆ S = {1, . . . , n} to the system of polymatroid inequalities

fj(X) ≥ tj , j = 1, . . . ,m,(9)

where fj(X) = rj(
⋃

i∈X Aji). Since we assume that each of the input matroids is
given by an independence oracle, each of the functions fj can be evaluated at any set
X ⊆ S in polynomial oracle time. As shown in [4], given a system of polymatroid
inequalities (9) defined by a polynomial-time evaluation oracle, we can compute any
given number k ≤ |F| of minimal solutions X ∈ F to (9) in time No(logN), where
N = m(nk)log max{t1,... ,tm}. Since tj ≤ |Uj |, j = 1, . . . ,m, we thus conclude that all
minimal solutions to (8) can be enumerated in incremental quasi-polynomial time.

Theorem 3 (see [4]). Given m matroids M1, . . . ,Mm defined by independence
oracles on ground sets U1, . . . , Um and given a collection of n sets Aj1, . . . , Ajn ⊆ Uj

along with an integer threshold tj ∈ {1, . . . , r(Mj)} for each of the matroids, the set
F of minimal solutions X ⊆ {1, . . . , n} to the system of generalized rank inequalities
(8) can be computed in incremental quasi-polynomial time; i.e., k ≤ |F| elements of
F can be produced in 2polylog(K) time, where K = max{k, n,m, |U1|, . . . , |Um|}.

Theorem 3 clearly indicates that for matroids defined by polynomial-time in-
dependence oracles, the enumeration of all generalized bases or, more generally, all
minimal solutions for (8) is very unlikely to be NP-hard.

A function f : 2S → 
 is called �-smooth if |f(X ∪{i})− f(X)| ≤ � for all X ⊆ S
and i ∈ S \X. Obviously, the rank function r of any matroid is 1-smooth, while the
parallel extension of r with respect to given sets A1, . . . , An is max{|A1|, . . . , |An|}-
smooth. When the number of polymatroid inequalities in (9) is fixed and each of these
inequalities is �-smooth for some fixed �, Theorem 3 can be strengthened as follows.

Theorem 4. When max{m, |A11|, . . . , |Anm|} ≤ const all minimal solutions to
(9) can be enumerated with polynomial delay.

Proof. Let �
def
= max{|A11|, . . . , |Anm|}, and note that the functions f1, . . . , fm

are �-smooth. Denote by F the family of minimal feasible sets for (9). Then the
elements of F can be enumerated with polynomial delay by traversing the strongly
connected directed supergraph G = (F , E), in which a pair of vertices (X,X ′) forms
an edge in E if and only if X ′ can be obtained from X by the following process:

1. Let e be an element of X such that S \ e satisfies the system (9). Delete e
from X.

2. Add a set Z of at most m� elements from S \X to restore the feasibility of
(X \ e) ∪ Z.

3. Lexicographically delete some elements Y from X \ e to guarantee the mini-
mality of X ′ = (X \ (Y ∪ e)) ∪ Z.

Note that for bounded � and m, the out-degree of each vertex of G is polynomially
bounded by nm�+1. Furthermore, the strong connectivity of G can be proved as
follows. Given two vertices X0, Xk ∈ F of G, there exists a sequence {X1, . . . , Xk−1}
of elements of F such that for all r = 1, . . . , k, Xr is obtained from Xr−1 by deleting an
element er ∈ Xr−1 \Xk (thus making Xr−1 \ {er} infeasible), adding some minimal
subset of elements Zr ⊆ Xk \ Xr−1 to obtain a feasible set Xr−1 \ {er} ∪ Zr, and
finally, reducing lexicographically the resulting set to a minimal feasible set Xr ⊆
Xr−1 ∪Zr \ {er}. Note that, for r = 1, . . . , k, |Xr \Xk| < |Xr−1 \Xk|, and therefore
k ≤ |X0 \ Xk|. Thus it is enough to show that (Xr−1, Xr) ∈ E , i.e., there exists a
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subset Zr ⊆ Xk \Xr−1 such that

|Zr| ≤ m�,(10)

for r = 1, . . . , k − 1. To prove this, fix an r ∈ {1, . . . , k − 1}, and let, for simplicity
of notation, X = Xr−1, e = er, and Z = Zr. We begin by initializing Z ← ∅. As
long as fj((X \ {e}) ∪ Z) < tj for some j = 1, . . . ,m, there must exist an element
x ∈ Xk \ ((X \ {e})∪Z) such that fj((X \ {e})∪Z ∪ {x}) > fj((X \ {e})∪Z). This
follows from the submodularity of fj and the fact that

fj((X \ {e}) ∪ Z) < tj ≤ fj(Xk) ≤ fj((X \ {e}) ∪ Z ∪Xk).

We then add this element x to Z, i.e., set Z ← Z ∪ {x}, which increases the value of
fj((X \ {e})∪Z) by at least 1. By the �-smoothness of fj , for j = 1, . . . ,m, we have
fj(X \ {e}) ≥ tj − �, and therefore we conclude that the number of elements that we
need to include in Z before (X \ {e})∪Z satisfies the system (9) is at most m�. The
theorem follows.

Remark. Let us note that in reducing the set Xr−1\{er}∪Zr to a minimal feasible
set Xr for (9), in any possible way, we need only to delete at most m(�(m�+1)−1)−1 =
O(m2�2) elements, i.e., Xr = Xr−1 ∪ Zr \ ({e} ∪ Yr), where

|Yr| ≤ m(�(m� + 1) − 1) − 1 ≤ 2�2m2.(11)

To see this, let, as before, X = Xr−1, e = er, Z = Zr, Y = Yr, and X ′ = Xr. By the

minimality of X ∈ F , for each x ∈ X, there is a j ∈ [m]
def
== {1, . . . ,m} such that

fj(X \ {x}) ≤ tj − 1. Let I
def
= {j ∈ [m] : fj(X \ {x}) ≤ tj − 1, for some x ∈ X}.

Since X \ {e} is infeasible, there exists a j′ ∈ I such that fj′(X \ {e}) ≤ tj′ − 1. Note
that for each j ∈ I, we have

fj(X) ≤ tj + �− 1(12)

by the minimality of X and the �-smoothness of fj . For j ∈ I, define Yj = {x ∈
Y ∪ {e} | fj(X \ {x}) ≤ tj − 1}. Since X ′ = X ∪ Z \ (Y ∪ {e}) ⊆ X ∪ Z \ Yj for all
j ∈ I, we get

fj(X
′) ≤ fj(X \ Yj) + �|Z| for all j ∈ I.(13)

It follows, furthermore, by the submodularity of fj and minimality of X that

fj(X) − fj(X \ Yj) ≥ |Yj | for all j ∈ I.(14)

But fj(X
′) ≥ tj for all j ∈ I, which together with (12), (13), and (14) gives

|Y ∪ {e}| ≤
∑
j∈I

|Yj | ≤
∑
j∈I

(fj(X) − fj(X \ Yj)) ≤ |I|(�(|Z| + 1) − 1).

Now (11) follows from (10).
Let us further remark that, for a single polymatroid inequality, the bounds (10)

and (11) can be tight to within multiplicative constants. To see this, consider for
instance the grid V = {0, 1, . . . , �} × {0, 1, . . . , �}, where � is a positive integer. Let
n = (� + 1)2, and consider the following collection of n edge sets on V :

Eji = {{(j, 0), (j, i)}} for i = 1, . . . , � and j = 0, 1, . . . , �,

E∗ = {{(0, 0), (j, 0)} | j = 1, . . . , �},
Ej = {{(j, 1), (j, i)} | i = 2, . . . , �} ∪ {{(j, 1), (j + 1, �)}}

for j = 0, 1, . . . , �− 1.
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Let G1, . . . , Gn be the graphs corresponding to the above edge sets on V . For X ⊆
{1, . . . , n}, define

f(X) = |V | − (number of connected components of the graph
⋃

i∈X Gi).

Then f is polymatroid (see Example 5.3.1 below) and �-smooth. Let t = |V | − 1, and
consider the polymatroid inequality

f(X) ≥ t.(15)

Then the set X = {Eji | i = 1, . . . , �, j = 0, 1, . . . , �} ∪ {E∗} is minimal feasible for
(15). Now if we drop E∗ from X, we need to add all the � sets Ej for j = 0, 1, . . . , �−1
to restore feasibility. But then all the �(� − 1) sets Eji for i = 2, 3, . . . , � and j =
0, 1, . . . , �− 1 can be dropped to get back to minimal feasibility.

As a corollary of (11) and Theorem 4, we obtain the following claim.
Corollary 2. Given a nonempty collection X of minimal feasible solutions for

(9), the problem of finding a new minimal feasible solution X �∈ X is in NC, provided
that max{m, |A11|, . . . , |Anm|} ≤ const.

In contrast, it was proven in [14] that the parallel complexity of finding a single
maximal independent set in a matroid, defined by an independence oracle on a ground
set S, using p processors, is lower-bounded (in a certain decision tree model) by
Ω((|S|/ log(|S|p))1/3).

5.3. Spanning and packing in matroids. In the remainder of this paper we
briefly discuss some applications of Theorems 3 and 4.

5.3.1. Minimal t-spanning sets and connectivity ensuring collections of
graphs. Theorems 3 and 4 imply that, given a matroid M on ground set U and an
integer threshold t, the family

F(A, t) = {X | X minimal subset of {1, . . . , n} such that r(∪i∈XAi) ≥ t}

of all minimal t-spanning sets can be enumerated in incremental quasi-polynomial time
for any given collection A of sets A1, . . . , An ⊆ U and with polynomial delay when
the sizes of A1, . . . , An are bounded. In particular, this result applies to generalized
bases, i.e., minimal subfamilies of A1, . . . , An that span the entire matroid:

Span

〈 ⋃
i∈X

Ai

〉
= U.

As an application, let A1, . . . , An ⊆ V ×V be a family of edge sets of undirected graphs
on common vertex set V , and let F be all those minimal subfamilies X of {1, . . . , n}
for which the graph G(X) = (V,

⋃
i∈X Ai) is connected (or has at most t connected

components, where t is a given threshold). Then all elements of F can be enumerated
in incremental polynomial time or with polynomial delay for max{|A1|, . . . , |An|} ≤
const. This result generalizes the well-known fact that all spanning trees for a graph
can be enumerated efficiently. Interestingly, enumerating all minimal collections of
A1, . . . , An connecting two given vertices a, a′ ∈ V turns out to be NP-hard already
when the input sets of edges A1, . . . , An are pairwise disjoint and contain at most
2 edges each; see [11]. In other words, given n disjoint sets A1, . . . , An ⊆ U of
size 2 in a (graphic) matroid M , it is NP-hard to enumerate all minimal subfamilies
X ⊆ {1, . . . , n} which span a given flat A of the matroid

A ⊆ Span

〈 ⋃
i∈X

Ai

〉
,
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even when A is a line, i.e., r(A) = 1. In addition, Proposition 4 shows that generating
the family of all generalized hyperplanes

H(A) =

{
X

∣∣∣∣ X is a maximal subset of {1, . . . , n}
such that r(∪i∈XAi) ≤ r(M) − 1

}

is also NP-hard already for graphic matroids and |A1| = · · · = |An| = 2.

5.3.2. Bar-and-joint structures. The following example is taken from [17].
“Let B be a bar-and-joint structure, i.e., a graph G = (V,E) whose nodes are points
of the Euclidean 3-space, and whose edges are rigid bars attached to the nodes by
flexible joints. For each X ⊆ V , let f(X) denote the degree of freedom of the subset
X, i.e., the dimension of the infinitesimal motions of all nodes in X which extend
to an infinitesimal motion of all nodes that is compatible with the given bars. Then
f(∅) = 0, f({x}) = 3 for every x ∈ V (G) and f({x, y}) = 5 or 6 depending on
whether or not the whole structure forces x and y to stay at the same distance, etc.
It follows from the elements of the theory of rigid bar-and-joint structures that f is a
submodular set-function on the subsets of V (G). See [5].”

Moreover, it is easy to see that function f is polymatroid. Hence, it follows from
Theorem 3 that, given a positive integer threshold t, we can generate all minimal
families of nodes whose degree of freedom is at least t in incremental quasi-polynomial
time. Of course, this result can be generalized to parallel extensions of f and to
families of bar-and-joint structures with different thresholds.

5.3.3. Maximal independent sets in m matroids. An important special
case of Theorem 3 is when all matroids are defined on the same ground set U = U1 =
· · · = Un = {1, . . . , n}, and Aji = {i} for all i ∈ {1, . . . , n} and j ∈ {1, . . . , r}. For
this case, defining tj = |U | − rj(U) and writing the system (8) for the dual matroids
M∗

1 , . . . ,M
∗
m,

r∗j (X) = rj(U \X) + |X| − rj(U) ≥ |U | − rj(U), j = 1, . . . ,m,(16)

we notice that the complement Y = U \ X to each minimal feasible solution X to
(16) is a maximal set Y independent in all m matroids

rj(Y ) ≥ |Y |, j = 1, . . . ,m,

and vice versa. Thus, the set of all minimal feasible solutions to (16) can be identified
with the family

cI(M1, . . . ,Mm) = {Y | Y is a maximal set independent in M1, . . . ,Mm}.

The complexity of enumerating I(M1, . . . ,Mm) was asked in 1980 by Lawler, Lenstra,
and Rinnooy Kan [15], who gave an algorithm running in exponential time O(nm+2)
per each generated element. Theorem 3 indicates that in fact this enumeration
problem (called matroid intersections in [15]) can be solved in incremental quasi-
polynomial time.

Theorem 5 (see [2]). Given m matroids M1, . . . ,Mm on common ground set U ,
we can enumerate k ≤ |I(M1, . . . ,Mm)| maximal independent sets in No(logN) time
and poly(N) calls to the independence oracles, where N = max{m, k, |U |}.
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5.3.4. Minimal transversals of bounded-degree hypergraphs. Let H ⊆
2{1,... ,n} be a hypergraph on n vertices. A minimal transversal of H is a subset of
vertices, minimal with the property that it intersects every hyperedge of H. The
problem of finding all minimal transversals of a given hypergraph H is known as the
hypergraph transversal problem (see, e.g., [8, 10]) and is equivalent to the hypergraph
dualization problem mentioned in the introduction. For X ⊆ {1, . . . , n}, define the
function

fH(X) = |{H ∈ H | H ∩X �= ∅}|.

Then f is polymatroid; moreover, it is �-smooth whenever the hypergraph H has
maximum degree �, i.e.,

deg(H) = max
i∈V

|{H ∈ H | i ∈ H}| ≤ �.

Since the dualization of H is equivalent to the enumeration of all minimal solutions
to the inequality fH(X) ≥ |H|, we conclude by Theorem 4 that bounded-degree
hypergraphs can be dualized with polynomial delay (see [6] and [9] for alternative
proofs of this result).

5.3.5. Packing flats in a matroid. In our final example, given a matroid M
on ground set U , subsets A1, . . . , An ⊆ U , and an integer threshold t, we consider the
inequality

∑
i∈X

r(Ai) − r

( ⋃
i∈X

Ai

)
≤ t,(17)

where X ⊆ {1, . . . , n} and r is the rank function of M . It is easy to see that the
left-hand side of (17) monotonically increases with X. We call maximal solutions to
(17) t-packings of A1, . . . , An in M . When t = 0 and r(X) = |X|, this definition
leads to the usual notion of set packings, i.e., maximal pairwise disjoint subfamilies of
A1, . . . , An. When t = 0 and A1, . . . , An are some flats, for instance, some subspaces
of a linear space, each packing is a maximal mutually transversal subfamily of flats.
This is because for t = 0 the packing inequality (17) is equivalent to |X| transversality
conditions: for each i ∈ X the flat Ai must be transversal to the flat generated by
all other flats, i.e., r(Ai ∪ Li) = r(Ai) + r(Li), where Li = Span〈Aj | j ∈ X \ i〉. In
particular, when M is the cycle matroid of a graph G and A1, . . . , An are subgraphs
of G, then for t = 0 each maximal packing corresponds to maximal pairwise edge-
disjoint subfamilies of graphs the union of which does not contain any new cycle (i.e.,
a cycle that does not belong to one of the subgraphs A1, . . . , An).

Rewriting inequality (17) as

∑
i∈Y

r(Ai) + r

( ⋃
i �∈Y

Ai

)
≥

n∑
i=1

r(Ai) − t,

where Y = {1, 2, . . . , n} \ X, we can note that the maximal packings in (17) are in
one-to-one correspondence with the minimal feasible sets of a polymatroid inequality.
Thus we arrive at the following result.

Corollary 3. Given a matroid M on ground set U , and given subsets A1, . . . ,
An ⊆ U , all maximal t-packings of A1, . . . , An can be enumerated in incremental
quasi-polynomial time for any given integer threshold t.
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In particular, given a family of acyclic graphs on the same vertex set V , all max-
imal edge-disjoint subfamilies, the union of which is still acyclic, can be enumerated
incrementally in quasi-polynomial time. In contrast to this result, a seemingly very
similar problem is NP-hard.

Proposition 5. Given a family of acyclic graphs on the same vertex set V , it
is NP-hard to enumerate all maximal (not necessarily edge-disjoint) subfamilies, the
union of which is still acyclic.

Proof. We use the following reduction from the CNF satisfiability problem. Given
a conjunctive normal form φ(x1, . . . , xn) = C1∧· · ·∧Cm, where each Cj is a disjunction
of some literals in {x1, x̄1, . . . , xn, x̄n}, our construction is composed of the union G of
n+m vertex disjoint cycles Y1, . . . , Yn, Y

′
1 , . . . , Y

′
m, where |Yi| = n+2 for i = 1, . . . , n

and |Y ′
j | = |Cj |+n for j = 1, . . . ,m. Each edge of G is labeled by one of the sets {xi},

{x̄i}, or {xi, x̄i} for some i ∈ {1, . . . , n}. Each cycle Yi, for i = 1, . . . , n, corresponds
to a binary variable xi, and its n+2 edges are labeled by {x1, x̄1}, . . . , {xn, x̄n}, {xi},
and {x̄i}, respectively. Similarly, each cycle Y ′

j , for j = 1, . . . ,m, corresponds to a
clause Cj , and its edges are labeled by {x1, x̄1}, . . . , {xn, x̄n}, {l1}, . . . , {lkj

}, where
l1, . . . , lkj are the literals appearing in Cj . Finally, we define 2n acyclic subgraphs

of G with edge sets X1, X1, . . . , Xn, Xn, where Xi = {e ∈ E(G) | xi ∈ label(e)}
and Xi = {e ∈ E(G) | x̄i ∈ label(e)}. Note that, for any j ∈ {1, . . . , n}, the family
{Xi | i �= j} ∪ {Xi | i �= j} is maximal with the property that the union graph is
acyclic. Thus any other maximal family whose union is acyclic must contain either
Xi or X̄i for all i = 1, . . . , n. Furthermore, any such family cannot contain both Xi

and Xi for some i ∈ {1, . . . , n} since otherwise we get the cycle Yi in the union. We
conclude, therefore, that there exists a new maximal union-acyclic subfamily if and
only if there is a subfamily containing exactly one of the sets Xi, Xi for all i = 1, . . . , n
such that all the cycles Y ′

1 , . . . , Y
′
m are broken in the union graph. The latter condition

is further equivalent with the condition that CNF φ is satisfiable.
As a final remark, we note that the family of sets described in Proposition 5 is

the family of maximal feasible solutions of the inequality

F (X)
def
=

∣∣∣∣ ⋃
i∈X

Ai

∣∣∣∣− r

( ⋃
i∈X

Ai

)
≤ 0

over X ⊆ {1, . . . , n}, where r(·) is the rank function of the cycle matroid of the graph
G. In the special case, when n = |U | and the sets Ai are the n disjoint singletons of

U , the function F (X) reduces to the copolymatroid function f(X)
def
= |X|−r(X) (that

is, f(U) − f(U \X) is polymatroid). More generally, it follows that, for any integer
t, the maximal feasible solutions of the inequality f(X) ≤ t can be enumerated with
polynomial delay by Theorem 4, since those are in a one-to-one correspondence with
the minimal feasible solutions of the 1-smooth polymatroid inequality n− t− r(U) ≤
|Y |+ r(U \Y )− r(U). Analogous argument shows that the minimal feasible solutions
of the inequality f(X) ≥ t are the complements of flats of rank t − n − r(U) − 1 in
the dual matroid and hence can be enumerated in incremental polynomial time by
Proposition 1. In contrast, Propositions 4 and 5 state that the analogous problems for
the function F (X) (which is a parallel extension of f(X)) are NP-hard. Thus, while
the parallel extension of a polymatroid function is polymatroid, the parallel extension
of a copolymatroid function is neither polymatroid nor copolymatroid in general, and
thus the corresponding generation problems may be NP-hard.
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Abstract. For given integers j ≥ k ≥ 1, an L(j, k)-labelling of a graph Γ is an assignment
of labels—nonnegative integers—to the vertices of Γ such that adjacent vertices receive labels that
differ by at least j, and vertices distance two apart receive labels that differ by at least k. The span of
such a labelling is the difference between the largest and the smallest labels used, and the minimum
span over all L(j, k)-labellings of Γ is denoted by λj,k(Γ). The minimum number of labels needed
in an L(j, k)-labelling of Γ is independent of j and k, and is denoted by μ(Γ). In this paper we
introduce a general approach to L(j, k)-labelling Cayley graphs Γ over Abelian groups and deriving
upper bounds for λj,k(Γ) and μ(Γ). Using this approach we obtain upper bounds on λj,k(Γ) and
μ(Γ) for graphs Γ admitting a vertex-transitive Abelian group of automorphisms. Hypercubes Qd

are examples of such graphs, and as consequences we obtain upper bounds for λj,k(Qd) and μ(Qd).
We also obtain the exact values of λj,k(Γ) (2k ≥ j ≥ k) and μ(Γ) for some Hamming graphs Γ. The
result shows that, under certain arithmetic conditions, these two invariants rely only on k and the
orders of the two largest complete graph factors of the Hamming graph.

Key words. channel assignment, L(j, k)-labelling, λj,k-number, λ-number, radio chromatic
number, Cayley graph, hypercube, Hamming graph
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1. Introduction. In the channel assignment problem [13] one wishes to assign
channels to the transmitters in a radio communication system such that interference is
avoided as much as possible. For this purpose various constraints have been proposed
[13, 22] to put on the channel separations between pairs of transmitters within certain
distance. It is suggested [11] that “close” transmitters be assigned channels at least
k apart, and “very close” transmitters be assigned channels at least j apart, where
j and k are given integers with j ≥ k ≥ 1. Since bandwidth is a limited resource, a
major concern is to minimize the span of channels used. Taking channels as nonneg-
ative integers, this problem can be formulated as a labelling problem [7, 11] for the
corresponding interference graph. More explicitly, for a graph Γ = (V (Γ), E(Γ)) with
vertex set V (Γ) and edge set E(Γ), a mapping f from V (Γ) to Z

+ = {0, 1, 2, . . .} is
called [7, 11] an L(j, k)-labelling of Γ if, for any u, v ∈ V (Γ),

dΓ(u, v) = 1 ⇒ |f(u) − f(v)| ≥ j

and

dΓ(u, v) = 2 ⇒ |f(u) − f(v)| ≥ k,

where dΓ(u, v) is the distance in Γ between u and v. The integer f(u) is called
the label of u under f , and sp(Γ; f) = maxu∈V (Γ) f(u) − minv∈V (Γ) f(v) the span of
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f . Without loss of generality we will always assume that the smallest label used by
an L(j, k)-labelling is 0. With this convention the span of f is equal to the largest
label used by f , that is, sp(Γ; f) = maxu∈V (Γ) f(u). The λj,k-number of Γ, denoted
by λj,k(Γ), is defined [7, 11] to be the minimum span of all L(j, k)-labellings of Γ.
Usually, λ2,1(Γ) is called [11] the λ-number of Γ and is denoted by λ(Γ).

A relevant invariant is the minimum number μj,k(Γ) of labels needed in an L(j, k)-
labelling of Γ. This invariant is actually independent of choice of j and k [26], that
is, for any j ≥ k ≥ 1,

μj,k(Γ) = μ1,1(Γ).(1)

In fact, since j ≥ k ≥ 1, any L(j, k)-labelling of Γ is an L(1, 1)-labelling of Γ, and
hence μ1,1(Γ) ≤ μj,k(Γ). On the other hand, for any L(1, 1)-labelling of Γ using
μ1,1(Γ) labels, by multiplying the label of each vertex by j we obtain an L(j, k)-
labelling of Γ which uses μ1,1(Γ) labels. Therefore, we have μj,k(Γ) ≤ μ1,1(Γ) and
(1) follows. In the following we will denote μ1,1(Γ) by μ(Γ). Thus, in view of (1),
μj,k(Γ) is equal to μ(Γ) for any j ≥ k ≥ 1. An L(j, k)-labelling of Γ is said to be
optimal for λj,k if its span is λj,k(Γ), and optimal for μ if it uses μ(Γ) distinct labels.
In particular, an L(2, 1)-labelling of Γ is optimal for λ if its span is λ(Γ). Note that
an L(j, k)-labelling of Γ which is optimal for λj,k is not necessarily optimal for μ and
vice versa.

The L(j, k)-labelling problem, in particular in the L(2, 1) case, has been studied
extensively in the past more than one decade; see [2, 3, 4, 6, 7, 8, 9, 10, 11, 19, 22,
24, 29, 30] for examples. The L(2, 1)-labelling problem was proposed [11] initially by
Roberts in a personal communication to Griggs. Interestingly, according to [15], es-
sentially the same concept was also introduced by Harary in a private communication
[14]. In fact, if we view labels as colors, then an L(2, 1)-labelling is a radio coloring in
the sense of [14, 15] and vice versa. In [14, 15], the minimum n for which there exists
a radio coloring of Γ using colors from {1, 2, . . . , n} (not every color in {1, 2, . . . , n}
needs to be used) is called the radio coloring number of Γ. Clearly, this number is
exactly λ(Γ) + 1 for any graph Γ. In [14, 27] the minimum number of colors used in
a radio coloring of Γ is called the radio chromatic number of Γ. From this definition
it follows immediately that the radio chromatic number of Γ is exactly μ2,1(Γ), and
hence is equal to μ(Γ) by (1). Taking nonnegative integers as colors, a proper vertex
coloring of the square Γ2 of Γ is an L(1, 1)-labelling of Γ and vice versa, where Γ2

is defined to have vertex set V (Γ) and edges joining distinct vertices of distance at
most 2 in Γ. Thus, we have μ(Γ) = χ(Γ2), where χ is the chromatic number. Also,
we notice that the invariant χ2̄(Γ) introduced in [28] is the same as μ(Γ).

In [11] Griggs and Yeh conjectured that λ(Γ) ≤ Δ2 for any graph Γ with maximum
degree Δ = Δ(Γ) ≥ 2. In the same paper they proved that λ(Γ) ≤ Δ2 + 2Δ for any
graph Γ. This conjecture stimulated substantially the study of λ-number, and it
was confirmed for quite a few classes of graphs, e.g., the class of graphs of diameter
2 considered in [11] and the class of chordal graphs [24]. For certain subclasses of
chordal graphs the upper bound Δ2 can be improved, as shown in [3]. For general
graphs Γ, as far as we know, currently the best known bound is λ(Γ) ≤ Δ2+Δ−1 [20],
which is an improvement of the bound λ(Γ) ≤ Δ2 + Δ given in [3]. In the complexity
aspect, Griggs and Yeh [11] proved that the L(2, 1)-labelling problem is NP-complete
for general graphs, and in contrast Chang and Kuo [3] gave a polynomial algorithm
for trees.

The motivation of the present paper comes from the research [9, 29] on the λ-
numbers of hypercubes and Hamming graphs. The Cartesian product Γ1�Γ2� · · ·�Γd
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of d ≥ 2 given graphs Γ1,Γ2, . . . ,Γd is the graph with vertex set V (Γ1)×V (Γ2)×· · ·×
V (Γd) such that (α1, α2, . . . , αd), (β1, β2, . . . , βd) ∈ V (Γ1) × V (Γ2) × · · · × V (Γd) are
adjacent if and only if αi �= βi for exactly one subscript i, and for such an i, αi, βi are
adjacent in Γi. Let Kn denote the complete graph of order n. The Cartesian product

Hn1,n2,...,nd
:= Kn1�Kn2� · · ·�Knd

of complete graphs is called a Hamming graph, where ni ≥ 2 for each i = 1, 2, . . . , d.
As a convention, when we write Hn1,n2,...,nd

we assume without loss of generality that

n1 ≥ n2 ≥ · · · ≥ nd ≥ 2.

In the case where n1 = n2 = · · · = nd = n, we use H(d, n) in place of Hn1,n2,...,nd
.

Thus,

H(d, n) := Kn�Kn� · · ·�Kn (d factors).

In particular,

Qd := H(d, 2)

is called the d-cube (hypercube). By using coding theory, Whittlesey, Georges, and
Mauro [29, Theorem 3.7] proved that, if 2n−1 ≤ d ≤ 2n − q for some q between 1 and
n + 1, then

λ(Qd) ≤ 2n + 2n−q+1 − 2.(2)

Recently, Georges, Mauro, and Stein [9] determined the λ-number of the Hamming
graph H(d, pr) under the assumption that p is a prime, and either d ≤ p and r ≥ 2,
or d < p and r = 1. They proved [9, Theorem 3.1] that, under these conditions,

λ(H(d, pr)) = p2r − 1.(3)

In the same paper [9] they also determined the λj,k-number of Hn1,n2
, and this work

was extended to H(3, n) in [8].

2. Main results. Stimulated by [9, 29], our initial attempt was to improve the
bound (2) and determine the λ-number of general Hamming graphs Hn1,n2,...,nd

. This
led us to a general approach to L(j, k)-labelling Cayley graphs on Abelian groups,
which can be used to produce upper bounds for the λj,k-number and the μ-number
of such graphs. In this section we will outline this approach and present the main
results of the paper; see Theorems 2.2, 2.5, and 2.9 and their corollaries below. We
will leave a detailed discussion on the approach to section 3. The approach seems
to be powerful enough to derive the exact value of, or good upper bounds for, the
λj,k-number and the μ-number of some Cayley graphs. In this paper we will apply it
to Hamming graphs and a family of graphs containing all hypercubes. As we will see,
(2) and (3) are special cases of our much more general results for such graphs.

Let G be a group and X a subset of G. If 1 �∈ X and x ∈ X implies x−1 ∈ X,
where 1 is the identity element of G, then we call X a Cayley set of G. For such an
X, the Cayley graph of G with respect to X, denoted by Γ(G,X), is the graph with
vertices the elements of G in which x, y ∈ G are adjacent if and only if xy−1 ∈ X.
Since X is inverse-closed, Γ(G,X) is well defined as an undirected simple graph. To
exclude the less interesting case where Γ(G,X) = K|G| is a complete graph, we will
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assume without mentioning explicitly that X �= G − {1}. As usual, for a normal
subgroup H of G, we use G/H to denote the quotient group of G by H, and |G : H|
the order of G/H. For any subsets X,Y of G, denote XY := {xy : x ∈ X, y ∈ Y }
and set X2 := XX. As usual we use 〈X〉 to denote the subgroup of G generated by
X. Call X a generating set of G if 〈X〉 = G.

The key concept for our approach is the following definition of avoidability. Note
that, for any Cayley set X of a group G, we have 1 = xx−1 ∈ X2 by the assumption
that X is closed under taking inverse.

Definition 2.1. Let G be a finite Abelian group and X a Cayley set of G. A
subgroup H of G is said to avoid X if H ∩X = ∅ and H ∩X2 = {1}.

Regarding this concept a few observations will be given in Remark 3.1. The
following theorem shows that, once a subgroup H avoiding X is known, we can obtain
upper bounds for the λj,k-number and the μ-number of Γ(G,X).

Theorem 2.2. Let j ≥ k ≥ 1 be integers. Let G be a finite Abelian group and X
a Cayley set of G. Then, for any subgroup H of G which avoids X, we have

λj,k(Γ(G,X)) ≤ |G : H|max{k, �j/2�} + |G : 〈G−HX〉|min{j − k, j/2�} − j(4)

μ(Γ(G,X)) ≤ |G : H|.(5)

A very important case occurs when 2k ≥ j. In this case we have max{k, �j/2�} =
k, min{j − k, j/2�} = j − k, and hence (4) becomes

λj,k(Γ(G,X)) ≤ |G : H|k + |G : 〈G−HX〉|(j − k) − j.(6)

In particular, for L(2, 1)-labellings we have 2k = j = 2 and hence Theorem 2.2 has
the following consequence.

Corollary 2.3. Let G be a finite Abelian group and X a Cayley set of G. Then,
for any subgroup H of G which avoids X, we have

λ(Γ(G,X)) ≤ |G : H| + |G : 〈G−HX〉| − 2(7)

and

μ(Γ(G,X)) ≤ |G : H|.

An L(j, k)-labelling is called no-hole if the labels used by it consist of a set of
consecutive integers. In the case where G − HX is a generating set of G, we have
|G : 〈G − HX〉| = 1, and Theorem 2.2 together with its proof implies the following
result, which will be the main tool in our treatment of Hamming graphs.

Corollary 2.4. Let j ≥ k ≥ 1 be integers. Let G be a finite Abelian group and
X a Cayley set of G. Then, for any subgroup H of G which avoids X and is such
that G−HX generates G, we have

λj,k(Γ(G,X)) ≤ (|G : H| − 1) max{k, �j/2�}.(8)

In particular,

λ(Γ(G,X)) ≤ |G : H| − 1(9)

and Γ(G,X) admits a no-hole L(2, 1)-labelling using |G : H| labels.
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The class of Cayley graphs on Abelian groups is very large, and our results above
apply to all such graphs universally. Because of this nature, it is unrealistic to expect
that the bounds (4)–(9) are tight universally for all graphs in the class. However, as
we will see later, for some Cayley graphs on Abelian groups they do produce sharp
or near-sharp bounds for λj,k and/or μ.

Let Aut(Γ) denote the automorphism group of a graph Γ. A subgroup G of
Aut(Γ) is said to be vertex-transitive if, for any α, β ∈ V (Γ), there exists g ∈ G
such that g permutes α to β; such a group G is regular if there exists exactly one
element g permuting α to β. The graph Γ is said to be vertex-transitive if Aut(Γ) is
vertex-transitive. Using our general approach we obtain the following theorem for the
family of connected graphs with automorphism group containing a vertex-transitive
Abelian subgroup. Hypercubes are examples of such graphs (see the discussion after
Corollary 2.6); for existence and construction of other graphs in this family, the reader
is referred to [16, 17, 18]. For any integer d ≥ 1, denote

n := 1 + log2 d�

and

t := min{2n − d− 1, n}.

Note that both n and t are functions of d. From the definition of n it follows that
2n−1 ≤ d < 2n, that is, n is the smallest integer such that d < 2n. This choice of n
makes the following upper bounds (10)–(16) as small as possible.

Theorem 2.5. Let Γ be a connected graph whose automorphism group contains
a vertex-transitive Abelian subgroup. Let d be the degree of vertices of Γ, and n, t be
as above. Then, for any integers j ≥ k ≥ 1, we have

λj,k(Γ) ≤ 2n max{k, �j/2�} + 2n−t min{j − k, j/2�} − j,(10)

μ(Γ) ≤ 2n.(11)

As in (6), when 2k ≥ j, (10) becomes

λj,k(Γ) ≤ 2nk + 2n−t(j − k) − j.

In particular, for L(2, 1)-labellings, Theorem 2.5 implies the following corollary.
Corollary 2.6. Let Γ and d be the same as in Theorem 2.5. Then

λ(Γ) ≤ 2n + 2n−t − 2(12)

and

μ(Γ) ≤ 2n.

Note that Qd is a Cayley graph on the elementary Abelian 2-group Z
d
2 of order

2d, namely Qd
∼= Γ(Zd

2, X), where X is the set of elements of Z
d
2 with exactly one

nonzero coordinate. Thus, from [1, Lemma 16.3] it follows that Qd admits Z
d
2 as

a vertex-transitive (regular, in fact) group of automorphisms. Since Z
d
2 is Abelian,

Theorem 2.5 and Corollary 2.6 imply the following two corollaries for Qd.
Corollary 2.7. Let d, j and k be integers with d ≥ 1 and j ≥ k ≥ 1. Then

λj,k(Qd) ≤ 2n max{k, �j/2�} + 2n−t min{j − k, j/2�} − j(13)
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μ(Qd) ≤ 2n.(14)

Moreover, the proof of Theorem 2.5 gives rise to a systematic way of generating
L(j, k)-labellings of Qd which use 2n labels and have span the right-hand side of (13);
see the last paragraph of section 4. Again, when 2k ≥ j, (13) becomes

λj,k(Qd) ≤ 2nk + 2n−t(j − k) − j.

In particular, for the λ-number of hypercubes, we have the following corollary.
Corollary 2.8. For any integer d ≥ 1, we have

λ(Qd) ≤ 2n + 2n−t − 2 ([29, Theorem 3.7])(15)

μ(Qd) ≤ 2n ([28]).(16)

The bounds (15) and (16) are equivalent to (2) and one of the main results of [28,
line 12, pp. 185], respectively. To see this we distinguish the following two cases:

(i) 2n−1 ≤ d ≤ 2n − n− 1;
(ii) 2n − n− 1 ≤ d ≤ 2n − q, for some q between 1 and n.

In case (i), t = n and we may choose q = n + 1 in (2); hence t = q − 1 and (15)
and (2) are identical. Also, in this case the upper bounds in (10) and (13) are (2n −
1) max{k, �j/2�}, and that in (12) and (15) are 2n − 1. In case (ii), we have q − 1 ≤
2n − d − 1 ≤ n; hence t = 2n − d − 1 and (15) and (2) are the same if we choose
q = 2n − d.

The bound (14) is tight when d = 2n − 1. In fact, for any d ≥ 1, since the d
neighbors of the 0-labelled vertex of Qd are distance two apart, they must be assigned
distinct labels no less than j under any L(j, k)-labelling. Thus, μ(Qd) ≥ d+1. In the
case where d = 2n − 1, we have μ(Qd) ≤ d+ 1 by (14) and hence μ(Qd) = d+ 1, that
is, (14) is sharp. Note that (15) implies λ(Qd) ≤ 2d, as noticed in [29, Theorem 3.8].

For Hamming graphs we obtain the following results by using Theorem 2.2.
Theorem 2.9. Let n1, n2, d be integers such that n1 > d ≥ 2, n2 divides n1, and

each prime factor of n1 is no less than d. Then, for any integers j ≥ k ≥ 1, and for
any positive integers n3, . . . , nd which are less than or equal to n2, we have

λj,k(Hn1,n2,...,nd
) ≤ (n1n2 − 1) max{k, �j/2�}(17)

μ(Hn1,n2,...,nd
) = n1n2(18)

and we can give explicitly an L(j, k)-labelling of Hn1,n2,...,nd
which has span (n1n2 −

1) max{k, �j/2�} and is optimal for μ. Furthermore, if in addition 2k ≥ j, then

λj,k(Hn1,n2,...,nd
) = (n1n2 − 1)k(19)

and this L(j, k)-labelling is optimal for λj,k and μ simultaneously.
Note that, in the case where 2k ≥ j, Theorem 2.9 gives the exact values of

both λj,k and μ for Hn1,n2,...,nd
above. It shows that the trivial lower bounds

λj,k(Hn1,n2,...,nd
) ≥ (n1n2 − 1)k and μ(Hn1,n2,...,nd

) ≥ n1n2 (see Lemma 5.1) are
both obtained. Another interesting feature is that both λj,k and μ are irrelevant to
j in this case: they rely on k, n1, and n2 only. In particular, for the L(2, 1) case we
have the following corollary.
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Corollary 2.10. Let n1, n2, n3, . . . , nd and d ≥ 2 be as in Theorem 2.9. Then

λ(Hn1,n2,...,nd
) = n1n2 − 1(20)

μ(Hn1,n2,...,nd
) = n1n2.(21)

Moreover, we can give explicitly a no-hole L(2, 1)-labelling of Hn1,n2,...,nd
which is

optimal for λ and μ simultaneously.
For special Hamming graphs H(d, n) (which is the graph Kd

n in [9]), Theorem 2.9
implies the following result.

Corollary 2.11. Let n = pr11 pr22 · · · prtt , where pi is a prime and ri ≥ 1, for

each i = 1, 2, . . . , t. Let d be an integer such that 2 ≤ d ≤ pi for each i and
∑t

i=1(pi−
d + ri) ≥ 2. Then, for any integers j ≥ k ≥ 1, we have

λj,k(H(d, n)) ≤ (n2 − 1) max{k, �j/2�}

and

μ(H(d, n)) = n2.

Moreover, if in addition 2k ≥ j, then

λj,k(H(d, n)) = (n2 − 1)k.(22)

The condition
∑t

i=1(pi − d+ ri) ≥ 2 ensures that n > d, as required by Theorem
2.9. It is equivalent to either t ≥ 2, or t = 1 and p1 − d + r1 ≥ 2. In the latter case,
n = pr is a prime power and (22) becomes λj,k(H(d, pr)) = (p2r−1)k. For the L(2, 1)
case, this gives λ(H(d, pr)) = p2r − 1, which is exactly (3). Also, we can get (3) from
(20) directly. Thus, Corollaries 2.10–2.11 (and hence Theorem 2.9) generalize (3) to
a wide extent.

Theorems 2.2, 2.5, and 2.9 will be proved in sections 3, 4, and 5, respectively.
Remarks on the results above will be given in these sections as well. Concluding
remarks and open questions arising from Theorem 2.9 will be offered in the last
section.

3. Proof of Theorem 2.2. The terminology and notation for groups used in
the paper are standard; see, for example, [25]. We will reserve the upper case English
letters G,H for groups and the upper case Greek letters Γ,Σ for graphs. We will
use certain lower case English letters such as g, h, u, v, w, x, y, z to denote elements
of groups, but we reserve d, i, j, k, �,m, n, r, s, t for integers. For two sets X and Y ,
X − Y denotes the set {x ∈ X : x �∈ Y }. For any graph Γ and a partition P of V (Γ),
the quotient graph ΓP of Γ with respect to P is defined to have vertex set P in which
two parts of P are adjacent if and only if there exists at least one edge of Γ joining a
vertex in the first part to a vertex in the second part. In the case where each part of
P is an independent set of Γ with � vertices, for some integer � ≥ 1, and the subgraph
induced by two adjacent parts is a perfect matching of � edges, the graph Γ is called
an �-fold cover of the quotient ΓP .

Let G be a finite group. For an element x of G, we will use o(x) to denote the
order of x in G, that is, the smallest positive integer n such that xn = 1. The element
x is called an involution if o(x) = 2. For a Cayley set X of G, from the definition
of Γ(G,X) it follows that x, y ∈ G are connected by a path of Γ(G,X) if and only
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if xy−1 ∈ 〈X〉; in particular Γ(G,X) is a connected graph if and only if 〈X〉 = G.
Moreover, Γ(G,X) is vertex-transitive and G is isomorphic to a regular subgroup
of the automorphism group of Γ(G,X) (see, e.g., [1, Theorem 16.4]). In particular,
all vertices of Γ(G,X) have the same degree, which is equal to |X|. For a normal
subgroup H of G, the quotient group G/H gives rise to a natural partition of G with
parts the cosets Hg of H in G. We will use the same notation G/H for this partition.
Denote X/H := {Hx : x ∈ X}. Then

X/H = {Hz ∈ G/H : Hz ∩X �= ∅}.

It should be noticed that X/H is not necessarily a subgroup of the quotient group
G/H, and that Hx ∈ X/H does not imply x ∈ X.

The idea behind our approach is rather natural: for a Cayley graph Γ(G,X) on
an Abelian group G, if we can find a subgroup H of G which “avoids” the Cayley
set X, then we can label the elements in the same coset of H in G by the same
label. In this way we get an L(j, k)-labelling of Γ(G,X) and thus upper bounds for
λj,k(Γ(G,X)) and μ(Γ(G,X)). A very special case of this method for L(2, 1)-labelling
Hamming graphs H(d, pr) was used implicitly in the proof of [9, Theorem 3.1]. The
approach proposed in the present paper is much more general and powerful. Before
proceeding to the proof of Theorem 2.2, let us record the following observations about
the concept of avoidability.

Remark 3.1. (a) The trivial subgroup {1} avoids every Cayley set of G.
(b) The condition H ∩X2 = {1} implies that either H ∩X = ∅ or H ∩X = {x}

for an involution x of G. In fact, if H ∩X �= ∅, then xy = 1 for any x, y ∈ H ∩X (not
necessarily distinct) since xy ∈ H ∩X2 = {1}. That is, any two elements of H ∩X
are inverse of each other. From this it follows that H ∩X = {x} for an involution x
of G.

(c) Thus, if G contains no involutions, then H avoids X if and only if H ∩X2 =
{1}. This is the case in particular when, say, the order of G is odd.

To prove Theorem 2.2 we need some combinatorial properties of the Cayley graph
Γ(G,X) and its quotient graph (Γ(G,X))G/H with respect to the partition G/H,
where H ≤ G avoids X. Define

GH,X := {Hz ∈ G/H : Hz ∩X = ∅}.(23)

Since H avoids X, we have H ∩ X = ∅, and hence H ∈ GH,X and H ⊆ G − HX.
(In fact, if H �⊆ G − HX, then h1 = h2x for some h1, h2 ∈ H, x ∈ X, and hence
h−1

2 h1 = x ∈ H ∩ X = ∅, a contradiction.) Thus, GH,X �= ∅ and H ≤ 〈G − HX〉.
Also, Hz ∈ GH,X if and only if x �∈ Hz for all x ∈ X, which is true if and only if
Hz �= Hx for all x ∈ X. Therefore, we have

GH,X = G/H −X/H = (G−HX)/H(24)

and hence

〈GH,X〉 = 〈G−HX〉/H.(25)

Lemma 3.2. Let G be a finite Abelian group and X a Cayley set of G. Let H be
a subgroup of G which avoids X. Then the following (a)–(d) hold.

(a) The mapping ψ defined by x �→ Hx, for x ∈ X, is a bijection from X to
X/H.
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(b) Any two vertices in the same coset of H in G are at least distance three apart
in Γ(G,X); in particular each coset of H is an independent set of Γ(G,X).

(c) Both X/H and GH,X − {H} are Cayley sets of G/H; moreover, the corre-
sponding Cayley graphs Γ(G/H,X/H), Γ(G/H,GH,X−{H}) are complemen-
tary graphs with degrees |X|, |G : H| − |X| − 1, respectively.

(d) Γ(G/H,X/H) ∼= (Γ(G,X))G/H , and Γ(G,X) is an |H|-fold cover of
Γ(G/H,X/H).

Proof. (a) Clearly, ψ is surjective. If Hx = Hy for distinct x, y ∈ X, then
1 �= xy−1 ∈ H ∩X2, which contradicts the avoidability of H from X. Thus, ψ is also
injective and hence is a bijection from X to X/H.

(b) For distinct x, y ∈ G in the same coset of H, we have xy−1 ∈ H −{1}. Thus,
since H avoids X, we have xy−1 �∈ X ∪X2. By the definition of Γ(G,X), it is easy
to see that the distance d(x, y) in Γ(G,X) between x and y is equal to the minimum
number of elements of X whose product is xy−1. Therefore, xy−1 �∈ X ∪X2 implies
d(x, y) ≥ 3, as required.

(c) Since X is a Cayley set of G, it is closed under taking inverse. This together
with the fact that (Hx)−1 = Hx−1 implies that X/H is closed under taking inverse
as well. Also, since H ∩X = ∅, the identity H of G/H is not in X/H. Thus, X/H is
a Cayley set of G/H. Since GH,X − {H} = G/H −X/H − {H} by (24), this implies
that GH,X − {H} is a Cayley set of G/H as well. Note that X/H and GH,X − {H}
constitute a partition of G/H. Therefore, they give rise to complementary Cayley
graphs of G/H. From (a) we have |X/H| = |X|, and hence Γ(G/H,X/H) has degree
|X|. Consequently, Γ(G/H,GH,X − {H}) has degree |G : H| − |X| − 1.

(d) We have Hx,Hy ∈ G/H are adjacent in Γ(G/H,X/H) ⇔ Hx(Hy)−1 ∈ X/H
⇔ H(xy−1) = Hz for some z ∈ X ⇔ xy−1 = hz for some z ∈ X and h ∈ H ⇔
x(hy)−1 = z for some z ∈ X and h ∈ H ⇔ x ∈ Hx and hy ∈ Hy are adjacent
in Γ(G,X) for some h ∈ H ⇔ gx ∈ Hx and ghy ∈ Hy are adjacent in Γ(G,X)
for some h ∈ H and any g ∈ H ⇔ Hx,Hy are adjacent in the quotient graph
(Γ(G,X))G/H . (Here we used the assumption that G is Abelian.) Hence we have
Γ(G/H,X/H) ∼= (Γ(G,X))G/H . Moreover, from the arguments above we see that,
for adjacent cosets Hx and Hy, each element of Hx is adjacent to at least one element
of Hy in Γ(G,X). However, Γ(G,X) and Γ(G/H,X/H) have the same degree |X|.
So the subgraph of Γ(G,X) induced by Hx ∪Hy is forced to be a perfect matching
between Hx and Hy. Therefore, Γ(G,X) is an |H|-fold cover of Γ(G/H,X/H).

In the case where in addition 〈X〉 = G, one can check that Γ(G/H,X/H) is the
underlying undirected graph of the Schreier coset graph for (G,H,X), and in this
case this Schreier coset graph has no loop or multiple arc. (For any group G with
generating set X, and any subgraph H of G, the Schreier coset graph [12] for (G,H,X)
is the directed graph with vertex set G/H = {Hz : z ∈ G} and arcs (Hz,Hzx) for
all Hz and x ∈ X, where loops and multiple arcs are allowed.)

A cycle (path, respectively) in a graph visiting all vertices is called a Hamilto-
nian cycle (Hamiltonian path, respectively). A graph is Hamiltonian if it contains a
Hamiltonian cycle. The following result is well known; see, e.g., [21, Corollary 3.2].

Lemma 3.3. Every connected Cayley graph on a finite Abelian group of order at
least three is Hamiltonian.

An immediate consequence of this result is that every connected Cayley graph
on any finite Abelian group contains a Hamiltonian path. This will be used in the
following proof of Theorem 2.2.

Proof of Theorem 2.2. Let G be a finite Abelian group and X a Cayley set of
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G. Let H be a subgroup of G which avoids X. For notational simplicity, we denote
G = 〈GH,X〉 and x̂ = Hx for x ∈ G. Denote r = |G : H| and s = |G : 〈G − HX〉|.
Then s = |(G/H) : G| = r/|G| by (25).

Let us first treat the degenerate case where GH,X = {H}. In this case we have
s = r and X/H = G/H − {H}, and hence Γ(G/H,X/H) is a complete graph. Order
linearly the cosets in G/H in an arbitrary way. Then assign label (i − 1)j to every
element of the ith member of G/H, for i = 1, 2, . . . , r. Using Lemma 3.2(b) and noting
j ≥ k, one can check that this labelling is an L(j, k)-labelling of Γ(G,X). Clearly,
it uses r labels and has span (r − 1)j. Thus, we have λj,k(Γ(G,X)) ≤ (r − 1)j and
μ(Γ(G,X)) ≤ r. But, since s = r and max{k, �j/2�} + min{j − k, j/2�} = j, the
right-hand side of (4) is exactly (r − 1)j. Therefore, we have proved (4) and (5) in
the case where GH,X = {H}.

In the following we deal with the general case where GH,X − {H} �= ∅. Let

Gx̂1,Gx̂2, . . . ,Gx̂s

be representatives of distinct cosets of G in G/H, where we set Gx̂1 = G. Then of
course they consist of a partition of G/H. Recall from Lemma 3.2(c) that GH,X−{H}
is a Cayley set of G/H. By the definition of the Cayley graph Γ(G/H,GH,X − {H}),
two cosets x̂, ŷ of H are connected by a path of Γ(G/H,GH,X − {H}) if and only if

x̂(ŷ)−1 = x̂y−1 ∈ 〈GH,X −{H}〉 = G, which in turn is true if and only if x̂, ŷ are in the
same coset Gx̂i of G in G/H, for some i. Thus, for each i = 1, 2, . . . , s, Gx̂i induces
a connected component of Γ(G/H,GH,X − {H}). In what follows we will denote this

component by Γ̂i. These components Γ̂i, i = 1, 2, . . . , s, are isomorphic to each other
since as a Cayley graph Γ(G/H,GH,X − {H}) is vertex-transitive. Since GH,X − {H}
generates G and is a Cayley set of G/H (Lemma 3.2(c)), it is also a Cayley set of G.
Hence GH,X − {H} gives rise to a connected Cayley graph Γ(G,GH,X − {H}), which

is exactly the connected component Γ̂1 of Γ(G/H,GH,X − {H}) induced by G. By

Lemma 3.3, Γ̂1 contains a Hamiltonian path, and hence so does each Γ̂i as Γ̂i
∼= Γ̂1.

Let

x̂i,1, x̂i,2, . . . , x̂i,t

be a Hamiltonian path of Γ̂i, where t = |G| = r/s. Then any two consecutive members
in this sequence are adjacent in Γ(G/H,GH,X − {H}), and hence are not adjacent in
Γ(G/H,X/H) by Lemma 3.2(c). Hence, for each i = 1, 2, . . . , s, by Lemma 3.2(d)
there is no edge of Γ(G,X) joining any element of x̂i,� and any element of x̂i,�+1, for
� = 1, 2, . . . , t − 1. By Lemma 3.2(b) the elements of x̂i,� are distance at least three
apart in Γ(G,X), for each i and � = 1, 2, . . . , t.

Now we define f to be the labelling such that all the elements of x̂i,� are labelled
by

(i− 1) ((t− 1) max{k, �j/2�} + j) + (�− 1) max{k, �j/2�}

for i = 1, 2, . . . , s and � = 1, 2, . . . , t. Then, for any x̂i,� and x̂i′,�′ with i �= i′, the
labels of the elements of x̂i,� and x̂i′,�′ differ by at least j. For x̂i,� and x̂i,�′ with the
same first subscript, if an element of x̂i,� is adjacent to an element of x̂i,�′ in Γ(G,X),
then |�− �′| ≥ 2 by the discussion in the previous paragraph, and hence the labels of
these two elements differ by at least 2 max{k, �j/2�}, which is obviously no less than
j. Also, if an element of x̂i,� is distance two apart from an element of x̂i,�′ in Γ(G,X),
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then � �= �′ by Lemma 3.2(b) and hence the labels of these two elements differ by at
least max{k, �j/2�}, which is no less than k. Therefore, f is an L(j, k)-labelling of
Γ(G,X). Noting that r = st, this labelling uses r distinct labels and has span

sp(Γ(G,X); f) = (s− 1)((t− 1) max{k, �j/2�} + j) + (t− 1) max{k, �j/2�}

= rmax{k, �j/2�} + s(j − max{k, �j/2�}) − j

= rmax{k, �j/2�} + smin{j − k, j/2�} − j.

Therefore, the upper bounds (4) and (5) follow and the proof is complete.
Proof of Corollary 2.4. We use the notation in the proof of Theorem 2.2. Since H

avoids X and G−HX is a generating set of G, we have G = 〈GH,X〉 = G/H by (25).
Hence s = 1, t = r = |G : H|, and Γ(G/H,GH,X−{H}) is connected. Thus, by Lemma
3.3, Γ(G/H,GH,X−{H}) contains a Hamiltonian path Hx1,1, Hx1,2, . . . , Hx1,r. From
the proof of Theorem 2.2, the labelling f which assigns (�−1) max{k, �j/2�} to the el-
ements of Hx1,� (� = 1, 2, . . . , r) is an L(j, k)-labelling of Γ(G,X). Since this labelling
has span (r − 1) max{k, �j/2�}, we obtain (8) immediately.

For the L(2, 1) case, we have 2k = j = 2 and hence (9) follows from (8). Also,
in this case the labelling f above uses labels 0, 1, 2, . . . , r − 1, and hence is a no-hole
L(2, 1)-labelling. This completes the proof.

We conclude this section by giving the following remarks.
Remark 3.4. (a) The proof of Theorem 2.2 gives an explicit L(j, k)-labelling of

Γ(G,X) provided that a Hamiltonian cycle of Γ(G,GH,X − {H}) is known, where
G = 〈GH,X〉 as above.

(b) A Cayley set X may be avoided by several subgroups H of G. To get a
better upper bound for λj,k(Γ(G,X)), we will be interested in those H such that the
right-hand side of (4) is as small as possible.

In the case where G−HX is a generating set of G, we have by (8)

λj,k(Γ(G,X)) ≤ (|G : H| − 1) max{k, �j/2�} ≤ (|G| − 1) max{k, �j/2�}.

Note that the second equality occurs precisely when H = {1}. On the other hand, if
H = {1}, then G−HX is a generating set of G ⇔ G−X is a generating set of G ⇔
the complement graph of Γ(G,X) is connected ⇔ the complement graph of Γ(G,X)
has a Hamiltonian path ⇔ the elements of G can be ordered as x1, x2, . . . , x|G| such
that any two consecutive elements in this sequence are nonadjacent in Γ(G,X). In
this simplest case, (9) gives the bound λ(Γ(G,X)) ≤ |G| − 1, which is the same as
the one obtained by using [10, Theorem 1.1(a)]. The reader can easily find examples
which show that even in this somewhat “worst” case the bound |G| − 1 can be the
actual value of the λ-number of Γ(G,X).

(c) The bound (7) can be improved as

λ(Γ(G,X)) ≤ |G : 〈G−HX〉|(λ0 + 2) − 2,(26)

where λ0 = λ(Γ(G,G − GH,X)). In fact, in the proof of Theorem 2.2 for the L(2, 1)

case, we assigned t (= |G| = |〈G−HX〉 : H|) distinct labels to the vertices of Γ̂i. But
λ0 + 1 labels will be enough, and so replacing t by λ0 + 1 in the proof of Theorem
2.2 will give the proof of (26). Note that λ0 + 1 ≤ t since the complementary graph
Γ(G,GH,X − {H}) of Γ(G,G − GH,X) contains a Hamiltonian path. Hence (26) does
imply (7), and it is better than (7) in the case where λ0 + 1 is strictly less than
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t. The inequality (26) establishes a connection between the λ-numbers of Γ(G,X)
and Γ(G,G − GH,X), the latter being an induced subgraph of the quotient graph
Γ(G/H,X/H) of Γ(G,X).

(d) From (25) one can see that (4) and (7) can be rewritten as

λj,k(Γ(G,X)) ≤ |G : H|
(

max{k, �j/2�} +
min{j − k, j/2�}

|〈GH,X〉|

)
− j(27)

λ(Γ(G,X)) ≤ |G : H|
(

1 +
1

|〈GH,X〉|

)
− 2,(28)

respectively. As in (6), if 2k ≥ j, then max{k, �j/2�} in (27) can be replaced by k.
(e) From (24) it follows that GH,X = {H} occurs if and only if {H,HX} is a

partition of G. (Note that H ∩X = ∅ implies H ∩HX = ∅.) In this extreme case we
have 〈GH,X〉 = {H} and hence (27) becomes

λj,k(Γ(G,X)) ≤ (|G : H| − 1)j.

4. Proof of Theorem 2.5. To prove Theorem 2.5 we need the following well
known result.

Lemma 4.1 (see [1, Proposition 16.5]). Let Γ be a graph whose automorphism
group contains a vertex-transitive Abelian subgroup G. Then G is regular on V (Γ),
and G is an elementary Abelian 2-group.

(Note that in [1] this proposition is stated for the full automorphism group Aut(Γ)
of Γ. However, it is valid for a transitive Abelian subgroup of Aut(Γ) as well, and the
proof is the same.)

In the following we will use V (d, 2) to denote the d-dimensional linear space of row
vectors over the field GF(2) = {0, 1} of characteristic 2, and V +(d, 2) to denote the
additive group of V (d, 2). For this group the operation is addition of row vectors, and
hence we will use H+x in place of Hx. Denote by 0d the zero vector of V (d, 2). Then
it is the identity element of V +(d, 2). It is well known that V +(d, 2) is isomorphic to
the elementary Abelian 2-group Z

d
2.

As we will soon see, any connected graph Γ with Aut(Γ) containing a vertex-
transitive Abelian subgroup G is isomorphic to a Cayley graph on G. To prove
Theorem 2.5 by using Theorem 2.2, we need to identify a subgroup of G such that it
avoids the relevant Cayley set and produces the upper bounds (10) and (11). This is
equivalent to identifying a subspace of V (d, 2) with certain properties, and hence is
a matrix problem essentially. The existence of such a subspace is guaranteed by the
following lemma.

Lemma 4.2. Let d, �, n be positive integers such that n ≤ � ≤ d and 2n−1 ≤
d < 2n. Let t := min{2n − d − 1, n}. Then for any d nonzero, pairwise distinct
vectors x1, . . . ,xd of V (�, 2) which generate V (�, 2), there exists an � × n matrix M
over GF(2) such that

(a) M has rank n;
(b) x1M, . . . ,xdM are nonzero and pairwise distinct; and
(c) V (n, 2) − {x1M, . . . ,xdM} contains t independent vectors.
Proof. Since t ≤ n, we can choose t independent vectors d1, . . . ,dt of V (n, 2).

Since V (n, 2) has 2n − 1 nonzero vectors and t + d ≤ 2n − 1 by the definition of t,
we can choose d distinct nonzero vectors, say c1, . . . , cd, from V (n, 2)− {d1, . . . ,dt}.
Moreover, we may require that the d×n matrix C with the ith row ci has rank n, so
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that its columns are independent. For example, if 1 ≤ t < n, then we can set di, for
1 ≤ i ≤ t, to be the vector with the jth entry 0 if j < i and 1 if j ≥ i; if t = n, then
we can set dn to be (1, 0, . . . , 0, 1) and define other di’s in the same way. (In the case
where t = 0 we leave dt undefined.) Set c1 = (1, 0, . . . , 0), . . . , cn = (0, 0, . . . , 1) to be
the standard basis of V (n, 2), and choose distinct nonzero vectors cn+1, . . . , cd from
V (n, 2) − {c1, . . . , cn,d1, . . . ,dt}. Then c1, . . . , cn, cn+1, . . . , cd,d1, . . . ,dt satisfy all
the conditions above. Moreover, the matrix C has the form

C =

(
In
J

)
,

where In is the identity matrix of order n over GF(2) and J is the (d−n)×n matrix
of rows cn+1, . . . , cd. Since � ≤ d and the columns of C are independent vectors of
dimension d, we can add � − n column vectors of dimension d to C to form a d × �
matrix Y of rank �. Thus, the columns of Y are independent, and the rows y1, . . . ,yd

of Y are extensions of c1, . . . , cd, respectively, that is,

yi = (ci |
�−n︷ ︸︸ ︷

∗, . . . , ∗)

for each i. Set

B =

(
In
0

)
,

where 0 is the (�− n) × n matrix with all entries zero. Then B is an �× n matrix of
rank n, and it satisfies Y B = C. Let A be the d × � matrix with the ith row xi, for
1 ≤ i ≤ d. Then A has rank � by our assumption. Since Y has also rank �, from linear
algebra there exists a nonsingular � × � matrix N over GF(2) such that Y = AN .
Now we set M = NB. Then the nonsingularity of N ensures that M has the same
rank as B, that is, M has rank n. Also, we have AM = A(NB) = Y B = C, which
implies xiM = ci for each i. Thus, x1M, . . . ,xdM are nonzero and pairwise distinct.
Moreover, d1, . . . ,dt are t independent vectors in V (n, 2) − {x1M, . . . ,xdM}.

Proof of Theorem 2.5. Let Γ be a connected graph such that Aut(Γ) contains a
vertex-transitive Abelian subgroup G. By Lemma 4.1, G is regular on V (Γ), and G
is an elementary Abelian 2-group. Hence |G| = 2� and G ∼= Z

�
2 for a positive integer

� (see, e.g., [25, 7.40]). In the following we will identify G with the group V +(�, 2).
Since G is regular on V (Γ), by [1, Lemma 16.3] Γ is isomorphic to a Cayley graph of
G, namely Γ ∼= Γ(G,X) for a Cayley set

X := {x1, . . . ,xd}

of G, where d := |X| is the degree of vertices of Γ and each xi ∈ V (�, 2). Moreover, X
must be a generating set of G as Γ is connected. Hence � ≤ d. Also, we have d < 2�

as X is a proper subset of G. Let n := 1 + log2 d� and t := min{2n − d− 1, n}. Then
2n−1 ≤ d < 2n and hence 2n−1 ≤ d < 2�, which implies n ≤ �. From Lemma 4.2 there
exists an �×n matrix M over GF(2) with properties (a)–(c) in that lemma. Since M
has rank n by property (a) there, its null space

U := {x ∈ V (�, 2) : xM = 0n}

is an (�− n)-dimensional subspace of V (�, 2). Let H := U+ be the additive group of
U . Then |G : H| = 2n. From the definition (23) of GH,X one can check that

GH,X = {H + z : z ∈ V (�, 2), zM �= xqM for all q = 1, . . . , d}.(29)
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By property (b) in Lemma 4.2, x1M, . . . ,xdM are nonzero and pairwise distinct. This
is equivalent to saying that H avoids X. Thus, from (5) we have μ(Γ) ≤ |G : H| = 2n

as claimed in (11). By property (c) in Lemma 4.2, V (n, 2)−{x1M, . . . ,xdM} contains
t independent vectors, say d1, . . . ,dt. Since M has rank n, there exist y1, . . . ,yt ∈
V (�, 2) such that yiM = di for each i = 1, . . . , t. Since no di is the same as any
xqM , by (29) we know that all H + yi ∈ GH,X . On the other hand, since d1, . . . ,dt

are independent, H + y1, . . . , H + yt are independent in the quotient linear space
V (�, 2)/U . Therefore,

|〈GH,X〉| ≥ |〈H + y1, . . . , H + yt〉| = 2t.

By (27) and noting |G : H| = 2n we then have

λj,k(Γ) ≤ 2n
(
max{k, �j/2�} + min{j−k,�j/2�}

|〈GH,X〉|

)
− j

≤ 2n max{k, �j/2�} + 2n−t min{j − k, j/2�} − j

as claimed in (10).
The major part of the proof above was to show that the group G contains a

subgroup H which avoids X and is such that |〈GH,X〉| ≥ 2t. This was achieved by
identifying a matrix M over GF(2) with properties (a)–(c) in Lemma 4.2. From [17,
Corollary 4.14], the graph Γ in Theorem 2.5 contains the �-cube Q� as a spanning
subgraph, where � is as in the proof above.

In the case where Γ = Qd, we have � = d, G = Z
d
2, and Qd

∼= Γ(Zd
2, X), where

X = {x1, . . . ,xd} is the standard basis of V (d, 2). Thus, in the proof of Lemma 4.2,
we have A = Id, Y = N , and M = C, and hence the ith row of M is xiM = ci, for
i = 1, 2, . . . , d. Therefore, by Lemma 4.2, in this case we can choose M to be any d×n
matrix over GF(2) with rank n such that its rows are nonzero and pairwise distinct,
and the subspace of V (n, 2) spanned by those vectors which are not equal to any row of
M has dimension at least t. For each choice of M , the additive group of the null space
of M avoids X, and following the proof of Theorem 2.2 we then get an L(j, k)-labelling
of Qd which uses 2n labels and has span 2n max{k, �j/2�}+2n−t min{j−k, j/2�}−j.

5. Proof of Theorem 2.9. First, we have the following simple lower bounds
for λj,k(Hn1,n2,...,nd

) and μ(Hn1,n2,...,nd
).

Lemma 5.1. Let n1 ≥ n2 ≥ · · · ≥ nd (≥ 2) be a sequence of d ≥ 2 integers.
Then, for any j ≥ k ≥ 1, we have

λj,k(Hn1,n2,...,nd
) ≥ (n1n2 − 1)k(30)

μ(Hn1,n2,...,nd
) ≥ n1n2.(31)

Proof. Note that Hn1,n2,...,nd
contains a subgraph isomorphic to Hn1,n2

. Since
Hn1,n2 has diameter 2, under any L(j, k)-labelling of Hn1,n2,...,nd

, the n1n2 vertices
of Hn1,n2 must be assigned labels with a mutual difference of at least k. From this
both bounds follow immediately.

Note that, if the equality in (30) occurs, then the equality in (31) occurs as well.
In the proof of Theorem 2.9 we will borrow some ideas from the proof of [9,

Theorem 3.1]. However, we do not need a counting argument as used there. We will
also use the monotonicity of λj,k and μ: for any subgraph Σ of a graph Γ, we have

λj,k(Σ) ≤ λj,k(Γ), μ(Σ) ≤ μ(Γ).
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These hold because any L(j, k)-labelling of Γ is also an L(j, k)-labelling of Σ as j ≥ k.
Proof of Theorem 2.9. It suffices to prove

λj,k(Hn1,n2,...,nd
) ≤ (n1n2 − 1) max{k, �j/2�}(32)

μ(Hn1,n2,...,nd
) ≤ n1n2(33)

for any sequence n1 ≥ n2 ≥ · · · ≥ nd (≥ 2) such that n1 > d ≥ 2, n2 divides n1, ni

divides n2 for i = 3, . . . , d, and each prime factor of ni, for i = 1, . . . , d, is no less than
d. In fact, once this is achieved, then for any sequence n1, n2, . . . , nd satisfying the
conditions of Theorem 2.9 we will have

(n1n2 − 1)k ≤ λj,k(Hn1,n2,...,nd
) ≤ λj,k(Hn1,n2,...,n2) ≤ (n1n2 − 1) max{k, �j/2�}

and hence (17) and (19) follow. (Note that max{k, �j/2�} = k whenever 2k ≥ j.)
Here the first inequality is just (30), the second one is due to the fact that Hn1,n2,...,nd

is isomorphic to a subgraph of Hn1,n2,...,n2
and that λj,k is monotonic, and the last

one is a special case (where n2 = n3 = · · · = nd) of (32). The truth of (18) can be
proved in a similar way using (31) and (33).

So from now on we suppose that the sequence n1 ≥ n2 ≥ · · · ≥ nd ≥ 2 satisfies the
conditions in the previous paragraph. Denote Γ := Hn1,n2,...,nd

. Then Γ is isomorphic
to the Cayley graph Γ(G,X), where

G := 〈g1〉 × 〈g2〉 × · · · × 〈gd〉(34)

is the direct product of cyclic groups 〈gi〉 of order ni (i = 1, 2, . . . , d) and

X := {(x1, x2, . . . , xd) : there is exactly one i such that xi �= 1}(35)

which is clearly a Cayley set of G. Note that the identity element of G is 1G =
(1, 1, . . . , 1), where the 1 in the ith position is the identity element of 〈gi〉. We will
prove the existence of a subgroup H of G such that H avoids X, |G : H| = n1n2, and
GH,X generates G/H (which is equivalent to saying that G−HX generates G in view
of (25)). Once this is achieved, we then have λj,k(Γ) ≤ (n1n2 − 1) max{k, �j/2�} by
(8) and μ(Γ) ≤ n1n2 by (5), and hence (32) and (33) follow.

Since n2 is a divisor of n1 and ni is a divisor of n2 for i = 3, . . . , d, 〈g2〉 is
isomorphic to a subgroup of 〈g1〉, and 〈gi〉 is isomorphic to a subgroup of 〈g2〉 for
i = 3, . . . , d. For simplicity of notation, we will take 〈g2〉 as a subgroup of 〈g1〉, and
take each such 〈gi〉 as a subgroup of 〈g2〉. Thus, for u = (u1, u2, . . . , ud) ∈ G, we have∏d

i=1 ui ∈ 〈g1〉,
∏d

i=2 u
i−1
i ∈ 〈g2〉, and

ψ : u �→
(

d∏
i=1

ui,

d∏
i=2

ui−1
i

)

defines a mapping from G to 〈g1〉 × 〈g2〉. It is not difficult to check that ψ is a
homomorphism from G to 〈g1〉×〈g2〉. Moreover, ψ is surjective since for any (u1, u2) ∈
〈g1〉 × 〈g2〉 we have ψ(u1u

−1
2 , u2, 1, . . . , 1) = (u1, u2). Define H := Ker(ψ) to be the

kernel of ψ, that is,

H = {u ∈ G : ψ(u) = (1, 1)}.
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Then H is a subgroup of G and, by the homomorphism theorem, G/H ∼= 〈g1〉 × 〈g2〉
via the bijection defined by Hu ↔ ψ(u) for u ∈ G. In particular, H has index
|G : H| = n1n2 in G. Moreover, we have

Claim 1. H avoids X.
Proof of Claim 1. For any x = (1, . . . , xi, . . . , 1) ∈ X and y = (1, . . . , yq, . . . , 1)

∈ X, we have xi �= 1 and yq �= 1. So ψ(x) = (xi, x
i−1
i ) �= (1, 1), and hence H ∩X = ∅.

Clearly, we have ψ(xy) = (xiyq, x
i−1
i yq−1

q ). Thus, if i = q, then ψ(xy) = (1, 1) if
and only if xy = (1, 1, . . . , 1) = 1G. If i �= q, say i < q, then ψ(xy) = (1, 1) implies
yq−i
q = 1, which happens only when d ≥ 3 and the order o(yq) of yq is a divisor of
q − i. In particular, we have o(yq) ≤ d − 1 in this case. However, since o(yq) > 1 is
a divisor of nq, we have o(yq) ≥ d by our assumption. This contradiction shows that
the product of any two elements of X is not in H − {1G}, that is, H ∩ X2 = {1G}
and hence claim 1 follows.

To verify that GH,X is a generating set of G/H, we prove first the following result,
which will be used also in explicitly L(j, k)-labelling the vertices of Γ.

Claim 2. There exist Hv,Hw ∈ GH,X with orders n1, n2, respectively, such that

G/H = 〈Hv,Hw〉.

Proof of Claim 2. To prove this we first assume that n1 �= n2. In this case
we set v := (g1g

−1
2 , g2, 1, . . . , 1) and w := (g−1

2 , g2, 1, . . . , 1). Then ψ(v) = (g1, g2)
and ψ(w) = (1, g2). Clearly, (g1, g2) and (1, g2) generate 〈g1〉 × 〈g2〉, and they have
orders n1, n2, respectively. Since G/H ∼= 〈g1〉 × 〈g2〉 via the bijection Hu ↔ ψ(u) for
u ∈ G, it follows that G/H = 〈Hv,Hw〉 and the orders of Hv,Hw in G/H are n1, n2,
respectively. Note that, for any u ∈ G, Hu ∩X �= ∅ ⇔ ψ(u) = ψ(x) for some x ∈ X
⇔ ψ(u) = (xi, x

i−1
i ) for some xi �= 1. In particular, if Hv ∩X �= ∅, then g1 = xi and

g2 = xi−1
i for some xi �= 1, which implies g2 = gi−1

1 and hence i ≥ 2. On the other
hand, since xi ∈ 〈gi〉, it follows from g1 = xi that 〈gi〉 = 〈g1〉 and hence n1 = · · · = ni.
In particular, since i ≥ 2, we have n1 = n2, which contradicts our assumption. Thus,
we must have Hv ∩ X = ∅. Similarly, Hw ∩ X = ∅ for otherwise we would have
(1, g2) = (xi, x

i−1
i ) for some xi �= 1, which implies g2 = 1, a contradiction. Therefore,

Hv,Hw ∈ GH,X and all conditions in claim 2 are satisfied.
In the remaining case we have n1 = n2, so that g2 has the same order as g1. Thus,

since 〈g2〉 is a subgroup of 〈g1〉 by our assumption, we have 〈g2〉 = 〈g1〉 and hence g1 =
gr2 for an integer r, 1 ≤ r ≤ n1, which is coprime to n1. Set v := (g1g

r
2, g

−r
2 , 1, . . . , 1)

and w := (g−1
2 , g2, 1, . . . , 1). Then ψ(v) = (g1, g

−r
2 ) = (g1, g

−1
1 ) and ψ(w) = (1, g2).

By a similar argument as above, one can see that G/H = 〈Hv,Hw〉 and the orders
of Hv,Hw in G/H are n1, n2, respectively. Also, Hw ∩ X = ∅ as seen above. If
Hv ∩ X �= ∅, then g1 = xi, g

−1
1 = xi−1

i for some xi �= 1, and hence gi1 = 1. This
implies that n1 divides i, which is impossible since 1 ≤ i ≤ d < n1. Thus, we must
have Hv ∩X = ∅, and Hv,Hw satisfy the conditions in claim 2. This completes the
proof of claim 2.

Now H avoids X by claim 1, and GH,X is a generating set of G/H by claim 2.
Thus, by (8) we have λj,k(Γ) ≤ (n1n2 − 1) max{k, �j/2�} as claimed in (32), and
by (5) we have μ(Γ) ≤ n1n2 as claimed in (33). From our discussion in the first
paragraph of this proof, the truth of (17) and (18) follows. Moreover, we can give
explicitly an L(j, k)-labelling of Γ having span (n1n2 − 1) max{k, �j/2�} and using
n1n2 labels. In fact, claim 2 implies that G/H = {H(viw�) : 0 ≤ i < n1, 0 ≤ � < n2}.
Hence the cosets in G/H can be ordered in the following way to form a sequence.
For 1 ≤ t ≤ n1n2, there exists a unique pair (i, �) of integers with 1 ≤ i ≤ n2 and
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1 ≤ � ≤ n1 such that t = (i − 1)n1 + �. We then define the tth term Hut of the
sequence to be H(v�−iwi−1). It can be checked that, for any two consecutive cosets
Hut, Hut+1 in the sequence, H(utu

−1
t+1) is either Hv−1 or Hw−1. Since Hv ∩ X =

Hw ∩X = ∅, we have Hv−1 ∩X = Hw−1 ∩X = ∅ and hence H(utu
−1
t+1) ∩X = ∅.

From the proof of Corollary 2.4, the labelling under which all elements of Hut are
labelled by (t− 1) max{k, �j/2�} is an L(j, k)-labelling of Γ. This labelling has span
(n1n2−1) max{k, �j/2�} and uses n1n2 labels, and hence is optimal for μ. In the case
where 2k ≥ j, we have max{k, �j/2�} = k and hence (17) together with (30) gives
λj,k(Γ) = (n1n2 − 1)k, as stated in (19). Moreover, in this case the L(j, k)-labelling
above is optimal for λj,k as well.

Proof of Corollary 2.10. The truth of (20) and (21) follows from (19) and (18),
respectively. In addition, in the present case where 2k = j = 2, the labelling given in
the last paragraph of the proof of Theorem 2.9 is a no-hole L(2, 1)-labelling, and it is
optimal for λ and μ simultaneously.

Remark 5.2. (a) The conditions that n1 > d and each prime factor of n1 is no
less than d cannot be removed from Theorem 2.9 simultaneously for otherwise the
result will not be guaranteed. In fact, for the d-cube Qd with d ≥ 3, both conditions
are not satisfied; we have λ(Qd) ≥ d + 3 [19], whilst the right-hand side of (20) is 3.
This suggests that hypercubes deserve a different treatment, and this has been done
in the previous section.

(b) Unlike [9, Theorem 3.1], Theorem 2.9 and Corollary 2.10 apply even when
there are only two complete graph factors (that is, d = 2) in the Cartesian product,
as long as n2 divides n1 and n1 > 2. For such pairs (n1, n2), the λ-number of Hn1,n2

is one less than the number of vertices, and each label is used exactly once in any
L(2, 1)-labelling optimal for λ. Harary [14] has asked for a characterization of graphs
with this property.

(c) For any graph Γ, we have λ(Γ) ≥ μ(Γ) − 1 by definition, and the equality
occurs if and only if there exists a no-hole L(2, 1)-labelling which is optimal for both
λ and μ. The Hamming graphs in Corollary 2.10 constitute a family of infinitely many
graphs for which λ(Γ) = μ(Γ) − 1 holds.

6. Concluding remarks. In this paper we introduced a general approach to
L(j, k)-labelling Cayley graphs on Abelian groups. Then we used this approach to
study the L(j, k)-labelling problem for Hamming graphs and those graphs whose au-
tomorphism groups contain a vertex-transitive Abelian subgroup. The results we
obtained for these two families of graphs implied the known results [29, Theorem 3.7]
and [9, Theorem 3.1] as special cases. It is expected that the approach would be useful
in studying labelling problems for other families of Cayley graphs on Abelian groups.

Based on Theorem 2.9 we may ask naturally the following questions.
Question 6.1. (a) Let j and k be integers with 2k ≥ j ≥ k ≥ 1. Is

λj,k(Hn1,n2,...,nd
) = (n1n2 − 1)k

true for any sequence n1 ≥ n2 ≥ · · · ≥ nd of d ≥ 2 integers which are no less than 2
but not all equal to 2?

(b) In particular, is λ(Hn1,n2,...,nd
) = n1n2 − 1 true for the same sequence?

In other words, we would like to know whether (19) is valid for any Hamming
graph other than a hypercube provided that 2k ≥ j. The result in [10, Theorem
4.2] shows that the answer to (b) is affirmative for Hn1,n2 with 2 ≤ n2 ≤ n1 and
(n1, n2) �= (2, 2). In general, a recent result of the author with Chang and Lu [5]
shows that, if n1 is substantially larger than n2 and d, then the answer to (b) above is
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affirmative. As we have seen in the proof of Theorem 2.9, if we could find a subgroup
H of the group G (defined in (34)) such that H avoids the Cayley set X (defined
in (35)), |G : H| = n1n2 and GH,X is a generating set of G/H, then the answer to
both (a) and (b) of Question 6.1 is positive. However, we suspect that in general the
answers to these questions are negative.
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Notes 23, AMS, Providence, RI, 1999, pp. 99–100.

[16] W. Imrich, Graphs with transitive abelian automorphism group, in Combin. Theory Appl.,
Vol. 4, Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1970, pp. 651–656.

[17] W. Imrich and S. Klavz̆ar, Product Graphs, Wiley-Interscience, New York, 2000.
[18] W. Imrich and M. E. Watkins, On automorphism groups of Cayley graphs, Period. Math.

Hungar., 7 (1976), pp. 243–258.
[19] K. Jonas, Graph coloring analogues with a condition at distance two: L(2, 1)-labellings and

listed λ-labellings, Ph.D. thesis, Department of Mathematics, University of South Carolina,
Columbia, SC, 1993.

[20] D. Král and R. Skrekovski, A theorem about the channel assignment problem, SIAM J. Dis-
crete Math., 16 (2003), pp. 426–437.
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THE DISCRETE SINE TRANSFORM AND THE SPECTRUM OF
THE FINITE q-ARY TREE∗
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Abstract. Recently, He, Liu, and Strang [Stud. Appl. Math., 110 (2003), pp. 123–138] have
computed the spectrum of the adjacency matrix of a class of finite trees. In this paper, we propose
a different method and apply it to the slightly different class of finite q-ary trees.
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1. Introduction. In [6], He, Liu, and Strang computed the spectrum of the finite
trees that can be obtained by taking a ball of finite radius in an infinite homogeneous
tree. These trees are rooted, all the leaves (end points) have the same distance from
the root, and all the internal vertices have the same degree. Their method is based
on a factorization of the characteristic polynomial obtained through a recursion on
the diameter of the tree.

In the present paper, we deal with a slightly different kind of tree: the q-ary tree
of height n. This means that we have a root which has q sons, q2 grandsons, etc., for
n generations; in this case the root has degree q, while all other internal vertices have
degree q + 1. For these trees we propose a method that is based on a preliminary
decomposition of the space of all complex valued functions defined on the vertex set
of the tree.

On each level of the tree, we use the decomposition into irreducible representations
of the group of automorphisms of the tree Aut(T ) [5], [7]. But note that our proof
is very elementary: no knowledge of representation theory is required, only some
elementary linear algebra. We obtain a decomposition by means of suitable Radon
transforms that intertwine the representations on the various levels of the tree. They
are strictly connected with the adjacency operator and the geometry of the tree. To
get the spectrum, we apply the discrete sine transform to the action of the adjacency
operator on such a decomposition.

Our method has a close resemblance to the proof of a theorem of Stanley [9,
Theorem 4.14].

2. The tree and its adjacency operator. A tree T is a connected graph
without circuits. We say that T is rooted if it has a distinguished vertex x0, called the
root. We say that T is q-ary of height n if it satisfies the following three conditions:
the root has degree q; a vertex is a leaf (i.e., it has degree 1) if and only if its distance
from the root is equal to n; all the remaining vertices have degree q + 1. Figure 1 is
the ternary tree of height 3. In what follows, T will be a q-ary tree of height n. We
will identify T with the set of all its vertices, and we will write x ∼ y to denote that
x, y ∈ T are adjacent, i.e., they are connected by an edge. We will denote by Ωk the set
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Fig. 1.

of vertices whose distance from the root is equal to k, k = 0, 1, . . . , n (the k-level of the
tree). When x ∼ y and x belongs to a higher level than y, e.g., x ∈ Ωk and y ∈ Ωk+1,
we will say that x is the father of y and that y is a son of x, and we will write x � y.
The space {f : T → C} of all complex valued functions defined on T will be denoted
by L(T ); it will be endowed with the scalar product 〈f1, f2〉 =

∑
x∈T f1(x)f2(x). The

adjacency operator A of T is defined by setting (Af)(x) =
∑

y∈T :x∼y f(y) for all x ∈ T
and f ∈ L(T ). By definition [2], the spectrum of the tree coincides with the spectrum
of its adjacency operator A.

3. The discrete sine transform and the spectrum of the path. Let Bn

be the n× n tridiagonal matrix

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Set α = π
n+1 . Then the n× n matrix

Sn =

√
2

n + 1

⎛
⎜⎜⎜⎜⎜⎝

sinα sin 2α . . . sin(n− 1)α sinnα
sin 2α sin 4α . . . sin 2(n− 1)α sin 2nα

...
...

...
...

sin(n− 1)α sin 2(n− 1)α . . . sin(n− 1)2α sinn(n− 1)α
sinnα sin 2nα . . . sin(n− 1)nα sinn2α

⎞
⎟⎟⎟⎟⎟⎠
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is symmetric and orthogonal and diagonalizes Bn:

SnBnSn =

⎛
⎜⎜⎜⎝

2 cosα
2 cos 2α

. . .

2 cosnα

⎞
⎟⎟⎟⎠ .(1)

This is the discrete sine transform (DST) [10]. Moreover, (1) is the computation of
the spectrum of the tree T in the case q = 1 (the path): Bn is the matrix representing
the adjacency operator of the path if we take the standard basis {δx : x ∈ T} for
L(T ), where δx(y) = 1 if x = y, δx(y) = 0 if x �= y.

Remark. The characteristic polynomial det(λI −Bn) of Bn, also called the char-
acteristic polynomial of the path, may be expressed by the Chebyshev polynomials of
the second kind [2, p. 11]: det(λI−Bn) = Un(λ/2). The computation of the spectrum
of the tree in [6] is based in a factorization of the characteristic polynomial of the tree
in terms of (rescaled) Chebyshev polynomials of the second kind: in the notations of
[6], pn(λ) = (k − 1)n/2Un( λ

2
√
k−1

); see also [3, section 1.4].

4. The Radon transforms R and R∗. First note that T = 	n
k=0Ωk (where 	

denotes a disjoint union) leads to the orthogonal decomposition L(T ) = ⊕n
k=0L(Ωk).

Then we define the linear operator R : ⊕n
k=1L(Ωk) → ⊕n−1

k=0L(Ωk) by setting

(Rf)(x) =
∑

y∈T :y≺x

f(y)

for every f ∈ ⊕n
k=1L(Ωk) and x ∈ 	n−1

k=0Ωk. In other words, the value of Rf on x is
the sum of the values of f on the sons of x. The adjoint of R is the linear operator
R∗ : ⊕n−1

k=0L(Ωk) → ⊕n
k=1L(Ωk) given by

(R∗f)(x) = f(y), where y is the father of x,

for every f ∈ ⊕n−1
k=0L(Ωk) and x ∈ 	n

k=1Ωk.
Clearly R is surjective and R∗ is injective. Moreover, R maps L(Ωk) onto L(Ωk−1)

and R∗ maps L(Ωk−1) into L(Ωk), k = 1, 2, . . . , n. In particular, (R∗)k−h(L(Ωh)) is a
homomorphic image of L(Ωh) in L(Ωk): it consists of all functions in L(Ωk) that are
constant on the leaves of each q-ary subtree of T of height k − h rooted on a vertex
in Ωh.

We also define Wk = L(Ωk) ∩ kerR, k = 1, 2, . . . , n and W0 = L(Ω0) ≡ C. Note
that dimW0 = 1 and that dimWk = qk − qk−1.

The following identity is easy but important:

RR∗f = qf.(2)

Indeed, (RR∗f)(x) =
∑

y∈T :y≺x(R∗f)(y) = qf(x).
Lemma 4.1. For k = 1, 2, . . . , n we have an orthogonal decomposition of L(Ωk):

L(Ωk) = (R∗)k(W0) ⊕ (R∗)k−1(W1) ⊕ · · · ⊕ (R∗)(Wk−1) ⊕Wk.

Proof. First note that a consequence of (2) is that

〈R∗f1, R
∗f2〉 = q〈f1, f2〉,(3)
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and this is also easy to prove directly.
Using (3), we can iterate the decomposition L(Ωk) = R∗(L(Ωk−1)) ⊕ [kerR ∩

L(Ωk)] ≡ R∗(L(Ωk−1)) ⊕Wk:

L(Ωk) =R∗(L(Ωk−1)) ⊕Wk

=(R∗)2(L(Ωk−2)) ⊕R∗(Wk−1) ⊕Wk

· · ·
=(R∗)k(W0) ⊕ (R∗)k−1(W1) ⊕ · · · ⊕ (R∗)(Wk−1) ⊕Wk.

In other words, (R∗)k(W0) is the space of constant functions on Ωk and (R∗)k−h(Wh)
is the space of all functions in L(Ωk) that are constant on the leaves of each q-ary
subtree of T of height k− h rooted on a vertex in Ωh and whose sum on the leaves of
every q-ary subtree of height k − h + 1 rooted on a vertex in Ωh−1 is equal to zero.

Another fundamental identity relates the adjacency operator A to the Radon
transforms R and R∗: if f ∈ L(T ) and f = f0 + f1 + · · · + fn with fh ∈ L(Ωh), then

Af = Rf1 +

n−1∑
h=1

(R∗fh−1 + Rfh+1) + R∗fn−1,(4)

where Rf1 ∈ L(Ω0), R
∗fh−1 +Rfh+1 ∈ L(Ωh), and R∗fn−1 ∈ L(Ωn). For instance, if

x ∈ Ωh with 1 ≤ h ≤ n− 1, then

(Af)(x) =
∑
y∼x

f(y) =
∑

z∈Ωh+1:z∼x

f(z) +
∑

y∈Ωh−1:y∼x

f(y)

= (Rf)(x) + (R∗f)(y) ≡ (Rfh−1)(x) + (R∗fh+1)(x).

Remarks. (1) We call R and R∗ Radon transforms because they are (natural)
operators intertwining L(Ωk) and L(Ωk+1) as permutation representations of Aut(T ),
the group of automorphisms of T ; see [8]. The decomposition in Lemma 4.1 is well
known and coincides with the decomposition of L(Ωk) into irreducible representations
of Aut(T ); see [5], [7], and also [1, pp. 152–156], which has a more algebraic form.
But in our case we are not on a homogeneous space: Aut(T ) does not act transitively
on T . Therefore we may not apply the finite Fourier transform (for which we refer to
[4]) to get the spectrum of T . Nevertheless, A is Aut(T )-invariant, and therefore the
eigenspaces of A must be direct sums of irreducible representations of Aut(T ), as we
will show in the next section.

(2) The operators R∗ and R can also be seen as instances of “up” and “down”
operators as in [9] (but note that Stanley would draw the tree with the root at the
bottom and the leaves at the top; therefore in his terminology R goes down and R∗

goes up). However, our tree is not a differential poset of Stanley: it is easy to see that
in our case

(RR∗ −R∗R)f =

{
qf if f ∈ Wk,
0 if f ∈ L(Ωk), f ⊥ Wk,

while the definition of differential poset requires that the commutator RR∗ −R∗R is
always a multiple of the identity. Nevertheless, our computation of the spectrum of
the tree in the following section has a close resemblance to the proof of Theorem 4.14
in [9].
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5. The spectrum of the tree.
Lemma 5.1. For k = 0, 1, . . . , n and l = 1, 2, . . . , n− k + 1 set

Wk,l =

{
n−k∑
h=0

1

qh/2
sin

(h + 1)lπ

n− k + 2
· f : f ∈ Wk

}
.

Then each Wk,l is an eigenspace of A. The corresponding eigenvalue is equal to
2
√
q cos πl

n−k+2 and ⊕n−k
h=0 (R∗)hWk = ⊕n−k+1

l=1 Wk,l.
Proof. If f ∈ Wk and a0, a1, . . . , an−k ∈ C, then from (2) and (4) it follows that

A(a0f + a1R
∗f + · · · + an−k(R

∗)n−kf)

= a0Rf + a1RR∗f +

n−1∑
h=k+1

[
ah−k−1R

∗(R∗)h−k−1f + ah−k+1R(R∗)h−k+1f
]

+ an−k−1R
∗(R∗)n−k−1f

= a1qf +

n−1∑
h=k+1

[ah−k−1 + qah−k+1] (R
∗)h−kf + an−k−1(R

∗)n−kf.

Therefore F = a0f + a1R
∗f + · · · + an−k(R

∗)n−kf is an eigenvector of A; i.e.,
AF = λF if and only if the coefficients a0, a1, . . . , an−k solve the eigenvalue problem{

ah−1 + qah+1 = λah for h = 1, 2, . . . , n− k − 1,
qa1 = λa0; an−k−1 = λan−k.

(5)

With the substitutions bh = qh/2ah, h = 0, 1, . . . , n− k, and μ = λ√
q (5) becomes{

bh−1 + bh+1 = μbh for h = 1, 2, . . . , n− k − 1,
b1 = μb0; bn−k−1 = μbn−k,

which is the eigenvalue problem solved by the DST. Therefore from section 3 one
recovers the eigenvalues and the eigenspaces in the statement. Finally, ⊕n−k

h=0 (R∗)hWk

≡ {a0f + a1R
∗f + · · · + an−k(R

∗)n−kf : f ∈ Wk, a0, a1, . . . , an−k ∈ C} is clearly
equal to ⊕n−k+1

l=1 Wk,l, because the rows of the matrix of the DST form an orthogonal
basis.

Now we can state and prove the main theorem on the spectral analysis of A. We
will write (a, b) = 1 to indicate that the integers a and b are relatively prime.

Theorem 5.2.

1. The spectrum of A coincides with the set {2√q cos πl
n−k+2 : k = 0, 1, . . . , n; l =

1, 2, . . . , n− k + 1; (l, n− k + 2) = 1}.
2. Suppose that 0 ≤ k ≤ n, 1 ≤ l ≤ n − k + 1, and (l, n − k + 2) = 1. If

k = (n−k+2)s+r, with 0 ≤ r ≤ n−k+1, then the eigenspace corresponding
to 2

√
q cos πl

n−k+2 is

⊕s
t=0Wk−t(n−k+2),l(t+1).

3. The multiplicity of 2
√
q cos πl

n−k+2 is equal to

(qr − qr−1)
q(n−k+2)(s+1) − 1

qn−k+2 − 1
if 1 ≤ r ≤ n− k + 1,

1 + (qn−k+2 − qn−k+1)
q(n−k+2)s − 1

qn−k+2 − 1
if r = 0.
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Proof. From the decomposition L(T ) = ⊕n
k=0L(Ωk) and Lemmas 4.1 and 5.1 we

have

L(T ) = ⊕n
k=0 ⊕n−k

h=0 (R∗)hWk = ⊕n
k=0 ⊕n−k+1

l=1 Wk,l,

and therefore Lemma 5.1 yields part 1. To prove part 2, observe first that k =
s(n−k+2)+r is equivalent to n+2 = (s+1)(n−k+2)+r. Therefore (t+1)(n−k+2)
is equal to n − k1 + 2 with 0 ≤ k1 ≤ n if and only if k1 = k − t(n − k + 2) with
0 ≤ t ≤ s. Exactly for those values of t the eigenvalue 2

√
q cos lπ

n−k+2 appears again in

the form 2
√
q cos l(t+1)π

(t+1)(n−k+2) , and the corresponding eigenspace is Wk−t(n−k+2),l(t+1).

Moreover,
∑s

t=0 dimWk−t(n−k+2),l(t+1) is equal to

s∑
t=0

(qk−t(n−k+2) − qk−t(n−k+2)−1)

= (qr − qr−1)

s∑
w=0

q(n−k+2)w = (qr − qr−1)
q(n−k+2)(s+1) − 1

qn−k+2 − 1
for r ≥ 1,

1 +
s−1∑
t=0

(qk−t(n−k+2) − qk−t(n−k+2)−1) =1 + (qn−k+2 − qn−k+1)

s−1∑
w=0

q(n−k+2)w

= 1 + (qn−k+2 − qn−k+1)
q(n−k+2)s − 1

qn−k+2 − 1
for r = 0.

Our method might be applied to other classes of rooted trees. For instance,
consider a tree where each vertex at level k has qk sons, k = 0, 1, . . . , n − 1. In this
case (5) is replaced by the more general eigenvalue problem{

ah−1 + qk+hah+1 = λah for h = 1, 2, . . . , n− k − 1,
qka1 = λa0; an−k−1 = λan−k.

(6)

In general, this problem does not have an explicit elementary solution. Neverthe-
less, in particular cases some of the eigenvalues are computable. For q0 = q + 1 and
qk = q, k = 1, 2, . . . , n we obtain the trees in [6], and in this case almost all eigenvalues
are computable; those missing correspond to the subspace ⊕n

h=0(R
∗)h(W0): now for

k ≥ 1 (6) reduces to (5).

Acknowledgment. I express my warm gratitude to Professor Gilbert Strang for
his remarks and encouragement.
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GALOIS RINGS OF CHARACTERISTIC p2∗
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Abstract. This paper explores the applications of a recent bound on some Weil-type exponential
sums over Galois rings in the construction of codes and sequences. A family of codes over Fp, mostly

nonlinear, of length pm+1 and size p2 ·pm(D−�D/p2�), where 1 ≤ D ≤ pm/2, is obtained. The bound
on this type of exponential sums provides a lower bound for the minimum distance of these codes.
Several families of pairwise cyclically distinct p-ary sequences of period p(pm − 1) of low correlation
are also constructed. They compare favorably with certain known p-ary sequences of period pm − 1.
Even in the case p = 2, one of these families is slightly larger than the family Q(D) in section
8.8 in [T. Helleseth and P. V. Kumar, Handbook of Coding Theory, Vol. 2, North-Holland, 1998,
pp. 1765–1853], while they share the same period and the same bound for the maximum nontrivial
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1. Introduction. Bounds on exponential sums over finite fields, such as the
Weil–Carlitz–Uchiyama bound, have been found to be useful in applications such as
coding theory and sequence designs. The analogue of the Weil–Carlitz–Uchiyama
bound for Galois rings was presented in [K-H-C]. An improved bound for a related
Weil-type exponential sum over Galois rings of characteristic 4, which is also some-
times called the trace of exponential sums, was obtained in [H-K-M-S] and was used
in [S-K-H] to construct a family of binary codes with the same length and size as the
Delsarte–Goethals codes, but whose minimum distance is significantly bigger. The
shortening of these codes also leads to efficient binary sequences.

Recently, an analogue of the bound of [H-K-M-S] was obtained for Galois rings of
characteristic p2, for all primes p [L-O]. In this paper, we explore some applications
of this bound to the construction of codes and sequences. Starting from some trace
codes over Zp2 and applying the Gray map, a family of codes over Fp of length pm+1

and size p2 · pm(D−�D/p2�), where 1 ≤ D ≤ pm/2, is constructed. This family is a
generalization of the family of binary codes of [S-K-H] and it is a family of nonlinear
codes in general. A lower bound for their minimum distance is obtained through
the bound of [L-O]. Using the generalized Nechaev–Gray map, several families of
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pairwise cyclically distinct p-ary sequences of period p(pm − 1) of low correlation are
also obtained. They compare favorably with certain known p-ary sequences of period
pm − 1 (cf. [H-K, Table 4]). In fact, even in the case p = 2, one of these families is
slightly larger than the family Q(D) of [H-K, section 8.8], while they share the same
period and the same bound for the maximum nontrivial correlation.

We fix the following conventions throughout the paper:
• p: a prime number,
• m: an integer with m ≥ 2,
• Fp, Fpm : finite fields of cardinality p and pm,
• trm : Fpm → Fp: the trace map from Fpm onto Fp,
• GR(p2,m): a Galois ring of characteristic p2 with cardinality p2m,
• Zp2 : the ring of integers modulo p2,
• Trm : GR(p2,m) → Zp2 : the trace map from GR(p2,m) onto Zp2 ,
• Γm: the Teichmüller set in GR(p2,m),
• β: a primitive (pm − 1)th root of unity in GR(p2,m),
• ρ : GR(p2,m) → GR(p2,m)/pGR(p2,m) ∼= Fpm : reduction modulo p map in

GR(p2,m),
• ω = ρ(β): a primitive (pm − 1)th root of unity in Fpm .

We extend ρ to the polynomial ring mapping ρ : GR(p2,m)[x] → Fpm [x] by its
action on the coefficients. Note that the restricted map ρ|Γm[x]

: Γm[x] → Fpm [x] is
one-to-one and onto.

We recall that the Frobenius operator Frob on GR(p2,m) is defined as

Frob(a + pb) = ap + pbp, where a, b ∈ Γm.

Moreover Frob is extended to GR(p2,m)[x] as

Frob

(
l∑

i=1

aix
i

)
=

l∑
i=1

Frob(ai)x
pi.

A polynomial f(x) ∈ GR(p2,m)[x] is called nondegenerate if it cannot be written in
the form

f(x) = Frob(g(x)) − g(x) + u mod p2,

where g(x) ∈ GR(p2,m)[x] and u ∈ GR(p2,m).

2. Zp2-linear trace codes. In this section we construct a family of codes over
Fp starting from some trace codes over Zp2 and applying the Gray map. These codes
can be considered as p-ary version of the codes of [S-K-H]. We obtain a lower bound
for their minimum distance using a bound of [L-O].

We begin with a definition.
Definition 2.1. For a finite Zp2-module S ⊆ GR(p2,m)[x], we define the subsets

S0, S1 ⊆ Γm[x] as

S0 = {a(x) ∈ Γm[x] : there exists b(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S} and

S1 = {b(x) ∈ Γm[x] : there exists a(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S}.

Note that |S| ≤ |S0| · |S1|. Moreover, since S is a Zp2-module, we have S0 ⊆ S1.
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It follows from Definition 2.1 that if S ⊆ GR(p2,m)[x] is a finite Zp2-module,
then any element f(x) of S is represented as

f(x) = a(x) + pb(x)

such that a(x) ∈ S0 and b(x) ∈ S1 are uniquely determined elements.
Example 2.2. Let S = {x + 2x2, 2x, x + 2(x + x2), 0} ⊆ GR(22,m)[x]. It is easy

to observe that S is a Z4-module. The corresponding subsets S0 and S1 are

S0 = {0, x} and S1 = {x, x2, x2 + x, 0}.

Now we prove some lemmas that we use later in this section as well as in section
3.

Lemma 2.3. Let S ⊆ GR(p2,m)[x] be a finite Zp2-module and S1 ⊆ Γm[x] be the
subset defined in Definition 2.1. Let T ⊆ Γm be a subset. If the condition

for each h(x) ∈ ρ(S1),
h(ν) = 0 for each ν ∈ ρ(T ) ⇒ h(x) is the zero polynomial

(2.1)

holds, then we have

for each f(x) ∈ S,
f(α) = 0 for each α ∈ T ⇒ f(x) is the zero polynomial.

Similarly if the condition

for each h(x) ∈ ρ(S1),
trm(h(ν)) = 0 for each ν ∈ ρ(T ) ⇒ h(x) is the zero polynomial

(2.2)

holds, then we have

for each f(x) ∈ S,
Trm(f(α)) = 0 for each α ∈ T ⇒ f(x) is the zero polynomial.

Proof. For a given f(x) ∈ S, let a(x) ∈ S0 and b(x) ∈ S1 be the elements such
that f(x) = a(x) + pb(x). Moreover let a(1)(x) = ρ(a(x)) ∈ ρ(S0) ⊆ ρ(S1) and
b(1)(x) = ρ(b(x)) ∈ ρ(S1).

Assume first that (2.1) holds and also let f(x) be any element of S such that
f(α) = 0 for each α ∈ T . Then ρ(f(α)) = 0 for each α ∈ T and hence a(1)(ν) = 0
for each ν ∈ ρ(T ). By (2.1) we have a(1)(x) = 0. Since ρ is one-to-one on Γm[x], we
obtain that a(x) = 0. Hence f(x) = pb(x). If b(1)(ν) = 0 for each ν ∈ ρ(T ), then we
have b(x) = 0 as above and f(x) = 0. Otherwise, if there exists ν ∈ ρ(T ) such that
b(1)(ν) 	= 0, then there exists α ∈ T such that b(α) = b0 + pb1 with b0 	= 0 and hence
f(α) 	= 0.

Next we assume that (2.2) holds and also we assume that f(x) is an element of
S such that Trm(f(α)) = 0 for each α ∈ T . Then as above we have trm(a(1)(ν)) = 0
for each ν ∈ ρ(T ). Using (2.2) we obtain that a(x) = 0 and hence f(x) = pb(x).
Similarly we also obtain that b(x) = 0.

For any integer j with 1 ≤ j ≤ pm − 1, its p-cyclotomic coset modulo pm − 1 is
defined as

Bj = {a : 0 ≤ a ≤ pm − 2 and a ≡ jpl mod (pm − 1)
for some integer 0 ≤ l ≤ m− 1}.
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For 1 ≤ j ≤ pm/2, let l = �m/2� and 0 ≤ j0, . . . , jl ≤ p− 1 be the integers such that
j = j0 + j1p + · · · + jlp

l and hence modulo (pm − 1) we have

⎡
⎢⎢⎢⎣

j
pj
...

pm−1j

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

j0 j1 · · · jl−1 jl 0 · · · 0
0 j0 · · · jl−2 jl−1 jl · · · 0
...

...
...

...
...

...
j1 j2 · · · jl 0 0 · · · j0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
p
...

pl−1

pl

pl+1

...
pm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(2.3)

Note that for j in (2.3), p 	 |j means that j0 	= 0. Using the definition of Bj and the
observation in (2.3), the following lemma readily follows.

Lemma 2.4. Let j be an integer with 1 ≤ j ≤ pm/2. Then the cardinality of its
p-cyclotomic coset Bj modulo pm − 1 is m. Moreover, if i and j are positive integers
with i < j ≤ pm/2 and p 	 |i, p 	 |j, then Bi ∩Bj = ∅.

For a nonnegative integer h, let I(h) denote the set of nonnegative integers

I(h) = {i : i 	≡ 0 mod p and 0 ≤ i ≤ h}.

Note that |I(h)| = h− �h
p �.

Lemma 2.5. Let D be a positive integer with D ≤ pm/2 and let M be the set of
polynomials in Fpm [x] defined as

M =

⎧⎨
⎩g(x) ∈ Fpm [x] : g(x) =

∑
i∈I(D)

gix
i

⎫⎬
⎭ .

If g(x) ∈ M , a ∈ Fp, and a+ trm(g(ωl)) = 0 for each 1 ≤ l ≤ pm − 1, then a = 0 and
g(x) = 0.

Proof. For a ∈ Fpm and g(x) ∈ M with a+trm(g(ωl)) = 0 for each 1 ≤ l ≤ pm−1,
let f(x) ∈ Fpm [x] such that deg f(x) ≤ pm − 2 and

f(x) ≡ a + trm(g(x)) mod (xpm−1 − 1).

Then f(ωl) = a + trm(g(ωl)) = 0 for each 1 ≤ l ≤ pm − 1. As deg f(x) ≤ pm − 2,
we also obtain that f(x) = 0. Assume that g(x) is not the zero polynomial, since
otherwise the proof is clear. For each monomial gix

i in g(x) with a nonzero coefficient
gi, let fi(x) ∈ Fpm [x] such that deg fi(x) ≤ pm − 2 and

fi(x) ≡ trm(gix
i) mod (xpm−1 − 1).(2.4)

We have i ∈ I(D),

fi(x) ≡ gix
i + gpi x

ip + · · · + gp
m−1

i xipm−1

mod (xpm−1 − 1)

and hence the set of the degrees of the monomials in fi(x) with nonzero coefficients is
the p-cylotomic coset Bi of i modulo pm−1. As 0 = f(x) is the sum of a and the sum
of the polynomials in (2.4) as gix

i runs through the monomials in g(x) with nonzero
coefficients, using Lemma 2.4 we obtain that a = 0 and g(x) = 0.
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Definition 2.6. For a prime number p we define a weight function wp on N as

wp : N → N

a �→ the sum of digits of the representation of a in base p.

In other words, if a =
∑

i≥0 aip
i with 0 ≤ ai ≤ p − 1 for all i ≥ 0, then wp(a) =∑

i≥0 ai.
We recall that the weighted degree (cf. [K-H-C]) Df of a polynomial f(x) ∈

GR(p2,m)[x] is defined as

Df = max{pdeg(a(x)),deg(b(x))},

where a(x), b(x) ∈ Γm[x] are the uniquely determined polynomials such that f(x) =
a(x) + pb(x).

Let f(x) = a(x) + pb(x) be a nondegenerate polynomial with a(x), b(x) ∈ Γm[x].
We recall (see [L-O]) some definitions which depend on f(x). Let If , Jf ⊆ N be
subsets defined as

a(x) =
∑
i∈If

aix
i and b(x) =

∑
j∈Jf

bjx
j , where ai, bj ∈ Γm \ {0}.

We define nonnegative integers Wf , lf , and hf as

Wf = max{p max{wp(i) | i ∈ If}, max{wp(j) | j ∈ Jf}},

lf =

⌈
m

Wf

⌉
− 1 and hf =

⌊
m

Wf

⌋
.

The following result is proved in [L-O].
Theorem 2.7. For a nondegenerate polynomial f(x) ∈ GR(p2,m)[x], we have∣∣∣∣∣∣

∑
a∈Zp2\pZp2

∑
x∈Γm

e
2πiTrm(af(x))

p2

∣∣∣∣∣∣ ≤ plf+1

⌊
phf p2−p

2 (Df − 1)
⌊
2p

m
2 −hf

⌋
plf+1

⌋
.

For a positive integer D, let S(D) ⊆ GR(p2,m)[x] be the finite Zp2-module defined
as

S(D) =

⎧⎨
⎩f(x) ∈ GR(p2,m)[x] : f(x) =

∑
i∈I(D)

fix
i and Df ≤ D

⎫⎬
⎭ .(2.5)

For the subsets S(D)0, S(D)1 ∈ Γm[x] defined in Definition 2.1 we have

S(D)0 =

⎧⎪⎨
⎪⎩a(x) ∈ Γm[x] : a(x) =

∑
i∈I(�D

p �)

aix
i

⎫⎪⎬
⎪⎭ ,

S(D)1 =

⎧⎨
⎩b(x) ∈ Γm[x] : b(x) =

∑
i∈I(D)

aix
i

⎫⎬
⎭ ,
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and hence

|S(D)| = p
m
(
D−� D

p2 �
)
.(2.6)

For each u ∈ Zp2 , recall that its homogeneous weight (cf. [C-H], [L-B]) whom(u)
is defined as

whom(u) =

⎧⎨
⎩

0 if u = 0,
p if u ∈ pZp2 \ {0},
p− 1 if u ∈ Zp2 \ pZp2 .

Moreover, for each l ≥ 2 and u1, . . . , ul ∈ Zp2 , we also have whom(u1, . . . , ul) =∑l
i=1 whom(ui) by definition.

For n ≥ 1 we recall that the Gray map (cf. [C], [G-S], [L-B], [L-S]) Φ over
Z
n
p2 is defined as follows: For u ∈ Zp2 let u = r0(u) + pr1(u) with r0(u), r1(u) ∈

{0, 1, . . . , p−1}. We denote the addition modulo p as ⊕. For (u0, u1, . . . , un−1) ∈ Z
n
p2 ,

we have Φ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈ F
pn
p such that for 0 ≤ j ≤ p − 1

and 0 ≤ t ≤ n−1, ajn+t = r1(ut)⊕jr0(ut). It follows that for (u0, u1, . . . , un−1) ∈ Z
n
p2 ,

whom(u0, u1, . . . , un−1) = wH (Φ(u0, u1, . . . , un−1)) ,

where wH(·) is the Hamming weight on F
pn
p (cf. [L-B]).

Now we construct a family of p-ary codes generalizing the family of binary codes
of [S-K-H]. Note that there is another class of binary codes generalizing the Kerdock
and Delsarte–Goethals codes using the ring Z2k (cf. [C]).

Definition 2.8. For 1 ≤ D ≤ pm/2, let C(D) be the Zp2-linear code of length
pm defined as

C(D) =
{(

Trm(f(0)) + u,Trm(f(β)) + u, . . . ,Trm(f(βpm−1)) + u
)
| f(x) ∈ S(D) and u ∈ Zp2

}
.

The image Φ(C(D)) of C(D) under the Gray map Φ is a p-ary code of length pm+1.
From Lemmas 2.3 and 2.4 we obtain that the size of Φ(C(D)) is p2|S(D)|.

Using Theorem 2.7, we may obtain a lower bound for the minimum distance of
Φ(C(D)). For p = 2, our lower bound coincides with the lower bound of [S-K-H]. We
need a further definition in order to state the lower bound on the minimum distance.

Definition 2.9. For 1 ≤ D ≤ pm/2, let WD, lD, and hD be the nonnegative
integers defined as

WD = max{Wf | f(x) ∈ S(D) \ {0}}, lD =

⌈
m

WD

⌉
− 1, and hD =

⌊
m

WD

⌋
.

Note that lD = min{lf : f(x) ∈ S(D) \ {0}} and hD = min{hf : f(x) ∈ S(D) \ {0}}.
The following theorem follows from Theorem 2.7 and (2.6).
Theorem 2.10. For 1 ≤ D ≤ pm/2, Φ(C(D)) is a p-ary code of length pm+1 of

minimum distance

dmin ≥ pm+1 − pm − plD

⌊
phD p2−p

2 (D − 1)
⌊
2p

m
2 −hD

⌋
plD+1

⌋
(2.7)

and of size

∣∣Φ(C(D))
∣∣ = p2 · pm

(
D−� D

p2 �
)
.(2.8)
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3. p-ary sequences with low correlation. In this section we obtain several
families of pairwise cyclically distinct p-ary sequences with low correlation.

We begin with a simple lemma that we use later.

Lemma 3.1. For a ∈ GR(p2,m) \ {0} and a nonnegative integer i, we have

a(1 − βi) = 0 =⇒ βi = 1.

Proof. Let a = a0 + pa1 with a0, a1 ∈ Γm. If a0 	= 0, then a is a unit and we get
the conclusion. If a0 = 0, then a = pa1 and hence 1−βi belongs to the maximal ideal
(p) of GR(p2,m). Therefore 1 − ωi = 0, which implies that βi = 1.

For f(x) ∈ S(D) and for each i ≥ 0, we have Trm(f(βi)) = Trm(f(βi+(pm−1))).
Therefore the period of Zp2-sequence {Trm(f(βi))}∞i=0 divides pm − 1. We first study
the exact periods of the sequences in greater detail.

Lemma 3.2. For a positive divisor t of pm − 1 and f(x) =
∑

s∈I(D) fsx
s ∈

S(D) \ {0}, the period of {Trm(f(βi))}∞i=0 is t if and only if gcd(gcd{s ∈ I(D) : fs 	=
0}, pm − 1) = pm−1

t .

Proof. Let u = gcd (gcd{s ∈ I(D) : fs 	= 0}, pm − 1) and t1 = pm−1
u . Assume

that the period of {Trm(f(βi))}∞i=0 is t. For each i ≥ 0, we have Trm(f(βi)) =
Trm(f(βi+t)). Then

Trm

⎛
⎝ ∑

s∈I(D)

fs(1 − βts)βis

⎞
⎠ = 0

for each i ≥ 0. Since
∑

s∈I(D) fs(1 − βts)xs ∈ S(D), using Lemmas 2.3 and 2.5 we

obtain that fs(1 − βts) = 0 for each s ∈ I(D). By Lemma 3.1, we have βts = 1 for
each s ∈ I(D) with fs 	= 0. Then (pm − 1)|(ts) for each s ∈ I(D) with fs 	= 0 and

hence pm−1
t |u, i.e., t1 divides t. On the other hand, note that βst1 = β

s
u (pm−1) = 1

for each s ∈ I(D) with fs 	= 0. Hence Trm(f(βi+t1)) = Trm(f(βi)) for each i ≥ 0, so
t divides t1.

Conversely assume that t is a positive divisor of pm−1 and f(x) =
∑

s∈I(D) fsx
s ∈

S(D) \ {0} such that u = pm−1
t . Then βst = β

s
u (pm−1) = 1 for each s ∈ I(D) with

fs 	= 0 and hence Trm(f(βi+t)) = Trm(f(βi)) for each i ≥ 0. Let t2 ≤ t be the period
of {Trm(f(βi))}∞i=0. If t2 < t, then by the first part of the proof above, we have

u = pm−1
t2

	= pm−1
t , which is a contradiction. This completes the proof.

The following lemma is used in the proof of Proposition 3.5.

Lemma 3.3. For each positive divisor t of (pm−1), the mapping g(x) ∈ S(�D
t �) �→

f(x) = g(xt) ∈ S(D) gives a one-to-one correspondence between S(�D
t �) and the

polynomials f(x) ∈ S(D) such that {Trm(f(βi))}∞i=0 is a sequence of period dividing
pm−1

t .

Proof. For g(x) ∈ S(�D
t �) \ {0} and f(x) = g(xt) =

∑
s∈I(D) fsx

s, we have

f(x) ∈ S(D) \ {0} and t| gcd(gcd{s ∈ I(D) : fs 	= 0}, pm − 1). Then the pe-

riod of {Trm(f(βi))}∞i=0 is a divisor of pm−1
t by Lemma 3.2. Conversely if f(x) =∑

s∈I(D) fsx
s ∈ S(D) \ {0} with the period t1 of {Trm(f(βi))}∞i=0 such that t1|p

m−1
t ,

then gcd(gcd{s ∈ I(D) : fs 	= 0}, pm − 1) = pm−1
t1

= ta for a positive integer a.
Hence t|s for each s ∈ I(D) with fs 	= 0 and there exists a uniquely determined
g(x) ∈ S(�D

t �) such that g(xt) = f(x).
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Remark 3.4. Using the similar mapping in Lemma 3.3 for pS(D)1, for each
positive divisor t of (pm − 1), we also obtain a one-to-one correspondence between
S(�D

t �)1 and the polynomials f(x) ∈ pS(D)1 such that {Trm(f(βi))}∞i=0 has period

dividing pm−1
t .

In the next proposition, for each positive divisor t of pm − 1, we compute the
number of polynomials f(x) in S(D) such that the Zp2-sequence {Trm(f(βi))}∞i=0 has

period pm−1
t .

Proposition 3.5. For each positive divisor t of (pm − 1), we have∣∣∣∣
{
f(x) ∈ S(D) : {Trm(f(βi))}∞i=0 has period

pm − 1

t

}∣∣∣∣
=
∑

l| pm−1
t

μ(l)

∣∣∣∣S
(⌊

D

l · t

⌋)∣∣∣∣ ,
where μ(·) is the Möbius function.

Proof. For positive integers u and v, let

h(u) = |{f(x) ∈ S(D) : the period of {Trm(f(βi))}∞i=0 is u}|

and

H(v) = |{f(x) ∈ S(D) : the period of {Trm(f(βi))}∞i=0 is a positive divisor of v}|.

Then h(u) = 0 if u ≥ 1 such that u does not divide (pm − 1). Moreover, for each
positive integer v,

H(v) =
∑
u|v

h(u).

Using the Möbius inversion formula (cf. [L-N, Theorem 3.24]), for each positive integer
u we obtain that

h(u) =
∑
v|u

μ(v)H
(u
v

)
.

In particular, for u = pm−1
t with a positive divisor t of (pm − 1),

h

(
pm − 1

t

)
=
∑

l| pm−1
t

μ(l)H

(
pm − 1

l · t

)
.

Using Lemma 3.3, we obtain H(p
m−1
l·t ) = |S(�D

l·t�)|, which completes the proof.
Using the same method as the proof of Proposition 3.5 and Remark 3.4, we also

obtain the following result.
Proposition 3.6. For each positive divisor t of (pm − 1), we have∣∣∣∣

{
f(x) ∈ pS(D)1 : {Trm(f(βi))}∞i=0 has period

pm − 1

t

}∣∣∣∣
=
∑

l| pm−1
t

μ(l)

∣∣∣∣S
(⌊

D

l · t

⌋)
1

∣∣∣∣ ,
where μ(·) is the Möbius function.
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For n = pm − 1 we recall that the generalized Nechaev–Gray map (cf. [N],
[L-B], [L-S]) Ψ over Z

n
p2 is defined as follows: for u ∈ Zp2 let u = r0(u) + pr1(u)

with r0(u), r1(u) ∈ {0, 1, . . . , p − 1}. Let ⊕ denote the addition modulo p. For
(u0, u1, . . . , un−1) ∈ Z

n
p2 , we have Ψ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈ F

pn
p

such that for 0 ≤ j ≤ p−1 and 0 ≤ t ≤ n−1, ajn+t = r1((1−p)tut)⊕ jr0((1−p)tut).
It is known that if C is a cyclic code of length pm − 1 over Zp2 , then Ψ(C) is a cyclic
code of length p(pm − 1) over Fp (cf. [L-B, Corollary 2.5]). Therefore the generalized
Nechaev–Gray map may be used for constructing sequences.

Proposition 3.7. Assume that u ∈ Zp2 . For f(x) ∈ S(D) such that the corre-
sponding Zp2-sequence {Trm(f(βi))}∞i=0 has period pm − 1, we have the following:

(i) if ρ(f(x)) 	= 0, then the p-ary sequence {Ψ(Trm(f(βi)) + u)}∞i=0 has period
p(pm − 1);

(ii) if ρ(f(x)) = 0 and ρ(u) 	= 0, then the p-ary sequence {Ψ(Trm(f(βi))+u)}∞i=0

has period p(pm − 1);
(iii) if ρ(f(x)) = 0 and ρ(u) = 0, then the p-ary sequence {Ψ(Trm(f(βi))+u)}∞i=0

has period pm − 1.
Proof. Every z ∈ Zp2 can be written uniquely as z = r0(z) + pr1(z) with

r0(z), r1(z) ∈ {0, 1, . . . , p − 1}. Let ⊕ and � denote the addition and subtraction,
respectively, modulo p while + and − denote the addition and subtraction in Zp2 .

For f(x) ∈ S(D) satisfying the condition of the proposition and u ∈ Zp2 , we first
observe that the period of the Zp2-sequence {Trm(f(βi)) + u}∞i=0 is also pm − 1.

By the definition of Ψ, for 0 ≤ t ≤ (pm − 1) − 1 and j ≥ 0, the (j(pm − 1) + t)th
term of the p-ary sequence {Ψ(Trm(f(βi)) + u)}∞i=0 is given by

r1 ((1 − p)t(Trm(f(βt)) + u)) ⊕ jr0 ((1 − p)t(Trm(f(βt)) + u))
= r1 ((1 + jp)(1 − p)t(Trm(f(βt)) + u))
= r1

(
(1 − p)j(p

m−1)+t(Trm(f(βj(pm−1)+t)) + u)
)
.

The period of {Trm(f(βi))+u}∞i=0 is pm−1, while the period of {(1−p)i}∞i=0 is p.
Hence, the period T of {Ψ(Trm(f(βi))+u)}∞i=0 =

{
r1
(
(1 − p)i(Trm(f(βi)) + u)

)}∞
i=0

divides p(pm − 1).
As the period of {Ψ(Trm(f(βi)) + u)}∞i=0 is T , for each i ≥ 0 and j ≥ 0 we have

r1
(
(1 − p)i+j(pm−1)(Trm(f(βi+j(pm−1))) + u)

)
= r1

(
(1 − p)i+j(pm−1)+T (Trm(f(βi+j(pm−1)+T )) + u

)
and hence

r1
(
Trm(f(βi)) + u

)
� (i− j)r0

(
Trm(f(βi)) + u

)
= r1

(
Trm(f(βi+T )) + u

)
� (i + T − j)r0

(
Trm(f(βi+T )) + u

)
.

(3.1)

Comparing (3.1) for different values of j, we obtain

r0
(
Trm(f(βi)) + u

)
= r0

(
Trm(f(βi+T )) + u

)
(3.2)

for each i ≥ 0. Using (3.1) with i = j, we also get

r1
(
Trm(f(βi)) + u

)
= r1

(
Trm(f(βi+T )) + u

)
� Tr0

(
Trm(f(βi+T )) + u

)
.

(3.3)

It follows from (3.2) and (3.3) that

r0
(
Trm(f(βi)) + u

)
= r0

(
Trm(f(βi+pT )) + u

)
,

r1
(
Trm(f(βi)) + u

)
= r1

(
Trm(f(βi+pT )) + u

)
,
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and hence

Trm(f(βi)) + u = Trm(f(βi+pT )) + u

for each i ≥ 0. Therefore (pm − 1)|(pT ), which implies that (pm − 1)|T . Moreover,
recall also that T divides p(pm − 1), so

either T = pm − 1 or T = p(pm − 1).(3.4)

Now we prove that T = p(pm−1) for (i) and (ii). Using (3.4) we assume the contrary
that T = pm − 1. As βT = 1, by (3.3) we obtain that

r0(Trm(f(βi)) + u) = trm(ρ(f)(ωi)) + ρ(u) = 0

for each i ≥ 0. Then by Lemma 2.5 we have ρ(u) = 0 and ρ(f(x)) = 0, which
completes the proof for (i) and (ii).

Next we assume ρ(f(x)) = 0, ρ(u) = 0 and consider the remaining case. For each
i ≥ 0, the ith and (i + (pm − 1))th terms of {Ψ(Trm(f(βi)) + u)}∞i=0 are

r1
(
Trm(f(βi)) + u

)
� ir0

(
Trm(f(βi)) + u

)
and

r1
(
Trm(f(βi)) + u

)
� (i− 1)r0

(
Trm(f(βi)) + u

)
,(3.5)

respectively. Therefore, as ρ(f(x)) = 0, the ith and (i + (pm − 1))th terms of
{Ψ(Trm(f(βi)) + u)}∞i=0 are equal for each i ≥ 0 if and only if

r0(u) = ρ(u) = 0.(3.6)

We complete the proof for (iii) using (3.4) and (3.6).
Now we begin our construction of families of pairwise cyclically distinct p-ary

sequences of low correlation.
For a p-ary sequence {s(i)}∞i=0 and τ ≥ 0, the cyclic shift of {s(i)}∞i=0 by τ is the p-

ary sequence {s(i+ τ)}∞i=0. For two p-ary sequences {s1(i)}∞i=0 and {s2(i)}∞i=0, we say
{s1(i)}∞i=0 and {s2(i)}∞i=0 are cyclically distinct if for each τ ≥ 1 neither is {s1(i)}∞i=0

the cyclic shift of {s2(i)}∞i=0 by τ nor is {s2(i)}∞i=0 the cyclic shift of {s1(i)}∞i=0 by τ .
Let P1

D be the subset of S(D) × Zp2 defined as

P1
D =

{
(f(x), u) ∈ S(D) × Zp2 : ρ(f(x)) 	= 0,

and {Trm(f(βi))}∞i=0 has period pm − 1
}
.

Using Propositions 3.5 and 3.6, we obtain that

|P1
D| = p2

⎛
⎝ ∑

l|(pm−1)

μ(l)

{
p
m
(
�D

l �−
⌊

D
p2l

⌋)
− pm(�D

l �−�D
pl�)
}⎞⎠ .(3.7)

By Proposition 3.7, for each (f(x), u) ∈ P1
D, the corresponding p-ary sequence

{Ψ(Trm(f(βi))+u)}∞i=0 has period p(pm−1). For (f(x), u) ∈ P1
D, 0 ≤ t ≤ (pm−1)−1,

and 0 ≤ j ≤ p− 1, let g(x) = (1 + p)j(1 − p)tf(βtx) and v = (1 + p)j(1 − p)tu. Note
that (g(x), v) ∈ P1

D. Now we prove that, for 0 ≤ t ≤ (pm − 1) − 1 and 0 ≤ j ≤
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p − 1, (f(x), u) = (g(x), v) as elements of P1
D if and only if j = t = 0. Note that

(f(x), u) = (g(x), v) as elements of P1
D if and only if the corresponding p-ary sequences

{Ψ(Trm(f(βi)) + u)}∞i=0 and {Ψ(Trm(g(βi)) + v)}∞i=0 are equal. Let {s1(i)}∞i=0 be
the p-ary sequence {Ψ(Trm(f(βi)) + u)}∞i=0 and {s2(i)}∞i=0 be the p-ary sequence
{Ψ(Trm(g(βi)) + v)}∞i=0. Therefore {s2(i)}∞i=0 is the cyclic shift of {s1(i)}∞i=0 by
t + j(pm − 1) since both sequences have period p(pm − 1) and, under the notation of
the proof of Proposition 3.7, for each i ≥ 0

s2(i) = r1
(
Trm(f(βi+t)) + u

)
� (i + t− j)r0

(
Trm(f(βi+t)) + u

)
= s1(i + t + j(pm − 1)).

For (f(x), u), (g(x), v) ∈ P1
D, we say (f(x), u) and (g(x), v) are cyclically related if

there exist 0 ≤ j ≤ p−1 and 0 ≤ t ≤ (pm−1)−1 such that g(x) = (1+p)j(1−p)tf(βtx)
and v = (1+p)j(1−p)tu. From the arguments above, we observe that cyclically related
elements of P1

D form an equivalence relation on P1
D and each equivalence class has

p(pm − 1) elements.

Let P1

D be the set of these equivalence classes in P1
D. Then

|P1

D| =
1

p(pm − 1)
|P1

D|.(3.8)

Let P̃1
D be a full set of representatives of the equivalence classes in P1

D.

The element, i.e., the equivalence class, of P1

D containing (f(x), u) is denoted by
(f(x), u). Now we prove the following property of the equivalence relation on P1

D:

f(x) ∈ P1
D, u ∈ Zp2 , 0 ≤ j1 < j2 ≤ p− 1

⇒ (f(x), u + j1p) 	= (f(x), u + j2p).
(3.9)

Assume the contrary and let (f(x), u + j2p) ∈ (f(x), u + j1p). By definition of the
equivalence, there exist integers 0 ≤ j ≤ p− 1 and 0 ≤ t ≤ (pm − 1) − 1 such that

f(x) = (1 + (j − t)p) f(βtx)(3.10)

and

u + j2p = (1 + (j − t)p) (u + j1p).(3.11)

As ρ(f(x)) 	= 0, there exists a coefficient fs of xs in f(x) with ρ(fs) 	= 0. From (3.10)
we obtain that

fs = (1 + (j − t)p)βtsfs.(3.12)

Let fs = a0 + pa1 with a0, a1 ∈ Γm. Then using (3.12) we get

ρ(a0) = ρ(a0)ρ(β
ts) and ρ(a1) = ρ ((j − t)a0 + a1) ρ(β

ts).

As ρ(a0) 	= 0 we have ρ(βts) = 1 and

ρ(a1) = ρ((j − t)a0 + a1).(3.13)

Using ρ(a0) 	= 0 and (3.13) we obtain that (j − t) ≡ 0 mod p. Therefore from (3.11)
we get a contradiction.
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Now we introduce a new relation on P1
D: we say that (f(x), u) and (g(x), v) are

related in the new sense if there exist 0 ≤ j, k ≤ p− 1, and 0 ≤ t ≤ (pm − 1)− 1 such
that

g(x) = (1 + p)j(1 − p)tf(βtx),
v = (1 + p)j(1 − p)tu + kp.

(3.14)

It is easy to observe that (3.14) also gives an equivalence relation on P1
D, and the

equivalence relation obtained by the cyclically related elements is finer than the one
obtained by (3.14). Let P̂1

D be a full set of representatives of the new equivalence

relation. We have |P̂1
D| =

|P̃1
D|
p . Moreover we assume, without loss of generality, that

the elements of P̂1
D are of the form (f(x), u) with u ∈ {0, 1, . . . , p − 1} ⊆ Zp2 and

P̂1
D ⊆ P̃1

D.
Let F1

D ⊆ C1
D be the chain of families of p-ary sequences defined as

F1
D =

{
{Ψ(Trm(f(βi)) + u)}∞i=0 : (f(x), u) ∈ P̂1

D

}
and

C1
D =

{
{Ψ(Trm(f(βi)) + u)}∞i=0 : (f(x), u) ∈ P̃1

D

}
.

Theorem 3.8. The families F1
D and C1

D have the following properties:
(i) The period of each sequence in C1

D (and hence in F1
D) is p(pm − 1).

(ii) The sequences in C1
D (and hence in F1

D) are pairwise cyclically distinct.

(iii) |F1
D| = 1

pm−1

∑
l|(pm−1) μ(l){pm(�D/l�−�D/p2l�)−pm(�D/l�−�D/pl�)} and |C1

D| =

p|F1
D|, where μ(·) is the Möbius function.

(iv) For the maximal nontrivial correlation θmax of F1
D, we have

θmax ≤ 1

p− 1
plD+1

⌊
phD p2−p

2 (D − 1)
⌊
2p

m
2 −hD

⌋
plD+1

⌋
+ p,(3.15)

where lD and hD are as in Definition 2.9.
Proof. As P̃1

D ⊆ P1
D, by Proposition 3.7, each sequence in C1

D has period p(pm−1).

Now we prove items (ii) and (iii) together. Let (f(x), u) ∈ P̃1
D and {s(i)}∞i=0

be the p-ary sequence {Ψ(Trm(f(βi)) + u)}∞i=0. Assume that 0 ≤ j ≤ p − 1 and
0 ≤ t ≤ (pm−1)−1 are integers such that the p-ary sequence {s(i+j(pm−1)+ t)}∞i=0

is in C1
D. Let (g(x), u2) ∈ P̃1

D such that the p-ary sequence {Ψ(Trm(g(βi))+u2)}∞i=0 is
{s(i+j(pm−1)+t)}∞i=0. Let h(x) = (1+p)j(1−p)tf(βtx) and u1 = u(1+p)j(1−p)t ∈
Zp2 . Note that (h(x), u1) = (f(x), u) and hence (h(x), u1) 	∈ P̃1

D if either j 	= 0 or
t 	= 0. Let {s1(i)}∞i=0 be the p-ary sequence {Ψ(Trm(h(βi)) + u1)}∞i=0 and {s2(i)}∞i=0

be the p-ary sequence {Ψ(Trm(g(βi)) + u2)}∞i=0. From the proof of Proposition 3.7
we observe that s1(i) = s2(i) for each i ≥ 0. Then for each i ≥ 0 we have

Trm(h(βi)) + u1 = Trm(g(βi)) + u2(3.16)

and hence

ρ(u1) + trm(ρ(h)(ωi)) = ρ(u2) + trm(ρ(g)(ωi)).

As h(x), g(x) ∈ S(D), using Lemmas 2.5 and 2.3 we obtain that h(x) = g(x) and
ρ(u1) = ρ(u2). Also using (3.16) we obtain that u1 = u2 and hence (h(x), u1) =
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(g(x), u2). This completes the proof of item (ii). We complete the proof of item (iii)
using item (i) and Propositions 3.5 and 3.6.

It remains to prove item (iv). Assume that (f1(x), u1), (f2(x), u2) ∈ P̂1
D, and

let the corresponding p-ary sequences be {s1(i)}∞i=0 = {Ψ(Trm(f1(β
i)) + u1)}∞i=0 and

{s2(i)}∞i=0 = {Ψ(Trm(f2(β
i)) + u2)}∞i=0. We consider two cases separately.

Case 1. Correlation at 0 < τ ≤ p(pm − 1) − 1. Let τ = t + j(pm − 1), where
0 ≤ t ≤ (pm − 1) − 1 and 0 ≤ j ≤ p − 1. Let f3(x) = (1 + p)j(1 − p)tf1(β

tx),
u3 = (1 + p)j(1 − p)tu1, f(x) = f3(x) − f2(x) ∈ S(D), and u = u3 − u2.

Assume first that f(x) 	= 0. Let

y = Ψ
(
Trm(f(β0)) + u,Trm(f(β1)) + u, . . . ,Trm(f(β(pm−1)−1)) + u

)
.(3.17)

Let θ1(·) be the exponential sum function on F
p(pm−1)
p defined in [L-S, section 3].

The correlation between {s1(i)}∞i=0 and {s2(i)}∞i=0 at shift (t+ j(pm − 1)) is given by
(cf. [L-S, Theorem 3.1])

θ1(y) =

p−1∑
l=0

∑
x∈Γm\{0}

e
2πi (1+lp)(Trm(f(x))+u)

p2 .(3.18)

Next we assume that f(x) = 0. Let u = r0(u) + pr1(u) with r0(u), r1(u) ∈
{0, 1, . . . , p− 1}. Using (3.9) we obtain that r0(u) 	= 0. Then the correlation between
{s1(i)}∞i=0 and {s2(i)}∞i=0 at shift (t + j(pm − 1)) is

p−1∑
l=0

∑
x∈Γm\{0}

e
2πi (1+lp)u

p2 = (pm − 1)e
2πi

r0(u)

p2

p−1∑
l=0

e2πi
lr0(u)+r1(u)

p = 0.

Case 2. Correlation at τ = 0. In this case we have (f1(x), u1) 	= (f2(x), u2). Let
f(x) = f1(x) − f2(x) ∈ S(D) and u = u1 − u2. Assume first that f1(x) 	= f2(x). The
correlation in this subcase is also given by the same formula in (3.18).

Next we assume that f1(x) = f2(x). Then ρ(u) 	= 0 and we obtain that the
correlation is 0 as in Case 1.

Therefore in order to complete the proof of item (iv), it is enough to prove that
for each f(x) ∈ S(D) \ {0} and u ∈ Zp2 , the absolute value of θ1(y) given in (3.18) is
bounded from above by the value on the right-hand side of (3.15).

Let f(x) ∈ S(D) \ {0} and u ∈ Zp2 . For 0 ≤ c ≤ (p− 1), let

φc(f, u) =

p−1∑
l=0

∑
x∈Γm

e
2πi (c+lp)(Trm(f(x))+u)

p2 .(3.19)

For 1 ≤ c ≤ (p − 1) and 0 ≤ l ≤ p − 1, let 0 ≤ lc−1 ≤ p − 1 be the integer such that
clc−1 ≡ l mod p. Then

(c + lp)(Trm(f(x)) + u) = (c + clc−1p)(Trm(f(x)) + u)(3.20)

for 1 ≤ c ≤ (p− 1) and x ∈ Γm. For 1 ≤ c ≤ (p− 1), as c is both invertible in Fp and
in Γm, using (3.19) and (3.20) we obtain

φc(f, u) = φ1(f, u).(3.21)
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By (3.19) and (3.21), we have

∑
a∈Zp2

∑
x∈Γm

e
2πi a(Trm(f(x))+u)

p2 =

p−1∑
c=0

φc(f, u) = φ0(f, u) + (p− 1)φ1(f, u).

Hence

(p− 1)φ1(f, u) =
∑

a∈Zp2\pZp2

∑
x∈Γm

e
2πi a(Trm(f(x))+u)

p2 .

Using Theorem 2.7, as f(x) ∈ S(D) \ {0}, we have

|φ1(f, u)| ≤ 1

p− 1
plD+1

⌊
phD p2−p

2 (D − 1)
⌊
2p

m
2 −hD

⌋
plD+1

⌋
,(3.22)

where lD and hD are as in Definition 2.9. By definition of θ1(y) and φ1(f, u), we also
have

|θ1(y) − φ1(f, u)| =

∣∣∣∣∣
p−1∑
l=0

e
2πi (1+lp)(Trm(f(0))+u)

p2

∣∣∣∣∣ ≤ p.(3.23)

Combining (3.22) and (3.23) we complete the proof.
Remark 3.9. The maximal nontrivial correlation θmax(C1

D) of C1
D is large. In

fact even for any subset S ⊆ C1
D with F1

D � S, the maximal nontrivial correla-
tion θmax(S) of S is at least p(pm − 1). Indeed if F1

D � S ⊆ C1
D, then there ex-

ist (f(x), u1), (f(x), u2) ∈ P̃1
D with u2 − u1 = jp and 1 ≤ j ≤ p − 1 such that

{s1(i)}∞i=0 = {Ψ(Trm(f(βi)) + u1)}∞i=0 and {s2(i)}∞i=0 = {Ψ(Trm(f(βi)) + u2)}∞i=0

are two cyclically distinct p-ary sequences in S. Then the modulus of the correlation
between {s1(i)}∞i=0 and {s2(i)}∞i=0 at shift 0 is∣∣∣∣∣∣

p−1∑
l=0

∑
x∈Γm\{0}

e
2πi (1+lp)jp

p2

∣∣∣∣∣∣ = (pm − 1)
∣∣e2πi j

p

∣∣ ·
∣∣∣∣∣
p−1∑
l=0

e2πi ljp
p

∣∣∣∣∣ = p(pm − 1).

Remark 3.10. For p = 2, from F1
D we retrieve the family of binary sequences

Q(D) of [H-K, section 8.8]. Let F1,0
D be the subfamily of F1

D defined as

F1,0
D =

{
{Ψ(Trm(f(βi)))}∞i=0 : (f(x), 0) ∈ P̂1

D

}
.

Note that F1
D is larger than F1,0

D with the same upper bound on the maximal nontrivial

correlation. For p = 2, from F1,0
D we obtain the family of binary sequences of [S-K-H].

Let P2
D be the subset of pS(D)1 × (Zp2 \ pZp2) defined as

P2
D =

{
(pf(x), u) ∈ pS(D)1 × (Zp2 \ pZp2) : {Trm(pf(βi))}∞i=0 has period pm − 1

}
.

Using Proposition 3.6, we obtain that

|P2
D| = (p2 − p)

∑
l|(pm−1)

μ(l)pm(�D
l �−�D

pl�),(3.24)

where μ(·) is the Möbius function.
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For (pf(x), u), (pg(x), v) ∈ P2
D, we say (pf(x), u) and (pg(x), v) are cyclically

related if there exist 0 ≤ j ≤ p − 1 and 0 ≤ t ≤ (pm − 1) − 1 such that pg(x) =
(1 + p)j(1− p)tpf(βtx) and v = (1 + p)j(1− p)tu. Following the arguments similar to
the ones for the case of P1

D, we observe that cyclically related elements of P2
D form

an equivalence relation and each equivalence class has p(pm − 1) elements.

Let P2

D denote the set of equivalence classes in P2
D. We denote the equivalence

class of (pf(x), u) ∈ P2
D as (pf(x), u).

Let (pf(x), u) ∈ P2
D be an element with u = r0(u) + pr1(u), r0(u), r1(u) ∈

{0, 1, . . . , p − 1}. Let 1 ≤ j ≤ p − 1 be the integer with jr0(u) ≡ 1 mod p. Then
(1+p)jpf(x) = (1+jp)pf(x) = pf(x) and (1+p)ju = (1+jp)(r0(u)+pr1(u)) = u+p.
Therefore we have

(pf(x), u) ∈ P2
D ⇒ (pf(x), u + p) ∈ (pf(x), u).(3.25)

From (3.9) and (3.25) we observe a different behavior of the equivalence classes in P1
D

and P2
D. Using (3.25) we choose a full set of representatives P̃2

D of the equivalence

classes in P2

D such that

P̃2
D = {(pf(x), u) ∈ P2

D : u ∈ {1, . . . , p− 1} ⊆ (Zp2 \ pZp2)}.

Let F2
D be the family of p-ary sequences defined as

F2
D = {{Ψ(Trm(pf(βi)) + u)}∞i=0 : (pf(x), u) ∈ P̃2

D}.

Theorem 3.11. The family F2
D has the following properties:

(i) The period of each sequence in F2
D is p(pm − 1).

(ii) The sequences in F2
D are pairwise cyclically distinct.

(iii) |F2
D| = p−1

pm−1

∑
l|(pm−1) μ(l)pm(�D/l�−�D/pl�), where μ(·) is the Möbius func-

tion.
(iv) For the maximal nontrivial correlation θmax of F2

D, we have

θmax ≤ 1

p− 1
plD+1

⌊
phD p2−p

2 (D − 1)
⌊
2p

m
2 −hD

⌋
plD+1

⌋
+ p,

where lD and hD are as in Definition 2.9.
Proof. Item (i) is clear. Next we prove items (ii) and (iii) together. Let (pf(x), u) ∈

P̃2
D with the corresponding p-ary sequence {s(i)}∞i=0. We proceed as in the proof of

Theorem 3.8. Assume that 0 ≤ j ≤ p−1, 0 ≤ t ≤ (pm−1)−1 with the corresponding
p-ary sequence {s2(i)}∞i=0 satisfying s2(i) = s(i + j(pm − 1) + t) for each i ≥ 0. Let

(pg(x), u2) ∈ P̃2
D such that the p-ary sequence {Ψ(Trm(pg(βi))+u2)}∞i=0 is {s2(i)}∞i=0.

Note that pf(x) = (1+p)j(1−p)tpf(x). Let u1 = (1+p)j(1−p)tu and let {s1(i)}∞i=0

be the corresponding p-ary sequence of (pf(x), u1) ∈ P2
D. If either j 	= 0 or t 	= 0,

then (pf(x), u1) 	∈ P̃2
D. As in the proof of Theorem 3.8 we have

Trm(pf(βi) + u1) = Trm(pg(βi) + u2)(3.26)

for each i ≥ 0. Then ρ(u1) = ρ(u2) and hence u2 = u1 + kp, where 0 ≤ k ≤ p − 1.
From (3.26) and Lemma 2.3 we obtain pf(x) = pg(x) + kp. By definition of S(D) in
(2.5), there is no monomial in g(x) and f(x) of degree zero with a nonzero coefficient.
Therefore k = 0 and (pf(x), u1) = (pg(x), u2), which completes the proof of item (ii).
We complete the proof of item (iii) as in the proof of Theorem 3.8.

The proof of item (iv) is similar to the proof of Theorem 3.8 (iv).
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Now we give our main family of the p-ary sequences. Let FD be the family of
p-ary sequences defined as

FD = F1
D ∪ F2

D.

Theorem 3.12. The family FD has the following properties:
(i) The period of each sequence in FD is p(pm − 1).
(ii) The sequences in FD are pairwise cyclically distinct.
(iii)

|FD| =
1

pm − 1

∑
l|(pm−1)

μ(l)p
m(�D

l �−� D
p2l

�)

+
p− 2

pm − 1

∑
l|(pm−1)

μ(l)pm(�D
l �−�D

pl �),

where μ(·) is the Möbius function.
(iv) For the maximal nontrivial correlation θmax of FD, we have

θmax ≤ 1

p− 1
plD+1

⌊
phD p2−p

2 (D − 1)
⌊
2p

m
2 −hD

⌋
plD+1

⌋
+ p,

where lD and hD are as in Definition 2.9.
Proof. Item (i) is clear. Note that any two distinct sequences from F1

D (or

from F2
D) are cyclically distinct. Moreover, if (f(x), u) ∈ P̂1

D, (pg(x), v) ∈ P̃2
D and

0 ≤ j ≤ p− 1, 0 ≤ t ≤ (pm − 1) − 1, then

ρ
(
(1 + p)j(1 − p)tf(βtx)

)
	= 0 and ρ

(
(1 + p)j(1 − p)tpg(βtx)

)
= 0.

We complete the proof of item (ii) using Lemmas 2.3 and 2.5 as in the proof of
Theorem 3.8 (ii).

Now we prove item (iii). Let {s1(i)}∞i=0 and {s2(i)}∞i=0 be the p-ary sequences

of F1
D and F2

D obtained from (f(x), u) ∈ P̂1
D and (pg(x), v) ∈ P̃2

D, respectively. If
s1(i) = s2(i) for each i ≥ 0, then

r0(Trm(f(βi)) + u) = r0(pTrm(g(βi)) + v).(3.27)

Using (3.27) and Lemmas 2.3 and 2.5 we obtain that f(x) = 0, which is a contra-
diction.

We prove item (iv) using the methods of the proof of Theorem 3.8 (iv).
Note that FD is larger than F1

D while the sequences in them have the same period
and the same upper bound for their maximal nontrivial correlation in Theorems 3.8
and 3.12.

Example 3.13. In this example we assume that p = 2. We recall that the
subfamily F1,0

D of F1
D given in Remark 3.10 corresponds to the family of sequences

in [S-K-H] and F1
D corresponds to the family of sequences in [H-K, section 8.8]. For

F1,0
D , F1

D, and FD, we have the same period length and the same upper bounds for
their maximal nontrivial correlation. The size of the family F1

D is twice the size of

the family F1,0
D . In [S-K-H, Table 2], for small values of D, the upper bounds for the

maximal nontrivial correlation of F1,0
D are given. In Table 1, we compare the family

sizes of F1
D and FD for small values of D and m.
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Table 1

Comparison of family sizes of F1
D and FD for p = 2.

m D |F1
D| |FD|

3 2 8 9
5 2 32 33
7 2 128 129

5 3 1024 1057
7 3 16384 16513

5 5 32768 33825
7 5 2097152 2113665

Table 2

Comparison of a family for p = 3 with some families for p = 2 from Theorem 3.12.

p D m L =period logS/ logL θ∗max/
√
L

3 8 9 59049 6.30003 . . . 12.06820 . . .

2 8 21 4194302 4.77272 . . . 9.84472 . . .
2 9 17 262142 5.66667 . . . 11.25394 . . .
2 10 15 65534 6.56252 . . . 12.63300 . . .
2 11 13 16382 7.42867 . . . 13.76646 . . .

Note that the family sizes of the binary sequences in [U-S] are about half of
the family sizes of the binary sequences obtained from Theorem 3.12 for D = 2. For
D = 3, the periods of the binary sequence families match only for one of the families in
[B], which is the family noted as twice shortened Delsarte–Goethals codes in the table
of [B]. For that family, the sizes are similar while the maximal nontrivial correlation
upper bound is better for the sequences from Theorem 3.12. For D ≥ 3 and D ≥ 5,
the binary sequence families from Theorem 3.12 are much larger than the ones from
[U-S] and [B], respectively.

Example 3.14. In this example we compare a sequence family for p = 3 with the
relevant sequence families for p = 2, where the sequences are obtained using Theorem
3.12. For p = 3, D = 8, and m = 9, we get a sequence family of size S and of period
L = 59049 such that

logS

logL
= 6.30003 . . . ,

θmax√
L

≤ 12.06820 . . . .

In Table 2, S denotes the family size and θ∗max denotes the upper bound on the maxi-
mal nontrivial correlation θmax of the corresponding sequence families from Theorem
3.12. For p = 2 and D in Table 2, m is chosen to be the smallest positive odd integer
such that the corresponding family size is at least the size of the sequence family for
p = 3. We observe that the parameters of the sequence family for p = 3 are compa-
rable to the parameters of the other sequence families in Table 2. In particular there
is no sequence family for p = 2 in Table 2 such that logS/ logL is larger than that of
p = 3 and θ∗max/

√
L is smaller than that of p = 3 simultaneously.

Remark 3.15. Let n be a positive divisor of pm − 1 and let ζ = β
pm−1

n be a
primitive nth root of unity. Changing β with ζ and putting a suitable condition on
D, we obtain p-ary codes of length pn and p-ary sequence families of period pn in
an analogous way. Moreover, using the methods of this paper, we can also estimate
the minimum distance of such codes and the maximum nontrivial correlation of such
sequence families.
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4. Conclusion. In this paper, a family of codes over Fp and several families
of pairwise cyclically distinct p-ary sequences of period p(pm − 1) of low correlation
have been constructed as the Gray image and generalized Nechaev–Gray images,
respectively, of some trace codes over Zp2 . The Fp-codes, mostly nonlinear, are of

length pm+1 and size p2 ·pm(D−�D/p2�), where 1 ≤ D ≤ pm/2. A lower bound for their
minimum distance is obtained through the bound of [L-O]. The sequences compare
favorably with certain known p-ary sequences of period pm − 1 (cf. [H-K, Table 4]).
In fact, even in the case p = 2, one of these families is slightly larger than the family
Q(D) of [H-K, section 8.8], while they share the same period and the same bound for
the maximum nontrivial correlation.

Acknowledgments. The authors are thankful to the anonymous referees and
the editor for their helpful comments.

REFERENCES

[B] A. Barg, On Small Familes of Sequences with Low Periodic Correlation, Lecture Notes
in Comput. Sci. 781, Springer-Verlag, Berlin, 1994, pp. 154–158.

[C] C. Carlet, Z2k -linear codes, IEEE Trans. Inform. Theory, 44 (1998), pp. 1543–1547.
[C-H] I. Constantinescu and W. Heise, A metric for codes over residue class rings of

integers, Probl. Inf. Transm., 33 (1997), pp. 208–213.
[G-S] M. Greferath and S. E. Schmidt, Gray isometries for finite chain rings and a non-

linear ternary (36, 312, 15) code, IEEE Trans. Inform. Theory, 45 (1999), pp. 2522–
2524.

[H-K] T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of
Coding Theory, Vol. I, II, V. S. Pless and W. C. Huffman, eds., North-Holland,
Amsterdam, 1998, pp. 1765–1853.

[K-H-C] P. V. Kumar, T. Helleseth, and A. R. Calderbank, An upper bound for Weil
exponential sums over Galois rings with applications, IEEE Trans. Inform. Theory,
41 (1995), pp. 456–468.

[H-K-M-S] T. Helleseth, P. V. Kumar, O. Moreno, and A. G. Shanbhag, Improved estimates
via exponential sums for the minimum distance of Z4-linear trace codes, IEEE
Trans. Inform. Theory, 42 (1996), pp. 1212–1216.

[N] A. A. Nechaev, The Kerdock code in a cyclic form, Discrete Math. Appl., 1 (1991),
pp. 365–384.

[L-N] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge,
UK, 1997.

[L-B] S. Ling and J. T. Blackford, Zpk+1 -linear codes, IEEE Trans. Inform. Theory, 48

(2002), pp. 2592–2605.
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SPARSE DISTANCE PRESERVERS AND ADDITIVE SPANNERS∗

BÉLA BOLLOBÁS† , DON COPPERSMITH‡ , AND MICHAEL ELKIN§

Abstract. For an unweighted graph G = (V,E), G′ = (V,E′) is a subgraph if E′ ⊆ E, and
G′′ = (V ′′, E′′, ω) is a Steiner graph if V ⊆ V ′′, and for any pair of vertices u,w ∈ V , the distance
between them in G′′ (denoted dG′′ (u,w)) is at least the distance between them in G (denoted
dG(u,w)).

In this paper we introduce the notion of distance preserver. A subgraph (resp., Steiner graph)
G′ of a graph G is a subgraph (resp., Steiner) D-preserver of G if for every pair of vertices u,w ∈ V
with dG(u,w) ≥ D, dG′ (u,w) = dG(u,w). We show that any graph (resp., digraph) has a subgraph
D-preserver with at most O(n2/D) edges (resp., arcs), and there are graphs and digraphs for which
any undirected Steiner D-preserver contains Ω(n2/D) edges. However, we show that if one allows a
directed Steiner (diSteiner) D-preserver, then these bounds can be improved. Specifically, we show

that for any graph or digraph there exists a diSteiner D-preserver with O(n2·log D
D·log n

) arcs, and that

this result is tight up to a constant factor.

We also study D-preserving distance labeling schemes, that are labeling schemes that guarantee
precise calculation of distances between pairs of vertices that are at a distance of at least D one from
another. We show that there exists a D-preserving labeling scheme with labels of size O( n

D
log2 n),

and that labels of size Ω( n
D

logD) are required for any D-preserving labeling scheme.

Key words. graph theory, spanners, distance preservation
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1. Introduction. A graph G′ = (V,E′) is a subgraph of an unweighted graph
G = (V,E) if E′ ⊆ E. The distance from a vertex u to a vertex w in G, denoted
dG(u,w), is the number of edges in the shortest (in terms of the number of edges)
path from u to w in G. Note that the distances in a subgraph G′ are no smaller than
the corresponding distances in G. A (possibly weighted) graph G′ = (V ′, E′, ω) is
a Steiner graph of G if V ⊆ V ′, and for any pair of vertices u,w ∈ V , dG′(u,w) ≥
dG(u,w), and for any edge e′ ∈ E′, ω(e′) ≥ 0. Observe that any subgraph G′ of G
is, in particular, a Steiner graph of G. A subgraph or a Steiner graph G′ of G that
approximates (in some sense) all the distances in G is called a spanner. In particular,
for a positive integer parameter κ, G′ is a κ-spanner of G, if for any pair of vertices
u, w in G, dG′(u,w) ≤ κ · dG(u,w). The number κ is called the stretch or distortion
factor of the spanner G′.

Spanners were intensively studied during the last fifteen years. They have multiple
applications in distributed computing [2, 3, 21, 14, 4] and computational geometry
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[10, 13]. Furthermore, constructing a spanner and applying existing algorithms on it
was used as an algorithmic technique in [4, 11, 12, 14].

Peleg and Schäffer [20] have shown that for any positive integer κ and any n-
vertex graph G there exists a subgraph O(κ)-spanner G′ with O(n1+1/κ) edges. Note
that this result indicates a tradeoff between the stretch of the spanner and the number
of edges it uses. This tradeoff was shown to be essentially the best possible in [20], but
some constant factors were improved later on in [1, 9]. These papers also generalized
the result to weighted graphs. Recently, Elkin and Peleg [15, 14] have shown that
the aforementioned tradeoff is tight only as far as the distortion of small distances is
considered, and can be almost eliminated whenever one is interested in approximating
the distances that are greater than a certain constant. Specifically, it is shown there
that for any pair of parameters ε > 0, κ = 1, 2, . . . there exists a threshold β = β(ε, κ)
such that for any n-vertex graph G there exists a subgraph spanner G′ with O(n1+1/κ)
edges such that for any pair of vertices u, w that are at a distance of at least β one
from another in G, the distance in G′ is at most by a factor 1 + ε greater than the
one in G (i.e., dG′(u,w) ≤ (1 + ε) · dG(u,w)). In other words, large distances can be
approximated arbitrarily well by arbitrarily sparse spanners. In view of this result
due to [15], it is natural to ask whether approximation is at all necessary whenever
large distances are under consideration, or, maybe large distances can be preserved
using a sparse spanner.

To address this question, we introduce a notion of a distance preserving subgraph,
briefly, a preserver. A subgraph G′ of a graph G is a D-preserver of G if for every pair
of vertices u,w ∈ V with dG(u,w) ≥ D, dG′(u,w) = dG(u,w). (The same definition
applies to Steiner graphs as well.) We show that any graph (resp., digraph) has a
subgraph D-preserver with at most O(n2/D) edges (resp., arcs), and there are graphs
and digraphs for which any undirected Steiner D-preserver contains Ω(n2/D) edges
(resp., arcs). However, we show that if one allows a directed Steiner (diSteiner) D-
preserver, then these bounds can be improved. Specifically, we show that for any

graph or digraph there exists a diSteiner D-preserver with O(n
2·logD
D·logn ) arcs, and that

this result is tight up to a constant factor. In particular, it follows that for any graph
or digraph there is a diSteiner 1-preserver with O(n2/ log n) arcs. Generalizing this
result, we show that for any graph (resp., digraph) with m ≥ c′ · n3/2 edges (resp.,
arcs), for some small constant c′ > 1, there is a diSteiner 1-preserver with fewer than m
arcs, and that a factor of logn

c log log n (resp., log1−γ n) can be “saved” for m = n2/ logc n

(resp., m = n2/2logγ n) for any c > 0 (resp., 0 < γ < 1). We also show that for
any bipartite graph with m edges and girth greater than 4, any diSteiner 1-preserver
contains at least m arcs, and as there are such graphs with m = (1/2+o(1))n3/2 edges,
it follows that this upper bound cannot be generalized to graphs with m ≤ (1/2)n3/2

edges.

Our proof of the existence of sparse diSteiner preservers uses the following theo-
rem.

Theorem 1.1 (cf. [5]). Let G be an n-vertex graph with average degree d, and
s and t be positive integers such that s ≤ t and n

(
d
t

)
> (s − 1)

(
n
t

)
. Then G contains

a Ks,t (complete bipartite subgraph with one bipartition of size s and another of size
t).

In order to convert our proof of existence of diSteiner D-preservers into a polyno-
mial time algorithm for computing them, we devised a constructive proof of Theorem
1.1. This proof might be of independent interest in the context of Ramsey theory.
From an algorithmic perspective, this proof may serve as an algorithm for computing
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a subgraph isomorphic to Ks,t in a graph that satisfies the assumptions of Theorem
1.1. The complexity of this algorithm is O(n2 · t). We use this result for devising an

algorithm with a running time of O(n4 (log log n)2

log n ) (resp., O(m2 · n)) for computing a

diSteiner 1-preserver (resp., D-preserver) with O(n2/ log n) (resp., O(n
2 logD
D·logn )) arcs

for an arbitrary n-vertex graph with m edges. We remark that any improvement
of a factor of Ω(n) in the running time of an algorithm for constructing a diSteiner
1-preserver would have some interesting applications to efficient computation of dis-
tances in dense graphs (by computing their diSteiner 1-preserver, and performing
distance computations on the 1-preserver, assuming that the latter is sparser than
the original graph).

In particular, our results address the aforementioned question and show that ap-
proximation of large distances is indeed necessary as far as arbitrarily sparse spanners
are considered, as there exist infinite families of graphs in which large distances cannot
be preserved by a sparse spanner.

We also generalize the definition of D-preserver, and say that G′ is a (D, g)-
preserver of G if for any pair of vertices u,w ∈ V such that dG(u,w) ≥ D, we have
dG′(u,w) ≤ dG(u,w) + g. In this context, we show upper and lower bounds on the
maximal number m1 of edges in a graph for which any subgraph (D, g)-preserver

contains at least m1 edges. We show that Ω(n
1+c0/(g+2)

g·Dc0/(g+2) ) = m1 = O(n
1+1/�g/4�

D1/�g/4� ), where

4/3 ≤ c0 ≤ 2, and under the Erdős girth conjecture, c0 = 2. The lower bound serves
also as a lower bound on the minimal number m2 such that any graph has a subgraph
(D, g)-preserver with m2 edges. However, so far we are not able to prove a non-trivial
upper bound on the size of (D, g)-preservers, and, in particular, it is not clear to us
whether these two dual notions m1 and m2 are equal.

We also study the problem of preserving long distances in the context of distance
labeling schemes. Distance labeling scheme is a pair of functions (M,D). The labeling
function M, given a graph G and a vertex v, returns a bit string, often called the label
of v. The query-answering function D, given a pair of labels, returns an estimate of
the distance between the corresponding pair of vertices.

The problem of devising distance labeling schemes with short labels was intro-
duced in [19], and has been intensively studied since then [17, 24, 23]. We consider
D-preserving labeling schemes, that are schemes that satisfy D(M(G, u),M(G,w)) =
dG(u,w) for any graph G = (V,E) and pair of vertices u,w ∈ V such that dG(u,w) ≥
D. We show that there exists a D-preserving labeling scheme with labels of size
O( n

D log2 n), and that labels of size Ω( n
D logD) are required for any D-preserving

labeling scheme.

Related work. We remark that our results on distance preservers that are pre-
sented in this paper were used by us in [6] to derive the first nontrivial bounds for
arbitrarily sparse additive spanners. Specifically, in [6] we devise a construction of

additive O(21/δn(1−δ)
�1/δ�−2
�1/δ�−1 )-spanners with O(n1+δ) edges for any graph and any

δ > 0. In particular, this implies a construction of additive O(n4/9+(2/3)ε)-spanners
with O(n4/3−ε) edges. In the consequent to this paper, these bounds were improved
by Baswana et al. [7].

After our basic results (the existence of subgraph D-preserver with O(n2/D) edges
and the lower bound of Ω(n2/D) on the number of edges in subgraph D-preservers)
were communicated to Mikkel Thorup, he devised [22] a more efficient randomized
procedure for computing a subgraph D-preserver of size O(n2 log n/D) (greater than
optimal by a logarithmic factor). This more efficient procedure uses some techniques
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of [25] from the area of dynamic algorithms. The efficiency of the procedure of [22]
makes it more suitable for algorithmic applications such as (and this is, indeed, the
motivation of [22]) computing shortest paths between pairs of vertices that are at
distance at least D one from another. We use a similar idea to devise D-preserving
labeling schemes.

Our algorithm for constructing sparse diSteiner 1-preservers for general graphs
successively extracts large bipartite cliques and replaces them by directed stars. A
similar idea of extracting large bipartite cliques was used by Feder and Motwani in
[16] for constructing compressions of graphs. The notion of compression graph is
somewhat similar to the notion of Steiner graph, but the distances in a compression
graph may be shorter than the distances in the original graph.

Structure of the paper. In section 2 we discuss the issue of distance preservation,
which is the main topic of this paper. This section is divided into subsection 2.2,
which is devoted to the lower bounds, and subsection 2.3, which is devoted to the upper
bounds. In section 2.3.2 we address the algorithmic aspects of our paper. In particular,
this section contains our constructive proof of Theorem 1.1 and a description of a D-
preserving labeling scheme.

2. Distance preservation.

2.1. Discussion. A subgraph G′ of a graph G = (V,E) is its (α, β)-spanner if
for any pair of vertices u,w ∈ V , dG′(u,w) ≤ α · dG(u,w) + β. Our starting point is
the following result from [15].

Theorem 2.1 (see [15]). Given constants 0 < ε, δ < 1, there is a constant β =
β(δ, ε) = (1/δ)max{log log 1/δ−log ε)(1−1/ log 1/δ),3} such that for any graph G, there exists
a constructible in polynomial time (1+ε, β)-spanner G′ = (V,E′) and Steiner (1+ε, β)-
spanner G′′ = (V ′′, E′′, ω) with |E′| = O(βn1+δ) and |E′′| = O(n1+δ).

(The result about Steiner spanners is implicit in [15].)

Note that Theorem 2.1 implies that for any fixed ε, δ > 0 there exists fixed β′ =
β′(δ, ε) such that for any undirected graph G = (V,E) there exists a subgraph G′ =
(V,E′), E′ ⊆ E with |E′| = O(n1+δ) edges that approximates within a multiplicative
factor of 1+ε all the distances that are already greater than β′. We start with showing
that this result is optimal in the sense that (1 + ε)-approximation is necessary, and,
furthermore, for any fixed δ > 0 there is no fixed β′ = β′(δ) such that for any
undirected graph G = (V,E) there exists a subgraph G′ = (V,E′), E′ ⊆ E with
|E′| = O(n1+δ) edges that preserves all the distances already greater than β′.

To facilitate the discussion, let us introduce some definitions.

Definition 2.2. For an integer D ≥ 1, a subgraph G′ = (V,E′) of a graph
G = (V,E) is said to be a (subgraph) D-preserver of G, if for any pair of vertices
u,w ∈ V with dG(u,w) ≥ D, dG′(u,w) = dG(u,w).

The definition extends in a natural way to Steiner D-preservers.

Definition 2.3. For integer numbers n ≥ 2 and 1 ≤ D ≤ n − 1, let f(D,n)
(resp., fS(D,n)) be the minimal number such that for any n-vertex graph there exists
a subgraph (resp., Steiner) D-preserver with at most f(D,n) (resp., fS(D,n)) edges.
Also, let f̄(D,n) (resp., f̄S(D,n)) be the maximal number m of edges in an n-vertex
graph whose any subgraph (resp., Steiner) D-preserver contains at least m edges.

On directed graphs, let fdir(D,n), f̄dir(D,n), fdir
S (D,n), and f̄dir

S (D,n) denote
the corresponding quantities.

The equality between these dual notions follows from their definitions.

Lemma 2.4. For integer numbers n ≥ 2 and 1 ≤ D ≤ n− 1, f(D,n) = f̄(D,n).
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Proof. By definition of f̄(D,n), there exists an n-vertex graph G0 with f̄(D,n)
edges whose any D-preserver contains at least f̄(D,n) edges. By definition of f(D,n),
for any n-vertex graph G, there exists a D-preserver with at most f(D,n) edges. In
particular, there is a D-preserver of G0 with m′ ≤ f(D,n) edges. As m′ ≥ f̄(D,n),
it follows that f̄(D,n) ≤ f(D,n).

For the opposite direction, note that by the definition of f(D,n), there exists
an n-vertex graph G1 = (V1, E1) such that any D-preserver of G1 contains at least
f(D,n) edges, and at least one of them contains precisely f(D,n) edges. Consider the
D-preserver G′

1 of G1 that contains precisely f(D,n) edges. For any pair of vertices
u,w ∈ V1 such that dG1(u,w) ≥ D, dG′

1
(u,w) = dG1(u,w). Consider some subgraph

G′′
1 = (V1, E

′′
1 ) of G′

1 such that E′′
1 is a strict subset of E′

1 (i.e., E′′
1 ⊂ E′

1). As |E′′
1 | <

|E′
1| = f(D,n), it follows that G′′

1 is not a D-preserver of G1. That is, there is a pair of
vertices u,w ∈ V1 such that dG1(u,w) ≤ D, but dG′′

1
(u,w) > dG1(u,w) = dG′

1
(u,w).

Hence, G′′
1 is not a D-preserver of G′

1 as well. Hence any D-preserver of G′
1 contains

at least f(D,n) edges. As f̄(D,n) is the maximal number of edges in a graph whose
any D-preserver contains at least the same number of edges as the graph itself, it
follows that f(D,n) ≤ f̄(D,n). This concludes the proof.

Analogously, fS(D,n) = f̄S(D,n), fdir(D,n) = f̄dir(D,n) and fdir
S (D,n) =

f̄dir
S (D,n). Also, as any subgraph D-preserver is, in particular, a Steiner D-preserver,

it follows that fS(D,n) = f̄S(D,n) ≤ f(D,n) = f̄(D,n), and fdir
S (D,n) = fdir

S (D,n)
≤ fdir(D,n) = f̄dir(D,n).

2.2. Lower bounds.

2.2.1. Undirected graphs. The following example shows that for 0 < δ < 1
there is no fixed D = D(δ) such that for any undirected n-vertex graph G there exists a
D-preserver G′ with O(n1+δ) edges. Consider a clique of n1/2+δ/2 vertices. (In most
of the cases we ignore the issue of a possible nonintegrality of different quantities;
anyway this affects only the lower order terms), with a path of length D = n1/2−δ/2

attached to every vertex. Denote this graph by G0 = (V0, E0).
Definition 2.5. Given a digraph (resp., undirected graph) G = (V,E), a se-

quence of vertices P = (v0, v1, . . . , vs), s ≥ 0, is called a walk if 〈vi, vi+1〉 (resp.,
(vi, vi+1)) belongs to E, for every integer i, 0 ≤ i ≤ s− 1. A walk P = (v0, v1, . . . , vs)
is a path, if vi 	= vj for all integer i, j, 0 ≤ i, j ≤ s, i 	= j.

Lemma 2.6. f(D,n) = f̄(D,n) = Ω(n2/D2).
Proof. Let W = {w1, w2, . . . , wn/D} be the set of the vertices of the clique, and

U = {u1, u2, . . . , un/D} be the set of the endpoints of the paths that do not belong
to the clique. (Throughout this section it is assumed that D divides n.) Assume also
that wi’s and ui’s are ordered in such a way that for any i = 1, 2, . . . , n/D, wi and ui

are two endpoints of the same path of length D.
Note that |E0| = Θ(n1+δ) = Θ(n2/D2); see Figure 1. Also, observe that no strict

subgraph of G0 may serve as a D-preserver for G0. This is because removing an
edge from one of the paths makes the graph disconnected. In particular, in this case
the distance between the nonclique endpoint of the path from which the edge was
removed, and an endpoint of some other path, becomes infinity, and it is 2D− 1 ≥ D
in G0. Also, removal of some clique edge (wi, wj), i 	= j, i, j = 1, 2, . . . , n/D results
in increasing the distance between ui and uj . Note that dG0

(ui, uj) ≥ 2D. Hence,
f̄(D,n) = Ω(n2/D2). Therefore, by Lemma 2.4, f(D,n) = Ω(n2/D2).

Note that f(D,n) = Ω(n2/D2) and f(D,n) = O(n1+δ) implies D = Ω(n1/2−δ/2).
In other words, for any 0 < δ < 1, there are n-vertex graphs for which any subgraph
with O(n1+δ) edges is not a D-preserver for any D = o(n1/2−δ/2).
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w1
w2

w u2

u1

u
n/Dn/D

Fig. 1. A clique of size n/D between vertices w1, w2, . . . , wn/D, with a path of length D attached

to each wi, that connects it to ui. This example implies that f(D,n) = Ω(n2/D2).

Note, however, that the graph G0 does admit a Steiner 1-preserver of linear size.
In this Steiner graph V ′

0 = V0 ∪ {s}, and the clique of size n/D in G0 is replaced in
G′

0 by a star rooted in the new vertex s. All the edges of this star are of weight 1/2.
The paths remain unchanged.

Next, we show that

f̄S(D,n) ≥ n2/4D.(1)

This improves the lower bound of Lemma 2.6 in two respects. First, this lower bound
applies to Steiner D-preservers, while the lower bound of Lemma 2.6 applies only to
subgraph D-preservers. Second, this lower bound is stronger by a factor of Θ(D) than
that of Lemma 2.6.

Consider the following example. Let G1 = (V1, E1) be an n/2×n/2D complete bi-
partite graph between the vertex sets X = {x1, x2, . . . , xn/2} and Y = {y1, y2, . . . , yn/2D}
with paths of length (D − 1) attached to each yi, that connect yi with zi for i =
1, 2, . . . , n/2D. It is easy to see that the only subgraph D-preserver of G1 is G1 itself.
As the graph contains |E| ≥ n2/4D edges, a lower bound of f(D,n) = f̄(D,n) ≥
n2/4D follows. Let 	G1 be the digraph obtained by replacing every edge of G1 by two

arcs, one in each direction. As the only subgraph D-preserver of 	G1 is 	G1, a lower
bound on fdir(D,n) follows:

fdir(D,n) = f̄dir(D,n) ≥ n2/2D.(2)

However, the analogous lower bound for Steiner D-preservers applies only to the
undirected case and requires a more delicate treatment (it is easy to see that 	G1

admits a directed Steiner 1-preserver with a linear number of edges).
Consider an (undirected) Steiner D-preserver G′

1 = (V ′
1 , E

′
1, ω) of G1. Assume,

without loss of generality, that ω(e) > 0 for an edge e ∈ E′. (Recall that by the
definition of a Steiner graph, ω(e) ≥ 0.) Indeed, consider an edge e = (u,w) such that
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ω(e) = 0. First, note that either u ∈ V ′
1 \V1 or w ∈ V ′

1 \V1 (or both of them). This is
because if u,w ∈ V1, then dG′

1
(u,w) ≥ dG1(u,w), by the definition of a Steiner graph.

Therefore, the edge (u,w) can be contracted (and if one of the vertices belongs to V1,
then the other one is eliminated) without changing the distances between the pairs of
vertices s, t ∈ V1.

In addition, for every pair (i, j) ∈ {1, 2, . . . , n/2} × {1, 2, . . . , n/2D}, let us asso-
ciate a shortest path Pi,j between xi and zj in G′

1.
For some fixed index i ∈ {1, 2, . . . , n/2}, consider the set of paths {Pij | j ∈

{1, 2, . . . , n/(2D)}. Let ej denote the edge of Pij that is adjacent to xi.
Lemma 2.7. For each pair of distinct indices j, 
, 1 ≤ j, 
 ≤ n/(2D), ej 	= e�.
Proof. Suppose for contradiction that for some pair of distinct indices j, 
 ∈

{1, 2, . . . , n/(2D)}, ej = (xi, wj) = e�. Observe that by triangle inequality, dG′
1
(zj , z�)

≤ dG′
1
(wj , zj) + dG′

1
(wj , z�). Also, as wj lies on the shortest path Pij between xi and

Zj , it follows that dG′
1
(wj , zj) = dG′

1
(xi, zj) − ω((xi, wj)) < D.

Analogously, as wj lies on the shortest path Pi� between Xi and zj , it follows that
dG′

1
(wj , z�) < D. Consequently, DG′

1
(zj , z�) < 2D = dG1(zj , z�)—a contradiction.

Consider the edge set Hi = {ej | j ∈ {1, 2, . . . , n/(2D)}. It follows that |Hi| =
n/(2D). Observe also that for two distinct indices i, k ∈ {1, 2, . . . , n/2}, the edge sets
Hi and Hk are disjoint. (As each edge of Hi is adjacent to the vertex xi, and each
vertex of Hk is adjacent to the vertex xk, and i 	= k. It is also easy to see that the
edge (xi, xk) cannot belong to Pij or Pkj .)

Hence |E′
1| ≥

∑n/2
i=1 |Hi| = n2/(4D), as required. This is summarized in the

following corollary.
Corollary 2.8. For all integer numbers n ≥ 2 and 1 ≤ D ≤ n− 1, fS(D,n) =

f̄S(D,n) ≥ n2/4D.

2.2.2. Directed graphs and distance-preserving labeling schemes. We
next turn to proving a lower bound on f̄dir

S (D,n) = fdir
S (D,n).

Consider again the digraph 	G1 mentioned in section 2.2.1. Recall that the
only subgraph D-preserver of 	G1 = (V1, 	E1) is the digraph itself (see inequality (2)
and, also, any undirected Steiner D-preserver of this graph requires Ω(n2/D) edges.
However, as we mentioned, this digraph does admit a directed Steiner 1-preserver
G′

1 = (V ′
1 , E

′
1, ω) with a linear number of edges. Specifically, V ′

1 = V1 ∪ {sl, sr}.
Every vertex x ∈ X ⊆ V1 is connected via an outgoing arc 〈x, sl〉 to sl, and via
an incoming arc 〈sr, x〉 to sr. Also, every vertex y ∈ Y ⊆ V1 is connected via an
incoming arc 〈sl, y〉 to sl, and via an outgoing arc 〈y, sr〉 to sr. All these arcs are
of weight 1/2. The paths between yi and zi for i = 1, 2, . . . , n/2D are not modified.
It is easy to see that for every pair of vertices u,w ∈ V1, dG′

1
(u,w) = d�G1

(u,w).

Also, |E′
1| ≤ 3/2n + n/D. Hence, the digraph 	G1 cannot serve as an example that

shows that fdir
S (D,n) = Ω(n2/D). Furthermore, we will show in section 2.3 that this

claim is not true, and fdir
S (D,n) = O(n

2 logD
D logn ). In particular, it will follow that for

D = O(1), for any digraph there is a directed Steiner D-preserver with O(n2/ log n)
arcs, where all the arcs are of weight 1 or 1/2. This separates the directed case from
the undirected one, as fS(D,n) = Ω(n2/D) (see Corollary 2.8). Generalizing this
upper bound, it will be shown there that for any digraph with O(n2/2logγ n) arcs,

0 < γ < 1, a factor of Θ( log1−γ n
log log n ) can be “saved” using a diSteiner 1-preserver. Fur-

thermore, some constant factor can be “saved” all the way to n3/2. We next argue
that there are n-vertex graphs G with m = Ω(n3/2) arcs such that any diSteiner
1-preserver of G contains at least m arcs.
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Let G = (U,W,E) be a bipartite graph with girth greater than 4. In other words,
G contains no subgraph isomorphic to K2,2 (the complete bipartite graph with two
vertices in each bipartition).

We next argue that every diSteiner 1-preserver of G contains at least |E| arcs.
Lemma 2.9. Let G′ = (V ′, E′, ω) be a diSteiner 1-preserver of G. Then |E′| ≥

|E|.
Proof. Let G′ be a diSteiner 1-preserver of the bipartite graph G = (U,W,E). It

follows that for any edge e = (u,w) ∈ E there exists a path Pe = Pu,w in G′ of length
1. Associate such a path Pe with every edge e ∈ E (if there are several such paths,
pick one of them arbitrarily). We next argue that∣∣∣∣∣

⋃
e∈E

E′(Pe)

∣∣∣∣∣ ≥ |E|.

This would imply |E′| ≥ |E|, as |E′| ≥ |
⋃

e∈E E′(Pe)|.
Consider an arbitrary ordering (e1, e2, . . . , e|E|) of the edges of E. Let Ek =⋃k

i=1 E
′(Pei).

Lemma 2.10. |Ek| ≥ k, for every integer k, 1 ≤ k ≤ |E|.
Proof. The proof is by induction on k. For the induction base (k = 1), note that

|E1| = |E′(Pe1)| ≥ 1.
Assume the induction hypothesis for some k, 1 ≤ k ≤ |E|−1. It remains to argue

that |Ek+1 \ Ek| ≥ 1. Let ek+1 = (u,w). Let E(u,w) = {(u′, w′) ∈ {e1, e2, . . . , ek} |
E′(Pu′,w′)∩E′(Pu,w) 	= ∅}. Observe that for any edge (u′, w′) ∈ E(u,w), either u = u′

or w = w′. Indeed, otherwise let s ∈ V ′(Pu,w) ∩ V ′(Pu′,w′). Denote by Pu,s (resp.,
Pu′,s) the subsegment of Pu,w (resp., Pu′,w′) from u (resp., u′) to s, and by Ps,w

(resp., Ps,w′) the subsegment of Pu,w (resp., Pu′,w′) from s to w (resp., w′). Note that
1 = |Pu,w| = |Pu,s| + |Ps,w| = |Pu′,w′ | = |Pu′,s| + |Ps,w′ |. Suppose for contradiction
that |Pu,s| < |Pu′,s|. But then d′G(u,w′) ≤ |Pu,s| + |Ps,w′ | < |Pu′,s| + |Ps,w′ | =
|Pu′,w′ | = 1 ≤ dG(u,w′), i.e., dG′(u,w′) < dG(u,w′), contradiction. The assumption
|Pu′,s| < |Pu,s| yields a contradiction in an analogous way. Hence, |Pu′,s| = |Pu,s|.

It follows that dG′(u,w) = dG′(u′, w′) = dG′(u,w′) = dG′(u′, w) = 1 = dG(u,w) =
dG(u′, w′) = dG(u,w′) = dG(u′, w). That is, (u,w), (u′, w′), (u,w′), (u′, w) ∈ E, con-
tradicting the assumption that no K2,2 is contained in G.

So, for any edge (u′, w′) ∈ E(u,w) either u = u′ or w = w′. Note also that as
(u,w) 	∈ {e1, . . . , ek}, it follows that (u,w) 	∈ E(u,w), and thus either u 	= u′ or w 	=
w′. Let Eu(u,w) = {(u′, w′) ∈ E(u,w) | u = u′} and Ew(u,w) = {(u′, w′) ∈ E(u,w) |
w = w′}; as we argued, E(u,w) = Eu(u,w) ∪ Ew(u,w), and, Eu(u,w) ∩ Ew(u,w) = ∅.

We next define an order relation ≤v of the vertices of V ′(Pu,w) as follows. For a
pair of vertices x, y ∈ V ′(Pu,w), x ≤v y if and only if dG′(u, x) ≤ dG′(u, y).

Observe that for any edge (u,w′) ∈ Eu(u,w), its corresponding path Pu,w′ “branches
out” of the path Pu,w at some point. Let s(w′) be the biggest vertex in V ′(Pu,w) ∩
V ′(Pu,w′) with respect to the order relation ≤v. We also define an order relation ≤e

on the edges of Eu(u,w) as follows. For a pair of edges (u,w1), (u,w2) ∈ Eu(u,w),
(u,w1) ≤e (u,w2) if and only if s(w1) ≤v s(w2).

Analogously, for any edge (u′, w) ∈ Ew(u,w), let s(u′) be the smallest vertex of
V ′(Pu,w)∩ V ′(Pu′,w) with respect to the order relation ≤e. The order relation ≤e on
the edges of Ew(u,w) is defined in an analogous way.

Let (u,w′) be the biggest edge in Eu(u,w), and (u′, w) be the smallest edge in
Ew(u,w) (both with respect to the order relation ≤e; if there are several biggest edges,
arbitrarily pick one of them).
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Observe that by definition of Eu(u,w) and Ew(u,w), u, u′, w, w′ are distinct ver-
tices of V (G). Let s(w′) be the biggest vertex of V ′(Pu,w) ∩ V ′(Pu,w′), and s(u′)
be the smallest vertex of V ′(Pu,w) ∩ V ′(Pu′,w). It follows that s(u′) >v s(w′), as
otherwise it would follow that the vertices u, u′, w, and w′ form K2,2 in G, which
is a contradiction. Let Ps(w′),s(u′) denote the subsegment of Pu,w between s(w′) and
s(u′). It remains to be argued that

E′(Ps(w′),s(u′)) ∩
⋃
e∈Ek

E′(Pe) = ∅.(3)

Indeed, suppose for contradiction that there exists an edge e ∈ Ek such that E′(Pe)∩
E′(Ps(w′),s(u′)) 	= ∅. It follows that e ∈ E(u,w) = Eu(u,w) ∪ Ew(u,w). Recall that
Eu(u,w) ∩ Ew(u,w) = ∅. Hence e ∈ Eu(u,w) or e ∈ Ew(u,w).

Consider the case e ∈ Eu(u,w) (the case is e ∈ Ew(u,w) is analogous). Then e =
(u,w′′) for some w′′ ∈ W . Observe that as E′(Pe)∩E′(Ps(w′),s(u′)) 	= ∅, s(u′), s(w′) ∈
V ′(Pe)∩V ′(Ps(w′),s(u′)), and so there exists a vertex z 	= s(w′) such that z ∈ V ′(Pe)∩
V ′(Ps(w′),s(u′)). Note that z ∈ V ′(Pe) and s(w′) <v z. Observe also that z ≤v s(w′′).
It follows that s(w′) <v s(w′′), and so (u,w′) <e (u,w′′), contradicting the assumption
that the edge (u,w′) is the biggest in Eu(u,w) with respect to the order ≤e. Now (3)
follows.

This completes the proof of Lemma 2.9.
Corollary 2.11. There are n-vertex graphs G with m ≥ (1/2 + o(1))n3/2 edges

such that any diSteiner 1-preserver of G contains at least m arcs.
Proof. It is well known (see, e.g., [8]) that there are bipartite graphs G0 with

(1/2 + o(1))n3/2 edges with girth(G0) > 4. The corollary follows by orienting all its
arcs consistently from one bipartition to another, and using Lemma 2.9.

In what follows we show that f̄dir
S (D,n) = fdir

S (D,n) = Ω(n
2 logD
D logn ).

Let G be the family of graphs with a common vertex set V . The vertex set V is
comprised of X = {x1, x2, . . . , xn/2}, Y = {y1, y2, . . . , yn/(4D)}, Z = {z1, z2, . . . , zn/4D},
and vertices of the paths connecting yj to zj for every j = 1, 2, . . . , n/4D, 2D − 2
vertices apart from yj and zj in each path. For every graph G ∈ G, its edgeset con-
tains the paths of length 2D− 1 from yj to zj for every j = 1, 2, . . . , n/4D. For every
j = 1, 2, . . . , n/4D and l = 1, 2, . . . , 2D− 1, let y0

j denote yj , and ylj denote the vertex
that is at distance l from yj , and is located on the path connecting yj and zj . (In
particular, y2D−1

j = zj .) In addition, for every i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/4D,

G contains precisely one arc from xi to ylj , for some l = 0, 1, . . . , D − 1. All the arcs
are unit-weight. The family G consists of all the digraphs G that can be constructed
this way.

It follows that

|G| = Dn/2·n/4D = 2
n2 log D

8D .(4)

We need the following definition.
Definition 2.12. The graph G′ is a (D, g)-preserver of G = (V,E) if for every

pair of vertices u,w ∈ V such that dG(u,w) ≥ D, dG(u,w) ≤ dG′(u,w) ≤ dG(u,w) +
g.

Lemma 2.13. Let G′
1 and G′

2 be Steiner (D, 1/3n)-preservers of two distinct
n-vertex graphs G1, G2 ∈ G. Then G′

1 	= G′
2.

Proof. As G1 	= G2, there exists a pair (i, j) ∈ {1, 2, . . . , n/2} × {1, 2, . . . , n/4D}
such that 〈xi, y

l1
j 〉 ∈ E(G1), 〈xi, y

l2
j 〉 ∈ E(G2), and l1 	= l2. For these i and j,
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|dG1
(xi, zj) − dG2

(xi, zj)| ≥ 1. Observe also that as l1, l2 ≤ D − 1, it follows that
dG1(xi, zj), dG2(xi, zj) ≥ (2D−1)− (D−1)+1 = D+1. It follows that |dG′

1
(xi, zj)−

dG′
2
(xi, zj)| ≥ |dG1(xi, zj)−dG2(xi, zj)|−2/3n ≥ 1−2/3n > 0, for any n = 1, 2, . . ..

Hence, dG′
1
(xi, zj) 	= dG′

2
(xi, zj). It follows that G′

1 	= G′
2.

Fix n and consider the family G of n-vertex digraphs discussed above. Let V =
(v1, v2, . . . , vn) be an arbitrary ordering of the (common to all graphs of G) vertex
set V . For a distance labeling scheme (M,D) and a graph G ∈ G, let M(G) =
M(G, v1) ·M(G, v2) · · · · ·M(G, vn), where “·” stands for concatenation. It is easy to
see that, without loss of generality, we can restrict our attention to labeling schemes
that assign labels of the same size to all the vertices for all graphs of G.

Lemma 2.14. Let (M,D) be a distance-labelling D-preserving scheme and G1, G2

∈ G, G1 	= G2. Then M(G1) 	= M(G2).
Proof. Similar to the proof of Lemma 2.13, since G1 	= G2, there exists a

pair of vertices xi, zj ∈ V such that dG1(xi, zj), dG2(xi, zj) ≥ D, and dG1
(xi, zj) 	=

dG2(xi, zj).
As (M,D) is a D-preserving scheme, it follows that D(M(G1, xi),M(G1, zj)) =

dG1
(xi, zj) and D(M(G2, xi),M(G2, zj)) = dG2

(xi, zj). Hence, D(M(G1, xi),
M(G1, zj)) 	= D(M(G2, xi),M(G2, zj)). Hence, either M(G1, xi) 	= M(G2, xi) or
M(G1, zj) 	= M(G2, zj) (or both). In either case, M(G1) 	= M(G2).

Let ϕ be an arbitrary representation function of the Steiner (D, 1/3n)-preservers
of graphs from the family G. Specifically, with each graph G ∈ G, ϕ associates a
bit string of fixed length k, that determines uniquely some specific Steiner (D, 1/3n)-
preserver G′ of G. Note that by Lemma 2.13, ϕ is injective. Indeed, if G′ = ϕ(G1) =
ϕ(G2), then G′ is a Steiner (D, 1/3n)-preserver of both G1 and G2, and so, by Lemma
2.13, G1 = G2. Hence, by (4), we have the following corollary.

Corollary 2.15. For every representation function ϕ of the Steiner (D, 1/3n)-
preservers of G, the length k (in terms of the number of bits) of the representation bit

string is k ≥ log |{ϕ(G) | G ∈ G}| = log |G| = n2 logD
8D .

Note that if the representation function is allowed to use representations of dif-
ferent lengths, then the number of graphs that can be encoded by it is greater than
the one in Corollary 2.15 by at most a constant factor.

Analogously, Lemma 2.14 implies a lower bound on D-preserving distance labeling
schemes. Note that all the lower bounds in this section apply both to the directed
and undirected graphs. However, for undirected Steiner graphs stronger lower bounds
were shown in section 2.2.1. This is not the case for the distance labeling schemes,
where the lower bound below is the strongest that we are able to prove.

Corollary 2.16. Every distance labeling D-preserving scheme requires labels of
size Ω(n logD

D ) bits.

Intuitively, the last stage of the proof of the lower bound fdir
S (D,n) = Ω(n

2 logD
D logn )

is proving that using nonrational (or even rational but having a very large denomi-
nator) weights cannot help saving arcs of the diSteiner D-preservers. This is done in
the next theorem. The technique of getting rid of the nonrational weights in a Steiner
graph that is used in the proof is adapted from [1], where Steiner spanners with a
multiplicative approximation of distances are studied.

Theorem 2.17. For an integer n ≥ 2, the family of n-vertex digraphs G defined
above, and an integer D, 1 ≤ D ≤ n − 1, let ρ : G → G′ be a function assigning to
every digraph G ∈ G a diSteiner D-preserver G′. Then there exists a digraph G ∈ G
such that G′ = ρ(G) contains Ω(n

2 logD
D logn ) arcs.

Proof. Consider a mapping ρ′ : G′ → G′′ which, given a digraph G′ = (V ′, E′, ω),
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constructs a digraph G′′ = (V ′, E′, ω′), where for every arc e ∈ E′, ω′(e) is defined
to be the smallest rational number with denominator 1/3n3 that is no smaller than
ω(e). Let ρ′′ : G → G′′ be the composition of ρ and ρ′.

Suppose for contradiction that for any digraph G ∈ G, its diSteiner D-preserver

G′ = ρ(G) contains less than n2 logD
6·(8D logn) arcs. In particular, it follows that for any

digraph G ∈ G, its diSteiner D-preserver G′ = (V ′, E′, ω) has at most n2 vertices.
Hence for any pair of vertices u,w ∈ V ′, any simple path from u to w in G′ contains
no more than n2 arcs. As for every arc e ∈ E′, |ω(e)− ω′(e)| ≤ 1/3n3, it follows that
for any simple path P from u to w in G′, |ω(P ) − ω(P ′)| ≤ n2/3n3 = 1/3n.

As G′ is a diSteiner D-preserver of G, it follows that ρ′(G′) = G′′ is a diSteiner
(D, 1/3n)-preserver of G. Observe also that for any G ∈ G, the digraphs G′ = ρ(G)
and G′′ = ρ′′(G) have the same arcset. By our assumption, for every digraph G ∈
G, G′ = ρ(G) contains less than n2 logD

6·(8D logn) arcs. It follows that for every digraph

G ∈ G, G′′ = ρ′′(G) contains less than n2 logD
6·(8D logn) arcs. Observe also that for any arc

e ∈ E(G′′), its weight in G′′ is a rational number. As all the distances in G are no
greater than n− 1 and G′′ is a diSteiner (D, 1/3n)-preserver, we assume, without loss
of generality, that all the arcs in G′′ have weight that is no greater than n. Hence,
every arc e ∈ E(G′′) can be represented by a bit string α(e) of length 6 logn, by
writing down the identities of its endpoints (2 logn bits) and the numerator of its
weight (at most log n4 = 4 log n bits).

The representation function ϕ is now formed out of ρ by concatenating in an
arbitrary but fixed order the strings α(e) for different arcs e ∈ E(G′′). Observe that
for any digraph G ∈ G, ϕ(G) determines uniquely a diSteiner (D, 1/3n)-preserver G′′

of G and ϕ(G) contains n2 logD
6·(8D logn)6 log n = n2 logD

8D logn bits. However, this contradicts

Corollary 2.15.
Hence there is a digraph G ∈ G such that its diSteiner D-preserver ρ(G) = G′

contains at least n2 logD
48D logn arcs.

2.2.3. (D, g)-preservers. In this section we prove a lower bound on the cardi-
nality of subgraph (D, g)-preservers.

To facilitate the discussion about (D, g)-preservers, we generalize Definition 2.3
in the following way.

Definition 2.18. For n ≥ 2, and 1 ≤ D, g ≤ n−1, let f(D, g, n) be the minimal
number such that for any n-vertex graph there exists a (D, g)-preserver with at most
f(D, g, n) edges, and let f̄(D, g, n) be the maximal number of edges in an n-vertex
graph whose only subgraph (D, g)-preserver is the graph itself.

The following lemma follows directly from the definition.
Lemma 2.19. For n ≥ 2 and 1 ≤ D, g ≤ n− 1, we have f(D, g, n) ≥ f̄(D, g, n).
However, unlike the case with no additive error, no upper bound on f(D, g, n) in

terms of f̄(D, g, n) is known to the authors.
We next show a lower bound on f̄(D, g, n), which serves, consequently, as a lower

bound on f(D, g, n).
The lower bound on the size of an extremal n-vertex graph of girth g stands

currently on Ω(n1+c0/(g−1)) [5], for c0 = 4/3; Erdős conjectured that c0 = 2.
Theorem 2.20. For integer numbers n, D and g, D, g ≥ 2, and n sufficiently

large, f(D, g, n) ≥ f̄(D, g, n) ≥ n1+c0/(g+2)

2g·Dc0/(g+2) .

Proof. Set L = �n/2D�. There exists a constant 1 ≤ c0 ≤ 2 such that there exists
an L-vertex graph G0 = (V0, E0) with girth(G0) ≥ g + 2 and |E0| ≥ L1+c0/(g+2) (cf.
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[8]). Denote the vertices of G0 by the numbers 1, 2, . . . , L (that is, V0 = {1, 2, . . . , L}).
To build the graph G(D,g), we begin with L paths of length D: vertices vij , i =

1, 2, . . . , L, j = 1, 2, . . . , D, and edges (vij , vi,j+1), i = 1, 2, . . . , L, j = 1, 2, . . . , D − 1.
Add L ·D/�g/2� vertices wij , i = 1, 2, . . . , L, j = 1, 2, . . . , D/�g/2�, and for any

i = 1, 2, . . . , L, j = 1, 2, . . . , D/�g/2� connect vi1 to wij by a path of length �g/2�.
(Small corrections should be made if �g/2� does not divide D.)

For each j, j = 1, 2, . . . , D/�g/2�, construct an isomorphic copy of G0 using the
vertices {wij}Li=1. Specifically, for each j, j = 1, 2, . . . , D/�g/2�, for every i, h =
1, 2, . . . , L, add the edge (wij , whj) if and only if (i, h) ∈ E0.

The number of vertices is L · (D + �g/2� ·D/�g/2�) = 2LD = 2D�n/(2D)� ≤ n;
add n− 2DL vertices to one of the paths to absorb the slack, giving G(D,g) exactly n
vertices (i.e., |V (D,g)| = n).

The number of the edges is

|E(D,g)| ≥ L · (D − 1) + (L ·D/�g/2�) · �g/2� + n− 2DL

+ �n/2D�1+c0/(g+2) ·D/�g/2�)

≥ n− �n/2D� +
n1+c0/(g+2) · 2D

21+c0/(g+2)D1+c0/(g+2)�g/2� ≥ n1+c0/(g+2)

2gDc0/(g+2)
.

Let us argue that G(D,g) is the only subgraph (D, g)-preserver of itself.
Indeed, removing a path edge e = (vij , vi+1,j) for some i = 1, 2, . . . , D − 1,

j = 1, 2, . . . , L makes the graph disconnected, and, in particular, dG(wij′ , viD) ≥ D,
and dGe(wij′ , viD) = ∞, for any j′ = 1, 2, . . . , D/�g/2�.

Removing an edge from a path that connects vi1 with wij for some i = 1, 2, . . . , L,
j = 1, 2, . . . , D/�g/2� increases the distance between wij and viD by at least g + 1.

Finally, removing an edge (wij , whj) increases the distance from whj to viD by at
least g+1, since for any j = 1, 2, . . . , D/�g/2�, the graph G(D,g)({wij | i = 1, 2, . . . , L})
has girth equal to g + 2.

2.3. Upper bounds. We start by introducing some definitions.
Definition 2.21. Given a path P = (v0, v1, . . . , vs), and an arc 〈vi, vi+1〉 ∈ P ,

let prefix (P, 〈vi, vi+1〉) (resp., suffix (P, 〈vi, vi+1〉)) denote the path (v0, . . . , vi) (resp.,
(vi+1, . . . , vs)). The head (resp., tail) of P , denoted head(P ) (resp., tail(P )) is v0

(resp., vs).
For a digraph (resp., undirected graph) G = (V,E) and an arc (resp., edge) e ∈ E,

let Ge denote the digraph (resp., undirected graph) (V,E \ {e}).
In an undirected graph G = (V,E), given a walk P = (v0, . . . , vs), and an edge

e = (vi, vi+1) ∈ P , the (e, vi)-endpoint of P , denoted endpoint(P, e, vi), is v0. The
(e, vi)-subpath of P , denoted by subpath(P, e, vi), is (v0, . . . , vi).

Given two walks P1 = (v0, . . . , vs) and P2 = (vs, . . . , vt+s), t, s ≥ 0, the concate-
nation P1 · P2 is the walk (v0, . . . , vt+s). Obviously, the concatenation is associative,
and so P1 · P2 · · · · · Pr is well defined, whenever for any i = 1, . . . , r − 1, Pi · Pi+1 is
defined.

Definition 2.22. Given a digraph G = (V,E) and a positive integer distance
threshold D, the D-path associated with an arc e, denoted by P (e,D), is one of the
shortest paths between its endpoints head(P (e,D)) and tail(P (e,D)) such that

dG(head(P (e,D)), tail(P (e,D))) = |P (e,D)| ≥ D,(5)

dGe
(head(P (e,D)), tail(P (e,D))) > dG(head(P (e,D)), tail(P (e,D))).(6)
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Given an undirected graph G = (V,E) and a positive integer D, the D-path associ-
ated with the edge e = (v, z), denoted P (e,D), is one of the shortest paths between
endpoint(P (e,D), e, v) and endpoint(P (e,D), e, z) such that

dG(endpoint(P (e,D), e, v), endpoint(P (e,D), e, z)) = |P (e,D)| ≥ D,

dGe(endpoint(P (e,D), e, v), endpoint(P (e,D), e, z)) >

dG(endpoint(P (e,D), e, v), endpoint(P (e,D), e, z)).

Note that such a path may not exist, and, on the other hand, there may be several
such paths. In the latter case, set P (e,D) to be such an arbitrary path.

Throughout the section, whenever the value of D is clear from the context, we
use the notation P (e) instead of P (e,D).

2.3.1. Distance preservers. We start by presenting an almost matching (up
to a constant factor of 4) upper bound on the size of possible distance D-preservers.

Lemma 2.23. For integer numbers n ≥ 2 and 1 ≤ D ≤ n− 1,

fdir(D,n) = f̄dir(D,n) ≤ 2n(n−1)/(D+1), f(D,n) = f̄(D,n) ≤ n(n−1)/(D+1).

Proof. We first consider the directed case. Suppose, without loss of generality,
that for every arc e ∈ E, the path P (e) = P (e,D) exists. (Indeed, an arc e for which
P (e) does not exist can be safely removed from the graph.)

Consider some vertex v ∈ V . We next argue that for any two arcs that are
outgoing from v, e1 = 〈v, z1〉, e2 = 〈v, z2〉,

V (suffix (P (e1), e1)) ∩ V (suffix (P (e2), e2)) = ∅.

Suppose for contradiction that some vertex w ∈ V (suffix (P (e1), e1))∩V (suffix (P (e2), e2)).
Then, dGe1

(head(P (e1)), tail(P (e1))) > dG(head(P (e1)), tail(P (e1))), and
dGe2

(head(P (e2)), tail(P (e2))) > dG(head(P (e2)), tail(P (e2))).
For i = 1, 2, let P ′

i , P
′′
i and P ′′′

i be the segments of P (ei) from head(P (ei)) to v,
from v to w, and from w to tail(P (ei)), respectively; see Figure 2.

P’

P’
P’’

P’’
P’’’

P’’’

1

2

2

1

1

2

v w

e

e2

tail(P(e  ))

tail(P(e  ))

head(P(e  ))

head(P(e  ))1

2

1

1

2

Fig. 2. The subpaths of P (e1) and P (e2).

Note that since P (e1) is the shortest path between head(P (e1)) and tail(P (e1))
in G, dG(head(P (e1)), tail(P (e1))) = |P ′

1| + |P ′′
1 | + |P ′′′

1 |.
Consider the walk P12 = P ′

1 · P ′′
2 · P ′′′

1 . Note that P12 is a walk between head(P1)
and tail(P1) in E \ {e1}. Hence,

|P ′
1| + |P ′′

2 | + |P ′′′
1 | ≥ dGe1

(head(P (e1)), tail(P (e1)))

> dG(head(P (e1)), tail(P (e1))) = |P ′
1| + |P ′′

1 | + |P ′′′
1 |.

Hence |P ′′
2 | > |P ′′

1 |. However, analogously, it follows that |P ′′
1 | > |P ′′

2 |—a contradic-
tion.
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Therefore, the set Pout(v) = {suffix (P (〈v, z〉), 〈v, z〉) | 〈v, z〉 ∈ E} consists of
vertex-disjoint paths.

Analogously, it follows that the set Pin(v) = {prefix (P (〈z, v〉), 〈z, v〉) | 〈z, v〉 ∈ E}
consists of vertex-disjoint paths.

Note that for every vertex v ∈ V and path P ∈ Pin(v)∪Pout(v), the node v does
not belong to V (P ). Thus,∑

P∈Pout(v)

|V (P )|,
∑

P∈Pin(v)

|V (P )| ≤ |V \ {v}| = n− 1.

Thus,

∑
v∈V

⎛
⎝ ∑

P∈Pin(v)

|V (P )| +
∑

P∈Pout(v)

|V (P )|

⎞
⎠ ≤ 2n(n− 1).

Also, since for any arc e ∈ E, |P (e)| ≥ D,

∑
v∈V

⎛
⎝ ∑

P∈Pin(v)

|V (P )| +
∑

P∈Pout(v)

|V (P )|

⎞
⎠

=
∑
v∈V

⎛
⎝ ∑

〈z,v〉∈E

|V (prefix (P (〈z, v〉), 〈z, v〉))| +
∑

〈v,z〉∈E

|V (suffix (P (〈v, z〉), 〈v, z〉))|

⎞
⎠

=
∑

〈v,z〉∈E

(|V (prefix (P (〈v, z〉), 〈v, z〉))| + |V (suffix (P (〈v, z〉), 〈v, z〉))|)

=
∑

〈v,z〉∈E

(|prefix (P (〈v, z〉), 〈v, z〉)| + 1 + |suffix (P (〈v, z〉), 〈v, z〉)| + 1)

=
∑

〈v,z〉∈E

(|P (〈v, z〉)| + 1) =
∑

〈v,z〉∈E

|P (〈v, z〉)| + |E| ≥ |E| ·D + |E|.

Thus, |E| · (D + 1) ≤ 2n(n− 1).
For an undirected graph G = (V,E), the analogous argument provides an upper

bound which is smaller by a factor of 2.
Note that the inequalities in Lemma 2.23 are tight for D = 1, since there is a

graph (n-vertex clique Kn) with n · (n − 1)/(D + 1) = n · (n − 1)/2 edges, in which
removal of any edge results in increasing the distance between some pair of vertices
that are already at a distance of at least D = 1. Also, there is a digraph (complete
n-vertex digraph) with 2n · (n− 1)/(D+1) = n · (n− 1) arcs, with the same property.

The next theorem indicates that the product D · f(D,n) is independent of D and
equal to Θ(n2).

Theorem 2.24 (distance×size preservation). For n = 2, 3, . . . , and D = 1, 2, . . . , n
− 1,

n2/4D ≤ fS(D,n) ≤ f(D,n) ≤ n(n− 1)/(D + 1),(7)

n2/2D ≤ fdir(D,n) ≤ 2n(n− 1)/(D + 1).(8)

Proof. Both upper bounds follow from Lemma 2.23. The lower bound of inequality
(7) follows from Theorem 2.8. The lower bound of inequality (8) follows from (2);
fdir(D,n) = f̄dir(D,n) ≥ n2/2D.
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We next prove a tight up to a constant factor upper bound on fdir
S (D,n).

Consider an n-vertex digraph G = (V,E) with m = Ω(n3/2) arcs. Suppose
V = {1, 2, . . . , n}. The digraph G can be represented by its n × n adjacency matrix
M(G), whose entry (i, j) is 1 if and only if 〈i, j〉 ∈ E, and 0 otherwise. Suppose,
without loss of generality, that the digraph contains no loops (that is, arcs 〈i, i〉 for
some i ∈ V ) as the latter can be removed from the digraph with no affect on the
distances. Set c′′ = 1+ ν1 for some arbitrarily small positive constant ν1 > 0. Denote
p = m/(c′′n2).

Lemma 2.25. M(G) contains an a × a submatrix containing all 1’s with a =
�c′ log n/ log(1/p)�, for c′ = 1−ν2 for some arbitrarily small positive constant ν2 > 0.

Remark. Such a matrix corresponds to Ka,a, that is, complete bipartite subgraph
of size a × a with all arcs oriented consistently from one bipartition of the subgraph
to another.

Proof. Following Zarankiewicz, let us denote by ka(n) the least number m such
that any n-vertex digraph G with at least m arcs contains a Ka,a. The assertion of
the lemma is a corollary of the following result from [18, chapter 5].

Theorem 2.26 (see [18]). If n
(
m/n
a

)
≥ (a− 1)

(
n
a

)
, then ka(n) ≤ m.

To show that the assumption of Theorem 2.26 is satisfied, it is enough to argue
that

n ·
(
m/n

n
· m/n− 1

n− 1
· · · · · m/n− a + 1

n− a + 1

)
≥ a.

As m/n = Ω(
√
n) and a = O(log n), it follows that for any sufficiently large n and

any i = 1, 2, . . . , a− 1,

m/n− i

n− i
≥ m/(c′′n)

n
.

Hence, it is sufficient to argue that n(m/(c′′n))a = n · pa ≥ a. Substituting a =
c′ log n/ log(1/p) implies n1−c′ ≥ a, and the latter is true for sufficiently large n (as
a = O(log n)). Theorem 2.26 implies ka(n) ≤ m. The assertion of the lemma now
follows from the definition of ka(n).

Let m0 = m = n2/D for some D be the number of arcs in G0 = G, and p0 =
p = m0/(c

′′n2) be the “density” of the arcs. Set ε = logD
logn (i.e., D = 2ε logn). Set also

S0 = 0 to be the number of arcs inserted into the diSteiner graph so far. By Lemma
2.25, G contains a subgraph isomorphic to Ka0,a0

with a0 = c′ log n/(log 1/p0). Pick
such a subgraph and represent it with a diSteiner vertex s (in addition to 2a0 original
vertices) and 2a0 appropriately oriented arcs of weight 1/2 each connecting s with the
original vertices. The orientation of these arcs is the following: all the arcs between s
and “left-hand” vertices (those that had only outgoing arcs in the chosen subgraph)
are incoming into s, and all the other arcs are outgoing from s. The constructed
structure is inserted into the diSteiner graph, and the charge S is updated from S0 = 0
to S1 = S0 + 2a0 = 2a0. Delete the arcs of chosen subgraph from G0, and denote the
obtained digraph G1. The density p changes according to p1 = p0 − a2

0/(c
′′n2). If the

number of arcs in G1 is still greater than μ · n2(logD+log e)
D·logn for some arbitrarily small

constant μ > 0, repeat this procedure with a1 = c′ log n/(log 1/p1). Observe that the
condition on the number of arcs implies that a1 ≥ 1, and so in a finite number r of

iterations we are left with a digraph Gr with at most μ · n2(logD+log e)
D·logn arcs. When

the number of arcs left is at most μ · n2(logD+log e)
D·log n , these arcs are inserted into the

diSteiner graph G′.
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Lemma 2.27. The constructed digraph G′ is a diSteiner 1-preserver of G.
Proof. Consider some arc 〈u,w〉 ∈ E. At either one of the iterations e was

replaced by two arcs 〈u, s〉, 〈s, w〉 of weight 1/2 each, for some new vertex s, or the
arc e was inserted into G′. In either case dG′(u,w) = dG(u,w) = 1. It follows that
for any pair of vertices x, y ∈ V (G), dG′(x, y) ≤ dG(x, y).

Also, it can be shown by induction on r that for any x, y ∈ V (G), dG(x, y) ≤
dG′(x, y). Intuitively, this is because whenever an isomorphic to a Ka,a between
x1, x2, . . . , xa and y1, y2, . . . , ya is replaced by a star of arcs 〈x1, s〉, 〈x2, s〉, . . . , 〈xa, s〉,
〈s, y1〉, 〈s, y2〉, . . . , 〈s, ya〉, no paths between xi and xj or yi and yj are formed. This
is unlike the undirected case, where such a replacement could cause dG′(xi, xj) <
dG(xi, xj). This is, however, quite natural, as in the undirected case there are graphs
for which any Steiner 1-preserver contains Ω(n2) edges (see Theorem 2.24, inequality
(7)).

It follows that G′ is a diSteiner 1-preserver of G.
Next, we calculate the number of arcs in G′.
Lemma 2.28. If n is sufficiently large, then

Sr ≤ 2c′′

c′ − ε
· n

2

D
· logD + log e

log n
,(9)

where ε = logD
logN .

Proof. Observe that Sr = S0 + 2
∑r−1

i=0 ai = 2
∑r−1

i=0 ai. Denote Δpi = pi+1 − pi
for i = 0, 1, . . . , r − 1. Note that Δpi > 0 for i = 0, 1, . . . , r − 1. Then Sr/2 =∑r−1

i=0
ai

Δpi
Δpi. Observe that Δpi = pi+1 − pi =

a2
i

c′′n2 . Hence ai

Δpi
= c′′n2/ai. By

Lemma 2.25, ai ≥ c′( logn
log 1/pi

− 1/c′). Substituting pi ≥ μ logD
c′′D logn and D = 2ε logn

implies that log 1/pi ≤ ε log n − logμε. Hence logn
log 1/pi

− 1/c′ ≥ (1 − ε/c′) log n
log 1/pi

.

Therefore, ai/Δpi ≤ c′′

c′
1

1−ε/c′
n2 log 1/pi

logn = c′′

c′−ε ·
n2 log 1/pi

logn . Hence

Sr/2 ≤ c′′ · 1

c′ − ε
n2/ log n

r−1∑
i=0

log 1/piΔpi.(10)

Observe that as p0 > p1 > . . . pr−1 > pr > 0, it follows that
∑r−1

i=0 log 1/piΔpi

is a Riemann sum of
∫ p0

0
(log 1/p)dp. Furthermore, Δpi = a2

i /(2n
2) ≤ log2 n

n2 . Hence
Δpi tends to 0 when n grows, for any i = 0, 1, 2, . . . , r− 1. Hence for any δ > 0 there
exists a sufficiently large n such that

r−1∑
i=0

log 1/piΔpi ≤
∫ p0

0

(log 1/p)dp + δ ≤ p0(log 1/p0 + 1) + δ.

Now, the lemma follows from (10).
Corollary 2.29. For every n-vertex (di)graph with m edges (resp., arcs) the

following statements hold.
1. There exists a diSteiner 1-preserver with O(n2/ log n) arcs.
2. If m ≤ n2/ logc n for some c > 0, then there exists a diSteiner 1-preserver

with O( c·n
2 log log n

logc+1 n
) arcs.

3. If m ≤ n1+α, 0 < α < 1, then there exists a diSteiner 1-preserver with at
most 2+μ

α (1 − α) ·m arcs for any arbitrarily small constant μ.
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4. There exists a diSteiner D-preserver with O(n
2 logD
D logn ) arcs. In other words,

f̄dir
S (D,n) = fdir

S (D,n) = Θ

(
n2 logD

D log n

)
.

The weights of arcs in the aforementioned diSteiner graphs may be restricted to be
either 1 or 1/2.

Proof. For assertion (1), use Lemma 2.28 with ε = 0 (observe that the right-hand
side of (9) is minimized by setting ε = 0). It follows that Sr ≤ (2 + ν)n2/ log n, for
some arbitrarily small constant ν > 0. The assertion follows as the number of arcs in
the diSteiner 1-preserver is

Sr + μ · n
2 · logD

D · log n
= (2 + μ)n2/ log n

for an arbitrarily small constant μ > 0.
The assertion (2) follows analogously, noting that ε = logD

logN = c log log n/ log n.

For assertion (3), note that D = n2/n1+α = n1−α. That is, ε = 1 − α. Now the
assertion follows from Lemma 2.28.

For assertion (4), recall that by Theorem 2.24, for any n-vertex (di)graph there
exists a subgraph D-preserver with O(n2 /D) edges (resp., arcs). If D = Ω(nε) for

some constant ε > 0, then O(n2 /D) = O(n
2 logD
D logn ). Otherwise, if D = 2ε(n)·logn

for some ε(n) such that limn→∞ ε(n) = 0, then the assertion follows from Lemma
2.28, and from the observation that a 1-preserver of a D-preserver of a graph G is a
D-preserver of G.

Finally, the lower bound

f̄dir
S (D,n) = fdir

S (D,n) = Ω

(
n2 logD

D log n

)

follows from Theorem 2.17.
Note that by Corollary 2.29, for any graph with at least m = n5/3+δ edges (for

any δ > 0) there exists a diSteiner 1-preserver with strictly less than m arcs. This
statement can be generalized to m ≥ c · n3/2, for some small constant c > 1, by
extracting subgraphs isomorphic to Ks,2 for different decreasing values of s whenever
no K3,3 can be extracted; see the discussion that follows Corollary 2.33. Note that the
latter cannot be generalized much further, as by Corollary 2.11 there exist n-vertex
graphs with m = (1/2 + o(1))n3/2 edges for which any diSteiner 1-preserver contains
at least m arcs.

2.3.2. Algorithmic aspects. In this section we address some algorithmic as-
pects of our results concerning distance D-preservers. In particular, we devise a
distance labeling D-preserving scheme with labels of size O((n2 /D) · log2 n). Recall
that by Corollary 2.16 labels of size O((n2 /D) · logD) are required.

Theorem 2.30. For integer numbers n ≥ 2, 1 ≤ D ≤ n−1, and an n-vertex graph
(resp., digraph) with m edges (resp., arcs), there exists a constructible in O(m2n) time
subgraph D-preserver with at most n(n− 1)/(D + 1) edges (resp., 2n(n− 1)/(D + 1)
arcs).

Proof. We prove the assertion for a digraph G; the proof of the slightly stronger
statement for the undirected graphs is analogous.
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The proof is, by induction, on the number of arcs in G, |E| = m. The induction

base is |E| ≤ 2n·(n−1)
D+1 . In this case G′ = (V,H) with H = E as the subgraph with

the desired properties.

For the induction step, suppose that for any digraph G with |E| = m ≥ 2n·(n−1)
D+1

arcs exists a subgraph G′ = (V,H), H ⊆ E with the desired properties.

Consider a graph Ḡ = (V̄ , Ē) with |Ē| = m + 1 arcs. Since m + 1 > 2n·(n−1)
D+1 ≥

f̄dir(D,n), there exists an arc e ∈ Ē such that for any pair of vertices u,w ∈ V̄ with
dḠ(u,w) ≥ D,

dḠe
(u,w) = dḠ(u,w).(11)

Note that the cardinality of the set of arcs of Ḡe is |Ē \ {e}| = |Ē| − 1 = m, and so
the induction hypothesis is applicable to Ḡe. In other words, there exists a subgraph
G′ = (V̄ ,H) of Ḡe, H ⊆ Ē \ {e} ⊆ Ē, with |H| ≤ 2n(n − 1)/(D + 1), such that for
any pair of vertices u,w ∈ V̄ such that dḠe

(u,w) ≥ D,

dG′(u,w) = dḠe
(u,w).(12)

Note that by (11), dḠe
(u,w) ≥ D implies dḠ(u,w) = dḠe

(u,w) ≥ D, and so it follows
that G′ = (V̄ ,H) is a subgraph of Ḡ = (V̄ , Ē), H ⊆ Ē, with |H| ≤ 2n(n−1)/(D+1),
such that for any pair of vertices u,w ∈ V with dḠ(u,w) = dḠe

(u,w) ≥ D, dG′(u,w) =
dḠe

(u,w) = dḠ(u,w). The last two equalities are by (11) and (12).
Note that the edge e as above can be found in polynomial time, by computing

all the distances in Ḡe for every e ∈ Ē, and testing whether there is a pair of vertices
u,w ∈ V̄ such that dḠ(u,w) ≥ D and dḠe

(u,w) > dḠ(u,w).
Therefore, the entire computation of the subgraph G′, that satisfies the assertion

of the theorem, can be completed in polynomial time (specifically, in O(|E|3 ·n) time).
Observe that if an edge e was examined once by the algorithm, and the algorithm

decided not to remove it, it means that there is a pair of vertices u,w such that
dḠe

(u,w) > dḠ(u,w) ≥ D. Consequently, for any subgraph D-preserver Ĝ of Ḡ,
dĜe

(u,w) ≥ dḠe
(u,w) > dḠ(u,w) ≥ D, and so, the edge e will never be removed by

the algorithm. Hence the algorithm can examine each edge just once. This observation
speeds the algorithm up by a factor of |E|, implying the desired running time of
O(|E|2n).

We remark that after inequalities (7) and (8) were communicated to Mikkel Tho-
rup, he devised [22] a more efficient randomized procedure for computing a subgraph
D-preserver of size O(n2 log n/D) (greater than optimal by a logarithmic factor).
This more efficient procedure uses some techniques of [25] from the area of dynamic
algorithms. The efficiency of the procedure of [22] makes it more suitable for algo-
rithmic applications such as (and this is, indeed, the motivation of [22]) computing
shortest paths between pairs of vertices that are at distance at least D one from
another. We next use a similar idea to prove the existence of a distance labeling
D-preserving scheme with labels of size O((n/D) · log2 n). This is tight up to a factor
of O(log2 n/ logD), in view of Corollary 2.16.

Theorem 2.31. For every integer number D ≥ 1, there exists a distance labeling
D-preserving scheme (M,D) for a family of all (possibly directed) n-vertex unweighted
graphs with labels of size O((n/D) · log2 n).

Proof. Fix 2 < c < 3 to be some real constant. Consider a labeling procedure
that given an n-vertex graph G = (V,E) starts with choosing a random subset R ⊆ V
of vertices. Every v ∈ V is chosen into R independently at random with a probability
of p = min{c log n/D, 1}.
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Next, the procedure fixes an arbitrary ordering (u1, u2, . . . , u|R|) of the vertices
of R. Then, for every pair of vertices v ∈ V , u ∈ R, the procedure forms a string
αv(u) to be the concatenation of the bit strings dG(v, u) and dG(u, v) (if the graph G
is undirected, α(u) is the bit string representing dG(v, u) = dG(u, v)).

Finally, for every vertex v ∈ V , the procedure forms its label M(G, v) to be
αv(u1) · αv(u2) · . . . · αv(u|R|), where “·” stands for concatenation.

Observe that IE (|R|) = p · n ≤ c log n · n/D. Hence, for every vertex v ∈ V ,
|M(G, v)| ≤ c log n · n2/D. The query-answering procedure accepts as input two
labels M(G, v1) = αv1(u1) · αv1

(u2) · · · · · αv1
(u|R|) and M(G, v2) = αv2(u1) · αv2(u2)

· · · · · αv2(u|R|), and returns min{dG(v1, u) + dG(u, v2) | u ∈ R}. Observe that for
every u ∈ R, dG(vi, u) can be computed given M(G, vi), i = 1, 2.

By Markov inequality,

IP(|R| ≤ 2c log n · n/D) ≥ 1/2.(13)

For every pair of vertices (v1, v2), fix some shortest path Pv1,v2 from v1 to v2 in
G. (In an undirected graph, Pv1,v2 coincides with Pv2,v1 .) Observe that for v1, v2

such that dG(v1, v2) ≥ D, |V (Pv1,v2
)| ≥ D + 1. Note that for a vertex z ∈ V (Pv1,v2

),
IP(z ∈ R) = c log n/D. Hence

IP(V (Pv1,v2
) ∩R = ∅) = (1 − c log n/D)D+1 ≤ 1/nc.

Hence,

IP(∃v1, v2 ∈ V s.t. dG(v1, v2) ≥ D and V (Pv1,v2
) ∩R = ∅) ≤ n2/nc = 1/nc−2.

In other words,

IP(∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D,V (Pv1,v2) ∩R 	= ∅) ≥ 1 − 1/nc−2.

Together with (13), this implies that

IP(|R| ≤ 2c log n · n/D and ∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D,V (Pv1,v2
) ∩R 	= ∅)

≥ 1/2 − 1/nc−2.

Finally, note that the event (∀v ∈ V, |M(G, v)| ≤ 2c log2 n · n/D) contains the event
(|R| ≤ 2c log n · n/D), and for every pair of vertices v1, v2 ∈ V the event (V (Pv1,v2)∩
R 	= ∅) contains the event (D(M(G, v1),M(G, v2)) = dG(v1, v2)). Hence,

IP[∀v ∈ V, |M(G, v)| ≤ 2c log2 n · n/D, and ∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D,

D(M(G, v1),M(G, v2)) = dG(v1, v2)] ≥ 1/2 − 1/nc−2 > 0,

for sufficiently large n.
Hence, there exists a D-preserving distance labeling scheme with labels of size

O(log2 n · n/D).
Next, we devise a polynomial time algorithm for constructing a diSteiner 1-

preserver with O(n2/ log n) arcs for an arbitrary graph. In conjunction with Theorem
2.30, this yields a polynomial time algorithm for constructing a diSteiner D-preserver

with O(n
2 logD
D logn ) arcs for an arbitrary graph.

We remark that the main obstacle towards converting the proof of Corollary 2.29
into an efficient algorithm is the existential nature of the proof of Theorem 2.26.
The next theorem is a constructive proof version of Theorem 2.26 and Lemma 2.25.
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That is, an efficient algorithm for extracting a subgraph isomorphic to Ks,t from a
sufficiently dense graph. Another algorithm with a similar running time for extracting
Ks,t was devised by [16], and our algorithm is provided for completeness.

For any vertex y ∈ V , let d(y) denote the degree of y.
Theorem 2.32 (see [16]). Let G be a graph of order n, W ⊆ V (G), and 1 ≤ s, t.

Suppose

∑
y∈W

(
d(y)

t

)
> (s− 1)

(
n

t

)
.(14)

Then G contains a Ks,t with the “s part” contained in W , i.e., there are (necessarily
disjoint) sets S ⊂ W and T ⊂ V , |S| = s, |T | = t, such that every vertex of S is
joined to every vertex of T . The Ks,t can be computed in O(n2 · t) time.

Proof. We shall do considerably more than claimed by the theorem. We shall
give an algorithm that finds a “large” set S ⊂ W all whose vertices are joined to
all vertices of a set T with t vertices. Our condition (14) will imply that the set S
constructed by the algorithm will have at least s vertices.

In our description of the algorithm, we shall say that a triple (G,W, t), with
W ⊂ V (G), is s-large if condition (14) is satisfied.

Here then is our plan. Starting with the triple (G,W, t), we perform the t-step
of the algorithm to construct a vertex x1 and a triple (G1,W1, t − 1), where G1 =
G − x1, W1 ⊂ W \ {x1}, the vertex x1 is joined to all vertices in W1, and the triple
(G1,W1, t − 1) is s-large, then perform the (t − 1)-step of the algorithm to obtain
a vertex x2 ∈ V (G1) and a triple (G2,W2, t − 2) with G2 = G1 − x2 and W2 ⊂
W1 \ {x2}, such that x2 is joined to every vertex in W2, and the triple (G2,W2, t− 2)
is s-large, and so on. Finally, after the 1-step of the algorithm, we get a vertex xt

and a triple (Gt,Wt, 0). This completes the algorithm: our sets are S = Wt and
T = {x1, x2, . . . , xt}. By construction, G contains all edges from S to T and, as

(Gt,Wt, 0) is s-large, from (14)
∑

y∈W

(
d(y)
t

)
> (s− 1)

(
n
t

)
we shall find that |S| ≥ s.

To complete our proof, here then is the t-step of the algorithm. For x ∈ V (G),
let the (t,W )-weight of x be

w(x) = wt,W (x) =
∑

(x,y)∈E, y∈W

(
d(y) − 1

t− 1

)
.

Since

∑
x∈V

w(x) =
∑
y∈W

d(y)

(
d(y) − 1

t− 1

)
=

∑
y∈W

t

(
d(y)

t

)
> t(s− 1)

(
n

t

)
= (s− 1)n

(
n− 1

t− 1

)
,

there is a vertex x1 ∈ V such that

∑
y∈W1

(
d(y) − 1

t− 1

)
> (s− 1)

(
n− 1

t− 1

)
,(15)

where W1 = {y ∈ W : (x, y) ∈ E(G)}. Indeed, any vertex whose (t,W )-weight is at
least the average will do for x1; a vertex of maximal (t,W )-weight will certainly do.
Set G1 = G − x1. Condition (15) means precisely that the triple (G1,W1, t − 1) is
s-large (as for any y ∈ W1, its degree in G1 is d(y) − 1). Hence we can apply the



SPARSE DISTANCE PRESERVERS 1049

(t − 1)-step of our algorithm to the triple (G1,W1, t − 1), and so on, until we get to
an s-large triple (Gt,Wt, 0). Since

|Wt| =
∑
y∈Wt

(
d(y) − 1

0

)
> (s− 1)

(
n− 1

0

)
= s− 1,

we find that |Wt| ≥ s. By construction, the graph G contains all edges from S = Wt

to T = {x1, x2, . . . , xt}.
A straightforward implementation of this algorithm requires O(n2 · t) operations.

Indeed, there are t iterations. On each iteration the algorithm chooses a vertex of
minimal weight. It takes O(|E|) operations to recompute the degrees, and O(n)
operations per vertex to compute its weight, summing up to an overall O(n2 + |E|) =
O(n2) operations per iteration.

Corollary 2.33. Let G be a graph of order n and size nd/2, i.e., average degree
d. If 1 ≤ t ≤ s and

n

(
d

t

)
> (s− 1)

(
n

t

)
,(16)

then G contains a Ks,t subgraph. Furthermore, the algorithm described in the proof
of Theorem 2.32 (starting with W = V ) finds a Ks,t subgraph.

Proof. Let G have degree sequence (di)
n
1 . Then by the convexity of the binomial

coefficient,

n∑
i=1

(
di
t

)
≥ n

(
d

t

)
> (s− 1)

(
n

t

)
.

Hence, the result follows from Theorem 2.32.
Remark. In applying Corollary 2.33, we should always assume that s ≥ t since if

(16) holds for s ≤ t, then it also holds when s and t are interchanged.
Observe that it follows that Ks,2 can be extracted from an n-vertex m-edge graph

G whenever m ≥ c ·
√
sn3/2 for some universal constant c. Under this condition,

whenever s ≥ 3, it is possible to construct a diSteiner 1-preserver for G with m′ < m
edges.

Corollary 2.34. Let G be a bipartite graph with bipartition (W,U), where
|U | = n. If

∑
y∈W

(
d(y)

t

)
> (s− 1)

(
n

t

)
,

then G contains a Ks,t subgraph, with s vertices in W and t in U .
The next corollary is a constructive analogue of Lemma 2.25.
Corollary 2.35. There is an algorithm that given an n-vertex graph G =

(V,E) computes a subgraph of G isomorphic to Ka,a with a = Ω( log n
log(n2/|E|) ) in O(n2 ·

logn
log(n2/|E|) ) time.

The next theorem addresses the question of constructibility of sparse diSteiner
1-preservers for arbitrary graphs.

Theorem 2.36. For every n-vertex (di)graph, a diSteiner 1-preserver with

O(n2/ log n) arcs of weight 1 or 1/2 can be constructed in O(n4 · (log log n)2

logn ) time.
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Proof. To construct a diSteiner 1-preserver with at most O(n2/ log n) arcs for
an arbitrary (di)graph, one needs to invoke the procedure of extracting Ka,a at most
O(n2 log log n/ log2 n) times. Indeed, in a graph with m = Ω(n2/ log n) edges, a =
Ω(log n/ log(n2/m)) = Ω(logn/ log log n), and so a single extraction of Ka,a results in
eliminating Ω(log2 n/(log log n)2) edges from the graph. As we start with O(n2) edges,

after O(n
2(log log n)2

log2 n
) extractions, the number of edges left in the graph is O(n2/ log n).

By Corollary 2.35, each extraction can be completed in O(n2 · log n) time, and so, the
assertion of the theorem follows.

We remark that any improvement of a factor of Ω(n) of the running time in Theo-
rem 2.36 to o(|E|·n) would have some interesting applications to efficient computation
of distances in dense graphs (by computing their diSteiner 1-preserver, and perform-
ing distance computations on the 1-preserver, assuming that the latter is sparser than
the original graph).

Next, observe that a polynomial time algorithm for constructing diSteiner D-
preserver for an arbitrary (di)graph can be obtained by composing the results of
Theorems 2.30 and 2.36.

Corollary 2.37. For any n-vertex (di)graph G = (V,E) and an integer D ≥ 1,
a diSteiner D-preserver with O(n2/ log n) arcs of weight 1 or 1/2 can be constructed

in O(|E|2 · n + n4 · (log log n)2

logn ) time.

2.3.3. (D, g)-preservers. Next, we present an upper bound on f̄(D, g, n), that
is, the size of the n-vertex extremal graph whose only (D, g)-preserver is the graph
itself.

Recall that our upper bound on f(D,n), that is, the minimal value such that any
n-vertex graph has a D-preserver with at most f(D,n) edges, was derived through
the analysis of the size of the extremal graph G whose only subgraph D-preserver is G
itself, i.e., f̄(D,n). This was possible due to the duality f(D,n) = f̄(D,n) (Lemma
2.4). In the case of (D, g)-preservers we are not aware of any upper bound on f(D, g, n)
in terms of f̄(D, g, n). However, we believe that the bounds on f̄(D, g, n) are of
independent interest, and may also serve as a first step towards a better understanding
the behavior of f(D, g, n).

Definition 2.38. In an undirected graph G = (V,E), a sequence of distinct
vertices C = (v0, v1, . . . , vs, v0) is a cycle, if vi ∈ V for any index i 0 ≤ i ≤ s, vi ∈ V ,
and for any index i, 0 ≤ i ≤ s− 1, (vi, vi+1) ∈ E and (vs, v0) ∈ E. The length of the
cycle C is s + 1. The girth of a graph G is the length of the shortest cycle of G.

The following observation is derived directly from the definition of (D, g)-preserver.
Lemma 2.39. Every graph G = (V,E) whose only (D, g)-preserver is G itself

satisfies girth(G) ≥ g + 2.
Proof. Suppose for contradiction that girth(G) ≤ g + 1.
Then there exists an edge e = (u,w) such that dGe(u,w) ≤ g. Since Ge is not a

(D, g)-preserver of G there exists a pair of vertices x, y ∈ V such that dG(x, y) ≥ D,
and

dGe
(x, y) ≥ dG(x, y) + g.(17)

Let P be one of the shortest paths from x to y in G. Obviously, the edge e belongs
to P . In other words, without loss of generality, P = (x = v0, . . . , vt = u, vt+1 =
w, . . . , vs = y), for |P | = s, t = 0, 1, . . . , s − 1. Let P1 be one of the shortest paths
from u to w in Ge. Note that |P1| = dGe(u,w) ≤ g. Let Px,u denote the path
(x = v0, v1, . . . , vt = u), and Pw,y denote the path (vt+1 = w, vt+2, . . . , vs = y).
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Consider the walk P2 = Px,u ·P1 ·Pw,y. Also, |P2| = |Px,u|+ |P1|+ |Pw,y| ≤ t+
g+s− (t+1) = s+g−1 = |P |+g−1 = dG(x, y)+g−1 . Note that P2 ⊆ E \{e}
is a path between x and y. Thus, dG(x, y) + g − 1 ≥ |P2| ≥ dGe(x, y). However, this
contradicts (17).

Recall that for any integer r ≥ 3, any n-vertex graph G = (V,E) of girth at least
r has at most (n1+1/r−2 + n) edges (cf. [8]). Therefore, Lemma 2.39 implies that
f̄(D, g, n) ≤ n1+2/g +n. We next establish another upper bound on f̄(D, g, n), which
is tighter whenever D = Ω(

√
n).

Definition 2.40. For a graph G = (V,E), a vertex v ∈ V , and integer k =
0, 1, 2, . . ., let Γk(v,G) (resp., Γ̂k(v,G)) denote the set of vertices that are at distance
precisely (resp., at most) k from v, i.e., Γk(v,G) = {u ∈ V | dG(v, u) = k}, Γ̂k(v,G) =
{u ∈ V | dG(v, u) ≤ k}.

Theorem 2.41. For integer numbers D, g, and n, D ≥ 2, g ≥ 8, and n suffi-
ciently large, f̄(D, g, n) ≤ 4n1+1/
g/4�/D1/
g/4�.

Proof. For every edge e = (u,w) ∈ E, let P (e) be one of the shortest
paths between endpoint(P (e), e, u) and endpoint(P (e), e, w) in G such that
dG(endpoint(P (e), e, u), endpoint(P (e), e, w)) ≥ D, but

dGe(endpoint(P (e), e, u), endpoint(P (e), e, w)) >

dG(endpoint(P (e), e, u), endpoint(P (e), e, w)) + g.

Note that |subpath(P (e), e, u)| + |subpath(P (e), e, w)| ≥ D − 1.
Let long subpath(P (e), e = (u,w)) denote the longer path among subpath(P (e), e, u)

and subpath(P (e), e, w) (if they are equal choose one of them arbitrarily).
Note that for any edge e ∈ E,

|long subpath(P (e), e)| ≥ �(D − 1)/2� ≥ D/2 − 1.(18)

For a vertex v ∈ V , let

S(v) = {e = (v, z) ∈ E | long subpath(P (e), e) = subpath(P (e), e, z)}.

Consider some vertex u ∈ Γ̂
g/4�−1(v,G). Let S(u, v) = {e = (u, z) ∈ E |
dG(v, z) = dG(v, u) + 1, long subpath(P (e), e) = subpath(P (e), e, z)}.

Note that S(v) = S(v, v). Note also that since girth(G) ≥ g + 2, and dG(v, u) ≤
�g/4� − 1, it follows that for any edge (u, z) ∈ S(u, v), the only shortest path from v
to z in G passes through u.

Let Ŝ(v) denote the set
⋃

u∈Γ̂(�g/4�−1)(v,G) S(u, v). Let P̂ (v) denote the set

P̂ (v) = {long subpath(P (e), e) | e ∈ Ŝ(v)}.(19)

Next, we argue that for any two paths P1, P2 ∈ P̂ (v), V (P1) ∩ V (P2)
= ∅. Let e1 = (u1, z1) be an edge of P1, and e1 = (u2, z2) be an edge of P2.
Denote x1 = endpoint(P1, (u1, z1), u1), x2 = endpoint(P2, (u2, z2), u2), y1 =
endpoint(P1, (u1, z1), z1), y2 = endpoint(P2, (u2, z2), z2).

Suppose for contradiction that there exists a vertex w such that w ∈ V (P1) ∩
V (P2).

Denote the segments of P1 (resp., P2) from x1 (resp., x2) to u1 (resp., u2), from
u1 (resp., u2) to w, and from w to y1 (resp., y2), by P ′

1, P
′′
1 and P ′′′

1 (resp., P ′
2, P

′′
2 ,

and P ′′′
2 ), respectively.
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Next, we show that

dG(u2, w) − (g/2 − 2) ≤ dG(u1, w) ≤ dG(u2, w) + (g/2 − 2).(20)

Indeed, suppose for contradiction that dG(u1, w) < dG(u2, w) − (g/2 − 2) (the
case of dG(u1, w) > dG(u2, w) + (g/2 − 2) is symmetrical).

Thus,

dG(u1, w) + (g/2 − 2) < dG(u2, w).(21)

Then consider the path Pu2,w = Pu2,v ·Pv,u1 ·P ′′
1 , where Pu2,v is the shortest path

from u2 to v in G, and Pv,u1
is the shortest path from v to u1 in G.

Note that

|Pu2,w| = |Pu2,v| + |Pv,u1
| + |P ′′

1 |
≤ 2(g/4 − 1) + dG(u1, w) = dG(u1, w) + g/2 − 2 < dG(u2, w)

(the last inequality is by (21)). This is a contradiction, since Pu2,w is a path from u2

to w. Hence, (20) follows.
Note that Pu2,v, Pv,u1 ⊆ E\{e1}. Consider the path P12 = P ′

1·Pu1,v ·Pv,u2 ·P ′′
2 ·P ′′′

1 .
Note that P12 is a path between x1 and y1 in Ge1 , since G satisfies the large-error
property,

|P12| = |P ′
1| + |Pu1,v| + |Pv,u2

| + |P ′′
2 | + |P ′′′

1 |
≥ dGe1

(x1, y1) ≥ dG(x1, y1) + g = |P ′
1| + |P ′′

1 | + |P ′′′
1 | + g.

That is, |Pu1,v| + |Pv,u2
| + |P ′′

2 | ≥ |P ′′
1 | + g.

Recall that |Pu1,v| + |Pv,u2 | ≤ g/2 − 2. Thus,

|P ′′
2 | + (g/2 − 2) ≥ |Pu1,v| + |Pv,u2

| + |P ′′
2 | ≥ |P ′′

1 | + g.

That is, |P ′′
2 | ≥ |P ′′

1 | + (g/2 + 2). In other words, dG(u2, w) ≥ dG(u1, w) + (g/2 + 2),
contradicting (20).

Thus, V (P1) ∩ V (P2) = ∅. Hence, the set P̂ (v), defined by (19), consists of
vertex-disjoint paths.

Thus, for any vertex v ∈ V ,∑
e∈Ŝ(v)

|V (long subpath(P (e), e))| ≤ n.

Hence, ∑
v∈V

∑
e∈Ŝ(v)

|V (long subpath(P (e), e))| ≤ n2.

Using (18) it follows that ∑
v∈V

|Ŝ(v)| ≤ 2n2/D.(22)

Consider a digraph Ĝ = (V, Ê) with the same vertex set V as the graph G, but

Ê = {〈u,w〉 | (u,w) ∈ E,

long subpath(P ((u,w)), (u,w)) = subpath(P ((u,w)), (u,w), w)}.



SPARSE DISTANCE PRESERVERS 1053

In other words, every edge e of the graph G is oriented towards the endpoint w from
which the subpath subpath(P (e), e, w) is longer.

Observe that

Ŝ(v) = {e = (u, z) | 〈u, z〉 ∈ Ê, dGe(v, u) ≤ �g/4� − 1}.

Let a0 = 2|E|/n be the average degree in G. Set C = �a0/4� = �|E|/2n�. We
construct a graph G′ = (V ′, E′) in the following way. While there is a vertex v ∈ V
with degG(v) ≤ C, remove v from V and all its incident edges.

Note that at most C · n ≤ |E|/2 edges are removed. That is, |E′| ≥ |E|/2. Also,
for any vertex v ∈ V ′, degG′(v) ≥ C+1 ≥ |E|/2n. Also, girth(G′) ≥ girth(G) ≥ g+2.

Consider,

Ŝ′(v) = {e = (u, z) ∈ E′ | 〈u, z〉 ∈ Ê, dG′
e
(v, u) ≤ �g/4� − 1}.

Note that for any vertex v ∈ V ′, Ŝ′(v) ⊆ Ŝ(v). Hence
∑

v∈V ′ |Ŝ′(v)| ≤ 2n2/D.

Note that for any edge e = (u, z) ∈ E′ either 〈u, z〉 ∈ Ê or 〈z, u〉 ∈ Ê. For any
edge e = (u, z) ∈ E′, denote

far endpoint(e) =

{
u, 〈u, z〉 ∈ Ê,

z, 〈z, u〉 ∈ Ê.

Note that ∑
v∈V ′

|Ŝ′(v)| =
∑
e∈E′

|Γ̂
g/4�−1(far endpoint(e), G′
e)|.

Note that since the minimal degree in G′
e is at least |E|/2n, and girth(G′

e) ≥ g + 2,
it follows that for any edge e ∈ E′,

|Γ̂
g/4�−1(far endpoint(e), G′
e)| ≥ (|E|/2n− 1)
g/4�−1.

Therefore, ∑
v∈V ′

|Ŝ′(v)| =
∑
e∈E′

|Γ̂
g/4�−1(far endpoint(e), G′
e)|

≥ |E′| · (|E|/2n− 1)
g/4�−1.

By Theorem 2.20, we can assume that |E| ≥ 4n. Hence,

∑
v∈V ′

|Ŝ′(v)| ≥ |E|/2 · |E|
g/4�−1

n
g/4�−1 · 4
g/4�−1
≥ |E|
g/4�

n
g/4�−1 · 2 · 4
g/4�−1
.

Hence, by (22),

2n2

D
≥ |E|
g/4�

n
g/4�−1 · 2 · 4
g/4�−1
.

Hence, for a sufficiently large n, it follows that |E|
g/4�D ≤ 4
g/4� · n
g/4�+1. Thus,
|E| ·D1/
g/4� ≤ 4 · n1+1/
g/4�.
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Abstract. We consider liar games in which player Paul must ask one full batch of questions,
receive all answers, and then ask a second and final batch of questions. We show that the effect of
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1. Introduction. In this paper, we present a variant of the Rényi–Ulam game
which is similar to the one we considered in [5]. The main difference consists in the
type of strategy Paul is allowed to employ; the case we study here has Paul using a
semi-offline strategy, as opposed to the completely online one of [5]. We introduce the
game and present a few variants and recent results, comparing and contrasting them
to the results in our current work.

1.1. History and recent results. In the original two-player Rényi–Ulam game,
Carole (player 1) thinks of a number x ∈ {1, . . . , n}, while Paul (player 2) must find
it by asking q Yes/No questions. The catch is that Carole is allowed to lie, but only
at most k times (k being a fixed integer). The question is “for which n, q, k can Paul
guess the number and win?”

Many researchers have examined this game and variants thereof; there is an exten-
sive literature on the subject, of which we mention Pelc’s excellent survey article [6].
For the reader interested in the history of the subject, good references are provided
in Rényi [7], Ulam [10], and Berlekamp [2].

Historically, the full-lie version (where Carole is allowed to lie in whichever way
she chooses, when she chooses to do it) was considered first; it is known that for this
case, Carole can win when

2q < n

(
k∑

i=0

(
q

i

))
,

and the converse is roughly true when n and q are large (while k is fixed; see [8]).
The more recently introduced half-lie case restricts Carole’s ability to lie by re-

quiring her to tell the truth when the truthful answer is Yes. Cicalese and Mundici
[3] have shown that in the one half-lie case (k = 1), the maximal n for which Paul

can win with q questions is asymptotic to 2q+1

q , as q goes to infinity.

In our earlier paper [4], we have shown that for any fixed number k of half-lies,
the asymptotics for the maximal value of n as a function of q and k as q goes to

infinity are given by 2q+k

(q
k)

.
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Fig. 1. The Z-channel.
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Fig. 2. A 5-ary channel C, with E = 4.

There is a simple connection between the half-lie case and the Z-channel of coding
theory, where during communication, a 0 can be accidentally transformed into a 1,
but a 1 has to be always transmitted as a 1. (We allow for false positives, but not for
false negatives; see Figure 1.)

Following this idea, we have further extended our results in [5], where we found
asymptotics for arbitrary channels C.

Below we give a few definitions (which will be referred to throughout this paper)
and state the main theorem from [5].

Definition 1. A t-ary channel C is a set of ordered pairs (x, y) with 1 ≤ x, y ≤ t,
both integers, such that for each 1 ≤ x ≤ t, (x, x) ∈ C. The pairs (x, y) ∈ C with
y �= x are called potential errors. The total number of potential errors is denoted
by E.

Figure 2 is an “arbitrary” channel, which we also used in [5].
We now define (from [5]) the focus of our work, the (n, k, C)-liar game with q

questions. There are two players, Paul and Carole, and q rounds. There is a set Ω of
size n, the possibilities. Carole thinks of an α ∈ Ω. On each round Paul partitions
Ω into disjoint sets A1, . . . , At; Carole finds that i for which α ∈ Ai and responds
with either i or some j �= i with (i, j) ∈ C. The latter case is called a lie or an error;
we use the terms interchangably in this work. (We note that in the coding theory
literature one wishes to send information through a channel and one wishes that it
be deciphered accurately even when there is a certain number E of errors. These are
called E-error correcting codes.)
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Paul’s choice of partitions in later rounds can, and in general will, depend on
Carole’s responses—hence we say that the channel allows for feedback.

Carole can make at most k lies in the course of the game. At the end of the q
rounds Paul has won if and only if there is only one possible α ∈ Ω for which Carole
could have made her responses.

Definition 2. Let AC,k(q) be the maximal n such that there is a winning strategy
for Paul in the (n, k, C) game with q questions.

Theorem 1.1 (main result from [5]). Let C be an arbitrary (fixed) t-ary channel
with E > 0 potential errors. Then for any fixed k ∈ N,

AC,k(q) ∼
(

t

E

)k
tq(
q
k

) ,
where the asymptotics are taken as q → ∞.

We recall the vector format of [5].
Definition 3. Consider an intermediate position in the game. For 0 ≤ i ≤ k let

xi be the number of possibilities for which Carole has lied precisely i times. We call
the vector x = (x0, . . . , xk) the state vector.

We remark that the state vector completely characterizes the state of the game,
up to a renaming of Carole’s possible choices. We further allow a game to have starting
state x = (x0, . . . , xk). In such a game Carole has xj possibilities for which she may
lie (k−j) times, 0 ≤ j ≤ k.

1.2. Two batch strategies and the main result. In the coding theory setting
described in the previous section, we have the following problem: Bob sends x ∈
{1, . . . , t}q to Alice through channel C, and the channel may make as many as k
mistakes. Bob’s full message is one of n possibilities. Is there a protocol by which
correct reception of the message by Alice is ensured?

The answer is yes if and only if Paul can win the (n, k, C) game with q questions
by asking all the questions in advance. This is an additional and very strong constraint
imposed on the game we have described in the previous section, which assumes com-
plete feedback (each question is followed by an answer and each question is based on
all previous answers, in a completely online strategy). The offline, no-feedback con-
straint appears to change the problem drastically. We denote by A−

C,k(q) the maximal

n for which Paul wins under the offline constraint. Clearly A−
C,k(q) ≤ AC,k(q). How-

ever, the asymptotics of A−
C,k(q) (indeed, even those of A−

C,1(q)) remain a challenging
open question.

In this work we consider a two-batch strategy for Paul. In this variant of the
game, Paul is constrained to first ask a batch of q1 questions (all at once, offline).
After listening to Carole’s answers, he asks a second batch of q2 = q − q1 offline
questions. Finally, depending on the answers to the second batch of questions, Paul
wins if he is certain which one of the n possibilities Carole had in mind. We allow
Paul to determine q1.

This constraint that we impose on Paul naturally makes it harder for him to win.
Denote by ÃC,k(q) the maximal n for which Paul wins the two-batch liar game over

the channel C with q questions and up to k lies. Then ÃC,k(q) ≤ AC,k(q), so an

immediate upper bound for the asymptotics of ÃC,k(q) is given by Theorem 1.1:

ÃC,k(q) ≤ (1 + o(1))

(
t

E

)k
tq(
q
k

) .
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When we first considered the two-batch variant of the game, we expected that
the asymptotics were going to be significantly smaller than in the online case. To our
surprise, the asymptotics turned out to coincide. We summarize this in the statement
of this paper’s main result.

Theorem 1.2 (main result). Let C be an arbitrary (fixed) t-ary channels with
E > 0 potential errors. Then for any fixed k ∈ N,

ÃC,k(q) ∼
(

t

E

)k
tq(
q
k

) ,
where the asymptotics are taken as q → ∞.

1.3. Main idea. We sketch here the main idea of the proof of Theorem 1.2.
We will consider a strategy for Paul which will ask almost all questions in the

first batch; asymptotically, we will have q1 ∼ q, while q2 ∼ k log q. This means that
Paul will ask most of the questions offline, at first, narrowing the possibilities in a
way that will make it possible for him to use in the second batch a logarithmically
smaller number of questions in order to separate the right answer.

As seen in the previous section, an asymptotic upper bound for ÃC,k(q) is repre-
sented by the asymptotics for AC,k(q), since restricting Paul to a two-batch strategy
makes things harder for him. To prove Theorem 1.2, we thus need only to prove

that
(

t
E

)k tq

(q
k)

is an asymptotic lower bound for ÃC,k(q). In other words, the essential

element of our current work is to give an effective strategy for Paul.

To do this we will prove that for any α <
(

t
E

)k
, there is a q0 large enough so that

for every q ≥ q0 and every n < α tq

(q
k)

Paul can win the two-batch (n, k, C) game.

As in [5], we will first basically reduce the problem to considering n of the form
(1 − δ)ats with δ a small positive constant and a a positive integer of bounded size.
The heart of the argument is the notion of balanced strings of length s, strings from
the channel alphabet A (usually A = {1, . . . , t}) in which each letter appears roughly
the same number of times. The possible answers of Carole are then represented as
pairs (i, u1 · · ·us) with 1 ≤ i ≤ a and u1 · · ·us one of these balanced strings. Paul
then asks for the values of u1, . . . , us. This strategy forces Carole to give each of the t
possible replies roughly the same number of times. Carole is thus, roughly speaking,
precluded from taking advantage of the asymmetries of the channel.

For the endgame, we will employ the same type of “packing is winning” argument
that we have used in [5].

2. Preliminaries.

2.1. Balanced strings and (1 − δ).
Definition 4. Given s, t ∈ N and r > 0, we call a string of length s letters from

the alphabet A = {1, 2, . . . , t} r-balanced if for every i ∈ A, the number of occurrences
of the letter i is at most s/t + r.

We let B r
s,t denote the set of such r-balanced strings.

Lemma 2.1. Given t ∈ N, δ > 0, there exists a s0 such that for all s ≥ s0, for
r = s2/3, the number of r-balanced strings of length s with letters from the alphabet
A is at least (1 − δ)ts.

Proof. For any particular letter i, the number of strings where that letter appears
more than s/t + r times is ts times Pr[B[s, 1/t] > s/t + r], where B denotes the
binomial distribution. A standard second moment method (see, e.g., Theorem A.1.11
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of [1] for tighter Chernoff bounds) gives that this probability is o(1), where t is fixed
and the asymptotics are as s → ∞.

There is a fixed number t of letters, so the probability that any one of them
appears more than s/t+ r times in a string of length s is still o(1). Thus, the number
of r-balanced strings is at least (1 − o(1))ts.

By taking s sufficiently large this is at least (1 − δ)ts.

2.2. Choosing the density parameter a. We show in this section that it is
enough to consider numbers of the type 	(1− δ)ats
, where a ∈ (tT , tT+1]∩N with T
an integer that depends only on δ and t.

Lemma 2.2. Given t, E, k, δ ∈ (0, 1) and given any 0 < α < α′ < (t/E)k, there
exists T ∈ N and q0 ∈ N such that for any q ≥ q0, for any n ≤ α tq

(q
k)

, there exist

a ∈ (tT , tT+1] ∩ N and nonnegative integer s such that

n ≤ (1 − δ)ats < α′ t
q(
q
k

) .
Proof. With foreknowledge, we let T be such that

α′
(

1 − 1

tT + 1

)
> α.

Set M = (1− δ)−1tq/
(
q
k

)
for notational convenience. We require of q0 that α′M > tT

for all q ≥ q0. We now let a ∈ [tT , tT+1)∩N and s be such that ats < α′M ≤ (a+1)ts.
(These exist as the intervals (ats, (a + 1)ts] have union (tT ,∞).) The upper bound
on ats gives the desired upper bound on (1 − δ)ats. We also have a lower bound

ats =

(
1 − 1

a + 1

)
(a + 1)ts ≥

(
1 − 1

tT + 1

)
α′M > αM

so that n ≤ α(1 − δ)M ≤ (1 − δ)ats.

3. Two-batch strategy. We now fix a positive real α < (t/E)k. In this section
we provide the two-batch strategy for Paul with a total number q of questions that
works for any n < α tq

(q
k)

, if q is sufficiently large.

To avoid trivialities we assume throughout the section that

n = 	α tq(
q
k

)
.
3.1. First batch. In this subsection we give the strategy for Paul’s first batch

of questions and estimate the number of possibilities left after Carole provides her
answers to these questions.

The strategy is as follows. Paul fixes α′ with α < α′ < (t/E)k, then fixes a

positive δ so that α′

1−δ < (t/E)k. Finally, Paul fixes a, s as given by Lemma 2.2.
Remark 3.1. Because of the way it was chosen, s = q − k logt q + O(1). In

particular, s → ∞ and q − s → ∞ as q → ∞.
Once these quantities are all fixed, Paul’s first batch consists of q1 = s queries,

and here is the strategy he employs for it.
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Paul identifies the n possible answers with distinct pairs (i,u), with 1 ≤ i ≤ a and
u = u1 . . . us ∈ B r

s,t. Here, for definiteness, we may fix r = r(s) = 	s2/3
, although we
observe that any r(s) such that

√
s  r(s)  s would do. That there are sufficiently

many such pairs follows from Lemmas 2.1 and 2.2.
Paul’s first batch of queries is then simple to describe. For 1 ≤ i ≤ s he asks,

“What is the value of ui?”
Carole’s first batch of responses gives a string w = w1 · · ·ws. If Carole always

responded truthfully, then w would necessarily be a balanced string. She is allowed
to lie at most k times; hence u must be nearly balanced in the sense that every letter
of A must appear in the response string u at most s

t + r + k times.
Let x = (x0, . . . , xk) denote the state of the position after these responses. That

is, let xj be the number of possibilities for which Carole has lied precisely j times.

Lemma 3.2. For each 0 ≤ j ≤ k, xj ≤ aEj

j! ( st + r + k)j .
Proof. Let w = w1 · · ·ws be Carole’s actual response. Then xj is the number of

(i,w′) with 1 ≤ i ≤ a and where w,w′ differ in precisely j places and furthermore
(and crucially) each such place is an allowable lie pattern. There are Ej sequences
(a1, b1), . . . , (aj , bj) where the ai, bi ∈ A and (ai, bi) is an allowable lie pattern. For
each such sequence there are at most ( st + r + k)j sequences of positions i1, . . . , ij
so that in Carole’s response w the ilth position had letter bl. For each of these at
most Ej( st + r + k)j possibilities Carole may have lied by changing the ilth position
from al. This gives every possible w′. Each w′ has been counted j! times as you can
permute the sequence i1, . . . , ij in that many ways. Thus the number of possible w′

is at most Ej

j! ( st + r + k)j . Finally, there are a choices of i with 1 ≤ i ≤ a.

3.2. Packing is the same as winning. In this subsection we will provide the
instruments to use for the second batch of questions, in the strategy we give for Paul.

A liar game in which all questions must be asked in a single batch of Q questions
can be described as a packing problem. Let the alphabet A and channel C be fixed
as given by Definition 1.

We use a notation from [5].
Definition 5. For any j ≥ 0 and any w = w1 · · ·wQ ∈ AQ the j-shadow of w

is the set of w′ = w′
1 · · ·w′

Q such that
1. wi �= w′

i for at most j values 1 ≤ i ≤ Q.
2. If wi �= w′

i, then (wi, w
′
i) ∈ C.

For the benefit of the reader, we have included the following example.
Example. Assume Paul, after a first batch of seven questions, has received the

message 1443532 through the channel C of Figure 2, and suppose he knows that at
most two errors have been made. The 2-shadow of (1, 4, 4, 3, 5, 3, 2) is given by the
set A ∪ B, where A is the set of possibilities in case exactly one error was made and
B is the set of possibilities if exactly two errors were made:

A = {(1, 1, 4, 3, 5, 3, 2), (1, 4, 1, 3, 5, 3, 2), (1, 4, 4, 5, 5, 3, 2), (1, 4, 4, 3, 5, 5, 2),

(1, 4, 4, 3, 5, 3, 1), (1, 4, 4, 3, 5, 3, 4)},

B = {(1, 1, 1, 3, 5, 3, 2), (1, 1, 4, 5, 5, 3, 2), (1, 1, 4, 3, 5, 5, 2), (1, 1, 4, 3, 5, 3, 1),

(1, 1, 4, 3, 5, 3, 4), (1, 4, 1, 5, 5, 3, 2), (1, 4, 1, 3, 5, 5, 2), (1, 4, 1, 3, 5, 3, 1),

(1, 4, 1, 3, 5, 3, 4), (1, 4, 4, 5, 5, 5, 2), (1, 4, 4, 5, 5, 3, 1), (1, 4, 4, 5, 5, 3, 4),

(1, 4, 4, 3, 5, 5, 1), (1, 4, 4, 3, 5, 5, 4)}.
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Theorem 3.3. Paul wins the Q question one-batch liar game from starting state
(x0, . . . , xk) if and only if there exist xj (k−j)-shadows in AQ, all vertex disjoint for
every 0 ≤ j ≤ k.

Remark 3.4. To clarify, we require even when j �= j′ that no (k− j)-shadow
overlaps any (k−j′)-shadow.

Proof. Let wj
l , 0 ≤ j ≤ k, 1 ≤ l ≤ xj , be such that the (k−j)-shadows of wj

l are
all vertex disjoint. Paul identifies the xj possibilities for which Carole may lie (k−j)

times with wj
l . Paul asks for the coordinates of the vector. If the correct answer is wj

l ,
then Carole must respond with an element of its (k−j)-shadow. The disjointness of
these shadows means that any response w∗ of Carole is in precisely one such shadow
and therefore Paul can determine which one.

We omit the proof in the other direction as we shall not be requiring it; it is
essentially the same as the one for our “packing is equivalent to winning” argument
of [5].

3.3. Second batch/endgame. Here we show that a simple greedy algorithm
allows the packing Paul requires from Theorem 3.3, for the second batch of questions.
Indeed, we show that Paul can win even if Carole’s lies to the second batch of questions
are unrestricted by the channel. The j-ball with center w ∈ AQ is the set of w′ ∈ AQ

that differ from w in at most j places. Let F (Q, t, j) denote the size of the j-ball.
Then

F (Q, t, j) =

j∑
l=0

(
Q

l

)
(t− 1)l.

Note that the j-ball of w contains its j-shadow and is equal to its j-shadow when the
channel C consists of all (x, y) ∈ A×A. Note also that F (Q, t, 0) = 1.

Theorem 3.5. Let x0, . . . , xk satisfy

k∑
j=0

xjF (Q, t, 2(k − j)) ≤ tQ.

Then there exist xj (k−j)-balls in AQ for 0 ≤ j ≤ k, all
∑k

j=0 xj of them mutually
disjoint.

Proof. We select the centers wj
l , 0 ≤ j ≤ k, 1 ≤ l ≤ xj , sequentially. We do this

in increasing order of j, first selecting the x0 centers of k-balls, then the x1 centers of
(k−1)-balls, and continuing until finally selecting the xk centers of 0-balls. We insist
only that no new center selected lie in the 2(k−j)-ball of any previously selected center
wj

l . The assumed inequality gives that this prohibits less than tQ vertices from being
selected and therefore some w ∈ AQ is available. Consider any two centers selected

in the order of their selection, say, wj
l ,w

′j′
l′ . The ordering of selection ensures that

j ≤ j′. As wj′

l′ does not lie in the 2(k − j)-ball of wj
l , the (k−j)-balls of wj

l ,w
j′

l′ are

disjoint and so the (k−j)-ball of wj
l does not overlap the smaller (or equal) (k−j′)-ball

of w′j′
l′ .

To conclude the proof we need only show that x0, . . . , xk satisfying the upper
bounds of Lemma 3.2 will satisfy the conditions of Theorem 3.5 with Q = q − s.

The most important case is xk. We have xk ≤ aEk

k! ( st + r + k)k. We examine this
asymptotically as q (and hence both s and q−s) approach infinity. As q ∼ s, r = o(s),
and t, k are fixed, ( st + r + k)k = (q/t)k(1 + o(1)) so that xk ≤ a(E/t)k

(
q
k

)
(1 + o(1)).



TWO-BATCH LIAR GAME OVER AN ARBITRARY CHANNEL 1063

As (1 − δ)ats < α′tq/
(
q
k

)
we find

xk ≤ α′

1 − δ
(E/t)ktq−s(1 + o(1)).

Paul’s careful choice of δ sufficiently small ensures that we may express xk = (1 −
Ω(1))tq−s.

For 0 ≤ j < k we may use a more coarse upper bound for xj , by absorbing
a,Ej , j! into the constant factor xj = O(sj) = O(qj). Furthermore, n = Θ(ts) and
n = Θ(tqq−k) so qk = Θ(tq−s), and therefore xj = O(t(q−s)j/k). (Note that xj is
bounded above by a fractional power of the number of elements in Aq−s.) We bound
F (q−s, t, 2(k−j)) = O((q−s)2(k−j)) which is only polynomial in q−s. Hence

k−1∑
j=0

xjF (Q, t, 2(k − j)) =

k−1∑
j=0

O
(
t(q−s)j/k (q − s)2(k−j)

)
= o(tq−s).

That is, the x0, . . . , xk−1 terms (corresponding to the cases in which Carole did not
use the maximal permissible number of lies in her responses to the first batch of
questions) are asymptotically negligible and

k∑
j=0

xjF (Q, t, 2(k − j)) = (1 − Ω(1))tq−s.

For q sufficiently large, q − s is therefore sufficiently large so that the conditions
of Theorem 3.5 hold. For such large q Paul therefore has a second batch of (q−s)
questions that allows him to determine Carole’s answer.

4. Conclusions. In this paper we have proved that there exists a strategy for
Paul which allows him to win the (n, k, C) two-batch liar game with q questions for

n ∼
(

t
E

)k tq

(q
k)

. We have done this by giving a strategy that allows him to ask most

of the questions in the first offline batch (q1 ∼ q) and use an exponentially smaller
number of questions (q2 ∼ k log q) for the second batch.

One may argue that this strategy is a very desirable one, since it allows for most
of the questions to be asked in an offline fashion at first and uses only an exponentially
smaller number of “corrective” questions in the second batch. At the same time, one
might also argue that Paul receives much feedback from Carole’s answers to his first
batch of questions, and that is why the number of corrective questions needs to be
much smaller.

We raise two open questions. First, to what extent can the results of our work be
tightened? We note that in [9] second order terms were given for the original Rényi–
Ulam game, and perhaps similar results apply in our more general setting. Second,
suppose Paul does not have the freedom of choosing the size q1 of his first batch of
questions. For what range of values q1 can Paul still win?

We close with the connection between the two-batch problem and the one-batch,
or completely offline, problem. The asymptotics of A−

C,k(q) (the maximal n for the
one-batch variant of the liar game) remain open. Indeed, this has been a prime
motivating force in our research. Is A−

C,k(q) ∼ AC,k(q)? In words, do the completely
offline and completely online problems have the same asymptotic solution? We feel
(mildly) that our results point in this direction. We hope that the tools we constructed
for our analysis will be helpful in extending the asymptotics to these cases.
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Abstract. This paper presents the first combinatorial polynomial algorithm for minimizing
bisubmodular functions, extending the scaling algorithm for submodular function minimization due
to Iwata, Fleischer, and Fujishige. Since the rank functions of delta-matroids are bisubmodular,
the scaling algorithm naturally leads to the first combinatorial polynomial algorithm for testing
membership in delta-matroid polyhedra.
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1. Introduction. Let V be a finite nonempty set of cardinality n and 3V denote
the set of ordered pairs of disjoint subsets of V . Two binary operations � and � on
3V are defined by

(X1, Y1) � (X2, Y2) = ((X1 ∪X2)\(Y1 ∪ Y2), (Y1 ∪ Y2)\(X1 ∪X2)),

(X1, Y1) � (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2).

A function f : 3V → R is called bisubmodular if it satisfies

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) � (X2, Y2)) + f((X1, Y1) � (X2, Y2))

for any (X1, Y1) and (X2, Y2) in 3V . This paper presents the first combinatorial
polynomial algorithm for minimizing bisubmodular functions.

Examples of bisubmodular functions include the rank functions of delta-matroids
introduced independently by Bouchet [3] and Chandrasekaran–Kabadi [6]. A delta-
matroid is a set system (V,F) with F being a nonempty family of subsets of V that
satisfies the following exchange property:

∀F1, F2 ∈ F ,∀v ∈ F1
F2,∃u ∈ F1
F2 : F1
{u, v} ∈ F ,

where 
 denotes the symmetric difference. A slightly restricted set system with an
additional condition ∅ ∈ F had been introduced by Dress–Havel [11]. A member of F
is called a feasible set of the delta-matroid. Note that the base and the independent-
set families of a matroid satisfy this exchange property. Thus, a delta-matroid is a
generalization of a matroid.

Chandrasekaran–Kabadi [6] showed that the rank function � : 3V → Z defined by

�(X,Y ) = max{|X ∩ F | − |Y ∩ F | | F ∈ F}
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is bisubmodular. The convex hull of the characteristic vectors of the feasible sets is
described by

P(�) = {x | x ∈ RV , ∀(X,Y ) ∈ 3V : x(X) − x(Y ) ≤ �(X,Y )},

which is called the delta-matroid polyhedron. This fact follows from the greedy algo-
rithm [3, 6] for optimizing a linear function over the feasible sets.

Given a vector x ∈ RV , one can test if x belongs to P(�) by minimizing a
bisubmodular function f(X,Y ) = �(X,Y ) − x(X) + x(Y ). Even for such a special
case of bisubmodular function minimization, no combinatorial algorithm was known
to run in polynomial time. This is in contrast with the matroid polyhedron, for which
Cunningham [7] devised a combinatorial strongly polynomial algorithm for testing
membership.

A simple example of a delta-matroid is a matching delta-matroid [4], whose fea-
sible sets are the perfectly matchable vertex subsets of an undirected graph. The
corresponding delta-matroid polyhedron is the matchable set polytope [2]. For this
special case, Cunningham–Green-Krótki [10] developed an augmenting path algorithm
for solving the separation problem in polynomial time with the aid of the scaling tech-
nique.

A bisubmodular function also generalizes a submodular (set) function. Let 2V

denote the family of all the subsets of V . A function g : 2V → R is called submodular
if it satisfies

g(Z1) + g(Z2) ≥ g(Z1 ∪ Z2) + g(Z1 ∩ Z2)

for any Z1, Z2 ⊆ V . For a submodular function g, we define a bisubmodular function
f : 3V → R by

f(X,Y ) = g(X) + g(V \Y ) − g(V ).

If (X,Y ) is a minimizer of f , then both X and V \Y are minimizers of g. Thus, bisub-
modular function minimization (BSFM) is a generalization of submodular function
minimization.

The first polynomial algorithm for submodular function minimization is given by
Grötschel–Lovász–Schrijver [16]. They also give the first strongly polynomial algo-
rithms in [17]. Their algorithms rely on the ellipsoid method, which is not efficient
in practice. Two combinatorial strongly polynomial algorithms have been devised
independently by Schrijver [23] and Iwata–Fleischer–Fujishige [18]. Both of these
new algorithms are based on the combinatorial pseudopolynomial algorithm given by
Cunningham [8]. The algorithm of Schrijver [23] directly achieves a strongly polyno-
mial bound, whereas Iwata–Fleischer–Fujishige [18] develop a scaling algorithm with
weakly polynomial time complexity and then convert it to a strongly polynomial one.

In the present paper, we extend the scaling algorithm of Iwata–Fleischer–Fujishige
[18] to solve the minimization problem for integer-valued bisubmodular functions.
The resulting algorithm runs in O(n5 logM) time, where M designates the maximum
value of f . This bound is weakly polynomial. A strongly polynomial version will be
presented in a forthcoming paper by McCormick–Fujishige [21].

As a generalization of the delta-matroid polyhedron, a bisubmodular polyhedron

P(f) = {x | x ∈ RV , ∀(X,Y ) ∈ 3V : x(X) − x(Y ) ≤ f(X,Y )}

is associated with a general bisubmodular function f : 3V → R, where we assume
f(∅, ∅) = 0. The linear optimization problem over the bisubmodular polyhedron can
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be solved by the greedy algorithm of Dunstan–Welsh [12]. Based on the validity of this
greedy algorithm, Qi [22] established a connection between bisubmodular functions
and their convex extensions. This generalizes a result of Lovász [19] on submodular
functions. Qi [22] also mentioned that the connection provides a polynomial algorithm
for bisubmodular function minimization using the ellipsoid method. In contrast, our
combinatorial algorithm directly deals with the separation problem for bisubmodular
polyhedra.

The concept of delta-matroid is extended to that of jump system by Bouchet–
Cunningham [5]. A jump system is a set of lattice points satisfying a certain axiom.
Examples include the set of degree sequences of a graph [9]. Lovász [20] investigated
the membership problem in jump systems and proved a min-max theorem for a fairly
wide class of jump systems. The lattice points contained in an integral bisubmodular
polyhedron form a jump system, called a convex jump system, and conversely the
convex hull of a jump system is an integral bisubmodular polyhedron. An example of
a convex jump system is the so-called b-matching degree sequence polyhedron [9]. A
very recent paper of Zhang [24] presented an augmenting path separation algorithm
for this polyhedron. The present paper provides a more general algorithmic approach
to the membership problem in convex jump systems.

2. Bisubmodular polyhedra. This section provides a preliminary on bisub-
modular polyhedra. See [14, section 3.5 (b)] for more detail and background.

For any vector y ∈ RV , we denote ‖y‖ =
∑

v∈V |y(v)|. Concerning the short-
est distance from a given vector x◦ to the bisubmodular polyhedron P(f), we have
the following min-max relation, which is essentially equivalent to an earlier result of
Cunningham–Green-Krótki [9].

Theorem 2.1 (Fujishige [15]). For any bisubmodular function f : 3V → R and
any vector x◦ ∈ RV ,

min{‖x− x◦‖ | x ∈ P(f)} = max{x◦(X) − x◦(Y ) − f(X,Y ) | (X,Y ) ∈ 3V }

holds. Moreover, if f and x◦ are integer valued, then there is an integral vector x that
attains the minimum in the left-hand side.

When x◦ = 0, the min-max relation characterizes the minimum value of f . Our
combinatorial algorithm is built on this characterization.

We now turn to the greedy algorithm for computing an extreme point of a bisub-
modular polyhedron. See also [1] for related structural results on extreme points of
bisubmodular polyhedra.

Let σ : V → {+,−} be a sign function. For any subset U ⊆ V , we denote by
U |σ the pair (X,Y ) ∈ 3V with X = {u | u ∈ U, σ(u) = +} and Y = {u | u ∈
U, σ(u) = −}. We also write f(U |σ) = f(X,Y ) for any function f : 3V → R, and
x(U |σ) = x(X) − x(Y ) for any vector x ∈ RV .

Let L = (v1, · · · , vn) be a linear ordering of V . For each j = 1, . . . , n, let L(vj) =
{v1, . . . , vj}. The greedy algorithm with respect to L and a sign function σ assigns
y(v) := σ(v){f(L(v)|σ) − f(L(v)\{v}|σ)} for each v ∈ V . Then the resulting vector
y ∈ RV is an extreme point of the bisubmodular polyhedron P(f).

Given a weight function w : V → R, construct a linear ordering L = (v1, . . . , vn)
and a sign function σ that satisfies |w(v1)| ≥ · · · ≥ |w(vn)| and w(v) = σ(v)|w(v)|
for each v ∈ V . Then the vector y generated by the greedy algorithm with respect
to L and σ maximizes the linear function

∑
v∈V w(v)y(v) over the bisubmodular

polyhedron P(f).
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3. Scaling algorithm. This section presents a scaling algorithm for minimizing
an integer-valued bisubmodular function f : 3V → Z, provided that an oracle for
evaluating the function value is available.

The scaling algorithm works with a positive parameter δ. The algorithm keeps a
vector x ∈ P(f) as a convex combination of extreme points of P(f) indexed by finite
set I. Namely, x =

∑
i∈I λiyi with λi > 0 for each i ∈ I and

∑
i∈I λi = 1. Each

extreme point yi is generated by the greedy algorithm with respect to Li and σi. It
also keeps a pair of functions ϕ : V × V → R and ψ : V × V → R. The function ϕ
is skew-symmetric, i.e., ϕ(u, v) + ϕ(v, u) = 0 for any u, v ∈ V , while ψ is symmetric,
i.e., ψ(u, v) = ψ(v, u) for any u, v ∈ V . These functions are called δ-feasible if they
satisfy −δ ≤ ϕ(u, v) ≤ δ and −δ ≤ ψ(u, v) ≤ δ for any u, v ∈ V . The boundaries ∂ϕ
and ∂ψ are defined by ∂ϕ(u) =

∑
v∈V ϕ(u, v) and ∂ψ(u) =

∑
v∈V ψ(u, v).

The algorithm starts with an extreme point x ∈ P(f) generated by the greedy
algorithm with respect to a linear ordering L and a sign function σ. The initial value
of δ is given by δ := ‖x‖/n2, and the initial values of ϕ and ψ are zero.

Each scaling phase starts by cutting the value of δ in half. Then it modifies ϕ
and ψ to make them δ-feasible. This can be done by setting each ϕ(u, v) and ψ(u, v)
to the closest values in the interval [−δ, δ].

The rest of the scaling phase aims at decreasing ‖z‖ for z = x + ∂ϕ + ∂ψ. It
uses three procedures: Augment, Double-Exchange, and Tail-Exchange. Procedure
Augment decreases ‖z‖ by δ, whereas Double-Exchange and Tail-Exchange modify x,
ϕ, ψ keeping z invariant. The scaling phase terminates when none of these procedures
are applicable. Then ‖z‖ is shown to be small enough to keep moderate the number
of applications of Augment in the next scaling phase. Furthermore, if δ < 1/3n2, then
the algorithm detects a pair (X,Y ) that minimizes f .

Given δ-feasible ϕ and ψ, the algorithm constructs an auxiliary directed graph
G(ϕ,ψ) as follows. Let V + and V − be two copies of V . For each v ∈ V , we denote
its copies by v+ ∈ V + and v− ∈ V −. The vertex set of G(ϕ,ψ) is V + ∪ V −. For
any subset U ⊆ V , define U+ = {u+ | u ∈ U} and U− = {u− | u ∈ U}. The arc set
A(ϕ,ψ) = A(ϕ) ∪A(ψ) of G(ϕ,ψ) is defined by

A(ϕ) = {(u+, v+) | u �= v, ϕ(u, v) ≤ 0} ∪ {(u−, v−) | u �= v, ϕ(u, v) ≥ 0},
A(ψ) = {(u+, v−) | ψ(u, v) ≤ 0} ∪ {(u−, v+) | ψ(u, v) ≥ 0}.

Note that, for any u, v ∈ V and any sign function η on V , the graph G(ϕ,ψ) has
a directed path from uη(u) to vη(v) if and only if G(ϕ,ψ) has a directed path from
v−η(v) to u−η(u).

Let S = {v | v ∈ V, z(v) ≤ −δ} and T = {v | v ∈ V, z(v) ≥ δ}. A simple directed
path in G(ϕ,ψ) from S+ ∪ T− to S− ∪ T+ is called a δ-augmenting path. If there
exists a δ-augmenting path P , the algorithm applies the following δ-augmentation to
ϕ and ψ.

Augment(δ, P, ϕ, ψ):
• For each (u+, v+) in P , ϕ(u, v) := ϕ(u, v) + δ/2 and ϕ(v, u) := ϕ(v, u)− δ/2.
• For each (u−, v−) in P , ϕ(u, v) := ϕ(u, v)− δ/2 and ϕ(v, u) := ϕ(v, u) + δ/2.
• For each (u+, v−) in P , ψ(u, v) := ψ(u, v) + δ/2 and ψ(v, u) := ψ(v, u) + δ/2.
• For each (u−, v+) in P , ψ(u, v) := ψ(u, v)− δ/2 and ψ(v, u) := ψ(v, u)− δ/2.

Note that a δ-augmentation does not change x, maintains δ-feasibility, and decreases
‖z‖ by δ.

After each δ-augmentation, the algorithm computes an expression of x as a convex
combination of affinely independent extreme points of P(f) chosen from among {yi |
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Double-Exchange(i, u, v);
β := f(Li(u)\{v}|σi) − f(Li(u)|σi) + σi(v)yi(v);
α := min{δ, λiβ};
If α < λiβ then

k ← a new index;
I := I ∪ {k};
λk := λi − α/β;
λi := α/β;
yk := yi;
Lk := Li;

Update Li by interchanging u and v;
yi := yi + β(σi(u)χu − σi(v)χv);
x := x + α(σi(u)χu − σi(v)χv);
If σi(u) = σi(v) then

ϕ(u, v) := ϕ(u, v) − σi(u)α;
ϕ(v, u) := ϕ(v, u) + σi(u)α;

Else
ψ(u, v) := ψ(u, v) − σi(u)α;
ψ(v, u) := ψ(v, u) − σi(u)α.

Fig. 3.1. Algorithmic description of Procedure Double-Exchange(i, u, v).

i ∈ I}. This can be done by a standard linear programming technique using Gaussian
elimination.

If there is no δ-augmenting path, let X+ ⊆ V + and Y − ⊆ V − be the sets of
vertices reachable by directed paths from S+ ∪ T−. Then we have S ⊆ X, T ⊆ Y ,
and X ∩ Y = ∅. For each i ∈ I, consider a pair of disjoint subsets Wi = {u | uσi(u) ∈
X+ ∪ Y −} and Ri = {u | uσi(u) ∈ X− ∪ Y +}. Note that Wi ∪Ri = X ∪ Y . We now
introduce two procedures: Double-Exchange and Tail-Exchange.

Procedure Double-Exchange(i, u, v) is applicable if u immediately succeeds v in Li

and either u ∈ Wi and v /∈ Wi or u /∈ Ri and v ∈ Ri hold. Such a triple (i, u, v) is
called active. The first step of the procedure is to compute

β := f(Li(u)\{v}|σi) − f(Li(u)|σi) + σi(v)yi(v).

Then it interchanges u and v in Li and updates yi as yi := yi +β(σi(u)χu−σi(v)χv).
The resulting yi is an extreme point generated by the new linear ordering Li and sign
function σi.

If λiβ ≤ δ, Double-Exchange(i, u, v) is called saturating. Otherwise, it is called
nonsaturating. In the nonsaturating case, the procedure adds to I a new index k
with yk, σk and Lk being the previous yi, σi and Li, and assigns λk := λi − δ/β
and λi := δ/β. In both cases, x moves to x := x + α(σi(u)χu − σi(v)χv) with
α = min{δ, λiβ}. In order to keep z invariant, the procedure finally modifies ϕ or ψ
appropriately. If σi(u) = σi(v), it updates ϕ(u, v) := ϕ(u, v) − σi(u)α and ϕ(v, u) :=
ϕ(v, u)+σi(u)α. On the other hand, if σi(u) �= σi(v), then ψ(u, v) := ψ(u, v)−σi(u)α
and ψ(v, u) := ψ(v, u) − σi(u)α. A formal description of Double-Exchange is given in
Figure 3.1.

Lemma 3.1. As a result of nonsaturating Double-Exchange(i, u, v), a new vertex
joins X ∪ Y or a δ-augmenting path appears in G(ϕ,ψ).
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Tail-Exchange(i, v);
σi(v) := −σi(v);
β := f(V |σi) − f(V \{v}|σi) − σi(v)yi(v);
α := min{δ, λiβ};
If α < λiβ then

k ← a new index;
I := I ∪ {k};
λk := λi − α/β;
λi := α/β;
yk := yi;
Lk := Li;

yi := yi + σi(v)βχv;
x := x + σi(v)αχv;
ψ(v, v) := ψ(v, v) − σi(v)α.

Fig. 3.2. Algorithmic description of Procedure Tail-Exchange(i, v).

Proof. The nonsaturating Double-Exchange(i, u, v) updates ϕ or ψ so that a new
arc (uσi(u), vσi(v)) should appear in G(ϕ,ψ). Recall that either u ∈ Wi and v /∈ Wi

or u /∈ Ri and v ∈ Ri holds. If u ∈ Wi and v /∈ Ri ∪ Wi, the new arc makes vσi(v)

reachable from S+ ∪ T−. If v ∈ Ri and u /∈ Wi ∪ Ri, the new arc makes uσi(u)

reachable to S− ∪ T+. Thus, in these cases, a new vertex v or u is added to X ∪ Y .
Finally, if u ∈ Wi and v ∈ Ri, the new arc yields a δ-augmenting path.

Procedure Tail-Exchange(i, v) is applicable if v is the last element in Li and v ∈ Ri.
Such a pair (i, v) is also called active. The first step of the procedure is to reverse the
sign σi(v). It then computes

β := f(V |σi) − f(V \{v}|σi) − σi(v)yi(v)

and updates yi := yi + σi(v)βχv. The resulting yi is an extreme point generated by
Li and the new σi.

If λiβ ≤ δ, Tail-Exchange(i, v) is called saturating. Otherwise, it is called nonsat-
urating. In the nonsaturating case, the procedure adds to I a new index k with yk, σk

and Lk being the previous yi, σi and Li, and assigns λk := λi − δ/β and λi := δ/β.
In both cases, x moves to x := x + σi(v)αχv with α = min{δ, λiβ}. In order to keep
z invariant, the procedure finally modifies ψ as ψ(v, v) := ψ(v, v) − σi(v)α. A formal
description of Tail-Exchange is given in Figure 3.2.

Lemma 3.2. As a result of nonsaturating Tail-Exchange(i, v), a δ-augmenting
path appears in G(ϕ,ψ).

Proof. Suppose the algorithm applies Tail-Exchange(i, v) with σi(v) = τ . Then
v−τ is reachable from S+ ∪ T− and vτ is reachable to S− ∪ T+ in G(ϕ,ψ). The
nonsaturating Tail-Exchange(i, v) changes σi(v) to −τ and updates ψ(v, v) so that a
new arc (v−τ , vτ ) appears in G(ϕ,ψ), which yields a δ-augmenting path from S+∪T−

to S− ∪ T+.
If there is no δ-augmenting path and neither Double-Exchange nor Tail-Exchange

is applicable, the algorithm terminates the scaling phase. Then it goes to the next
scaling phase unless δ < 1/3n2. If δ < 1/3n2, the algorithm terminates by returning
the current (X,Y ) as a minimizer of f .

A formal description of our scaling algorithm BSFM is now given in Figure 3.3.
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BSFM(f):
Initialization:

L ← a linear ordering on V ;
σ ← a sign function on V ;
x ← an extreme vector in P(f) generated by L and σ;
I := {�}, y� := x, λ� := 1, L� := L;
ϕ := 0, ψ := 0;
δ ← ‖x‖/n2;

While δ ≥ 1/3n2 do
δ := δ/2;
For (u, v) ∈ V × V do

Change ϕ(u, v) and ψ(u, v) to the closest values in the interval [−δ, δ];
S := {v | x(v) + ∂ϕ(v) + ∂ψ(v) ≤ −δ};
T := {v | x(v) + ∂ϕ(v) + ∂ψ(v) ≥ δ};
X+ ← the set of vertices in V + reachable from S+ ∪ T− in G(ϕ,ψ);
Y − ← the set of vertices in V − reachable from S+ ∪ T− in G(ϕ,ψ);
Q ← the set of active triples and active pairs;
While ∃δ-augmenting path or Q �= ∅ do

If ∃P : δ-augmenting path then
Augment(δ, P, ϕ, ψ);
Update S, T , X+, Y −, Q;
Express x as x =

∑
i∈I λiyi by possibly smaller affinely independent

subset I and positive coefficients λi > 0 for i ∈ I;
Else

While � ∃δ-augmenting path and Q �= ∅ do
Find an active (i, u, v) ∈ Q or active (i, v) ∈ Q;
Apply Double-Exchange(i, u, v) or Tail-Exchange(i, v);
Update X+, Y −, Q;

Return (X,Y );
End.

Fig. 3.3. A scaling algorithm for bisubmodular function minimization.

4. Validity and complexity. This section is devoted to the analysis of our
scaling algorithm. We first discuss the validity.

Lemma 4.1. At the end of each scaling phase, the current (X,Y ) ∈ 3V and
z = x + ∂ϕ + ∂ψ satisfy ‖z‖ ≤ 2nδ − f(X,Y ).

Proof. At the end of each scaling phase, we have yi(X) − yi(Y ) = f(X,Y )
for each i ∈ I. Hence, x satisfies x(X) − x(Y ) = f(X,Y ). By the definition of
(X,Y ), we have ϕ(u, v) > 0 for u ∈ X, v ∈ V \X and ϕ(u, v) < 0 for u ∈ Y ,
v ∈ V \Y . These inequalities imply ∂ϕ(X) =

∑
{ϕ(u, v) | u ∈ X, v ∈ V \X} > 0

and ∂ϕ(Y ) =
∑

{ϕ(u, v) | u ∈ Y, v ∈ V \Y } < 0. Similarly, we have ψ(u, v) > 0
for u ∈ X, v ∈ V \Y and ψ(u, v) < 0 for u ∈ Y , v ∈ V \X, which imply ∂ψ(X) =∑

{ψ(u, v) | u ∈ X, v ∈ V } > θ and ∂ψ(Y ) =
∑

{ψ(u, v) | u ∈ Y, v ∈ V } < θ, where
θ =

∑
{ψ(u, v) | u ∈ X, v ∈ Y }. Since S ⊆ X and T ⊆ Y , we have z(v) ≥ −δ for

v ∈ V \X and z(v) ≤ δ for v ∈ V \Y . Therefore, we have ‖z‖ ≤ −z(X)+z(Y )+2nδ ≤
−x(X) + x(Y ) + 2nδ = −f(X,Y ) + 2nδ.

Theorem 4.2. The algorithm obtains a minimizer of f at the end of the last
scaling phase.
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Proof. Note that δ < 1/3n2 at the end of the last scaling phase. For each v ∈ V ,
since |∂ϕ(v)| ≤ (n−1)δ and |∂ψ(v)| ≤ nδ, we have |x(v)| ≤ |z(v)|+|∂ϕ(v)|+|∂ψ(v)| ≤
|z(v)|+(2n−1)δ. Then it follows from Lemma 4.1 that ‖x‖ ≤ (2n2 +n)δ−f(X,Y ) <
1 − f(X,Y ). For any (X ′, Y ′) ∈ 3V , we have f(X ′, Y ′) ≥ x(X ′) − x(Y ′) ≥ −‖x‖ >
f(X,Y ) − 1. Hence (X,Y ) is a minimizer of the integer-valued function f .

We now give a running time bound of our algorithm.
Lemma 4.3. Each scaling phase performs O(n2) augmentations.
Proof. At the beginning of each scaling phase, the algorithm modifies ϕ and ψ to

make them δ-feasible (for the new δ). This changes ‖z‖ by at most 2n2δ. Therefore,
by Lemma 4.1, the pair (X,Y ) obtained at the end of the previous scaling phase must
satisfy ‖z‖ ≤ 2n2δ + 4nδ − f(X,Y ) after updating ϕ and ψ at the beginning of the
current scaling phase. On the other hand, at the end of the current scaling phase, we
have ‖z‖ ≥ −z(X)+ z(Y ) ≥ −x(X)+x(Y )− 2n2δ ≥ −f(X,Y )− 2n2δ. Thus, during
the scaling phase, ‖z‖ decreases by at most 4nδ + 4n2δ. Since each δ-augmentation
decreases ‖z‖ by δ, the number of δ-augmentations in the scaling phase is at most
4n2 + 4n, which is O(n2).

Lemma 4.4. The algorithm performs Procedure Double-Exchange O(n3) times
and Tail-Exchange O(n2) times between δ-augmentations.

Proof. In Double-Exchange, a vertex in Wi moves in Li ahead of some vertex
not in Wi and/or a vertex in Ri moves behind some vertex not in Ri. Procedure
Tail-Exchange changes a vertex of Ri into Wi. No vertex goes out of Wi. A vertex of
Ri can be switched to Wi by Tail-Exchange. However, it does not go out of Ri ∪Wi.
Thus, for each i ∈ I, after at most O(n2) applications of Double-Exchange and O(n)
applications of Tail-Exchange to i ∈ I, the subset Ri is empty and Wi = Li(w) holds for
some w ∈ V . At this point, neither Double-Exchange nor Tail-Exchange is applicable
to i ∈ I.

After each δ-augmentation, the algorithm updates the convex combination x =∑
i∈I λiyi so that |I| ≤ n+ 1. A new index is added to I as a result of nonsaturating

Double-Exchange(i, u, v) and Tail-Exchange(i, v). It follows from Lemmas 3.1 and 3.2
that this can happen at most n− 1 times before the algorithm finds a δ-augmenting
path or finishes the scaling phase. Hence, |I| is always O(n), and the algorithm
performs Double-Exchange O(n3) times and Tail-Exchange O(n2) times between δ-
augmentations.

Let M be the maximum value of f . Since f(∅, ∅) = 0, the maximum value M is
nonnegative.

Theorem 4.5. The scaling algorithm finds a minimizer of f in O(n5 logM)
time.

Proof. For the initial x ∈ P(f), let B = {v | x(v) > 0} and C = {v | x(v) < 0}.
Then we have ‖x‖ = x(B) − x(C) ≤ f(B,C) ≤ M . Hence the algorithm performs
O(logM) scaling phases. It follows from Lemmas 4.3 and 4.4 that each scaling phase
performs O(n5) function evaluations and arithmetic operations. Therefore the total
running time is O(n5 logM).

5. Conclusion. We have described a combinatorial polynomial algorithm for
minimizing integer-valued bisubmodular functions. If we are given a positive lower
bound ε for the difference between the minimum and the second minimum value of f ,
a variant of the present algorithm works for any real-valued bisubmodular function f .
The only required modification is to change the stopping rule δ < 1/3n2 to δ < ε/3n2.
The running time is O(n5 log(M/ε)). Thus we obtain a polynomial algorithm for
testing membership in delta-matroid polyhedra.
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One can make this algorithm strongly polynomial with the aid of the generic
preprocessing technique of Frank–Tardos [13] that uses the simultaneous Diophantine
approximation. However, a more natural strongly polynomial algorithm is desirable.
Subsequent to this paper, McCormick and Fujishige [21] have devised such an algo-
rithm for general bisubmodular function minimization.
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